1
|
Fan L, Liu B, Yao R, Gao X, Wang H, Jiang S, Zheng X, Chen H, Hou H, Liu Y, Hu Q. Nicotine-induced transcriptional changes and mitochondrial dysfunction in the ventral tegmental area revealed by single-nucleus transcriptomics. J Genet Genomics 2024; 51:1237-1251. [PMID: 39244085 DOI: 10.1016/j.jgg.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Nicotine is widely recognized as the primary contributor to tobacco dependence. Previous studies have indicated that molecular and behavioral responses to nicotine are primarily mediated by ventral tegmental area (VTA) neurons, and accumulating evidence suggests that glia play prominent roles in nicotine addiction. However, VTA neurons and glia have yet to be characterized at the transcriptional level during the progression of nicotine self-administration. Here, a male mouse model of nicotine self-administration is established and the timing of three critical phases (pre-addiction, addicting, and post-addiction phase) is characterized. Single-nucleus RNA sequencing in the VTA at each phase is performed to comprehensively classify specific cell subtypes. Adaptive changes occurred during the addicting and post-addiction phases, with the addicting phase displaying highly dynamic neuroplasticity that profoundly impacts the transcription in each cell subtype. Furthermore, significant transcriptional changes in energy metabolism-related genes are observed, accompanied by notable structural alterations in neuronal mitochondria during the progression of nicotine self-administration. The results provide insights into mechanisms underlying the progression of nicotine addiction, serving as an important resource for identifying potential molecular targets for nicotine cessation.
Collapse
Affiliation(s)
- Lei Fan
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230000, China; University of Science and Technology of China, Hefei, Anhui 230000, China; Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China
| | - Boxin Liu
- BGI Genomics, BGI-Shenzhen, Guangdong 518018, China
| | - Ru Yao
- BGI Genomics, BGI-Shenzhen, Guangdong 518018, China
| | - Xia Gao
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China
| | - Hongjuan Wang
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China
| | - Sanjie Jiang
- BGI Genomics, BGI-Shenzhen, Guangdong 518018, China
| | | | - Huan Chen
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China.
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China.
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230000, China; University of Science and Technology of China, Hefei, Anhui 230000, China.
| | - Qingyuan Hu
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China.
| |
Collapse
|
2
|
Akçimen F, Chia R, Saez-Atienzar S, Ruffo P, Rasheed M, Ross JP, Liao C, Ray A, Dion PA, Scholz SW, Rouleau GA, Traynor BJ. Genomic Analysis Identifies Risk Factors in Restless Legs Syndrome. Ann Neurol 2024; 96:994-1005. [PMID: 39078117 PMCID: PMC11496024 DOI: 10.1002/ana.27040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE Restless legs syndrome (RLS) is a neurological condition that causes uncomfortable sensations in the legs and an irresistible urge to move them, typically during periods of rest. The genetic basis and pathophysiology of RLS are incompletely understood. We sought to identify additional novel genetic risk factors associated with RLS susceptibility. METHODS We performed a whole-genome sequencing and genome-wide association meta-analysis of RLS cases (n = 9,851) and controls (n = 38,957) in 3 population-based biobanks (All of Us, Canadian Longitudinal Study on Aging, and CARTaGENE). RESULTS Genome-wide association analysis identified 9 independent risk loci, of which 8 had been previously reported, and 1 was a novel risk locus (LMX1B, rs35196838, OR 1.14, 95% CI 1.09-1.19, p value = 2.2 × 10-9). Furthermore, a transcriptome-wide association study also identified GLO1 and a previously unreported gene, ELFN1. A genetic correlation analysis revealed significant common variant overlaps between RLS and neuroticism (rg = 0.40, se = 0.08, p value = 5.4 × 10-7), depression (rg = 0.35, se = 0.06, p value = 2.17 × 10-8), and intelligence (rg = -0.20, se = 0.06, p value = 4.0 × 10-4). INTERPRETATION Our study expands the understanding of the genetic architecture of RLS, and highlights the contributions of common variants to this prevalent neurological disorder. ANN NEUROL 2024;96:994-1005.
Collapse
Affiliation(s)
- Fulya Akçimen
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Memoona Rasheed
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jay P. Ross
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Calwing Liao
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Patrick A. Dion
- Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Guy A. Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| |
Collapse
|
3
|
Kajimoto A, Toyota K, Ohira T, Yusa Y. Transcriptomic analysis of sexually dimorphic cypris larvae of the rhizocephalan barnacle Peltogasterella gracilis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101342. [PMID: 39437456 DOI: 10.1016/j.cbd.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Peltogasterella gracilis (Cirripedia: Rhizocephala), a crustacean parasite of hermit crabs, displays genotypic sex determination. Its larvae are planktonic, and female larvae settle on the host. Subsequently, the females control the host's behavior by spreading a root-like structure called "the interna" within the host's body, and form sacs containing eggs called "the externae" outside the host's body. On the other hand, male larvae settle on immature externae and become dwarf males. The cypris larvae of P. gracilis show sexual dimorphism in size and morphology. However, there is no understanding of the molecular mechanisms underlying the sexual dimorphism observed at the larval stage. Here, we conducted a transcriptome analysis and compared the expression of genes in male and female cyprids to better understand their sexual differentiation and settlement processes. A total of 2870 differentially expressed transcripts, comprising 456 female- and 2414 male-biased transcripts were identified. Among the male-biased ones, ionotropic glutamate receptor-, heat shock protein-, acetylcholine-, and homeobox-, cuticle-related transcripts were included. Additionally, 29 gene ontology terms were associated with the sex-specific traits. The present study improves our understanding of sex determination, sexual differentiation, and settlement processes of rhizocephalans.
Collapse
Affiliation(s)
- Asami Kajimoto
- Nara Women's University, Kitauoya-nishi 630-8506, Nara, Japan.
| | - Kenji Toyota
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama-city, Kanagawa 221-8686, Japan; Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashihiroshima-shi, Hiroshima 739-8528, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama-city, Kanagawa 221-8686, Japan
| | - Yoichi Yusa
- Nara Women's University, Kitauoya-nishi 630-8506, Nara, Japan
| |
Collapse
|
4
|
Kochmanski J, Virani M, Kuhn NC, Boyd SL, Becker K, Adams M, Bernstein AI. Developmental origins of Parkinson's disease risk: perinatal exposure to the organochlorine pesticide dieldrin leads to sex-specific DNA modifications in critical neurodevelopmental pathways in the mouse midbrain. Toxicol Sci 2024; 201:263-281. [PMID: 38995845 PMCID: PMC11424889 DOI: 10.1093/toxsci/kfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with an increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 wk of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points-birth, 6, 12, and 36 wk old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of differential modification of cytosines with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late-life diseases, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Sierra L Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Katelyn Becker
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Alison I Bernstein
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
5
|
Galgani A, Scotto M, Giorgi FS. The Neuroanatomy of Induced Pluripotent Stem Cells: In Vitro Models of Subcortical Nuclei in Neurodegenerative Disorders. Curr Issues Mol Biol 2024; 46:10180-10199. [PMID: 39329959 PMCID: PMC11430477 DOI: 10.3390/cimb46090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
6
|
Rifes P, Kajtez J, Christiansen JR, Schörling A, Rathore GS, Wolf DA, Heuer A, Kirkeby A. Forced LMX1A expression induces dorsal neural fates and disrupts patterning of human embryonic stem cells into ventral midbrain dopaminergic neurons. Stem Cell Reports 2024; 19:830-838. [PMID: 38759646 PMCID: PMC11390620 DOI: 10.1016/j.stemcr.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
The differentiation of human pluripotent stem cells into ventral mesencephalic dopaminergic (DA) fate is relevant for the treatment of Parkinson's disease. Shortcuts to obtaining DA cells through direct reprogramming often include forced expression of the transcription factor LMX1A. Although reprogramming with LMX1A can generate tyrosine hydroxylase (TH)-positive cells, their regional identity remains elusive. Using an in vitro model of early human neural tube patterning, we report that forced LMX1A expression induced a ventral-to-dorsal fate shift along the entire neuroaxis with the emergence of roof plate fates despite the presence of ventralizing molecules. The LMX1A-expressing progenitors gave rise to grafts containing roof plate-derived choroid plexus cysts as well as ectopically induced TH-positive neurons of a forebrain identity. Early activation of LMX1A prior to floor plate specification was necessary for the dorsalizing effect. Our work suggests using caution in employing LMX1A for the induction of DA fate, as this factor may generate roof plate rather than midbrain fates.
Collapse
Affiliation(s)
- Pedro Rifes
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Janko Kajtez
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Josefine Rågård Christiansen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alrik Schörling
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark; Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; Wallenberg Center for Molecular Medicine, Department of Experimental Medical Sciences, Lund University, 22184 Lund, Sweden
| | - Gaurav Singh Rathore
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Daniel A Wolf
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Andreas Heuer
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, 22184 Lund, Sweden
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark; Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; Wallenberg Center for Molecular Medicine, Department of Experimental Medical Sciences, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
7
|
Kochmanski J, Virani M, Kuhn NC, Boyd SL, Becker K, Adams M, Bernstein AI. Developmental origins of Parkinson's disease risk: perinatal exposure to the organochlorine pesticide dieldrin leads to sex-specific DNA modifications in critical neurodevelopmental pathways in the mouse midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590998. [PMID: 38746441 PMCID: PMC11092502 DOI: 10.1101/2024.04.26.590998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril (α-syn PFF) and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 weeks of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points - birth, 6 weeks, 12 weeks, and 36 weeks old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of DMCs with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late life diseases, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nathan C. Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Sierra L. Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Katelyn Becker
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Alison I. Bernstein
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
8
|
Chen L, Li H, Liu X, Zhang N, Wang K, Shi A, Gao H, Akdis D, Saguner AM, Xu X, Osto E, Van de Veen W, Li G, Bayés-Genís A, Duru F, Song J, Li X, Hu S. PBX/Knotted 1 homeobox-2 (PKNOX2) is a novel regulator of myocardial fibrosis. Signal Transduct Target Ther 2024; 9:94. [PMID: 38644381 PMCID: PMC11033280 DOI: 10.1038/s41392-024-01804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xiaorui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kui Wang
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Anteng Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hang Gao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Deniz Akdis
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Elena Osto
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich and University of Zürich, Zurich, Switzerland
| | - Willem Van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Guangyu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Antoni Bayés-Genís
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, CIBERCV, Spain
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Xiangjie Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
9
|
Berkowitz E, Falik Zaccai TC, Irge D, Gur I, Tiosano B, Kesler A. A genetic survey of patients with familial idiopathic intracranial hypertension residing in a Middle Eastern village: genetic association study. Eur J Med Res 2024; 29:194. [PMID: 38528581 DOI: 10.1186/s40001-024-01800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/18/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The aim of this study was to determine whether genetic variants are associated with idiopathic intracranial hypertension (IIH) in a unique village where many of the IIH patients have familial ties, a homogenous population and a high prevalence of consanguinity. Several autosomal recessive disorders are common in this village and its population is considered at a high risk for genetic disorders. METHODS The samples were genotyped by the Ilumina OmniExpress-24 Kit, and analyzed by the Eagle V2.4 and DASH software package to cluster haplotypes shared between our cohort. Subsequently, we searched for specific haplotypes that were significantly associated with the patient groups. RESULTS Fourteen patients and 30 controls were included. Samples from 22 female participants (11 patients and 11 controls) were evaluated for haplotype clustering and genome-wide association studies (GWAS). A total of 710,000 single nucleotide polymorphisms (SNPs) were evaluated. Candidate areas positively associated with IIH included genes located on chromosomes 16, 8 (including the CA5A and BANP genes, p < 0.01), and negatively associated with genes located on chromosomes 1 and 6 (including PBX1, LMX1A, ESR1 genes, p < 0.01). CONCLUSIONS We discovered new loci possibly associated with IIH by employing a GWAS technique to estimate the associations with haplotypes instead of specific SNPs. This method can in all probability be used in cases where there is a limited amount of samples but strong familial connections. Several loci were identified that might be strong candidates for follow-up studies in other well-phenotypes cohorts.
Collapse
Affiliation(s)
- Eran Berkowitz
- Department of Ophthalmology, Hillel Yaffe Medical Center, 1 Ha-Shalom Street, 38100, Hadera, Israel.
- The Adelson School of Medicine, Ariel University, Ariel, Israel.
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | | | - Dana Irge
- Genetic Institue, Meir Medical center, Kfar Saba, Israel
| | - Inbar Gur
- Department of Ophthalmology, Hillel Yaffe Medical Center, 1 Ha-Shalom Street, 38100, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, 1 Ha-Shalom Street, 38100, Hadera, Israel
| | - Anat Kesler
- Department of Ophthalmology, Hillel Yaffe Medical Center, 1 Ha-Shalom Street, 38100, Hadera, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
10
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
11
|
Akçimen F, Chia R, Saez-Atienzar S, Ruffo P, Rasheed M, Ross JP, Liao C, Ray A, Dion PA, Scholz SW, Rouleau GA, Traynor BJ. Genomic analysis identifies risk factors in restless legs syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.19.23300211. [PMID: 38168192 PMCID: PMC10760278 DOI: 10.1101/2023.12.19.23300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Restless legs syndrome (RLS) is a neurological condition that causes uncomfortable sensations in the legs and an irresistible urge to move them, typically during periods of rest. The genetic basis and pathophysiology of RLS are incompletely understood. Here, we present a whole-genome sequencing and genome-wide association meta-analysis of RLS cases (n = 9,851) and controls (n = 38,957) in three population-based biobanks (All of Us, Canadian Longitudinal Study on Aging, and CARTaGENE). Genome-wide association analysis identified nine independent risk loci, of which eight had been previously reported, and one was a novel risk locus (LMX1B, rs35196838, OR = 1.14, 95% CI = 1.09-1.19, p-value = 2.2 × 10-9). A genome-wide, gene-based common variant analysis identified GLO1 as an additional risk gene (p-value = 8.45 × 10-7). Furthermore, a transcriptome-wide association study also identified GLO1 and a previously unreported gene, ELFN1. A genetic correlation analysis revealed significant common variant overlaps between RLS and neuroticism (rg = 0.40, se = 0.08, p-value = 5.4 × 10-7), depression (rg = 0.35, se = 0.06, p-value = 2.17 × 10-8), and intelligence (rg = -0.20, se = 0.06, p-value = 4.0 × 10-4). Our study expands the understanding of the genetic architecture of RLS and highlights the contributions of common variants to this prevalent neurological disorder.
Collapse
Affiliation(s)
- Fulya Akçimen
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Memoona Rasheed
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jay P. Ross
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Calwing Liao
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Patrick A. Dion
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Guy A. Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| |
Collapse
|
12
|
Park JY, Lee JJ, Lee Y, Lee D, Gim J, Farrer L, Lee KH, Won S. Machine learning-based quantification for disease uncertainty increases the statistical power of genetic association studies. Bioinformatics 2023; 39:btad534. [PMID: 37665736 PMCID: PMC10539075 DOI: 10.1093/bioinformatics/btad534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
MOTIVATION Allowance for increasingly large samples is a key to identify the association of genetic variants with Alzheimer's disease (AD) in genome-wide association studies (GWAS). Accordingly, we aimed to develop a method that incorporates patients with mild cognitive impairment and unknown cognitive status in GWAS using a machine learning-based AD prediction model. RESULTS Simulation analyses showed that weighting imputed phenotypes method increased the statistical power compared to ordinary logistic regression using only AD cases and controls. Applied to real-world data, the penalized logistic method had the highest AUC (0.96) for AD prediction and weighting imputed phenotypes method performed well in terms of power. We identified an association (P<5.0×10-8) of AD with several variants in the APOE region and rs143625563 in LMX1A. Our method, which allows the inclusion of individuals with mild cognitive impairment, improves the statistical power of GWAS for AD. We discovered a novel association with LMX1A. AVAILABILITY AND IMPLEMENTATION Simulation codes can be accessed at https://github.com/Junkkkk/wGEE_GWAS.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea
- Neurozen Inc., Seoul 06168, Korea
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Korea
| | - Jang Jae Lee
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Korea
| | - Younghwa Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea
| | - Dongsoo Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea
| | - Jungsoo Gim
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Lindsay Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, United States
- Departments of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, MA 02118, United States
| | - Kun Ho Lee
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
- Korea Brain Research Institute, Daegu 41068, Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Korea
- RexSoft Inc, Seoul 08826, Korea
| |
Collapse
|
13
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
14
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
15
|
Vourdoumpa A, Paltoglou G, Charmandari E. The Genetic Basis of Childhood Obesity: A Systematic Review. Nutrients 2023; 15:1416. [PMID: 36986146 PMCID: PMC10058966 DOI: 10.3390/nu15061416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Overweight and obesity in childhood and adolescence represents one of the most challenging public health problems of our century owing to its epidemic proportions and the associated significant morbidity, mortality, and increase in public health costs. The pathogenesis of polygenic obesity is multifactorial and is due to the interaction among genetic, epigenetic, and environmental factors. More than 1100 independent genetic loci associated with obesity traits have been currently identified, and there is great interest in the decoding of their biological functions and the gene-environment interaction. The present study aimed to systematically review the scientific evidence and to explore the relation of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with changes in body mass index (BMI) and other measures of body composition in children and adolescents with obesity, as well as their response to lifestyle interventions. Twenty-seven studies were included in the qualitative synthesis, which consisted of 7928 overweight/obese children and adolescents at different stages of pubertal development who underwent multidisciplinary management. The effect of polymorphisms in 92 different genes was assessed and revealed SNPs in 24 genetic loci significantly associated with BMI and/or body composition change, which contribute to the complex metabolic imbalance of obesity, including the regulation of appetite and energy balance, the homeostasis of glucose, lipid, and adipose tissue, as well as their interactions. The decoding of the genetic and molecular/cellular pathophysiology of obesity and the gene-environment interactions, alongside with the individual genotype, will enable us to design targeted and personalized preventive and management interventions for obesity early in life.
Collapse
Affiliation(s)
- Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Diaz C, de la Torre MM, Rubenstein JLR, Puelles L. Dorsoventral Arrangement of Lateral Hypothalamus Populations in the Mouse Hypothalamus: a Prosomeric Genoarchitectonic Analysis. Mol Neurobiol 2023; 60:687-731. [PMID: 36357614 PMCID: PMC9849321 DOI: 10.1007/s12035-022-03043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
The lateral hypothalamus (LH) has a heterogeneous cytoarchitectonic organization that has not been elucidated in detail. In this work, we analyzed within the framework of the prosomeric model the differential expression pattern of 59 molecular markers along the ventrodorsal dimension of the medial forebrain bundle in the mouse, considering basal and alar plate subregions of the LH. We found five basal (LH1-LH5) and four alar (LH6-LH9) molecularly distinct sectors of the LH with neuronal cell groups that correlate in topography with previously postulated alar and basal hypothalamic progenitor domains. Most peptidergic populations were restricted to one of these LH sectors though some may have dispersed into a neighboring sector. For instance, histaminergic Hdc-positive neurons were mostly contained within the basal LH3, Nts (neurotensin)- and Tac2 (tachykinin 2)-expressing cells lie strictly within LH4, Hcrt (hypocretin/orexin)-positive and Pmch (pro-melanin-concentrating hormone)-positive neurons appeared within separate LH5 subdivisions, Pnoc (prepronociceptin)-expressing cells were mainly restricted to LH6, and Sst (somatostatin)-positive cells were identified within the LH7 sector. The alar LH9 sector, a component of the Foxg1-positive telencephalo-opto-hypothalamic border region, selectively contained Satb2-expressing cells. Published studies of rodent LH subdivisions have not described the observed pattern. Our genoarchitectonic map should aid in systematic approaches to elucidate LH connectivity and function.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Margaret Martinez de la Torre
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
17
|
Alsanie WF, Abdelrahman S, Alhomrani M, Gaber A, Alosimi EA, Habeeballah H, Alkhatabi HA, Felimban RI, Hauser CAE, Tayeb HH, Alamri AS, Alamri A, Raafat BM, Alswat KA, Althobaiti YS, Asiri YA. The Influence of Prenatal Exposure to Quetiapine Fumarate on the Development of Dopaminergic Neurons in the Ventral Midbrain of Mouse Embryos. Int J Mol Sci 2022; 23:ijms232012352. [PMID: 36293205 PMCID: PMC9603924 DOI: 10.3390/ijms232012352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The effects of second-generation antipsychotics on prenatal neurodevelopment, apoptotic neurodegeneration, and postnatal developmental delays have been poorly investigated. Even at standard doses, the use of quetiapine fumarate (QEPF) in pregnant women might be detrimental to fetal development. We used primary mouse embryonic neurons to evaluate the disruption of morphogenesis and differentiation of ventral midbrain (VM) neurons after exposure to QEPF. The dopaminergic VM neurons were deliberately targeted due to their roles in cognition, motor activity, and behavior. The results revealed that exposure to QEPF during early brain development decreased the effects of the dopaminergic lineage-related genes Tyrosine hydroxylase(Th), Dopamine receptor D1 (Drd1), Dopamine transporter (Dat), LIM homeobox transcription factor 1 alfa (Lmx1a), and Cell adhesion molecule L1 (Chl1), and the senescent dopaminergic gene Pituitary homeobox 3 (Pitx3). In contrast, Brain derived neurotrophic factor (Bdnf) and Nuclear receptor-related 1 (Nurr1) expressions were significantly upregulated. Interestingly, QEPF had variable effects on the development of non-dopaminergic neurons in VM. An optimal dose of QEPF (10 µM) was found to insignificantly affect the viability of neurons isolated from the VM. It also instigated a non-significant reduction in adenosine triphosphate formation in these neuronal populations. Exposure to QEPF during the early stages of brain development could also hinder the formation of VM and their structural phenotypes. These findings could aid therapeutic decision-making when prescribing 2nd generation antipsychotics in pregnant populations.
Collapse
Affiliation(s)
- Walaa F. Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Gaber
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ebtisam Abdulah Alosimi
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamza Habeeballah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Centre, Hematology Research Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed I. Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia
| | - Hossam H. Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Nanomedicine Unit, Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia
| | - Bassem M. Raafat
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khaled A. Alswat
- Department of Internal Medicine, School of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yousif A. Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
18
|
Hernandez S, Serrano AG, Solis Soto LM. The Role of Nerve Fibers in the Tumor Immune Microenvironment of Solid Tumors. Adv Biol (Weinh) 2022; 6:e2200046. [PMID: 35751462 DOI: 10.1002/adbi.202200046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Indexed: 01/28/2023]
Abstract
The importance of neurons and nerve fibers in the tumor microenvironment (TME) of solid tumors is now acknowledged after being unexplored for a long time; this is possible due to the development of new technologies that allow in situ characterization of the TME. Recent studies have shown that the density and types of nerves that innervate tumors can predict a patient's clinical outcome and drive several processes of tumor biology. Nowadays, several efforts in cancer research and neuroscience are taking place to elucidate the mechanisms that drive tumor-associated innervation and nerve-tumor and nerve-immune interaction. Assessment of neurons and nerves within the context of the TME can be performed in situ, in tumor tissue, using several pathology-based strategies that utilize histochemical and immunohistochemistry principles, hi-plex technologies, and computational pathology approaches to identify measurable histopathological characteristics of nerves. These features include the number and type of tumor associated nerves, topographical location and microenvironment of neural invasion of malignant cells, and investigation of neuro-related biomarker expression in nerves, tumor cells, and cells of the TME. A deeper understanding of these complex interactions and the impact of nerves in tumor biology will guide the design of better strategies for targeted therapy in clinical trials.
Collapse
Affiliation(s)
- Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Alejandra G Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Liu Y, Zhang L, Mei R, Ai M, Pang R, Xia D, Chen L, Zhong L. The Role of SliTrk5 in Central Nervous System. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4678026. [PMID: 35872846 PMCID: PMC9303146 DOI: 10.1155/2022/4678026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
SLIT and NTRK-like protein-5 (SliTrk5) is one of the six members of SliTrk protein family, which is widely expressed in the central nervous system (CNS), regulating and participating in many essential steps of central nervous system development, including axon and dendritic growth, neuron differentiation, and synaptogenesis. SliTrk5, as a neuron transmembrane protein, contains two important conservative domains consisting of leucine repeats (LRRs) located at the amino terminal in the extracellular region and tyrosine residues (Tyr) located at the carboxyl terminal in the intracellular domains. These special structures make SliTrk5 play an important role in the pathological process of the CNS. A large number of studies have shown that SliTrk5 may be involved in the pathogenesis of CNS diseases, such as obsessive-compulsive-disorder (OCD), attention deficit/hyperactivity disorder (ADHD), glioma, autism spectrum disorders (ASDs), and Parkinson's disease (PD). Targeting SliTrk5 is expected to become a new target for the treatment of CNS diseases, promoting the functional recovery of CNS. The purpose of this article is to review the current research progression of the role of SliTrk5 in CNS and its potential mechanisms in CNS diseases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| | - Mingda Ai
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ruijing Pang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Di Xia
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| |
Collapse
|
20
|
Kim K, Kim JH, Kim I, Seong S, Han JE, Lee KB, Koh JT, Kim N. Transcription Factor Lmx1b Negatively Regulates Osteoblast Differentiation and Bone Formation. Int J Mol Sci 2022; 23:5225. [PMID: 35563615 PMCID: PMC9103437 DOI: 10.3390/ijms23095225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/09/2023] Open
Abstract
The LIM-homeodomain transcription factor Lmx1b plays a key role in body pattern formation during development. Although Lmx1b is essential for the normal development of multiple tissues, its regulatory mechanism in bone cells remains unclear. Here, we demonstrated that Lmx1b negatively regulates bone morphogenic protein 2 (BMP2)-induced osteoblast differentiation. Overexpressed Lmx1b in the osteoblast precursor cells inhibited alkaline phosphatase (ALP) activity and nodule formation, as well as the expression of osteoblast maker genes, including runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alpl), bone sialoprotein (Ibsp), and osteocalcin (Bglap). Conversely, the knockdown of Lmx1b in the osteoblast precursors enhanced the osteoblast differentiation and function. Lmx1b physically interacted with and repressed the transcriptional activity of Runx2 by reducing the recruitment of Runx2 to the promoter region of its target genes. In vivo analysis of BMP2-induced ectopic bone formation revealed that the knockdown of Lmx1b promoted osteogenic differentiation and bone regeneration. Our data demonstrate that Lmx1b negatively regulates osteoblast differentiation and function through regulation of Runx2 and provides a molecular basis for therapeutic targets for bone diseases.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Jeong Eun Han
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.E.H.); (K.-B.L.)
| | - Keun-Bae Lee
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.E.H.); (K.-B.L.)
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|
21
|
Oziębło D, Lee SY, Leja ML, Sarosiak A, Bałdyga N, Skarżyński H, Kim Y, Han JH, Yoo HS, Park MH, Choi BY, Ołdak M. Update on CD164 and LMX1A genes to strengthen their causative role in autosomal dominant hearing loss. Hum Genet 2022; 141:445-453. [PMID: 35254497 DOI: 10.1007/s00439-022-02443-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Novel hearing loss (HL) genes are constantly being discovered, and evidence from independent studies is essential to strengthen their position as causes of hereditary HL. To address this issue, we searched our genetic data of families with autosomal dominant HL (ADHL) who had been tested with high-throughput DNA sequencing methods. For CD164, only one pathogenic variant in one family has so far been reported. For LMX1A, just two previous studies have revealed its involvement in ADHL. In this study we found two families with the same pathogenic variant in CD164 and one family with a novel variant in LMX1A (c.686C>A; p.(Ala229Asp)) that impairs its transcriptional activity. Our data show recurrence of the same CD164 variant in two HL families of different geographic origin, which strongly suggests it is a mutational hotspot. We also provide further evidence for haploinsufficiency as the pathogenic mechanism underlying LMX1A-related ADHL.
Collapse
Affiliation(s)
- Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Marcin Ludwik Leja
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sarosiak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Bałdyga
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Yehree Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Hyo Soon Yoo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Min Hyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland.
| |
Collapse
|
22
|
Liu W, Johansson Å, Rask-Andersen H, Rask-Andersen M. A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens. BMC Med 2021; 19:302. [PMID: 34847940 PMCID: PMC8638543 DOI: 10.1186/s12916-021-02169-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sensorineural hearing loss is one of the most common sensory deficiencies. However, the molecular contribution to age-related hearing loss is not fully elucidated. METHODS We performed genome-wide association studies (GWAS) for hearing loss-related traits in the UK Biobank (N = 362,396) and selected a high confidence set of ten hearing-associated gene products for staining in human cochlear samples: EYA4, LMX1A, PTK2/FAK, UBE3B, MMP2, SYNJ2, GRM5, TRIOBP, LMO-7, and NOX4. RESULTS All proteins were found to be expressed in human cochlear structures. Our findings illustrate cochlear structures that mediate mechano-electric transduction of auditory stimuli, neuronal conductance, and neuronal plasticity to be involved in age-related hearing loss. CONCLUSIONS Our results suggest common genetic variation to influence structural resilience to damage as well as cochlear recovery after trauma, which protect against accumulated damage to cochlear structures and the development of hearing loss over time.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Salesse C, Charest J, Doucet-Beaupré H, Castonguay AM, Labrecque S, De Koninck P, Lévesque M. Opposite Control of Excitatory and Inhibitory Synapse Formation by Slitrk2 and Slitrk5 on Dopamine Neurons Modulates Hyperactivity Behavior. Cell Rep 2021; 30:2374-2386.e5. [PMID: 32075770 DOI: 10.1016/j.celrep.2020.01.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 12/03/2019] [Accepted: 01/24/2020] [Indexed: 11/26/2022] Open
Abstract
The neurodevelopmental origin of hyperactivity disorder has been suggested to involve the dopaminergic system, but the underlying mechanisms are still unknown. Here, transcription factors Lmx1a and Lmx1b are shown to be essential for midbrain dopaminergic (mDA) neuron excitatory synaptic inputs and dendritic development. Strikingly, conditional knockout (cKO) of Lmx1a/b in postmitotic mDA neurons results in marked hyperactivity. In seeking Lmx1a/b target genes, we identify positively regulated Slitrk2 and negatively regulated Slitrk5. These two synaptic adhesion proteins promote excitatory and inhibitory synapses on mDA neurons, respectively. Knocking down Slitrk2 reproduces some of the Lmx1a/b cKO cellular and behavioral phenotypes, whereas Slitrk5 knockdown has opposite effects. The hyperactivity caused by this imbalance in excitatory/inhibitory synaptic inputs on dopamine neurons is reproduced by chronically inhibiting the ventral tegmental area during development using pharmacogenetics. Our study shows that alterations in developing dopaminergic circuits strongly impact locomotor activity, shedding light on mechanisms causing hyperactivity behaviors.
Collapse
Affiliation(s)
- Charleen Salesse
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Julien Charest
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | | | | | - Simon Labrecque
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Paul De Koninck
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
24
|
Alterations of Dopamine-Related Transcripts in A11 Diencephalospinal Pathways after Spinal Cord Injury. Neural Plast 2021; 2021:8838932. [PMID: 33510781 PMCID: PMC7822663 DOI: 10.1155/2021/8838932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
The diencephalic A11 nuclei are the primary source of spinal dopamine (DA). Neurons in this region project to all levels of the spinal cord. Traumatic spinal cord injury (SCI) often interrupts descending and ascending neuronal pathways and further elicits injury-induced neuronal plasticity. However, it is unknown how A11 neurons and projections respond to SCI-induced axotomy. Based on preliminary observation, we hypothesized that A11 DA-ergic neurons rostral to the lesion site might change their capacity to synthesize DA after SCI. Adult rats received a complete spinal cord transection at the 10th thoracic (T10) level. After 3 or 8 weeks, rostral (T5) and caudal (L1) spinal cord tissue was collected to measure mRNA levels of DA-related genes. Meanwhile, A11 neurons in the brain were explicitly isolated by laser capture microdissection, and single-cell qPCR was employed to evaluate mRNA levels in the soma. Histological analysis was conducted to assess the number of A11 DA-ergic neurons. The results showed that, compared to naïve rats, mRNA levels of tyrosine hydroxylase (TH), dopamine decarboxylase (DDC), and D2 receptors in the T5 spinal segment had a transient decrease and subsequent recovery. However, dopamine-β-hydroxylase (DBH), D1 receptors, and DA-associated transcription factors did not change following SCI. Furthermore, axon degeneration below the lesion substantially reduced mRNA levels of TH and D2 in the L1 spinal segment. However, DDC transcript underwent only a temporary decrease. Similar mRNA levels of DA-related enzymes were detected in the A11 neuronal soma between naïve and SCI rats. In addition, immunostaining revealed that the number of A11 DA neurons did not change after SCI, indicating a sustention of capacity to synthesize DA in the neuroplasm. Thus, impaired A11 diencephalospinal pathways following SCI may transiently reduce DA production in the spinal cord rostral to the lesion but not in the brain.
Collapse
|
25
|
Chizhikov VV, Iskusnykh IY, Fattakhov N, Fritzsch B. Lmx1a and Lmx1b are Redundantly Required for the Development of Multiple Components of the Mammalian Auditory System. Neuroscience 2021; 452:247-264. [PMID: 33246067 PMCID: PMC7780644 DOI: 10.1016/j.neuroscience.2020.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
The inner ear, projections, and brainstem nuclei are essential components of the auditory and vestibular systems. It is believed that the evolution of complex systems depends on duplicated sets of genes. The contribution of duplicated genes to auditory or vestibular system development, however, is poorly understood. We describe that Lmx1a and Lmx1b, which originate from the invertebrate Lmx1b-like gene, redundantly regulate development of multiple essential components of the mammalian auditory/vestibular systems. Combined, but not individual, loss of Lmx1a/b eliminated the auditory inner ear organ of Corti (OC) and disrupted the spiral ganglion, which was preceded by a diminished expression of their critical regulator Pax2. Innervation of the remaining inner ear vestibular organs revealed unusual sizes or shapes and was more affected compared to Lmx1a/b single-gene mutants. Individual loss of Lmx1a/b genes did not disrupt brainstem auditory nuclei or inner ear central projections. Combined loss of Lmx1a/b, however, eliminated excitatory neurons in cochlear/vestibular nuclei, and also the expression of a master regulator Atoh1 in their progenitors in the lower rhombic lip (RL). Finally, in Lmx1a/b double mutants, vestibular afferents aberrantly projected to the roof plate. This phenotype was associated with altered expression of Wnt3a, a secreted ligand of the Wnt pathway that regulates pathfinding of inner ear projections. Thus, Lmx1a/b are redundantly required for the development of the mammalian inner ear, inner ear central projections, and cochlear/vestibular nuclei.
Collapse
Affiliation(s)
- Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
26
|
Evano B, Gill D, Hernando-Herraez I, Comai G, Stubbs TM, Commere PH, Reik W, Tajbakhsh S. Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. PLoS Genet 2020; 16:e1009022. [PMID: 33125370 PMCID: PMC7657492 DOI: 10.1371/journal.pgen.1009022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/11/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Adult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined. Here we show that EOM and limb MuSCs have distinct DNA methylation signatures associated with enhancers of location-specific genes, and that the EOM transcriptome is reprogrammed following transplantation into a limb muscle environment. Notably, EOM MuSCs expressed host-site specific positional Hox codes after engraftment and self-renewal within the host muscle. However, about 10% of EOM-specific genes showed engraftment-resistant expression, pointing to cell-intrinsic molecular determinants of the higher engraftment potential of EOM MuSCs. Our results underscore the molecular diversity of distinct MuSC populations and molecularly define their plasticity in response to microenvironmental cues. These findings provide insights into strategies designed to improve the functional capacity of MuSCs in the context of regenerative medicine.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Diljeet Gill
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Glenda Comai
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Thomas M. Stubbs
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Pierre-Henri Commere
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, 28 rue du Dr. Roux, Paris, France
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
27
|
Lee SY, Han JH, Carandang M, Kim MY, Kim B, Yi N, Kim J, Kim BJ, Oh DY, Koo JW, Lee JH, Oh SH, Choi BY. Novel genotype-phenotype correlation of functionally characterized LMX1A variants linked to sensorineural hearing loss. Hum Mutat 2020; 41:1877-1883. [PMID: 32840933 DOI: 10.1002/humu.24095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
LMX1A, encoding the LIM homeobox transcription factor, is essential for inner ear development. Despite previous reports of three human LMX1A variants with nonsyndromic hearing loss (NSHL) in the literature, functional characterization of these variants has never been performed. Encouraged by identification of a de novo, heterozygous, missense variant (c.595A > G; p.Arg199Gly) located in the homeodomain of LMX1A in a subject with congenital severe-to-profound deafness through Exome sequencing, we performed luciferase assay to evaluate transcriptional activity of all LMX1A variants reported in the literature including p.Arg199Gly. Resultantly, p.Arg199Gly manifesting the most severe NSHL showed the biggest reduction of transcriptional activity in contrast with moderately reduced activity of p.Cys97Ser and p.Val241Leu associated with less severe progressive NSHL, proposing a genotype-phenotype correlation. Further, our dominant LMX1A variant exerted pathogenic effects via haploinsufficiency rather than dominant-negative effect. Collectively, we provide a potential genotype-phenotype correlation of LMX1A variants as well as the pathogenic mechanism of LMX1A-related NSHL.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Marge Carandang
- Department of Otorhinolaryngology-Head and Neck Surgery, East Avenue Medical Center, Metro Manila, Philippines
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Bonggi Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Nayoung Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Jinho Kim
- Clinical Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| |
Collapse
|
28
|
Li X, Li J, Li P, Jiang Y, Wu Y, Li B. Injury to dopaminergic neurons development via the Lmx1a/Wnt1 autoregulatory loop induced by simazine. Toxicol Lett 2020; 333:279-289. [PMID: 32822773 DOI: 10.1016/j.toxlet.2020.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Simazine is a kind of persistent organic pollutant that is detected in both ground and water and has several routes of exposure. Here, we explored the mechanisms underlying simazine-related effects on dopaminergic neurons via development-related factors using mouse embryos and embryonic mesencephalic hybrid cell line (MN9D cells). We treated pregnant mice with 50 μg/kg bw, 200 μg/kg bw simazine from the 0.5 day to the 10.5 day of embryonic phase and MN9D cells with 600 μM simazine for 24 h to research the mechanism of dopaminergic neurons acute respond to simazine through preliminary experiments. Protein expressions of LIM homeobox transcription factor 1-alpha (Lmx1a) and LIM homeobox transcription factor 1-beta (Lmx1b) displayed a dose- and time-dependent increase after the exposure to simazine. In the 200 μg/kg bw of embryos and the 24h-600 μM of MN9D cells, protein levels of dopaminergic developmental factors were significantly upregulated, and dopaminergic function was significantly damaged for the abnormal expression of Dyt5b. We demonstrated simazine induced the injury to dopaminergic neurons via the Lmx1a/wingless-related integration site 1 (Wnt1) and Lmx1b pathways. In the transfection experiments, we knocked down Lmx1a and Lmx1b of cells to verify the potential target of simazine-induced injury to dopaminergic neurons, respectively. We detected the protein and mRNA levels of development-related genes of dopaminergic neurons and intracellular dopamine levels in different treatment groups. Based on our experiments' results, we demonstrated an acute response to 24 h-600 μM simazine treatment, the simazine-induced injury to dopaminergic neuronal which leads to abnormal dopamine levels and dopaminergic impairment is via the activation of the Lmx1a/Wnt1 autoregulatory loop. Lmx1a is a promising target in the search for the mechanisms underlying simazine-induced dopaminergic injury.
Collapse
Affiliation(s)
- Xueting Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang Province, 150081, PR China
| | - Jianan Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang Province, 150081, PR China
| | - Peng Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang Province, 150081, PR China
| | - Yujia Jiang
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang Province, 150081, PR China
| | - Yanping Wu
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang Province, 150081, PR China
| | - Baixiang Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang Province, 150081, PR China.
| |
Collapse
|
29
|
The genetic architecture of human brainstem structures and their involvement in common brain disorders. Nat Commun 2020; 11:4016. [PMID: 32782260 PMCID: PMC7421944 DOI: 10.1038/s41467-020-17376-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson’s disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders. The genetic architecture underlying brainstem regions and how this links to common brain disorders is not well understood. Here, the authors use MRI and GWAS data from 27,034 individuals to identify genetic and morphological brainstem features that influence common brain disorders.
Collapse
|
30
|
Tan H, Zhang S, Zhang J, Zhu L, Chen Y, Yang H, Chen Y, An Y, Liu B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Am J Cancer Res 2020; 10:8880-8902. [PMID: 32754285 PMCID: PMC7392009 DOI: 10.7150/thno.47548] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is currently the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs), transcriptional products with more than 200 nucleotides, are not as well-characterized as protein-coding RNAs. Accumulating evidence has recently revealed that maladjustments of diverse lncRNAs may play key roles in multiple genetic and epigenetic phenomena in GC, affecting all aspects of cellular homeostasis, such as proliferation, migration, and stemness. However, the full extent of their functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets, future research should be focused on unravelling the intricate relationships between lncRNAs and GC that can be translated from bench to clinic. Here, we summarized the state-of-the-art advances in lncRNAs and their biological functions in GC, and we further discuss their potential diagnostic and therapeutic roles. We aim to shed light on the interrelationships between lncRNAs and GC with respect to their potential therapeutic applications. With better understanding of these relationships, the biological functions of lncRNAs in GC development will be exploitable, and promising new strategies developed for the prevention and treatment of GC.
Collapse
|
31
|
Mesman S, Smidt MP. Acquisition of the Midbrain Dopaminergic Neuronal Identity. Int J Mol Sci 2020; 21:ijms21134638. [PMID: 32629812 PMCID: PMC7369932 DOI: 10.3390/ijms21134638] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mesodiencephalic dopaminergic (mdDA) group of neurons comprises molecularly distinct subgroups, of which the substantia nigra (SN) and ventral tegmental area (VTA) are the best known, due to the selective degeneration of the SN during Parkinson’s disease. However, although significant research has been conducted on the molecular build-up of these subsets, much is still unknown about how these subsets develop and which factors are involved in this process. In this review, we aim to describe the life of an mdDA neuron, from specification in the floor plate to differentiation into the different subsets. All mdDA neurons are born in the mesodiencephalic floor plate under the influence of both SHH-signaling, important for floor plate patterning, and WNT-signaling, involved in establishing the progenitor pool and the start of the specification of mdDA neurons. Furthermore, transcription factors, like Ngn2, Ascl1, Lmx1a, and En1, and epigenetic factors, like Ezh2, are important in the correct specification of dopamine (DA) progenitors. Later during development, mdDA neurons are further subdivided into different molecular subsets by, amongst others, Otx2, involved in the specification of subsets in the VTA, and En1, Pitx3, Lmx1a, and WNT-signaling, involved in the specification of subsets in the SN. Interestingly, factors involved in early specification in the floor plate can serve a dual function and can also be involved in subset specification. Besides the mdDA group of neurons, other systems in the embryo contain different subsets, like the immune system. Interestingly, many factors involved in the development of mdDA neurons are similarly involved in immune system development and vice versa. This indicates that similar mechanisms are used in the development of these systems, and that knowledge about the development of the immune system may hold clues for the factors involved in the development of mdDA neurons, which may be used in culture protocols for cell replacement therapies.
Collapse
|
32
|
Kao CY, Xu M, Wang L, Lin SC, Lee HJ, Duraine L, Bellen HJ, Goldstein DS, Tsai SY, Tsai MJ. Elevated COUP-TFII expression in dopaminergic neurons accelerates the progression of Parkinson's disease through mitochondrial dysfunction. PLoS Genet 2020; 16:e1008868. [PMID: 32579581 PMCID: PMC7340320 DOI: 10.1371/journal.pgen.1008868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/07/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder featuring progressive loss of midbrain dopaminergic (DA) neurons that leads to motor symptoms. The etiology and pathogenesis of PD are not clear. We found that expression of COUP-TFII, an orphan nuclear receptor, in DA neurons is upregulated in PD patients through the analysis of public datasets. We show here that through epigenetic regulation, COUP-TFII contributes to oxidative stress, suggesting that COUP-TFII may play a role in PD pathogenesis. Elevated COUP-TFII expression specifically in DA neurons evokes DA neuronal loss in mice and accelerates the progression of phenotypes in a PD mouse model, MitoPark. Compared to control mice, those with elevated COUP-TFII expression displayed reduced cristae in mitochondria and enhanced cellular electron-dense vacuoles in the substantia nigra pars compacta. Mechanistically, we found that overexpression of COUP-TFII disturbs mitochondrial pathways, resulting in mitochondrial dysfunction. In particular, there is repressed expression of genes encoding cytosolic aldehyde dehydrogenases, which could enhance oxidative stress and interfere with mitochondrial function via 3,4-dihydroxyphenylacetaldehyde (DOPAL) buildup in DA neurons. Importantly, under-expression of COUP-TFII in DA neurons slowed the deterioration in motor functions of MitoPark mice. Taken together, our results suggest that COUP-TFII may be an important contributor to PD development and a potential therapeutic target.
Collapse
Affiliation(s)
- Chung-Yang Kao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mafei Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leiming Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ju Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lita Duraine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
| | - David S. Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
33
|
Grandi FC, De Tomasi L, Mustapha M. Single-Cell RNA Analysis of Type I Spiral Ganglion Neurons Reveals a Lmx1a Population in the Cochlea. Front Mol Neurosci 2020; 13:83. [PMID: 32523514 PMCID: PMC7261882 DOI: 10.3389/fnmol.2020.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
In the mature cochlea, each inner hair cell (IHC) is innervated by multiple spiral ganglion neurons of type I (SGNI). SGNIs are morphologically and electro-physiologically diverse. Also, they differ in their susceptibility to noise insult. However, the molecular underpinnings of their identity and physiological differences remain poorly understood. In this study, we developed a novel triple transgenic mouse, which enabled the isolation of pure populations of SGNIs and the analysis of a 96-gene panel via single-cell qPCR. We found three distinct populations of Type I SGNs, which were marked by their exclusive expression of Lmx1a, Slc4a4, or Mfap4/Fzd2, respectively, at postnatal days P3, P8, and P12. Our data suggest that afferent SGN subtypes are established genetically before the onset of hearing and that the expression of key physiological markers, such as ion channels, is heterogeneous and may be underlying the heterogeneous firing proprieties of SGNIs.
Collapse
Affiliation(s)
| | - Lara De Tomasi
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Mirna Mustapha
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
34
|
LncRNA KCNQ1OT1 regulates microRNA-9-LMX1A expression and inhibits gastric cancer cell progression. Aging (Albany NY) 2020; 12:707-717. [PMID: 31915311 PMCID: PMC6977675 DOI: 10.18632/aging.102651] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022]
Abstract
LMX1A (LIM homeobox transcription factor 1α) is a tumor suppressor protein. Our previous study has shown that microRNA-9 (“miR-9”), being upregulated in human gastric cancer (GC), targets LMX1A to promote GC cell progression. Through searching long non-coding RNA (LncRNA) database, we identified that LncRNA KCNQ1OT1 is the competing endogenous RNA (ceRNA) of miR-9. KCNQ1OT1 putatively targets miR-9. Its level is downregulated in human GC tissues. In AGS cells and primary human GC cells, forced overexpression of KCNQ1OT1, by a lentiviral construct, induced miR-9 downregulation and LMX1A upregulation. Furthermore, KCNQ1OT1 overexpression inhibited GC cell survival, proliferation, migration and invasion, but inducing apoptosis activation. Contrarily, KCNQ1OT1 silencing, by targeted siRNAs, induced miR-9 accumulation and LMX1A downregulation. Consequently, GC cell proliferation, migration and invasion were enhanced. Importantly, KCNQ1OT1 overexpression or silencing was ineffective in LMX1A knockout AGC cells. Taken together, KCNQ1OT1 inhibits GC cell progression via regulating miR-9 and LMX1A expression.
Collapse
|
35
|
Zhang X, Li J, Li F, Zhao Z, Feng L. LINC00682 inhibits gastric cancer cell progression via targeting microRNA-9-LMX1A signaling axis. Aging (Albany NY) 2019; 11:11358-11368. [PMID: 31822638 PMCID: PMC6932933 DOI: 10.18632/aging.102533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/18/2019] [Indexed: 01/25/2023]
Abstract
microRNA-9 (“miR-9”), upregulated in human gastric cancer (GC) tissues, targets LMX1A (LIM homeobox transcription factor 1α) to promote GC cell progression. The underlying mechanism of miR-9 upregulation in GC is still unknown. Through searching multiple long non-coding RNA (LncRNA) databases, we here discovered that the long non-coding RNALINC00682 (long intergenic non-protein coding RNA 682) putatively targets miR-9. We show that ectopic overexpression of LINC00682 induced miR-9 downregulation but LMX1A upregulation, inhibiting AGS cell survival, proliferation, migration and invasion. Significant apoptosis activation was detected in LINC00682-overexpressed AGS cells. Contrarily, LINC00682 knockdown induced miR-9 upregulation but LMX1A downregulation, promoting AGS cell survival, proliferation, migration and invasion. In the primary human GC cells, forced LINC00682 overexpression similarly induced miR-9 downregulation and LMX1A upregulation, causing proliferation inhibition and apoptosis activation. Significantly, restoring miR-9 expression by a lentiviral construct reversed LINC00682-induced actions in GC cells. Furthermore, LINC00682 was ineffective in LMX1A KO AGS cells. Importantly, LINC00682 expression levels are significantly downregulated in human GC tissues. We conclude that LINC00682 inhibits GC cell progression via targeting miR-9-LMX1A signaling axis.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhen Zhao
- Department of Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Early dorsomedial tissue interactions regulate gyrification of distal neocortex. Nat Commun 2019; 10:5192. [PMID: 31729356 PMCID: PMC6858446 DOI: 10.1038/s41467-019-12913-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
The extent of neocortical gyrification is an important determinant of a species’ cognitive abilities, yet the mechanisms regulating cortical gyrification are poorly understood. We uncover long-range regulation of this process originating at the telencephalic dorsal midline, where levels of secreted Bmps are maintained by factors in both the neuroepithelium and the overlying mesenchyme. In the mouse, the combined loss of transcription factors Lmx1a and Lmx1b, selectively expressed in the midline neuroepithelium and the mesenchyme respectively, causes dorsal midline Bmp signaling to drop at early neural tube stages. This alters the spatial and temporal Wnt signaling profile of the dorsal midline cortical hem, which in turn causes gyrification of the distal neocortex. Our study uncovers early mesenchymal-neuroepithelial interactions that have long-range effects on neocortical gyrification and shows that lissencephaly in mice is actively maintained via redundant genetic regulation of dorsal midline development and signaling. The contribution of long-range signaling to cortical gyrification remains poorly understood. In this study, authors demonstrate that the combined genetic loss of transcription factors Lmx1a and Lmx1b, expressed in the telencephalic dorsal midline neuroepithelium and head mesenchyme, respectively, induces gyrification in the mouse neocortex
Collapse
|
37
|
A novel small deletion of LMX1B in a large Chinese family with nail-patella syndrome. BMC MEDICAL GENETICS 2019; 20:71. [PMID: 31053111 PMCID: PMC6499979 DOI: 10.1186/s12881-019-0801-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/03/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Nail-patella syndrome (NPS) is an autosomal dominant developmental disorder most commonly characterized by dyplasia of nail or patella, the radial head or the humeral head hypoplasia, and, frequently ocular abnormalities and renal disease. It is caused by heterozygous loss-of-function mutations in the LMX1B gene, which encodes LIM homeodomain transcription factor and is essential for regulating the dorsal limb fate. METHODS A five generation pedigree was recruited. Genomic DNA was extracted from the peripheral blood samples. Mutation detection was performed by Sanger sequencing the LMX1B gene. In silico functional annotation of the variant was performed using the in silico predictors SIFT, PolyPhen-2 and Mutation Taster. RESULTS A novel heterozygous small deletion within exon 4 of LMX1B, c.712_714delTTC, was identified in a rare five-generation NPS pedigree. The mutation resulted in a deletion of the conserved amino acid phenylalanine at codon 238 (p.Phe238del), which located in the homeodomain of LMX1B may abolish DNA binding with the molecule. Conformational prediction showed that the variation could transform the helical structure comprising p.Phe234, p.Lys235, p.Ala236, and p.Ser237. CONCLUSION We identified a novel NPS-causing LMX1B mutation and expanded the spectrum of mutations in the LMX1B gene. The c.712_714delTTC mutation may affect the quaternary structure of LMX1B, which is essential for the specification of dorsal limb fate at both zeugopodal and autopodal levels, leading to typical NPS.
Collapse
|
38
|
Bei S, Li F, Li H, Li J, Zhang X, Sun Q, Feng L. Inhibition of gastric cancer cell growth by a PI3K-mTOR dual inhibitor GSK1059615. Biochem Biophys Res Commun 2019; 511:13-20. [PMID: 30765226 DOI: 10.1016/j.bbrc.2019.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/29/2022]
Abstract
Gastric cancer (GC) is a common malignancy. Developing novel and efficient anti-GC agents is urgent. GSK1059615 is a PI3K (phosphatidylinositol 3-kinase) and mTOR (mammalian target of rapamycin) dual inhibitor. It activity in human GC cells is tested here. In AGS cells and primary human GC cells, GSK1059615 potently inhibited cell growth, survival, proliferation and cell cycle progression. Further, significant apoptosis activation was detected in GSK1059615-treated GC cells. Contrarily in the primary human gastric epithelial cells, GSK1059615 failed to induce significant cytotoxicity and apoptosis. GSK1059615 blocked PI3K-AKT-mTOR cascade activation, inducing microRNA-9 downregulation but LMX1A (LIM homeobox transcription factor 1α) upregulation in GC cells. Significantly, GSK1059615 administration (i.p., daily, at 10 or 30 mg/kg) in nude mice potently inhibited subcutaneous AGS xenograft growth. AKT-mTOR inhibition and LMX1A upregulation were detected in AGS xenograft tissues with GSK1059615 administration. Together, we conclude that GSK1059615 inhibits GC cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Songhua Bei
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Huanqin Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Qi Sun
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China.
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Zhang X, Qian Y, Li F, Bei S, Li M, Feng L. microRNA-9 selectively targets LMX1A to promote gastric cancer cell progression. Biochem Biophys Res Commun 2018; 505:405-412. [DOI: 10.1016/j.bbrc.2018.09.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/30/2022]
|
40
|
Xiao D, Jin K, Xiang M. Necessity and Sufficiency of Ldb1 in the Generation, Differentiation and Maintenance of Non-photoreceptor Cell Types During Retinal Development. Front Mol Neurosci 2018; 11:271. [PMID: 30127719 PMCID: PMC6087769 DOI: 10.3389/fnmol.2018.00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
During mammalian retinal development, the multipotent progenitors differentiate into all classes of retinal cells under the delicate control of transcriptional factors. The deficiency of a transcription cofactor, the LIM-domain binding protein Ldb1, has been shown to cause proliferation and developmental defects in multiple tissues including cardiovascular, hematopoietic, and nervous systems; however, it remains unclear whether and how it regulates retinal development. By expression profiling, RNA in situ hybridization and immunostaining, here we show that Ldb1 is expressed in the progenitors during early retinal development, but later its expression gradually shifts to non-photoreceptor cell types including bipolar, amacrine, horizontal, ganglion, and Müller glial cells. Retina-specific ablation of Ldb1 in mice resulted in microphthalmia, optic nerve hypoplasia, retinal thinning and detachment, and profound vision impairment as determined by electroretinography. In the mutant retina, there was precocious differentiation of amacrine and horizontal cells, indicating a requirement of Ldb1 in maintaining the retinal progenitor pool. Additionally, all non-photoreceptor cell types were greatly reduced which appeared to be caused by a generation defect and/or retinal degeneration via excessive cell apoptosis. Furthermore, we showed that misexpressed Ldb1 was sufficient to promote the generation of bipolar, amacrine, horizontal, ganglion, and Müller glial cells at the expense of photoreceptors. Together, these results demonstrate that Ldb1 is not only necessary but also sufficient for the development and/or maintenance of non-photoreceptor cell types, and implicate that the pleiotropic functions of Ldb1 during retinal development are context-dependent and determined by its interaction with diverse LIM-HD (LIM-homeodomain) and LMO (LIM domain-only) binding protein partners.
Collapse
Affiliation(s)
- Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
42
|
Schrauwen I, Chakchouk I, Liaqat K, Jan A, Nasir A, Hussain S, Nickerson DA, Bamshad MJ, Ullah A, Ahmad W, Leal SM. A variant in LMX1A causes autosomal recessive severe-to-profound hearing impairment. Hum Genet 2018; 137:471-478. [PMID: 29971487 PMCID: PMC6094940 DOI: 10.1007/s00439-018-1899-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Hereditary hearing impairment is a common sensory disorder that is genetically and phenotypically heterogeneous. In this study, we used a homozygosity mapping and exome sequencing strategy to study a consanguineous Pakistani family with autosomal recessive severe-to-profound hearing impairment. This led to the identification of a missense variant (p.Ile369Thr) in the LMX1A gene affecting a conserved residue in the C-terminus of the protein, which was predicted damaging by an in silico bioinformatics analysis. The p.Ile369Thr variant disrupts several C-terminal and homeodomain residue interactions, including an interaction with homeodomain residue p.Val241 that was previously found to be involved in autosomal dominant progressive HI. LIM-homeodomain factor Lmx1a is expressed in the inner ear through development, shows a progressive restriction to non-sensory epithelia, and is important in the separation of the sensory and non-sensory domains in the inner ear. Homozygous Lmx1a mutant mice (Dreher) are deaf with dysmorphic ears with an abnormal morphogenesis and fused and misshapen sensory organs; however, computed tomography performed on a hearing-impaired family member did not reveal any cochleovestibular malformations. Our results suggest that LMX1A is involved in both human autosomal recessive and dominant sensorineural hearing impairment.
Collapse
Affiliation(s)
- Isabelle Schrauwen
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, One Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Imen Chakchouk
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, One Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Khurram Liaqat
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abid Jan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Nasir
- Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, South Korea
| | - Shabir Hussain
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suzanne M Leal
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, One Baylor Plaza 700D, Houston, TX, 77030, USA.
| |
Collapse
|
43
|
Allbee AW, Rincon-Limas DE, Biteau B. Lmx1a is required for the development of the ovarian stem cell niche in Drosophila. Development 2018; 145:dev.163394. [PMID: 29615466 DOI: 10.1242/dev.163394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
The Drosophila ovary serves as a model for pioneering studies of stem cell niches, with defined cell types and signaling pathways supporting both germline and somatic stem cells. The establishment of the niche units begins during larval stages with the formation of terminal filament-cap structures; however, the genetics underlying their development remains largely unknown. Here, we show that the transcription factor Lmx1a is required for ovary morphogenesis. We found that Lmx1a is expressed in early ovarian somatic lineages and becomes progressively restricted to terminal filaments and cap cells. We show that Lmx1a is required for the formation of terminal filaments, during the larval-pupal transition. Finally, our data demonstrate that Lmx1a functions genetically downstream of Bric-à-Brac, and is crucial for the expression of key components of several conserved pathways essential to ovarian stem cell niche development. Importantly, expression of chicken Lmx1b is sufficient to rescue the null Lmx1a phenotype, indicating functional conservation across the animal kingdom. These results significantly expand our understanding of the mechanisms controlling stem cell niche development in the fly ovary.
Collapse
Affiliation(s)
- Andrew W Allbee
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, FL 32611, USA
| | - Benoît Biteau
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
44
|
Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B. Wilhelm His' lasting insights into hindbrain and cranial ganglia development and evolution. Dev Biol 2018; 444 Suppl 1:S14-S24. [PMID: 29447907 DOI: 10.1016/j.ydbio.2018.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 01/04/2023]
Abstract
Wilhelm His (1831-1904) provided lasting insights into the development of the central and peripheral nervous system using innovative technologies such as the microtome, which he invented. 150 years after his resurrection of the classical germ layer theory of Wolff, von Baer and Remak, his description of the developmental origin of cranial and spinal ganglia from a distinct cell population, now known as the neural crest, has stood the test of time and more recently sparked tremendous advances regarding the molecular development of these important cells. In addition to his 1868 treatise on 'Zwischenstrang' (now neural crest), his work on the development of the human hindbrain published in 1890 provided novel ideas that more than 100 years later form the basis for penetrating molecular investigations of the regionalization of the hindbrain neural tube and of the migration and differentiation of its constituent neuron populations. In the first part of this review we briefly summarize the major discoveries of Wilhelm His and his impact on the field of embryology. In the second part we relate His' observations to current knowledge about the molecular underpinnings of hindbrain development and evolution. We conclude with the proposition, present already in rudimentary form in the writings of His, that a primordial spinal cord-like organization has been molecularly supplemented to generate hindbrain 'neomorphs' such as the cerebellum and the auditory and vestibular nuclei and their associated afferents and sensory organs.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway; Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway; Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Albert Erives
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Victor V Chizhikov
- The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
45
|
Awad O, Panicker LM, Deranieh RM, Srikanth MP, Brown RA, Voit A, Peesay T, Park TS, Zambidis ET, Feldman RA. Altered Differentiation Potential of Gaucher's Disease iPSC Neuronal Progenitors due to Wnt/β-Catenin Downregulation. Stem Cell Reports 2017; 9:1853-1867. [PMID: 29198828 PMCID: PMC5785733 DOI: 10.1016/j.stemcr.2017.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 01/11/2023] Open
Abstract
Gaucher’s disease (GD) is an autosomal recessive disorder caused by mutations in the GBA1 gene, which encodes acid β-glucocerebrosidase (GCase). Severe GBA1 mutations cause neuropathology that manifests soon after birth, suggesting that GCase deficiency interferes with neuronal development. We found that neuronopathic GD induced pluripotent stem cell (iPSC)-derived neuronal progenitor cells (NPCs) exhibit developmental defects due to downregulation of canonical Wnt/β-catenin signaling and that GD iPSCs’ ability to differentiate to dopaminergic (DA) neurons was strikingly reduced due to early loss of DA progenitors. Incubation of the mutant cells with the Wnt activator CHIR99021 (CHIR) or with recombinant GCase restored Wnt/β-catenin signaling and rescued DA differentiation. We also found that GD NPCs exhibit lysosomal dysfunction, which may be involved in Wnt downregulation by mutant GCase. We conclude that neuronopathic mutations in GCase lead to neurodevelopmental abnormalities due to a critical requirement of this enzyme for canonical Wnt/β-catenin signaling at early stages of neurogenesis. Neuronopathic GBA1 mutations attenuate canonical Wnt signaling in iPSC-derived NPCs GD NPC differentiation to DA neurons impaired due to early loss of DA progenitors GBA1-mediated lysosomal alterations may be involved in Wnt signal downregulation The Wnt pathway may be a potential new therapeutic target for neuronopathic GD
Collapse
Affiliation(s)
- Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Room 380, Baltimore, MD 21201, USA
| | - Leelamma M Panicker
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Room 380, Baltimore, MD 21201, USA
| | - Rania M Deranieh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Room 380, Baltimore, MD 21201, USA
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Room 380, Baltimore, MD 21201, USA
| | - Robert A Brown
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Room 380, Baltimore, MD 21201, USA
| | - Antanina Voit
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Room 380, Baltimore, MD 21201, USA
| | - Tejasvi Peesay
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Room 380, Baltimore, MD 21201, USA
| | - Tea Soon Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, and Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, and Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Room 380, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Oliveira MAP, Balling R, Smidt MP, Fleming RMT. Embryonic development of selectively vulnerable neurons in Parkinson's disease. NPJ Parkinsons Dis 2017; 3:21. [PMID: 28685157 PMCID: PMC5484687 DOI: 10.1038/s41531-017-0022-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
A specific set of brainstem nuclei are susceptible to degeneration in Parkinson's disease. We hypothesise that neuronal vulnerability reflects shared phenotypic characteristics that confer selective vulnerability to degeneration. Neuronal phenotypic specification is mainly the cumulative result of a transcriptional regulatory program that is active during the development. By manual curation of the developmental biology literature, we comprehensively reconstructed an anatomically resolved cellular developmental lineage for the adult neurons in five brainstem regions that are selectively vulnerable to degeneration in prodromal or early Parkinson's disease. We synthesised the literature on transcription factors that are required to be active, or required to be inactive, in the development of each of these five brainstem regions, and at least two differentially vulnerable nuclei within each region. Certain transcription factors, e.g., Ascl1 and Lmx1b, seem to be required for specification of many brainstem regions that are susceptible to degeneration in early Parkinson's disease. Some transcription factors can even distinguish between differentially vulnerable nuclei within the same brain region, e.g., Pitx3 is required for specification of the substantia nigra pars compacta, but not the ventral tegmental area. We do not suggest that Parkinson's disease is a developmental disorder. In contrast, we consider identification of shared developmental trajectories as part of a broader effort to identify the molecular mechanisms that underlie the phenotypic features that are shared by selectively vulnerable neurons. Systematic in vivo assessment of fate determining transcription factors should be completed for all neuronal populations vulnerable to degeneration in early Parkinson's disease.
Collapse
Affiliation(s)
- Miguel A. P. Oliveira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, Belvaux, L-4362 Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, Belvaux, L-4362 Luxembourg
| | - Marten P. Smidt
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Ronan M. T. Fleming
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, Belvaux, L-4362 Luxembourg
| |
Collapse
|
47
|
Edwards AC, Heron J, Vladimirov V, Wolen AR, Adkins DE, Aliev F, Hickman M, Kendler KS. The Rate of Change in Alcohol Misuse Across Adolescence is Heritable. Alcohol Clin Exp Res 2016; 41:57-64. [PMID: 27892595 DOI: 10.1111/acer.13262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alcohol use typically begins during adolescence and escalates into young adulthood. This represents an important period for the establishment of alcohol use and misuse patterns, which can have psychosocial and medical consequences. Although changes in alcohol use during this time have been phenotypically characterized, their genetic nature is poorly understood. METHODS Participants of the Avon Longitudinal Study of Parents and Children completed the Alcohol Use Disorders Identification Test (AUDIT) 4 times from age 16 to 20. We used Mplus to construct a growth model characterizing changes in AUDIT scores across time (N = 4,545, where data were available for at least 2 time points). The slope of the model was used as the phenotype in a genomewide association study (N = 3,380), followed by secondary genetic analyses. RESULTS No individual marker met genomewide significance criteria. Top markers mapped to biologically plausible candidate genes. The slope term was moderately heritable (h2SNP = 0.26, p = 0.009), and replication attempts using a meta-analysis of independent samples provided support for implicated variants at the aggregate level. Nominally significant (p < 0.00001) markers mapped to putatively active genomic regions in brain tissue more frequently than expected by chance. CONCLUSIONS These results build on prior studies by demonstrating that common genetic variation impacts alcohol misuse trajectories. Influential loci map to genes that merit additional research, as well as to intergenic regions with regulatory functions in the central nervous system. These findings underscore the complex biological nature of alcohol misuse across development.
Collapse
Affiliation(s)
- Alexis C Edwards
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jon Heron
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Vladimir Vladimirov
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia.,Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.,Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Aaron R Wolen
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel E Adkins
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Fazil Aliev
- Department of African-American Studies, Virginia Commonwealth University, Richmond, Virginia.,Faculty of Business, Karabuk University, Karabuk, Turkey
| | - Matthew Hickman
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Kenneth S Kendler
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
48
|
Mackenroth L, Hackmann K, Klink B, Weber JS, Mayer B, Schröck E, Tzschach A. Interstitial 1q23.3q24.1 deletion in a patient with renal malformation, congenital heart disease, and mild intellectual disability. Am J Med Genet A 2016; 170:2394-9. [PMID: 27255444 DOI: 10.1002/ajmg.a.37785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/17/2016] [Indexed: 01/25/2023]
Abstract
Interstitial deletions including chromosome region 1q23.3q24.1 are rare. Only eight patients with molecularly characterized deletions have been reported to date. Their phenotype included intellectual disability/developmental delay, growth retardation, microcephaly, congenital heart disease, and renal malformations. We report on a female patient with mild developmental delay, congenital heart disease, and bilateral renal hypoplasia in whom an interstitial de novo deletion of approximately 2.7 Mb in 1q23.3q24.1 was detected by array CGH. This is the smallest deletion described in this region so far. Genotype-phenotype comparison with previously published patients allowed us to propose LMX1A and RXRG as potential candidate genes for intellectual disability, PBX1 as a probable candidate gene for renal malformation, and enabled us to narrow down a chromosome region associated with microcephaly. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luisa Mackenroth
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karl Hackmann
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Barbara Klink
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Sara Weber
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Brigitte Mayer
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Evelin Schröck
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Tzschach
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
49
|
Huang EJ. Ventral midbrain dopaminergic neurons: From neurogenesis to neurodegeneration. FEBS Lett 2015; 589:3691-2. [DOI: 10.1016/j.febslet.2015.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|