1
|
Anne S, Friudenberg AD, Peterson RL. Characterization of a High-Affinity Copper Transporter CTR1a in the White-Nose Syndrome Causing Fungal Pathogen Pseudogymnoascus destructans. J Fungi (Basel) 2024; 10:729. [PMID: 39452681 PMCID: PMC11509074 DOI: 10.3390/jof10100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Copper is an essential micronutrient and the ability to scavenge tightly bound or trace levels of copper ions at the host-pathogen interface is vital for fungal proliferation in animal hosts. Recent studies suggest that trace metal ion acquisition is critical for the establishment and propagation of Pseudogymnoascus destructans, the fungal pathogen responsible for white-nose syndrome (WNS), on their bat host. However, little is known about these metal acquisition pathways in P. destructans. In this study, we report the characterization of the P. destructans high-affinity copper transporter VC83_00191 (PdCTR1a), which is implicated as a virulence factor associated with the WNS disease state. Using Saccharomyces cerevisiae as a recombinant expression host, we find that PdCTR1a can efficiently traffic Cu ions into the yeast cytoplasm. Complementary studies in the native P. destructans fungus provide evidence that PdCTR1a transcripts and protein levels are dictated by Cu-bioavailability in the growth media. Our study demonstrates that PdCTR1a is a functional high-affinity copper transporter and is relevant to Cu homeostasis pathways in P. destructans.
Collapse
Affiliation(s)
- Saika Anne
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| | - Alyssa D. Friudenberg
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| | - Ryan L. Peterson
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| |
Collapse
|
2
|
Friudenberg AD, Anne S, Peterson RL. Characterization of a High-Affinity Copper Transporter in the White-Nose Syndrome Causing Fungal Pathogen Pseudogymnoascus destructans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610057. [PMID: 39253504 PMCID: PMC11383314 DOI: 10.1101/2024.08.28.610057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Copper is an essential micronutrient and the ability to scavenge tightly bound or trace levels of copper ions at the host-pathogen interface is vital for fungal proliferation in animal hosts. Recent studies suggest that trace metal ion acquisition is critical for the establishment and propagation of Pseudogymnoascus destructans, the fungal pathogen responsible for white-nose syndrome (WNS), on their bat host. However, little is known about these metal acquisition pathways in P. destructans. In this study, we report the characterization of the P. destructans high-affinity copper transporter VC83_00191 (PdCTR1a), which is implicated as a virulence factor associated with the WNS disease state. Using Saccharomyces cerevisiae as a recombinant expression host, we find that PdCTR1a localizes to the cell surface plasma membrane and can efficiently traffic Cu-ions into the yeast cytoplasm. Complementary studies in the native P. destructans fungus provide evidence that PdCTR1a transcripts and protein levels are dictated by Cu-bioavailability in the growth media. Our study demonstrates that PdCTR1a is a functional high-affinity copper transporter and is relevant to Cu-homeostasis pathways in P. destructans.
Collapse
Affiliation(s)
- Alyssa D. Friudenberg
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas, United States, 78666
| | - Saika Anne
- Department of Biology, Texas State University, 601 University Drive, San Marcos, Texas, United States, 78666
| | - Ryan L. Peterson
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas, United States, 78666
- Department of Biology, Texas State University, 601 University Drive, San Marcos, Texas, United States, 78666
| |
Collapse
|
3
|
Sanchez Ramirez L, Dragotakes Q, Casadevall A. A food color-based colorimetric assay for Cryptococcus neoformans laccase activity. Microbiol Spectr 2024; 12:e0044224. [PMID: 38869282 PMCID: PMC11302723 DOI: 10.1128/spectrum.00442-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that causes cryptococcosis primarily in immunocompromised patients, such as those with HIV/AIDS. One survival mechanism of C. neoformans during infection is melanin production, which catalyzed by laccase and protects fungal cells against immune attack. Hence, the comparative assessment of laccase activity is useful for characterizing cryptococcal strains. We serendipitously observed that culturing C. neoformans with food coloring resulted in degradation of some dyes with phenolic structures. Consequently, we investigated the color changes for the food dyes metabolized by C. neoformans laccase and by using this effect explored the development of a colorimetric assay to measure laccase activity. We developed several versions of a food dye-based colorimetric laccase assay that can be used to compare the relative laccase activities between different C. neoformans strains. We found that phenolic color degradation was glucose-dependent, which may reflect changes in the reduction properties of the media. Our food color-based colorimetric assay has several advantages, including lower cost, irreversibility, and not requiring constant monitoring , over the commonly used 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay for determining laccase activity. This method has potential applications to bioremediation of water pollutants in addition to its use in determining laccase virulence factor expression.IMPORTANCECryptococcus neoformans is present in the environment, and while infection is common, disease occurs mostly in immunocompromised individuals. C. neoformans infection in the lungs results in symptoms like pneumonia, and consequently, cryptococcal meningitis occurs if the fungal infection spreads to the brain. The laccase enzyme catalyzes the melanization reaction that serves as a virulence factor for C. neoformans. Developing a simple and less costly assay to determine the laccase activity in C. neoformans strains can be useful for a variety of procedures ranging from studying the relative virulence of cryptococci to environmental pollution studies.
Collapse
Affiliation(s)
- Lia Sanchez Ramirez
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Irfan A, Bin Jardan YA, Rubab L, Hameed H, Zahoor AF, Supuran CT. Bacterial tyrosinases and their inhibitors. Enzymes 2024; 56:231-260. [PMID: 39304288 DOI: 10.1016/bs.enz.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bacterial tyrosinase is a copper-containing metalloenzyme with diverse physio-chemical properties, that have been identified in various bacterial strains, including actinobacteria and proteobacteria. Tyrosinases are responsible for the rate-limiting catalytic steps in melanin biosynthesis and enzymatic browning. The physiological role of bacterial tyrosinases in melanin biosynthesis has been harnessed for the production of coloring and dyeing agents. Additionally, bacterial tyrosinases have the capability of cross-linking activity, demonstrated material functionalization applications, and applications in food processing with varying substrate specificities and stability features. These characteristics make bacterial tyrosinases a valuable alternative to well-studied mushroom tyrosinases. The key feature of substrate specificity of bacterial tyrosinase has been exploited to engineer biosensors that have the ability to detect the minimal amount of different phenolic compounds. Today, the world is facing the challenge of multi-drugs resistance in various diseases, especially antibiotic resistance, skin cancer, enzymatic browning of fruits and vegetables, and melanogenesis. To address these challenges, medicinal scientists are developing novel chemotherapeutic agents by inhibiting bacterial tyrosinases. To serve this purpose, heterocyclic compounds are of particular interest due to their vast spectrum of biological activities and their potential as effective tyrosinase inhibitors. In this chapter, a plethora of research explores applications of bacterial tyrosinases in different fields, such as the production of dyes and pigments, catalytic applications in organic synthesis, bioremediation, food and feed applications, biosensors, wool fiber coating and the rationalized synthesis, and structure-activity relationship of bacterial tyrosinase inhibitors.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Laila Rubab
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Claudiu T Supuran
- Department of NEUROFARBA-Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
5
|
Umar A, Yuan W, Lu J, Ameen F. Fungal-plant interaction: a pathogenic relationship between Ganoderma segmentatum sp. nov. and Vachellia nilotica. Front Microbiol 2024; 15:1411264. [PMID: 39113836 PMCID: PMC11303310 DOI: 10.3389/fmicb.2024.1411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The diversity of Ganoderma remains largely unexplored, with little information available due to fungiphobia and the morphological plasticity of the genus. To address this gap, an ongoing study aims to collect and identify species with this genus using nuclear ribosomal DNA regions called the "Internal Transcribed Spacer" (ITS1-5.8S-ITS2 = ITS). In this study, a new species, Ganoderma segmentatum sp. nov., was discovered on the dead tree trunk of the medicinal plant, Vachellia nilotica. The species was identified through a combination of morpho-anatomical characteristics and phylogenetic analyses. This new species was closely related to Ganoderma multipileum, G. mizoramense, and G. steyaertanum, with a 99% bootstrap value, forming a distinct branch in the phylogenetic tree. Morphologically, G. segmentatum can be distinguished by its frill-like appearance on the margin of basidiome. Wilt or basal stem rot, a serious disease of trees caused by Ganoderma species and V. nilotica, is brutally affected by this disease, resulting in substantial losses in health and productivity. This Ganoderma species severely damages V. nilotica through deep mycelial penetration in the upper and basal stems of the host species. Pathogenic observational descriptions of G. segmentatum on dead tree trunks showed the exudation of viscous reddish-brown fluid from the basal stem portion, which gradually extended upward. Symptoms of this disease include decay, stem discoloration, leaf drooping, and eventual death, which severely damaged the medicinal tree of V. nilotica.
Collapse
Affiliation(s)
- Aisha Umar
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Wanlan Yuan
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Junxing Lu
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Kumari D, Sachivkina N, Pasrija R. Investigation of the influence of pH and temperature on melanization and survival under oxidative stress in Cryptococcus neoformans. Arch Microbiol 2024; 206:355. [PMID: 39017938 DOI: 10.1007/s00203-024-04080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Cryptococcus neoformans is an opportunistic pathogenic fungus that produces melanin during infection, an important virulence factor in Cryptococcal infections that enhances the ability of the fungus to resist immune defense. This fungus can synthesize melanin from a variety of substrates, including L-DOPA (L-3,4-dihydroxyphenylalanine). Since melanin protects the fungus from various stress factors such as oxidative, nitrosative, extreme heat and cold stress; we investigated the effects of environmental conditions on melanin production and survival. In this study, we investigated the effects of different pH values (5.6, 7.0 and 8.5) and temperatures (30 °C and 37 °C) on melanization and cell survival using a microtiter plate-based melanin production assay and an oxidative stress assay, respectively. In addition, the efficacy of compounds known to inhibit laccase involved in melanin synthesis, i.e., tunicamycin, β-mercaptoethanol, dithiothreitol, sodium azide and caspofungin on melanization was evaluated and their sensitivity to temperature and pH changes was measured. The results showed that melanin content correlated with pH and temperature changes and that pH 8.5 and 30 °C, were best for melanin production. Besides that, melanin production protects the fungal cells from oxidative stress induced by hydrogen peroxide. Thus, changes in pH and temperature drastically alter melanin production in C. neoformans and it correlates with the fungal survival. Due to the limited antifungal repertoire and the development of resistance in cryptococcal infections, the investigation of environmental conditions in the regulation of melanization and survival of C. neoformans could be useful for future research and clinical phasing.
Collapse
Affiliation(s)
- Deepika Kumari
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Nadezhda Sachivkina
- Department of Microbiology, Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
7
|
Stempinski PR, Greengo SD, Casadevall A. Growth on Douglas fir media facilitates Cryptococcus virulence factor production and enhances fungal survival against environmental and immune stressors. Med Mycol 2024; 62:myae068. [PMID: 38982313 DOI: 10.1093/mmy/myae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
The yeasts Cryptococcus neoformans and Cryptococcus gattii are fungal pathogens that can be isolated from the environment, including the surfaces of many plants. Cryptococcus gattii caused an outbreak on Vancouver Island, British Columbia beginning in 1999 that has since spread to the Pacific Northwest of the United States. Coastal Douglas fir (Pseudotsuga menziesii) is an important lumber species and a major component of the ecosystems in this area. Previous research has explored Cryptococcus survival and mating on Douglas fir plants and plant-derived material, but no studies have been done on the production of cryptococcal virulence factors by cells grown on those media. Here, we investigated the effects of growth on Douglas fir-derived media on the production of the polysaccharide capsule and melanin, two of the most important cryptococcal virulence factors. We found that while the capsule was mostly unchanged by growth in Douglas fir media compared to cells grown in defined minimal media, Cryptococcus spp. can use substrates present in Douglas fir to synthesize functional and protective melanin. These results suggest mechanisms by which Cryptococcus species may survive in the environment and emphasize the need to explore how association with Douglas fir trees could affect its epidemiology for human cryptococcosis.
Collapse
Affiliation(s)
- Piotr R Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| | - Seth D Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
8
|
Egbewale SO, Kumar A, Mokoena MP, Olaniran AO. Purification, characterization and three-dimensional structure prediction of multicopper oxidase Laccases from Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Sci Rep 2024; 14:13371. [PMID: 38862560 PMCID: PMC11167041 DOI: 10.1038/s41598-024-63959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa.
| |
Collapse
|
9
|
Xue P, Sánchez-León E, Hu G, Lee CWJ, Black B, Brisland A, Li H, Jung WH, Kronstad JW. The interplay between electron transport chain function and iron regulatory factors influences melanin formation in Cryptococcus neoformans. mSphere 2024; 9:e0025024. [PMID: 38687055 PMCID: PMC11237718 DOI: 10.1128/msphere.00250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Mitochondrial functions are critical for the ability of the fungal pathogen Cryptococcus neoformans to cause disease. However, mechanistic connections between key functions such as the mitochondrial electron transport chain (ETC) and virulence factor elaboration have yet to be thoroughly characterized. Here, we observed that inhibition of ETC complex III suppressed melanin formation, a major virulence factor. This inhibition was partially overcome by defects in Cir1 or HapX, two transcription factors that regulate iron acquisition and use. In this regard, loss of Cir1 derepresses the expression of laccase genes as a potential mechanism to restore melanin, while HapX may condition melanin formation by controlling oxidative stress. We hypothesize that ETC dysfunction alters redox homeostasis to influence melanin formation. Consistent with this idea, inhibition of growth by hydrogen peroxide was exacerbated in the presence of the melanin substrate L-DOPA. In addition, loss of the mitochondrial chaperone Mrj1, which influences the activity of ETC complex III and reduces ROS accumulation, also partially overcame antimycin A inhibition of melanin. The phenotypic impact of mitochondrial dysfunction was consistent with RNA-Seq analyses of WT cells treated with antimycin A or L-DOPA, or cells lacking Cir1 that revealed influences on transcripts encoding mitochondrial functions (e.g., ETC components and proteins for Fe-S cluster assembly). Overall, these findings reveal mitochondria-nuclear communication via ROS and iron regulators to control virulence factor production in C. neoformans.IMPORTANCEThere is a growing appreciation of the importance of mitochondrial functions and iron homeostasis in the ability of fungal pathogens to sense the vertebrate host environment and cause disease. Many mitochondrial functions such as heme and iron-sulfur cluster biosynthesis, and the electron transport chain (ETC), are dependent on iron. Connections between factors that regulate iron homeostasis and mitochondrial activities are known in model yeasts and are emerging for fungal pathogens. In this study, we identified connections between iron regulatory transcription factors (e.g., Cir1 and HapX) and the activity of complex III of the ETC that influence the formation of melanin, a key virulence factor in the pathogenic fungus Cryptococcus neoformans. This fungus causes meningoencephalitis in immunocompromised people and is a major threat to the HIV/AIDS population. Thus, understanding how mitochondrial functions influence virulence may support new therapeutic approaches to combat diseases caused by C. neoformans and other fungi.
Collapse
Affiliation(s)
- Peng Xue
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez-León
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher W J Lee
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Braydon Black
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Brisland
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haohua Li
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Palmucci JR, Sells BE, Giamberardino CD, Toffaletti DL, Dai B, Asfaw YG, Dubois LG, Li Z, Theriot B, Schell WA, Hope W, Tenor JL, Perfect JR. A ketogenic diet enhances fluconazole efficacy in murine models of systemic fungal infection. mBio 2024; 15:e0064924. [PMID: 38619236 PMCID: PMC11077957 DOI: 10.1128/mbio.00649-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Invasive fungal infections are a significant public health concern, with mortality rates ranging from 20% to 85% despite current treatments. Therefore, we examined whether a ketogenic diet could serve as a successful treatment intervention in murine models of Cryptococcus neoformans and Candida albicans infection in combination with fluconazole-a low-cost, readily available antifungal therapy. The ketogenic diet is a high-fat, low-carbohydrate diet that promotes fatty acid oxidation as an alternative to glycolysis through the production of ketone bodies. In this series of experiments, mice fed a ketogenic diet prior to infection with C. neoformans and treated with fluconazole had a significant decrease in fungal burden in both the brain (mean 2.66 ± 0.289 log10 reduction) and lung (mean 1.72 ± 0.399 log10 reduction) compared to fluconazole treatment on a conventional diet. During C. albicans infection, kidney fungal burden of mice in the keto-fluconazole combination group was significantly decreased compared to fluconazole alone (2.37 ± 0.770 log10-reduction). Along with higher concentrations of fluconazole in the plasma and brain tissue, fluconazole efficacy was maximized at a significantly lower concentration on a keto diet compared to a conventional diet, indicating a dramatic effect on fluconazole pharmacodynamics. Our findings indicate that a ketogenic diet potentiates the effect of fluconazole at multiple body sites during both C. neoformans and C. albicans infection and could have practical and promising treatment implications.IMPORTANCEInvasive fungal infections cause over 2.5 million deaths per year around the world. Treatments for fungal infections are limited, and there is a significant need to develop strategies to enhance antifungal efficacy, combat antifungal resistance, and mitigate treatment side effects. We determined that a high-fat, low-carbohydrate ketogenic diet significantly potentiated the therapeutic effect of fluconazole, which resulted in a substantial decrease in tissue fungal burden of both C. neoformans and C. albicans in experimental animal models. We believe this work is the first of its kind to demonstrate that diet can dramatically influence the treatment of fungal infections. These results highlight a novel strategy of antifungal drug enhancement and emphasize the need for future investigation into dietary effects on antifungal drug activity.
Collapse
Affiliation(s)
- Julia R Palmucci
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Blake E Sells
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Charles D Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Baodi Dai
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yohannes G Asfaw
- Department of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Laura G Dubois
- Duke Proteomics and Metabolomics Core Facility, Duke University, Durham, North Carolina, USA
| | - Zhong Li
- Duke Proteomics and Metabolomics Core Facility, Duke University, Durham, North Carolina, USA
| | - Barbara Theriot
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wiley A Schell
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
11
|
Ramirez LS, Dragotakes Q, Casadevall A. A food color based colorimetric assay for Cryptococcus neoformans laccase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573823. [PMID: 38260475 PMCID: PMC10802293 DOI: 10.1101/2024.01.01.573823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes cryptococcosis mostly in immune compromised patients, such as those with HIV/AIDS. One survival mechanism of C. neoformans during infection is melanin production, which catalyzed by laccase, and protects fungal cells against immune attack. Hence comparative assessment of laccase activity is useful for characterizing cryptococcal strains. We serendipitously observed that culturing C. neoformans with food coloring resulted in the degradation of some dyes with phenolic structures. Consequently, we investigated the color changes for the food dyes metabolized by C. neoformans laccase and explored using this effect for the development of a colorimetric assay to measure laccase activity. We developed several versions of a food dye based colorimetric laccase assay that can be used to compare the relative laccase activities between different C. neoformans strains. We found that phenolic color degradation was glucose dependent, which may reflect changes in the reduction properties of the media. Our food color based colorimetric assay has several advantages over the commonly used 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay for laccase activity, including lower cost, irreversibility, and does not require constant monitoring. This method has potential applications to bioremediation of water pollutants in addition to its use in determining laccase virulence factor expression.
Collapse
Affiliation(s)
- Lia Sanchez Ramirez
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, United States
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, United States
| |
Collapse
|
12
|
Kalita B, Roy A, Jayaprakash A, Arunachalam A, P.T.V L. Identification of lncRNA and weighted gene coexpression network analysis of germinating Rhizopus delemar causing mucormycosis. Mycology 2024; 14:344-357. [PMID: 38187880 PMCID: PMC10769135 DOI: 10.1080/21501203.2023.2265414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Rhizopus delemar, an opportunistic fungal pathogen, causes a highly fatal disease, mucormycosis. Spore germination is a crucial mechanism for disease pathogenesis. Thus, exploring the molecular mechanisms of fungal germination would underpin our knowledge of such transformation and, in turn, help control mucormycosis. To gain insight into the developmental process particularly associated with cell wall modification and synthesis, weighted gene co-expression network analysis (WGCNA) was performed including both coding and non-coding transcripts identified in the current study, to find out the module of interest in the germination stages. The module-trait relationship identified a particular module to have a high correlation only at the resting phase and further analysis revealed the module to be enriched for protein phosphorylation, carbohydrate metabolic process, and cellular response to stimulus. Moreover, co-expression network analysis of highly connected nodes revealed cell wall modifying enzymes, especially those involved in mannosylation, chitin-glucan crosslinking, and polygalacturonase activities co-expressing and interacting with the novel lncRNAs among which some of them predicted to be endogenous target mimic (eTM) lncRNAs. Hence, the present study provides an insight into the onset of spore germination and the information on the novel non-coding transcripts with key cell wall-related enzymes as potential targets against mucormycosis.
Collapse
Affiliation(s)
- Barsha Kalita
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Abhijeet Roy
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | | | | | - Lakshmi P.T.V
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
13
|
Albuquerque P, de Sousa HR, de Oliveira Frazão S, do Nascimento Miranda LV, Paes HC, Pereira IS, Nicola AM. Measuring Laccase Activity and Melanin Production in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:257-268. [PMID: 38758323 DOI: 10.1007/978-1-0716-3722-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Melanin is a complex dark pigment synthetized by the phenoloxidase enzyme laccase in Cryptococcus neoformans. In vitro, this enzyme oxidizes exogenous catecholamines to produce melanin that may be secreted or incorporated into the fungal cell wall. This pigment has multiple roles in C. neoformans virulence during its interaction with different hosts and probably also in protecting fungal cells in the environment against predation and oxidative and radiation stresses, among others. However, it is important to note that laccase also has melanin-independent roles in C. neoformans interactions with host cells. In this chapter, we describe a quantitative laccase assay and a method for evaluating the kinetics of melanin production in C. neoformans colonies.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Costa Paes
- Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Ildinete Silva Pereira
- Institute of Biology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | | |
Collapse
|
14
|
Sauters TJC, Roth C, Murray D, Sun S, Floyd Averette A, Onyishi CU, May RC, Heitman J, Magwene PM. Amoeba predation of Cryptococcus: A quantitative and population genomic evaluation of the accidental pathogen hypothesis. PLoS Pathog 2023; 19:e1011763. [PMID: 37956179 PMCID: PMC10681322 DOI: 10.1371/journal.ppat.1011763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/27/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The "Amoeboid Predator-Fungal Animal Virulence Hypothesis" posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungal pathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor Bzp4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions.
Collapse
Affiliation(s)
- Thomas J. C. Sauters
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Cullen Roth
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Debra Murray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Chinaemerem U. Onyishi
- School of Biosciences, College of Life and Environmental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Robin C. May
- School of Biosciences, College of Life and Environmental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
15
|
Alves V, Martins PH, Miranda B, de Andrade IB, Pereira L, Maeda CT, de Sousa Araújo GR, Frases S. Assessing the In Vitro Potential of Glatiramer Acetate (Copaxone ®) as a Chemotherapeutic Candidate for the Treatment of Cryptococcus neoformans Infection. J Fungi (Basel) 2023; 9:783. [PMID: 37623554 PMCID: PMC10455304 DOI: 10.3390/jof9080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Cryptococcosis is a systemic mycosis affecting immunosuppressed individuals, caused by various Cryptococcus species. The current treatment utilizes a combination of antifungal drugs, but issues such as nephrotoxicity, restricted or limited availability in certain countries, and resistance limit their effectiveness. Repurposing approved drugs presents a viable strategy for developing new antifungal options. This study investigates the potential of glatiramer acetate (Copaxone®) as a chemotherapy candidate for Cryptococcus neoformans infection. Various techniques are employed to evaluate the effects of glatiramer acetate on the fungus, including microdilution, XTT analysis, electron and light microscopy, and physicochemical measurements. The results demonstrate that glatiramer acetate exhibits antifungal properties, with an IC50 of 0.470 mg/mL and a minimum inhibitory concentration (MIC) of 2.5 mg/mL. Furthermore, it promotes enhanced cell aggregation, facilitates biofilm formation, and increases the secretion of fungal polysaccharides. These findings indicate that glatiramer acetate not only shows an antifungal effect but also modulates the key virulence factor-the polysaccharide capsule. In summary, repurposing glatiramer acetate as a potential chemotherapy option offers new prospects for combating C. neoformans infection. It addresses the limitations associated with current antifungal therapies by providing an alternative treatment approach.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Pedro Henrique Martins
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Bruna Miranda
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Luiza Pereira
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Christina Takiya Maeda
- Laboratório de Fisiopatologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
16
|
Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Int J Biol Macromol 2023; 233:123534. [PMID: 36740121 DOI: 10.1016/j.ijbiomac.2023.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 the Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
17
|
Secretions from Serratia marcescens Inhibit the Growth and Biofilm Formation of Candida spp. and Cryptococcus neoformans. J Microbiol 2023; 61:221-232. [PMID: 36809632 DOI: 10.1007/s12275-022-00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 02/23/2023]
Abstract
Candida spp. and Cryptococcus are conditional pathogenic fungi that commonly infect immunocompromised patients. Over the past few decades, the increase in antifungal resistance has prompted the development of new antifungal agents. In this study, we explored the potential antifungal effects of secretions from Serratia marcescens on Candida spp. and Cryptococcus neoformans. We confirmed that the supernatant of S. marcescens inhibited fungal growth, suppressed hyphal and biofilm formation, and downregulated the expression of hyphae-specific genes and virulence-related genes in Candida spp. and C. neoformans. Furthermore, the S. marcescens supernatant retained biological stability after heat, pH, and protease K treatment. The chemical profile of the S. marcescens supernatant was characterized by ultra-high-performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry analysis and a total of 61 compounds with an mzCloud best match of greater than 70 were identified. In vivo, treatment with the S. marcescens supernatant reduced the mortality of fungi-infected Galleria mellonella. Taken together, our results revealed that the stable antifungal substances in the supernatant of S. marcescens have promising potential applications in the development of new antifungal agents.
Collapse
|
18
|
de Castro RJA, Rêgo MTAM, Brandão FS, Pérez ALA, De Marco JL, Poças-Fonseca MJ, Nichols C, Alspaugh JA, Felipe MSS, Alanio A, Bocca AL, Fernandes L. Engineered Fluorescent Strains of Cryptococcus neoformans: a Versatile Toolbox for Studies of Host-Pathogen Interactions and Fungal Biology, Including the Viable but Nonculturable State. Microbiol Spectr 2022; 10:e0150422. [PMID: 36005449 PMCID: PMC9603711 DOI: 10.1128/spectrum.01504-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.
Collapse
Affiliation(s)
- Raffael Júnio Araújo de Castro
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
| | - Marco Túlio Aidar Mariano Rêgo
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Fabiana S. Brandão
- Faculty of Health Science, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Ana Laura Alfonso Pérez
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Janice Lisboa De Marco
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Marcio José Poças-Fonseca
- Department of Genetics and Morphology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Connie Nichols
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Maria Sueli S. Felipe
- Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Brasília, Federal District, Brazil
| | - Alexandre Alanio
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
- Laboratoire de Mycologie et Parasitologie, AP-HP, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Brasília, Federal District, Brazil
| |
Collapse
|
19
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
20
|
Complete Genome Sequencing of Polar Arthrobacter sp. PAMC25284, Copper Tolerance Potential Unraveled with Genomic Analysis. Int J Microbiol 2022; 2022:1162938. [PMID: 36061879 PMCID: PMC9436591 DOI: 10.1155/2022/1162938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
The genus Arthrobacter is a known group of Gram-positive, opportunistic pathogenic bacteria from cold climates, with members that are believed to play a variety of roles at low temperatures. However, their survival mechanisms in frigid environments like the Antarctic are still unknown. We identified a species of Arthrobacter isolated from seawater in the polar region using 16S rRNA sequence analysis. The strain PAMC25284 genome consists of a circular chromosome with a GC content of 65.6% and is projected to contain 3,588 genes, of which 3,150 are protein coding, 366 are pseudogenes, 19 are rRNA coding, and 50 are tRNA coding genes. Using comparative genomics, we showed that PMAC25284 has copper-transporting ATPases, copper chaperone, copper-responsive transcriptional regulator, and multi-copper oxidase domains, which are found in both Gram-positive (like Mycobacterium tuberculosis and Enterococcus hirae) and Gram-negative bacteria (like E. coli and Pseudomonas aeruginosa). The existence of 4 multi-copper oxidase genes, which supplied an additional copper defense mechanism, could be intriguing information regarding Gram-positive bacteria such as Arthrobacter sp. PAMC25284. In addition, our strain PAMC25284 has the same MmcO gene as M. tuberculosis, with a locus tag KY499_RS04055 similarity of 40.61%, which is the highest among the Gram-positive and Gram-negative bacteria studied for this gene. Our cold-adapted Arthrobacter sp. strain PAMC25564 was published previously but did not contain a multi-copper oxidase domain-containing gene, but strain PAMC25284 was studied in this study.
Collapse
|
21
|
Abstract
Cryptococcosis is a disease caused by the pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii, both environmental fungi that cause severe pneumonia and may even lead to cryptococcal meningoencephalitis. Although C. neoformans affects more fragile individuals, such as immunocompromised hosts through opportunistic infections, C. gattii causes a serious indiscriminate primary infection in immunocompetent individuals. Typically seen in tropical and subtropical environments, C. gattii has increased its endemic area over recent years, largely due to climatic factors that favor contagion in warmer climates. It is important to point out that not only C. gattii, but the Cryptococcus species complex produces a polysaccharidic capsule with immunomodulatory properties, enabling the pathogenic species of Cryptococccus to subvert the host immune response during the establishment of cryptococcosis, facilitating its dissemination in the infected organism. C. gattii causes a more severe and difficult-to-treat infection, with few antifungals eliciting an effective response during chronic treatment. Much of the immunopathology of this cryptococcosis is still poorly understood, with most studies focusing on cryptococcosis caused by the species C. neoformans. C. gattii became more important in the epidemiological scenario with the outbreaks in the Pacific Northwest of the United States, which resulted in phylogenetic studies of the virulent variant responsible for the severe infection in the region. Since then, the study of cryptococcosis caused by C. gattii has helped researchers understand the immunopathological aspects of different variants of this pathogen.
Collapse
|
22
|
Jiang H, Bao J, Xing Y, Li X, Chen Q. Comparative Genomic Analyses Provide Insight Into the Pathogenicity of Metschnikowia bicuspidata LNES0119. Front Microbiol 2022; 13:939141. [PMID: 35770163 PMCID: PMC9234493 DOI: 10.3389/fmicb.2022.939141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023] Open
Abstract
Metschnikowia bicuspidata is a globally distributed pathogenic yeast with a wide range of aquatic hosts. A new strain, M. bicuspidata LNES0119, isolated from the Chinese mitten crab Eriocheir sinensis, has caused a serious reduction in production and marked economic loss for the aquaculture industry in China. Therefore, the whole-genome sequence of M. bicuspidata LNES0119 was sequenced using Illumina and Oxford Nanopore technology; whole-genome annotation and comparative genomic analyses of this pathogen were performed as well. A high-quality genome of M. bicuspidata LNES0119 was 16.13 Mb in size, with six scaffolds and six contigs, and encoded 5,567 putative predicted genes. Of these, 1,467 genes shared substantial homology with genes in the pathogen–host interactions database. Comparative genomic analyses of three M. bicuspidata strains and one non-pathogenic yeast, M. aff. pulcherrima, showed 331 unique genes in M. bicuspidata LNES0119, 30 of which were putatively related to pathogenicity. Overall, we identified several meaningful characteristics related to pathogenicity and virulence that may play essential roles in the infection and pathogenicity of M. bicuspidata LNES0119. Our study will aid in identifying potential targets for further exploration of the molecular basis of the pathogenicity of M. bicuspidata as well as the therapeutic intervention of M. bicuspidata infection.
Collapse
|
23
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
24
|
Erives VH, Munzen ME, Zamith-Miranda D, Hernandez H, Manepalli S, Nguyen LN, Hamed MF, Nosanchuk JD, Martinez LR. Methamphetamine Enhances Cryptococcus neoformans Melanization, Antifungal Resistance, and Pathogenesis in a Murine Model of Drug Administration and Systemic Infection. Infect Immun 2022; 90:e0009122. [PMID: 35357221 PMCID: PMC9022586 DOI: 10.1128/iai.00091-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Methamphetamine (METH) is a major public health and safety problem in the United States. Chronic METH abuse is associated with a 2-fold-higher risk of HIV infection and, possibly, additional infections, particularly those that enter through the respiratory tract or skin. Cryptococcus neoformans is an encapsulated opportunistic yeast-like fungus that is a relatively frequent cause of meningoencephalitis in immunocompromised patients, especially in individuals with AIDS. C. neoformans melanizes during mammalian infection in a process that presumably uses host-supplied compounds such as catecholamines. l-3,4-Dihydroxyphenylalanine (l-Dopa) is a natural catecholamine that is frequently used to induce melanization in C. neoformans. l-Dopa-melanized cryptococci manifest resistance to radiation, phagocytosis, detergents, and heavy metals. Using a systemic mouse model of infection and in vitro assays to critically assess the impact of METH on C. neoformans melanization and pathogenesis, we demonstrated that METH-treated mice infected with melanized yeast cells showed increased fungal burdens in the blood and brain, exacerbating mortality. Interestingly, analyses of cultures of METH-exposed cryptococci supplemented with l-Dopa revealed that METH accelerates fungal melanization, an event of adaptation to external stimuli that can be advantageous to the fungus during pathogenesis. Our findings provide novel evidence of the impact of METH abuse on host homeostasis and increased permissiveness to opportunistic microorganisms.
Collapse
Affiliation(s)
- Victor H. Erives
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Melissa E. Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Daniel Zamith-Miranda
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hazael Hernandez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
- Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Swetha Manepalli
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, USA
| | - Long N. Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mohamed F. Hamed
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Luis R. Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. Int J Biol Macromol 2022; 209:642-654. [PMID: 35421416 DOI: 10.1016/j.ijbiomac.2022.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 01/14/2023]
Abstract
In recent years, the increased frequency of drug-resistant strains of Cryptococcus neoformans has depleted our antifungal armory. In the present study, we investigated the inhibitory potential of ellagic acid (EA) against C. neoformans laccase through in silico and in vitro studies. For the first time, a homology modelling was established to model laccase and modelled protein served as a receptor for docking EA. Thermodynamic stability of the docked complex was ascertained by molecular dynamics simulation (MD). The analysis of root mean square deviation and fluctuation of alpha carbons of protein justifies the stability of the bound EA in the binding pocket of laccase. Frontier molecular orbitals of the EA was studied by density functional theory-based optimization by using the Lee-Yang-Parr correlation functional (B3LYP) approach. Negative values of the highest occupied/unoccupied molecular orbitals (HOMO/LUMO) indicated that laccase with EA forms a stable complex. Interestingly, EA inhibited laccase activity both in vitro and in yeast cells of C. neoformans. Moreover, EA treatment remarkably inhibited the proliferation of C. neoformans inside macrophages. The findings of the present study unveil the molecular basis of the interactions of laccase with EA, which may prove to be beneficial for designing laccase inhibitors as potential anti-cryptococcal agents.
Collapse
|
26
|
Yang C, Zheng B, Wang R, Chang H, Liu P, Li B, Norvienyeku J, Chen Q. A Putative P-Type ATPase Regulates the Secretion of Hydrolytic Enzymes, Phospholipid Transport, Morphogenesis, and Pathogenesis in Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2022; 13:852500. [PMID: 35620687 PMCID: PMC9127794 DOI: 10.3389/fpls.2022.852500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 05/17/2023]
Abstract
Phytophthora capsici is an important plant pathogenic oomycete with multiple hosts. The P4-ATPases, aminophospholipid translocases (APTs), play essential roles in the growth and pathogenesis of fungal pathogens. However, the function of P4-ATPase in P. capsici remains unclear. This study identified and characterized PcApt1, a P4-ATPase Drs2 homolog, in P. capsici. Deletion of PcAPT1 by CRISPR/Cas9 knock-out strategy impaired hyphal growth, extracellular laccase activity. Cytological analyses have shown that PcApt1 participates in phosphatidylserine (PS) transport across the plasma membrane. Also, we showed that targeted deletion of PcAPT1 triggered a significant reduction in the virulence of P. capsici. Secretome analyses have demonstrated that secretion of hydrolytic enzymes decreased considerably in the PcAPT1 gene deletion strains compared to the wild-type. Overall, our results showed that PcApt1 plays a pivotal role in promoting morphological development, phospholipid transport, secretion of hydrolytic enzymes, and the pathogenicity of the polycyclic phytopathogenic oomycete P. capsici. This study underscores the need for comprehensive evaluation of subsequent members of the P-type ATPase family to provide enhanced insights into the dynamic contributions to the pathogenesis of P. capsici and their possible deployment in the formulation of effective control strategies.
Collapse
Affiliation(s)
- Chengdong Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Bowen Zheng
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hongyang Chang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Benjin Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Justice Norvienyeku,
| | - Qinghe Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- *Correspondence: Qinghe Chen,
| |
Collapse
|
27
|
Maniak H, Talma M, Giurg M. Inhibitory Potential of New Phenolic Hydrazide-Hydrazones with a Decoy Substrate Fragment towards Laccase from a Phytopathogenic Fungus: SAR and Molecular Docking Studies. Int J Mol Sci 2021; 22:ijms222212307. [PMID: 34830189 PMCID: PMC8617976 DOI: 10.3390/ijms222212307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023] Open
Abstract
Laccase from pathogenic fungi participates in both the delignification and neutralization of phytoantibiotics. Furthermore, it interferes with the hormone signaling in plants and catalyzes melanization. Infections of these pathogens contribute to loss in forestry, agriculture, and horticulture. As there is still a need to expand knowledge on efficient defense strategies against phytopathogenic fungi, the present study aimed to reveal more information on the molecular mechanisms of laccase inhibition with natural and natural-like carboxylic acid semi-synthetic derivatives. A set of hydrazide-hydrazones derived from carboxylic acids, generally including electron-rich arene units that serve as a decoy substrate, was synthesized and tested with laccase from Trametes versicolor. The classic synthesis of the title inhibitors proceeded with good to almost quantitative yield. Ninety percent of the tested molecules were active in the range of KI = 8–233 µM and showed different types of action. Such magnitude of inhibition constants qualified the hydrazide-hydrazones as strong laccase inhibitors. Molecular docking studies supporting the experimental data explained the selected derivatives’ interactions with the enzyme. The results are promising in developing new potential antifungal agents mitigating the damage scale in the plant cultivation, gardening, and horticulture sectors.
Collapse
Affiliation(s)
- Halina Maniak
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
- Correspondence: (H.M.); (M.G.); Tel.: +48-713203314 (H.M.); +48-713203616 (M.G.)
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Mirosław Giurg
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Correspondence: (H.M.); (M.G.); Tel.: +48-713203314 (H.M.); +48-713203616 (M.G.)
| |
Collapse
|
28
|
Coprinopsis cinerea uses laccase Lcc9 as a defense strategy to eliminate oxidative stress during fungal-fungal interactions. Appl Environ Microbiol 2021; 88:e0176021. [PMID: 34669425 DOI: 10.1128/aem.01760-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frequently, laccases are triggered during fungal cocultivation for overexpression. The function of these activated laccases during coculture has not been clarified. Previously, we reported that Gongronella sp. w5 (w5) (Mucoromycota, Mucoromycetes) specifically triggered the laccase Lcc9 overexpression in Coprinopsis cinerea (Basidiomycota, Agaricomycetes). To systematically analyze the function of the overexpressed laccase during fungal interaction, C. cinerea mycelia before and after the initial Lcc9 overexpression were chosen for transcriptome analysis. Results showed that accompanied by specific utilization of fructose as carbohydrate substrate, oxidative stress derived from antagonistic compounds secreted by w5 appears to be a signal critical for laccase production in C. cinerea. Reactive oxygen species (ROS) decrease in the C. cinerea wild-type strain followed the increase in laccase production and then, lcc9 transcription and laccase activity stopped. By comparison, increased H2O2 content and mycelial ROS levels were observed during the entire cocultivation in lcc9 silenced C. cinerea strains. Moreover, lcc9 silencing slowed down the C. cinerea mycelial growth, affected hyphal morphology, and decreased the asexual sporulation in coculture. Our results showed that intracellular ROS acted as signal molecules to stimulate defense responses by C. cinerea with the expression of oxidative stress response regulator Skn7 and various detoxification proteins. Lcc9 takes part as a defense strategy to eliminate oxidative stress during the interspecific interaction with w5. Importance: The overproduction of laccase during interspecific fungal interactions is notoriously known. However, the exact role of the up-regulated laccases remains underexplored. Based on comparative transcriptomic analysis of C. cinerea and gene silencing of laccase Lcc9, here we show that oxidative stress derived from antagonistic compounds secreted by Gongronella sp. w5 was a signal critical for laccase Lcc9 production in Coprinopsis cinerea. Intracellular ROS acted as signal molecules to stimulate defense responses by C. cinerea with the expression of oxidative stress response regulator Skn7 and various detoxification proteins. Ultimately, Lcc9 takes part as a defense strategy to eliminate oxidative stress and help cell growth and development during the interspecific interaction with Gongronella sp. w5. These findings deepened our understanding of fungal interactions in their natural population and communities.
Collapse
|
29
|
Omar NF, Widiasih Widiyanto T, Utami ST, Niimi M, Niimi K, Toh-E A, Kajiwara S. Vph1 is associated with the copper homeostasis of Cryptococcus neoformans serotype D. J GEN APPL MICROBIOL 2021; 67:195-206. [PMID: 34219070 DOI: 10.2323/jgam.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We clarified the roles of VPH1 in Cryptococcus neoformans serotype D by examining the detailed phenotypes of VPH1-deficient cells (Δvph1) in terms of their capability to grow in acidic and alkaline pH, at a high temperature, and under high osmotic conditions, in addition to the involvement of VPH1 in copper (Cu) homeostasis and the expression of some C. neoformans virulence factors. Δvph1 could grow well on minimal medium (YNB) but exhibited hypersensitivity to 20 μM Cu due to the failure to induce Cu-detoxifying metallothionein genes (CMT1 and CMT2). In contrast, Δvph1 exhibited defective growth on rich medium (YPD), and the induction of Cu transporter genes (CTR1 and CTR4) did not occur in this medium, implying that this strain was incapable of the uptake of Cu ions for growth. However, the addition of excess Cu promoted CTR gene expression and supported Δvph1 growth. These results suggested that the lack of the VPH1 gene disturbed Cu homeostasis in C. neoformans. Moreover, the loss of Vph1 function influenced the urease activity of C. neoformans.
Collapse
Affiliation(s)
- Noor Fatin Omar
- School of Life Science and Technology, Tokyo Institute of Technology
| | | | | | - Masakazu Niimi
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Kyoko Niimi
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Akio Toh-E
- Medical Mycology Research Center, Chiba University
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
30
|
Complex and Controversial Roles of Eicosanoids in Fungal Pathogenesis. J Fungi (Basel) 2021; 7:jof7040254. [PMID: 33800694 PMCID: PMC8065571 DOI: 10.3390/jof7040254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
The prevalence of fungal infections has increased in immunocompromised patients, leading to millions of deaths annually. Arachidonic acid (AA) metabolites, such as eicosanoids, play important roles in regulating innate and adaptative immune function, particularly since they can function as virulence factors enhancing fungal colonization and are produced by mammalian and lower eukaryotes, such as yeasts and other fungi (Candida albicans, Histoplasma capsulatum and Cryptococcus neoformans). C. albicans produces prostaglandins (PG), Leukotrienes (LT) and Resolvins (Rvs), whereas the first two have been well documented in Cryptococcus sp. and H. capsulatum. In this review, we cover the eicosanoids produced by the host and fungi during fungal infections. These fungal-derived PGs have immunomodulatory functions analogous to their mammalian counterparts. Prostaglandin E2 (PGE2) protects C. albicans and C. parapsilosis cells from the phagocytic and killing activity of macrophages. H. capsulatum PGs augment the fungal burden and host mortality rates in histoplasmosis. However, PGD2 potentiates the effects and production of LTB4, which is a very potent neutrophil chemoattractant that enhances host responses. Altogether, these data suggest that eicosanoids, mainly PGE2, may serve as a new potential target to combat diverse fungal infections.
Collapse
|
31
|
Dai B, Xu Y, Gao N, Chen J. Wor1-regulated ferroxidases contribute to pigment formation in opaque cells of Candida albicans. FEBS Open Bio 2021; 11:598-621. [PMID: 33350590 PMCID: PMC7931227 DOI: 10.1002/2211-5463.13070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Candida albicans is a harmless commensal resident in the human gut and a prevalent opportunistic pathogen. A key part of its commensalism and pathogenesis is its ability to switch between different morphological forms, including white‐to‐opaque switching. The Wor1 protein was previously identified as a master regulator of white‐to‐opaque switching in mating type locus (MTL) homozygous cells. The mechanisms by which the dark color of the opaque colonies is controlled and the pimpled surface of opaque cells is formed remain unknown. Candida albicans produces melanin pigment in vitro and during infection. However, the molecular mechanism underlying the regulation of melanin production is unclear. In this study, we demonstrated that ferroxidases (Fets) function as pigment multicopper oxidases and regulate the production of dark‐pigmented melanin in opaque cells. The FET genes presented distinct regulation patterns in response to different extracellular stimuli. In YPD (1% yeast extract, 2% peptone and 2% dextrose)‐rich medium, four of the five FET genes were up‐regulated by Wor1, especially at the human body temperature of 37 °C. In minimal medium with low ammonium concentrations, all five FET genes were up‐regulated by Wor1. However, at high ammonium concentrations, some FET genes were down‐regulated by Wor1. Wor1‐up‐regulated Fets contributed to dark pigment formation in opaque colonies, but not to the elongated shape of these opaque cells. Increased melanin externalization was associated with the pimpled surface of the opaque cells. Melanized C. albicans cells were more resistant to fungal clearance. Deletion of the five FET genes completely blocked melanin production in opaque cells and resulted in the generation of white elongated ‘opaque’ cells. In addition, the up‐regulated Fets are important for defense against oxidant attacks. The functional diversity of Fets may reflect the multiple strategies of C. albicans to rapidly adapt to diverse host niches.
Collapse
Affiliation(s)
- Baodi Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yinxing Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ning Gao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Gu Z. An improved staining method of cell cycle analysis with Sybr Green I for fungi: Cryptococcus neoformans and Saccharomyces cerevisiae. Cell Cycle 2021; 20:271-282. [PMID: 33463377 PMCID: PMC7889188 DOI: 10.1080/15384101.2020.1870334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022] Open
Abstract
Cryptococcus neoformans is a pathogenic fungus which causes millions of deaths and infections, especially threatening immunocompromised individuals. During the development of new drugs, the ubiquitination has been found to play an important role in the regulation of the virulence and cell cycle of this fungus. Based on this mechanism, ubiquitination-related mutant strains exhibiting cell cycle arrest have been established for drug development for the fungus. However, flow cytometry detection of the cell cycle in fungi is generally difficult because the thick cell wall and capsule of fungi generally contribute to a nonspecific signal of cytometry. In this study, an improved method, derived from Saccharomyces cerevisiae assays, is developed to specifically stain C. neoformans, in whose cell cycle the G1 and G2 peaks are separated enough to be allowed for cell cycle analysis. As a result, the improved method facilitates the detection of the alterations in the cell cycle of C. neoformans with a mutation that results in cell cycle arrest, which distinctly delays the cell division of C. neoformans. Thus, the improved method reported here provides detailed technical information regarding assays on C. neoformans and, more importantly, offers a solution for assessing the cell cycle in other fungi in the future. Abbreviation: PI: propidium iodide.
Collapse
Affiliation(s)
- Zhongkai Gu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
33
|
Li C, Hou S, Ma X, Li J, Huo L, Zhang P, Hao X, Zhu X. Epigenetic regulation of virulence and the transcription of ribosomal protein genes involves a YEATS family protein in Cryptococcus deneoformans. FEMS Yeast Res 2021; 21:6095727. [PMID: 33440003 DOI: 10.1093/femsyr/foab001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/11/2021] [Indexed: 01/18/2023] Open
Abstract
Epigenetic marks or post-translational modifications on histones have important regulatory roles in gene expression in eukaryotic organisms. The epigenetic regulation of gene expression in the pathogenic yeast Cryptococcus deneoformans remains largely undetermined. The YEATS domain proteins are readers of crotonylated lysine residues in histones. Here, we reported the identification of a single-copy gene putatively coding for a YEATS domain protein (Yst1) in C. deneoformans. To define its function, we created a mutant strain, yst1Δ, using CRISPR-Cas9 editing. yst1Δ exhibited defects in phenotype, for instance, it was hypersensitive to osmotic stress in the presence of 1.3 M NaCl or KCl. Furthermore, it was hypersensitive to 1% Congo red, suggesting defects in the cell wall. Interestingly, RNA-seq data revealed that Yst1p was critical for the expression of genes encoding the ribosomal proteins, that is, most were expressed with significantly lower levels of mRNA in yst1Δ than in the wild-type strain. The mutant strain was hypersensitive to low temperature and anti-ribosomal drugs, which we putatively attribute to the impairment in ribosomal function. In addition, the yst1Δ strain was less virulent to Galleria mellonella. These results generally suggest that Yst1, as a histone modification reader, might be a key coordinator of the transcriptome of this human pathogen. Yst1 could be a potential target for novel antifungal drugs, which might lead to significant developments in the clinical treatment of cryptococcosis.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Shaonan Hou
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Xiaoyu Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Jiajia Li
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Liang Huo
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Ping Zhang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Xiaoran Hao
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, PR China
| |
Collapse
|
34
|
Bhattacharya S, Bouklas T, Fries BC. Replicative Aging in Pathogenic Fungi. J Fungi (Basel) 2020; 7:6. [PMID: 33375605 PMCID: PMC7824483 DOI: 10.3390/jof7010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans, Candida auris, Candida glabrata, and Cryptococcus neoformans are pathogenic yeasts which can cause systemic infections in immune-compromised as well as immune-competent individuals. These yeasts undergo replicative aging analogous to a process first described in the nonpathogenic yeast Saccharomyces cerevisiae. The hallmark of replicative aging is the asymmetric cell division of mother yeast cells that leads to the production of a phenotypically distinct daughter cell. Several techniques to study aging that have been pioneered in S. cerevisiae have been adapted to study aging in other pathogenic yeasts. The studies indicate that aging is relevant for virulence in pathogenic fungi. As the mother yeast cell progressively ages, every ensuing asymmetric cell division leads to striking phenotypic changes, which results in increased antifungal and antiphagocytic resistance. This review summarizes the various techniques that are used to study replicative aging in pathogenic fungi along with their limitations. Additionally, the review summarizes some key phenotypic variations that have been identified and are associated with changes in virulence or resistance and thus promote persistence of older cells.
Collapse
Affiliation(s)
- Somanon Bhattacharya
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
| | - Tejas Bouklas
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568, USA
| | - Bettina C. Fries
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
35
|
Huang C, Hedl M, Ranjan K, Abraham C. LACC1 Required for NOD2-Induced, ER Stress-Mediated Innate Immune Outcomes in Human Macrophages and LACC1 Risk Variants Modulate These Outcomes. Cell Rep 2020; 29:4525-4539.e4. [PMID: 31875558 DOI: 10.1016/j.celrep.2019.11.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
LACC1 genetic variants are associated with multiple immune-mediated diseases. However, laccase domain containing-1 (LACC1) functions are incompletely defined. We find that upon stimulation of the pattern-recognition receptor (PRR) NOD2, LACC1 localizes to the endoplasmic reticulum (ER) and forms a complex with ER-stress sensors. All three ER-stress branches, PERK, IRE1α, and ATF6, are required for NOD2-induced signaling, cytokines, and antimicrobial pathways in human macrophages. LACC1, and its localization to the ER, is required for these outcomes. Relative to wild-type (WT) LACC1, transfection of the common Val254 and rare Arg284 immune-mediated disease-risk LACC1 variants into HeLa cells and macrophages, as well as macrophages from LACC1 Val254 carriers, shows reduced NOD2-induced ER stress-associated outcomes; these downstream outcomes are restored by rescuing ER stress. Therefore, we identify ER stress to be essential in PRR-induced outcomes in macrophages, define a critical role for LACC1 in these ER stress-dependent events, and elucidate how LACC1 disease-risk variants mediate these outcomes.
Collapse
Affiliation(s)
- Chen Huang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06510, USA
| | - Matija Hedl
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06510, USA
| | - Kishu Ranjan
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06510, USA
| | - Clara Abraham
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
36
|
Wu J, Choi J, Asiegbu FO, Lee YH. Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases. MYCOBIOLOGY 2020; 48:373-382. [PMID: 33177916 PMCID: PMC7594830 DOI: 10.1080/12298093.2020.1816151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac.kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.
Collapse
Affiliation(s)
- Jiayao Wu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Gupta S, Paul K, Kaur S. Diverse species in the genus Cryptococcus: Pathogens and their non-pathogenic ancestors. IUBMB Life 2020; 72:2303-2312. [PMID: 32897638 DOI: 10.1002/iub.2377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022]
Abstract
The genus Cryptococcus comprises of more than 30 species. It consists of clinically significant pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex comprising of a minimum of seven species. These pathogens cost more than 200,000 lives annually by causing cryptococcal meningoencephalitis. The evolution of the pathogenic species from closely related non-pathogenic species of the Cryptococcus amylolentus complex is of particular importance and several advances have been made to understand their phylogenetic and genomic relationships. The current review briefly describes the sexual reproduction process followed by an individual description of the members focusing on their key attributes and virulence mechanisms of the pathogenic species. A special section on phylogenetic studies is aimed at understanding the evolutionary divergence of pathogens from non-pathogens. Recent findings from our group pertaining to parameters affecting codon usage bias in six pathogenic and three non-pathogenic ancestral species and their corroboration with existing phylogenetic reports are also included in the current review.
Collapse
Affiliation(s)
- Shelly Gupta
- Department of Biochemistry, Lovely Professional University, Kapurthala, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, India
| | - Sukhmanjot Kaur
- Department of Biochemistry, Lovely Professional University, Kapurthala, India
| |
Collapse
|
38
|
Li Z, Kim KS. RELATe enables genome-scale engineering in fungal genomics. SCIENCE ADVANCES 2020; 6:eabb8783. [PMID: 32948588 PMCID: PMC7500931 DOI: 10.1126/sciadv.abb8783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
CRISPR-Cas9-based screening with single-guide RNA (sgRNA) libraries has emerged as a revolutionary tool for comprehensive analysis of genetic elements. However, genome-scale sgRNA libraries are currently available only in a few model organisms. The traditional approach is to synthesize thousands to tens of thousands of sgRNAs, which is laborious and expensive. We have developed a simple method, RELATe (restriction/ligation coupled with Agrobacterium-mediated transformation), to generate sgRNA libraries from 10 μg of genomic DNA, targeting over 98% of the protein-coding genes in the human fungal pathogen Cryptococcus neoformans Functional screens identified 142 potential C. neoformans genes contributing to blood-brain barrier penetration. We selected two cryptococcal genes, SFP1 and WDR1, for a proof-of-concept demonstration that RELATe-identified genes are relevant to C. neoformans central nervous system infection. Our RELATe method can be used in many other fungal species and is powerful and cost-effective for genome-wide high-throughput screening for elucidating functional genomics.
Collapse
Affiliation(s)
- Zhongming Li
- Division of Pediatric Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
39
|
Chrissian C, Camacho E, Kelly JE, Wang H, Casadevall A, Stark RE. Solid-state NMR spectroscopy identifies three classes of lipids in Cryptococcus neoformans melanized cell walls and whole fungal cells. J Biol Chem 2020; 295:15083-15096. [PMID: 32859751 DOI: 10.1074/jbc.ra120.015201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
A primary virulence-associated trait of the opportunistic fungal pathogen Cryptococcus neoformans is the production of melanin pigments that are deposited into the cell wall and interfere with the host immune response. Previously, our solid-state NMR studies of isolated melanized cell walls (melanin "ghosts") revealed that the pigments are strongly associated with lipids, but their identities, origins, and potential roles were undetermined. Herein, we exploited spectral editing techniques to identify and quantify the lipid molecules associated with pigments in melanin ghosts. The lipid profiles were remarkably similar in whole C. neoformans cells, grown under either melanizing or nonmelanizing conditions; triglycerides (TGs), sterol esters (SEs), and polyisoprenoids (PPs) were the major constituents. Although no quantitative differences were found between melanized and nonmelanized cells, melanin ghosts were relatively enriched in SEs and PPs. In contrast to lipid structures reported during early stages of fungal growth in nutrient-rich media, variants found herein could be linked to nutrient stress, cell aging, and subsequent production of substances that promote chronic fungal infections. The fact that TGs and SEs are the typical cargo of lipid droplets suggests that these organelles could be connected to C. neoformans melanin synthesis. Moreover, the discovery of PPs is intriguing because dolichol is a well-established constituent of human neuromelanin. The presence of these lipid species even in nonmelanized cells suggests that they could be produced constitutively under stress conditions in anticipation of melanin synthesis. These findings demonstrate that C. neoformans lipids are more varied compositionally and functionally than previously recognized.
Collapse
Affiliation(s)
- Christine Chrissian
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA; Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York, USA
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - John E Kelly
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA
| | - Hsin Wang
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA; Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York, USA; Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York, USA.
| |
Collapse
|
40
|
Proteomic analysis reveals the damaging role of low redox laccase from Yersinia enterocolitica strain 8081 in the midgut of Helicoverpa armigera. Biotechnol Lett 2020; 42:2189-2210. [PMID: 32472187 DOI: 10.1007/s10529-020-02925-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/25/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Earlier, we have found that the enteropathogenic Yersinia enterocolitica have evolved the survival mechanisms that regulate the expression of laccase-encoding genes in the gut. The present study aims to characterize the purified recombinant laccase from Y. enterocolitica strain 8081 biovar 1B and understand its effect on the midgut of cotton bollworm, Helicoverpa armigera (Hübner) larvae. RESULTS The recombinant laccase protein showed high purity fold and low molecular mass (~ 43 kDa). H. armigera larvae fed with laccase protein showed a significant decrease in body weight and damage in the midgut. Further, transmission electron microscopy (TEM) studies revealed the negative effect of laccase protein on trachea, malpighian tubules, and villi of the insect. The proteome comparison between control and laccase-fed larvae of cotton bollworm showed significant expression of proteolytic enzymes, oxidoreductases, cytoskeletal proteins, ribosomal proteins; and proteins for citrate (TCA cycle) cycle, glycolysis, stress response, cell redox homeostasis, xenobiotic degradation, and insect defence. Moreover, it also resulted in the reduction of antioxidants, increased melanization (insect innate immune response), and enhanced free radical generation. CONCLUSIONS All these data collectively suggest that H. armigera (Hübner) larvae can be used to study the effect of microbes and their metabolites on the host physiology, anatomy, and survival.
Collapse
|
41
|
Effects of 5'-3' Exonuclease Xrn1 on Cell Size, Proliferation and Division, and mRNA Levels of Periodic Genes in Cryptococcus neoformans. Genes (Basel) 2020; 11:genes11040430. [PMID: 32316250 PMCID: PMC7230856 DOI: 10.3390/genes11040430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
Cell size affects almost all biosynthetic processes by controlling the size of organelles and disrupting the nutrient uptake process. Yeast cells must reach a critical size to be able to enter a new cell cycle stage. Abnormal changes in cell size are often observed under pathological conditions such as cancer disease. Thus, cell size must be strictly controlled during cell cycle progression. Here, we reported that the highly conserved 5′-3′ exonuclease Xrn1 could regulate the gene expression involved in the cell cycle pathway of Cryptococcus neoformans. Chromosomal deletion of XRN1 caused an increase in cell size, defects in cell growth and altered DNA content at 37 °C. RNA-sequencing results showed that the difference was significantly enriched in genes involved in membrane components, DNA metabolism, integration and recombination, DNA polymerase activity, meiotic cell cycle, nuclear division, organelle fission, microtubule-based process and reproduction. In addition, the proportion of the differentially expressed periodic genes was up to 19.8% when XRN1 was deleted, including cell cycle-related genes, chitin synthase genes and transcription factors, indicating the important role of Xrn1 in the control of cell cycle. This work provides insights into the roles of RNA decay factor Xrn1 in maintaining appropriate cell size, DNA content and cell cycle progression.
Collapse
|
42
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
43
|
Contribution of Laccase Expression to Immune Response against Cryptococcus gattii Infection. Infect Immun 2020; 88:IAI.00712-19. [PMID: 31871099 DOI: 10.1128/iai.00712-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Cryptococcosis is an infectious disease caused by two fungal species, Cryptococcus neoformans and Cryptococcus gattii While C. neoformans affects mainly immunocompromised patients, C. gattii infects both immunocompetent and immunocompromised individuals. Laccase is an important virulence factor that contributes to the virulence of C. neoformans by promoting pulmonary growth and dissemination to the brain. The presence of laccase in C. neoformans can shift the host immune response toward a nonprotective Th2-type response. However, the role of laccase in the immune response against C. gattii remains unclear. In this study, we characterized laccase activity in C. neoformans and C. gattii isolates from Thailand and investigated whether C. gattii that is deficient in laccase might modulate immune responses during infection. C. gattii was found to have higher laccase activity than C. neoformans, indicating the importance of laccase in the pathogenesis of C. gattii infection. The expression of laccase promoted intracellular proliferation in macrophages and inhibited in vitro fungal clearance. Mice infected with a lac1Δ mutant strain of C. gattii had reduced lung burdens at the early but not the late stage of infection. Without affecting type-1 and type-2 responses, the deficiency of laccase in C. gattii induced cryptococcus-specific interleukin-17 (IL-17) cytokine, neutrophil accumulation, and expression of the neutrophil-associated cytokine gene Csf3 and chemokine genes Cxcl1, Cxcl2, and Cxcl5 in vivo, as well as enhanced neutrophil-mediated phagocytosis and killing in vitro Thus, our data suggest that laccase constitutes an important virulence factor of C. gattii that plays roles in attenuating Th17-type immunity, neutrophil recruitment, and function during the early stage of infection.
Collapse
|
44
|
Abstract
The fungal human pathogen Cryptococcus neoformans undergoes melanization in response to nutrient starvation and exposure to exogenous melanin precursors. Melanization protects the fungus against host defense mechanisms such as oxidative damage and other environmental stressors (e.g., heat/cold stress, antimicrobial compounds, ionizing radiation). Conversely, the melanization process generates cytotoxic intermediates, and melanized cells are potentially susceptible to overheating and to certain melanin-binding drugs. Despite the importance of melanin in C. neoformans biology, the signaling mechanisms regulating its synthesis are poorly understood. The recent report by D. Lee, E.-H. Jang, M. Lee, S.-W. Kim, et al. [mBio 10(5):e02267-19, 2019, https://doi.org/10.1128/mBio.02267-19] provides new insights into how C. neoformans regulates melanization. The authors identified a core melanin regulatory network consisting of transcription factors and kinases required for melanization under low-nutrient conditions. The redundant and epistatic connections of this melanin-regulating network demonstrate that C. neoformans melanization is complex and carefully regulated at multiple levels. Such complex regulation reflects the multiple functions of melanin in C. neoformans biology.
Collapse
|
45
|
The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Commun Biol 2020; 3:50. [PMID: 32005944 PMCID: PMC6994591 DOI: 10.1038/s42003-020-0770-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Fusarium oxysporum is a cross-kingdom fungal pathogen that infects plants and humans. Horizontally transferred lineage-specific (LS) chromosomes were reported to determine host-specific pathogenicity among phytopathogenic F. oxysporum. However, the existence and functional importance of LS chromosomes among human pathogenic isolates are unknown. Here we report four unique LS chromosomes in a human pathogenic strain NRRL 32931, isolated from a leukemia patient. These LS chromosomes were devoid of housekeeping genes, but were significantly enriched in genes encoding metal ion transporters and cation transporters. Homologs of NRRL 32931 LS genes, including a homolog of ceruloplasmin and the genes that contribute to the expansion of the alkaline pH-responsive transcription factor PacC/Rim1p, were also present in the genome of NRRL 47514, a strain associated with Fusarium keratitis outbreak. This study provides the first evidence, to our knowledge, for genomic compartmentalization in two human pathogenic fungal genomes and suggests an important role of LS chromosomes in niche adaptation. Zhang, Yang et al. compare a Fusarium oxysporum isolate obtained clinically to a phytopathogenic strain to examine transfer of lineage-specific chromosomes in determining host specificity. They find four unique lineage-specific chromosomes that seem to contribute to fungal adaptation to human hosts.
Collapse
|
46
|
Maliehe M, Ntoi MA, Lahiri S, Folorunso OS, Ogundeji AO, Pohl CH, Sebolai OM. Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis. Microorganisms 2020; 8:microorganisms8020180. [PMID: 32012843 PMCID: PMC7074686 DOI: 10.3390/microorganisms8020180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
The ability of microorganisms to colonise and display an intracellular lifestyle within a host body increases their fitness to survive and avoid extinction. This host–pathogen association drives microbial evolution, as such organisms are under selective pressure and can become more pathogenic. Some of these microorganisms can quickly spread through the environment via transmission. The non-transmittable fungal pathogens, such as Cryptococcus, probably return into the environment upon decomposition of the infected host. This review analyses whether re-entry of the pathogen into the environment causes restoration of its non-pathogenic state or whether environmental factors and parameters assist them in maintaining pathogenesis. Cryptococcus (C.) neoformans is therefore used as a model organism to evaluate the impact of environmental stress factors that aid the survival and pathogenesis of C. neoformans intracellularly and extracellularly.
Collapse
|
47
|
Evans RJ, Johnston SA. PPAR-gamma Fun(gi) With Prostaglandin. NUCLEAR RECEPTOR SIGNALING 2020; 17:1550762919899641. [PMID: 35582457 PMCID: PMC9109145 DOI: 10.1177/1550762919899641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
Abstract
In our recent publication, we show for the first time that the fungal pathogen Cryptococcus neoformans is able to manipulate host cells by producing eicosanoids that mimic those found in the host. Using complementary in vivo zebrafish and in vitro macrophage cell culture models of Cryptococcus infection, we found that these eicosanoids manipulate host innate immune cells by activating the host receptor PPAR-gamma which is an important regulator of macrophage inflammatory phenotypes. We initially identified PGE2 as the eicosanoid species responsible for this effect; however, we later found that a derivative of PGE2—15-keto-PGE2—was ultimately responsible and that this eicosanoid acted as a partial agonist to PPAR-gamma. In this commentary, we will discuss some of the concepts and conclusions in our original publication and expand on their implications and future directions.
Collapse
|
48
|
Chrissian C, Camacho E, Fu MS, Prados-Rosales R, Chatterjee S, Cordero RJB, Lodge JK, Casadevall A, Stark RE. Melanin deposition in two Cryptococcus species depends on cell-wall composition and flexibility. J Biol Chem 2020; 295:1815-1828. [PMID: 31896575 DOI: 10.1074/jbc.ra119.011949] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are two species complexes in the large fungal genus Cryptococcus and are responsible for potentially lethal disseminated infections. These two complexes share several phenotypic traits, such as production of the protective compound melanin. In C. neoformans, the pigment associates with key cellular constituents that are essential for melanin deposition within the cell wall. Consequently, melanization is modulated by changes in cell-wall composition or ultrastructure. However, whether similar factors influence melanization in C. gattii is unknown. Herein, we used transmission EM, biochemical assays, and solid-state NMR spectroscopy of representative isolates and "leaky melanin" mutant strains from each species complex to examine the compositional and structural factors governing cell-wall pigment deposition in C. neoformans and C. gattii. The principal findings were the following. 1) C. gattii R265 had an exceptionally high chitosan content compared with C. neoformans H99; a rich chitosan composition promoted homogeneous melanin distribution throughout the cell wall but did not increase the propensity of pigment deposition. 2) Strains from both species manifesting the leaky melanin phenotype had reduced chitosan content, which was compensated for by the production of lipids and other nonpolysaccharide constituents that depended on the species or mutation. 3) Changes in the relative rigidity of cell-wall chitin were associated with aberrant pigment retention, implicating cell-wall flexibility as an independent variable in cryptococcal melanin assembly. Overall, our results indicate that cell-wall composition and molecular architecture are critical factors for the anchoring and arrangement of melanin pigments in both C. neoformans and C. gattii species complexes.
Collapse
Affiliation(s)
- Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10033; Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, 28049 Madrid, Spain
| | - Subhasish Chatterjee
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031
| | - Radames J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016.
| |
Collapse
|
49
|
Kumar A, Arora S, Jain KK, Sharma KK. Metabolic coupling in the co-cultured fungal-yeast suite of Trametes ljubarskyi and Rhodotorula mucilaginosa leads to hypersecretion of laccase isozymes. Fungal Biol 2019; 123:913-926. [DOI: 10.1016/j.funbio.2019.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
|
50
|
Zhao X, Feng W, Zhu X, Li C, Ma X, Li X, Zhu X, Wei D. Conserved Autophagy Pathway Contributes to Stress Tolerance and Virulence and Differentially Controls Autophagic Flux Upon Nutrient Starvation in Cryptococcus neoformans. Front Microbiol 2019; 10:2690. [PMID: 32038502 PMCID: PMC6988817 DOI: 10.3389/fmicb.2019.02690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is mainly a catabolic process, which is used to cope with nutrient deficiency and various stress conditions. Human environment often imposes various stresses on Cryptococcus neoformans, a major fungal pathogen of immunocompromised individuals; therefore, autophagic response of C. neoformans to these stresses often determines its survival in the host. However, a systematic study on how autophagy related (ATG) genes influence on autophagic flux, virulence, stress response and pathogenicity of C. neoformans is lacking. In this study, 22 ATG-deficient strains were constructed to investigate their roles in virulence, pathogenesis, stress response, starvation tolerance and autophagic flux in C. neoformans. Our results showed that Atg6 and Atg14-03 significantly affect the growth of C. neoformans at 37°C and laccase production. Additionally, atg2Δ and atg6Δ strains were sensitive to oxidative stress caused by hydrogen peroxide. Approximately half of the atgΔ strains displayed higher sensitivity to 1.5 M NaCl and remarkably lower virulence in the Galleria mellonella model than the wild type. Autophagic flux in C. neoformans was dependent on the Atg1-Atg13, Atg5-Atg12-Atg16, and Atg2-Atg18 complexes and Atg11. Cleavage of the green fluorescent protein (GFP) from Atg8 was difficult to detect in these autophagy defective mutants; however, it was detected in the atg3Δ, atg4Δ, atg6Δ and atg14Δ strains. Additionally, no homologs of Saccharomyces cerevisiae ATG10 were detected in C. neoformans. Our results indicate that these ATG genes contribute differentially to carbon and nitrogen starvation tolerance in C. neoformans compared with S. cerevisiae. Overall, this study advances our knowledge of the specific roles of ATG genes in C. neoformans.
Collapse
Affiliation(s)
- Xueru Zhao
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weijia Feng
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiangyang Zhu
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenxi Li
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiaoyu Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Xin Li
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Dongsheng Wei
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|