1
|
Hong N, Chen M, Xu J. Molecular Markers Reveal Epidemiological Patterns and Evolutionary Histories of the Human Pathogenic Cryptococcus. Front Cell Infect Microbiol 2021; 11:683670. [PMID: 34026667 PMCID: PMC8134695 DOI: 10.3389/fcimb.2021.683670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
The human pathogenic Cryptococcus species are the main agents of fungal meningitis in humans and the causes of other diseases collectively called cryptococcosis. There are at least eight evolutionary divergent lineages among these agents, with different lineages showing different geographic and/or ecological distributions. In this review, we describe the main strain typing methods that have been used to analyze the human pathogenic Cryptococcus and discuss how molecular markers derived from the various strain typing methods have impacted our understanding of not only cryptococcal epidemiology but also its evolutionary histories. These methods include serotyping, multilocus enzyme electrophoresis, electrophoretic karyotyping, random amplified polymorphic DNA, restriction fragment length polymorphism, PCR-fingerprinting, amplified fragment length polymorphism, multilocus microsatellite typing, single locus and multilocus sequence typing, matrix-assisted laser desorption/ionization time of flight mass spectrometry, and whole genome sequencing. The major findings and the advantages and disadvantages of each method are discussed. Together, while controversies remain, these strain typing methods have helped reveal (i) the broad phylogenetic pattern among these agents, (ii) the centers of origins for several lineages and their dispersal patterns, (iii) the distributions of genetic variation among geographic regions and ecological niches, (iv) recent hybridization among several lineages, and (v) specific mutations during infections within individual patients. However, significant challenges remain. Multilocus sequence typing and whole genome sequencing are emerging as the gold standards for continued strain typing and epidemiological investigations of cryptococcosis.
Collapse
Affiliation(s)
- Nan Hong
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Nanopore Sequencing of the Fungal Intergenic Spacer Sequence as a Potential Rapid Diagnostic Assay. J Clin Microbiol 2020; 58:JCM.01972-20. [PMID: 32967904 DOI: 10.1128/jcm.01972-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
Fungal infections are being caused by a broadening spectrum of fungi, yet in many cases, identification to the species level is required for proper antifungal selection. We investigated the fungal intergenic spacer (IGS) sequence in combination with nanopore sequencing for fungal identification. We sequenced isolates from two Cryptococcus species complexes, C. gattii and C. neoformans, which are the main pathogenic members of this genus, using the Oxford Nanopore Technologies MinION device and Sanger sequencing. There is enough variation within the two complexes to argue for further resolution into separate species, which we wanted to see if nanopore sequencing could detect. Using the R9.4.1 flow cell, IGS sequence identities averaged 99.57% compared to Sanger sequences of the same region. When the newer R10.3 flow cell was used, accuracy increased to 99.83% identity compared to the same Sanger sequences. Nanopore sequencing errors were predominantly in regions of homopolymers, with G homopolymers displaying the largest number of errors and C homopolymers displaying the least. Phylogenetic analysis of the nanopore- and Sanger-derived sequences resulted in indistinguishable trees. Comparison of average percent identities between the C. gattii and C. neoformans species complexes resulted in only a 74 to 77% identity between the two complexes. Sequencing using the nanopore platform could be completed in less than an hour, and samples could be multiplexed in groups as large as 24 sequences in a single run. These results suggest that sequencing the IGS region using nanopore sequencing could be a potential new molecular diagnostic strategy.
Collapse
|
3
|
Nishikaku AS, Soldá MV, Ricci G, Ponzio V, Pagliari C, Medina-Pestana JO, de Franco MF, Colombo AL. Correlation between clinical outcome and tissue inflammatory response in kidney transplant recipients with cryptococcosis. Pathog Dis 2020; 78:5908379. [PMID: 32945853 DOI: 10.1093/femspd/ftaa054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcosis is the second most common invasive fungal infection reported in renal transplant recipients. Tissue granulomatous inflammation is necessary to contain Cryptococcus infection. This study aims to analyze the granuloma patterns and in situ expression of regulatory T (Treg) immune response in tissue samples from 12 renal transplant recipients with cryptococcosis. Fungal isolates were molecularly identified as Cryptococcus neoformans species complex. A detailed characterization of granulomas in tissue samples from 12 kidney transplant recipients with cryptococcosis was described by checking six lung and six skin biopsies by conventional histology and for immunohistochemical detection of CD4 and Treg markers: forkhead box P3 (FoxP3), interleukin (IL)-10 and transforming-growth factor (TGF)-β. Granulomas were classified as compact, loose or mixed. Patients with mixed (n = 4) and compact (n = 3) granulomatous inflammation patterns were associated with a better prognosis and presented a higher number of CD4+FoxP3+T cells compared to the group of patients with loose granulomas. In counterpart, three out of five patients with loose granulomas died with cryptococcosis. We suggest that Treg may have a protective role in the tissue response to Cryptococcus infection given its association with compact and mixed granulomas in patients with better clinical outcomes.
Collapse
Affiliation(s)
- Angela S Nishikaku
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcel V Soldá
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Giannina Ricci
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Ponzio
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Hospital do Rim, Fundação Oswaldo Ramos, Universidade Federal de São Paulo, SP, Brazil
| | - Carla Pagliari
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José O Medina-Pestana
- Hospital do Rim, Fundação Oswaldo Ramos, Universidade Federal de São Paulo, SP, Brazil
| | - Marcello F de Franco
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Arnaldo Lopes Colombo
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
5
|
Madani M, Ward L, Vierstraete A, De Boer SH, Moens M. The ribosomal intergenic spacer (IGS) in the potato and tobacco cyst nematodes, Globodera pallida, G. rostochiensis and G. tabacum. Mol Cell Probes 2019; 48:101441. [PMID: 31470078 DOI: 10.1016/j.mcp.2019.101441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022]
Abstract
The potato cyst nematodes Globodera pallida and G. rostochiensis (PCN), and tobacco cyst nematode (TCN), G. tabacum, are the most important parasitic nematodes of potato and tobacco worldwide. Ribosomal DNA provides useful molecular data for diagnostics, the study of polymorphisms and for evolutionary research in eukaryotic organisms including nematodes. Here we present data on the structure and organization of a rarely studied part of the intergenic spacer (IGS) region of the PCN and TCN genome of cyst nematodes. This region has shown potential for diagnostic purposes and population studies in other organisms including nematodes. In nematodes, the ribosomal RNA gene cluster comprises three genes: 5.8S, 18S and 28S rRNA, which are separated by spacer regions: the intergenic spacer (IGS), non-transcribed spacer (NTS), externally transcribed spacer (EST) and the internally transcribed spacer (ITS). The intergenic spacer (IGS) region consists of an external transcribed spacer (ETS) and a non-transcribed spacer (NTS) which is located between the 28S of one repeat and the 18S gene of the next repeat within the rRNA genes cluster. In this study, the first flanking portion of the IGS was amplified, cloned and sequenced from PCN and TCN. Primers were then designed to amplify the whole IGS sequence. PCR amplification of IGS from G. tabacum, G. pallida, and G. rostochiensis yielded respectively: a single amplicon of 3 kb, three amplicons sized 2.5, 2.6 and 2.9 kb, and two amplicons sized 2.8 and 2.9 kb. Results showed that Globodera spp. has more than one variant copy of the IGS, with both long and short repetitive DNA elements. An approximately 400 bp long region without any internal repetitive elements, were identified in a position between the two repetitive regions suggesting that there is a 5S gene in the IGS of these species.
Collapse
Affiliation(s)
- Mehrdad Madani
- Department of Soil Science, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada; Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown Laboratory, Charlottetown, PE, Canada.
| | - Len Ward
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown Laboratory, Charlottetown, PE, Canada
| | - Andy Vierstraete
- Biology Department, Gent University, K.L. Ledeganckstraat, 35, 9000, Gent, Belgium
| | - Solke H De Boer
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown Laboratory, Charlottetown, PE, Canada
| | - Maurice Moens
- Research Institute for Agriculture, Fisheries and Food (ILVO), 9280, Merelbeke, Belgium; Department of Plants and Crops, Ghent University, Coupure Links 653, Ghent, Belgium
| |
Collapse
|
6
|
Abstract
We discovered a new lineage of the globally important fungal pathogen Cryptococcus gattii on the basis of analysis of six isolates collected from three locations spanning the Central Miombo Woodlands of Zambia, Africa. All isolates were from environments (middens and tree holes) that are associated with a small mammal, the African hyrax. Phylogenetic and population genetic analyses confirmed that these isolates form a distinct, deeply divergent lineage, which we name VGV. VGV comprises two subclades (A and B) that are capable of causing mild lung infection with negligible neurotropism in mice. Comparing the VGV genome to previously identified lineages of C. gattii revealed a unique suite of genes together with gene loss and inversion events. However, standard URA5 restriction fragment length polymorphism (RFLP) analysis could not distinguish between VGV and VGIV isolates. We therefore developed a new URA5 RFLP method that can reliably identify the newly described lineage. Our work highlights how sampling understudied ecological regions alongside genomic and functional characterization can broaden our understanding of the evolution and ecology of major global pathogens.IMPORTANCE Cryptococcus gattii is an environmental pathogen that causes severe systemic infection in immunocompetent individuals more often than in immunocompromised humans. Over the past 2 decades, researchers have shown that C. gattii falls within four genetically distinct major lineages. By combining field work from an understudied ecological region (the Central Miombo Woodlands of Zambia, Africa), genome sequencing and assemblies, phylogenetic and population genetic analyses, and phenotypic characterization (morphology, histopathological, drug-sensitivity, survival experiments), we discovered a hitherto unknown lineage, which we name VGV (variety gattii five). The discovery of a new lineage from an understudied ecological region has far-reaching implications for the study and understanding of fungal pathogens and diseases they cause.
Collapse
|
7
|
Setianingrum F, Rautemaa-Richardson R, Denning DW. Pulmonary cryptococcosis: A review of pathobiology and clinical aspects. Med Mycol 2019; 57:133-150. [PMID: 30329097 DOI: 10.1093/mmy/myy086] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Pulmonary cryptococcosis is an important opportunistic invasive mycosis in immunocompromised patients, but it is also increasingly seen in immunocompetent patients. The main human pathogens are Cryptococcus neoformans and C. gattii, which have a worldwide distribution. In contrast to cryptococcal meningitis, pulmonary cryptococcosis is still underdiagnosed because of limitations in diagnostic tools. It can mimic lung cancer, pulmonary tuberculosis, bacterial pneumonia, and other pulmonary mycoses both clinically and radiologically. Pulmonary nodules are the most common radiological feature, but these are not specific to pulmonary cryptococcosis. The sensitivity of culture of respiratory samples for Cryptococcus is poor and a positive result may also reflect colonisation. Cryptococcal antigen (CrAg) with lateral flow device is a fast and sensitive test and widely used on serum and cerebrospinal fluid, but sera from patients with pulmonary cryptococcosis are rarely positive in the absence of disseminated disease. Detection of CrAg from respiratory specimens might assist the diagnosis of pulmonary cryptococcosis but there are very few data. Molecular detection techniques such as multiplex reverse transcription polymerase chain reaction (RT-PCR) could also provide better sensitivity but these still require validation for respiratory specimens. The first line of treatment for pulmonary cryptococcosis is fluconazole, or amphotericin B and flucytosine for those with central nervous system involvement. Pulmonary cryptococcosis worsens the prognosis of cryptococcal meningitis. In this review, we summarize the biological aspects of Cryptococcus and provide an update on the diagnosis and management of pulmonary cryptococcosis.
Collapse
Affiliation(s)
- Findra Setianingrum
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Parasitology Department, Universitas Indonesia, Jakarta, Indonesia
| | - Riina Rautemaa-Richardson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
| | - David W Denning
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
8
|
Arastehfar A, Fang W, Daneshnia F, Al-Hatmi AM, Liao W, Pan W, Khan Z, Ahmad S, Rosam K, Lackner M, Lass-Flörl C, Hagen F, Boekhout T. Novel multiplex real-time quantitative PCR detecting system approach for direct detection of Candida auris and its relatives in spiked serum samples. Future Microbiol 2018; 14:33-45. [PMID: 30539665 DOI: 10.2217/fmb-2018-0227] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The multidrug-resistant opportunistic yeast species of Candida auris, Candida haemulonii, Candida duobushaemulonii and Candida pseudohaemulonii continue to endanger the healthcare settings around the globe. Due to the lack of a specific qPCR assay for detection of these species from clinical samples, we developed a multiplex qPCR assay. Analytical specificity and sensitivity showed 100% specificity and the sensitivity of up to ten genomes of target species with a high value of reproducibility (R2 >0.99). Subsequently, from spiked serum samples, our qPCR specifically could detect up to ten genomes of C. auris and one genome of C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii (R2 >0.98). Lack of cross reaction with the human DNA, a high degree of specificity and sensitivity, showed the potential of our multiplex PCR for direct detection of C. auris and closely related species from serum samples of suspected patients. Future studies are warranted to assure its applicability in clinical settings.
Collapse
Affiliation(s)
- Amir Arastehfar
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584, The Netherlands
| | - Wenjie Fang
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584, The Netherlands.,Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584, The Netherlands
| | - Abdullah Ms Al-Hatmi
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584, The Netherlands.,Center of Expertise in Mycology Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen 6500HB, The Netherlands.,Ministry of Health, Directorate General of Health Services, PO Box 393, 100 Muscat, Oman
| | - Wanqing Liao
- Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Weihua Pan
- Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Katharina Rosam
- Division of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Lackner
- Division of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584, The Netherlands.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.,Institute of Biodiversity & Ecosystem Dynamics, University of Amsterdam, Amsterdam 1012 WX, The Netherlands
| |
Collapse
|
9
|
Kassi FK, Bellet V, Drakulovski P, Krasteva D, Roger F, Valérie BTA, Aboubakar T, Doumbia A, Kouakou GA, Delaporte E, Reynes J, Yavo W, Menan HIE, Bertout S. Comparative typing analyses of clinical and environmental strains of the Cryptococcus neoformans/Cryptococcus gattii species complex from Ivory Coast. J Med Microbiol 2017; 67:87-96. [PMID: 29214970 DOI: 10.1099/jmm.0.000654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The aim of this study was to assess the biotope of the Cryptococcus neoformans/Cryptococcus gattii species complex from Ivory Coast, and clarify the possible epidemiological relationship between environmental and clinical strains. METHODOLOGY Samples from Eucalyptus camaldulensis (n=136), Mangifera indica (n=13) and pigeon droppings (n=518) were collected from different sites close to the living environment of Ivorian HIV patients with cryptococcosis (n=10, 50 clinical strains). Clinical and environmental strains were characterized by molecular serotyping and genotyping [RFLP analysis of the URA5 gene, (GACA)4, (GTG)5 and M13 PCR fingerprinting] and compared.Results/Key findings. Environmental strains were recovered only from the pigeon droppings. In vitro susceptibility profiles showed that all strains were susceptible to fluconazole, flucytosine and amphotericin B. All environmental strains consisted of C. neoformans (A, AFLP1/VNI), whereas clinical strains included C. neoformans (A, AFLP1/VNI), C. neoformans x Cryptococcus deneoformans hybrids (AD, AFLP3/VNIII) and Cryptococcus deuterogattii (B, AFLP6/VGII). Two patients were co-infected with both C. neoformans and C. neoformans x C. deneoformans hybrids. We noticed a low genetic diversity among the environmental samples compared to the high diversity of the clinical samples. Some clinical strains were genetically more similar to environmental strains than to other clinical strains, including those from the same patient. CONCLUSION These results provide new information on the ecology and epidemiology of the C. neoformans/C. gattii species complex in Ivory Coast.
Collapse
Affiliation(s)
- Fulgence K Kassi
- Laboratoire de Parasitologie et de Mycologie - CeDReS (Centre de Diagnostic et de Recherche sur le SIDA et les Autres Maladies Infectieuses), UFR Pharmacie, CHU de Treichville, Université Félix Houphouët Boigny, Abidjan, Ivory Coast
| | - Virginie Bellet
- UMI 233 IRD-UM INSERM U1175 TransVIHMI, Groupe Infections Fongique et Parasitaire Laboratoire de Parasitologie et de Mycologie Médicale, UFR Pharmacie, Montpellier Cedex 5, France
| | - Pascal Drakulovski
- UMI 233 IRD-UM INSERM U1175 TransVIHMI, Groupe Infections Fongique et Parasitaire Laboratoire de Parasitologie et de Mycologie Médicale, UFR Pharmacie, Montpellier Cedex 5, France
| | - Donika Krasteva
- UMI 233 IRD-UM INSERM U1175 TransVIHMI, Groupe Infections Fongique et Parasitaire Laboratoire de Parasitologie et de Mycologie Médicale, UFR Pharmacie, Montpellier Cedex 5, France
| | - Frédéric Roger
- UMI 233 IRD-UM INSERM U1175 TransVIHMI, Groupe Infections Fongique et Parasitaire Laboratoire de Parasitologie et de Mycologie Médicale, UFR Pharmacie, Montpellier Cedex 5, France
| | - Bedia-Tanoh A Valérie
- Laboratoire de Parasitologie et de Mycologie - CeDReS (Centre de Diagnostic et de Recherche sur le SIDA et les Autres Maladies Infectieuses), UFR Pharmacie, CHU de Treichville, Université Félix Houphouët Boigny, Abidjan, Ivory Coast
| | - Touré Aboubakar
- Laboratoire de Parasitologie et de Mycologie - CeDReS (Centre de Diagnostic et de Recherche sur le SIDA et les Autres Maladies Infectieuses), UFR Pharmacie, CHU de Treichville, Université Félix Houphouët Boigny, Abidjan, Ivory Coast
| | - Adama Doumbia
- Service des Maladies Infectieuses et Tropicales, CHU de Treichville, Abidjan, Ivory Coast
| | - Gisèle A Kouakou
- Service des Maladies Infectieuses et Tropicales, CHU de Treichville, Abidjan, Ivory Coast
| | - Eric Delaporte
- UMI 233 Service des Maladies Infectieuses et Tropicales, CHU Gui de Chauliac, Montpellier, France
| | - Jacques Reynes
- UMI 233 Service des Maladies Infectieuses et Tropicales, CHU Gui de Chauliac, Montpellier, France
| | - William Yavo
- Laboratoire de Parasitologie et de Mycologie - CeDReS (Centre de Diagnostic et de Recherche sur le SIDA et les Autres Maladies Infectieuses), UFR Pharmacie, CHU de Treichville, Université Félix Houphouët Boigny, Abidjan, Ivory Coast
| | - Hervé I E Menan
- Laboratoire de Parasitologie et de Mycologie - CeDReS (Centre de Diagnostic et de Recherche sur le SIDA et les Autres Maladies Infectieuses), UFR Pharmacie, CHU de Treichville, Université Félix Houphouët Boigny, Abidjan, Ivory Coast
| | - Sebastien Bertout
- UMI 233 IRD-UM INSERM U1175 TransVIHMI, Groupe Infections Fongique et Parasitaire Laboratoire de Parasitologie et de Mycologie Médicale, UFR Pharmacie, Montpellier Cedex 5, France
| |
Collapse
|
10
|
Dakal TC, Solieri L, Giudici P. Evaluation of fingerprinting techniques to assess genotype variation among Zygosaccharomyces strains. Food Microbiol 2017; 72:135-145. [PMID: 29407390 DOI: 10.1016/j.fm.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 01/15/2023]
Abstract
Molecular typing techniques are key tools in surveillance of food spoilage yeasts, in investigations on intra-species population diversity, and in tracing selected starters during fermentation. Unlike previous works on strain typing of Zygosaccharomyces spoilage species, here Zygosaccharomyces mellis and the Zygosaccharoymces rouxii complex yeasts, which include Z. rouxii, Zygosaccharomyces sapae, and a mosaic lineage (ML) of putatively hybrids, were evaluated by three typing methods for intra- and inter-species resolution. Overall these yeasts are relevant for food fermentation and spoilage, but are quite difficult to discriminate at strain and species level as they evolved by reticulation. A pool of 76 strains from different sources were typed by M13 and (GTG)5 MSP-PCR fingerprinting and PCR-RFLP of ribosomal intergenic spacer region (IGS). We demonstrated that M13 overcame (GTG)5 fingerprinting to group Z. sapae, Z. rouxii, Z. mellis and the ML isolates in congruent distinct clusters. Even if (GTG)5 primer yielded a number of DNA fingerprints comparable with those obtained by M13 primer, it failed to discriminate Z. sapae, Z. mellis and Z. rouxii at species level. Clustering of IGS RFLP patterns obtained with three endonucleases produced groups congruent with species assignment and highlighted intra-species diversity similar to that observed by M13 fingerprinting. However, IGS PCR amplification failed for 14 ML and 6 Z. mellis strains under the experimental conditions tested here, indicating that this marker could be less easy to use in fast typing protocol. Finally, our results posit that the genetic diversity within Z. sapae and Z. mellis could be shaped by isolation source. The information generated in this study would facilitate the monitoring of these yeasts during food processing and storage, and provides preliminary evidences about Z. sapae and Z. mellis intra-species diversity.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia 42122, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia 42122, Italy.
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia 42122, Italy
| |
Collapse
|
11
|
Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res 2015; 16:fov106. [PMID: 26614308 DOI: 10.1093/femsyr/fov106] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2015] [Indexed: 02/06/2023] Open
Abstract
Cryptococcosis is an invasive fungal infection of humans and other animals, typically caused by the species Cryptococcus neoformans in patients with impaired immunity. However, there is growing recognition of the importance of the related species C. gattii in causing infections in apparently immunocompetent individuals. In particular, an ongoing outbreak of cryptococcal disease in the Pacific Northwest region, which started in 1999, has driven an intense research effort into this previously neglected pathogen. Here, we discuss some of the recent discoveries in this organism from the Pacific Northwest region and highlight areas for future investigation.
Collapse
Affiliation(s)
- Ewa Bielska
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Robin C May
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Tavares ER, Azevedo CS, Panagio LA, Pelisson M, Pinge-Filho P, Venancio EJ, Barros TF, Yamada-Ogatta SF, Yamauchi LM. Accurate and sensitive real-time PCR assays using intergenic spacer 1 region to differentiate Cryptococcus gattii sensu lato and Cryptococcus neoformans sensu lato. Med Mycol 2015; 54:89-96. [PMID: 26392390 DOI: 10.1093/mmy/myv078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022] Open
Abstract
In this work, two accurate and sensitive real-time polymerase chain reaction (PCR) assays to differentiate pathogenic Cryptococcus gattii sensu lato (s.l.) and C. neoformans sensu lato (s.l.) targeting the intergenic spacer 1 (IGS1) region from rDNA locus were developed. Specific primers were designed based on their IGS1 sequence analyses and the optimal real-time PCR assays showed that the dissociation curves generated two different melting peaks, at 82.8 and 84.2ºC for C. gattii s.l. and C. neoformans s.l., respectively. No amplifications were observed in the negative template control. The minimum limit of detection of both primers was 100 plasmid copies per reaction, and they were highly specific when tested with a range of fungal DNAs. Overall, the results showed that the designed primers completely differentiated C. gattii s.l. and C. neoformans s.l. from clinical and environmental sources with great accuracy when compared to phenotypic identification, with no cross-reactivity to other fungal DNA.
Collapse
Affiliation(s)
| | | | - Luciano Aparecido Panagio
- Departamento de Microbiologia, Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marsileni Pelisson
- Departamento de Patologia Aplicada, Análise Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Emerson José Venancio
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Tânia Fraga Barros
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia, Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Lucy Megumi Yamauchi
- Departamento de Microbiologia, Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
13
|
Abstract
Understanding of the taxonomy and phylogeny of Cryptococcus gattii has been advanced by modern molecular techniques. C. gattii probably diverged from Cryptococcus neoformans between 16 million and 160 million years ago, depending on the dating methods applied, and maintains diversity by recombining in nature. South America is the likely source of the virulent C. gattii VGII molecular types that have emerged in North America. C. gattii shares major virulence determinants with C. neoformans, although genomic and transcriptomic studies revealed that despite similar genomes, the VGIIa and VGIIb subtypes employ very different transcriptional circuits and manifest differences in virulence phenotypes. Preliminary evidence suggests that C. gattii VGII causes severe lung disease and death without dissemination, whereas C. neoformans disseminates readily to the central nervous system (CNS) and causes death from meningoencephalitis. Overall, currently available data indicate that the C. gattii VGI, VGII, and VGIII molecular types more commonly affect nonimmunocompromised hosts, in contrast to VGIV. New, rapid, cheap diagnostic tests and imaging modalities are assisting early diagnosis and enabling better outcomes of cerebral cryptococcosis. Complications of CNS infection include increased intracranial pressure, severe neurological sequelae, and development of immune reconstitution syndrome, although the mortality rate is low. C. gattii VGII isolates may exhibit higher fluconazole MICs than other genotypes. Optimal therapeutic regimens are yet to be determined; in most cases, initial therapy with amphotericin B and 5-flucytosine is recommended.
Collapse
|
14
|
Abstract
Cryptococcus neoformans is a human opportunistic fungal pathogen causing severe disseminated meningoencephalitis, mostly in patients with cellular immune defects. This species is divided into three serotypes: A, D, and the AD hybrid. Our objectives were to compare population structures of serotype A and D clinical isolates and to assess whether infections with AD hybrids differ from infections with the other serotypes. For this purpose, we analyzed 483 isolates and the corresponding clinical data from 234 patients enrolled during the CryptoA/D study or the nationwide survey on cryptococcosis in France. Isolates were characterized in terms of ploidy, serotype, mating type, and genotype, utilizing flow cytometry, serotype- and mating type-specific PCR amplifications, and multilocus sequence typing (MLST) methods. Our results suggest that C. neoformans serotypes A and D have different routes of multiplication (primarily clonal expansion versus recombination events for serotype A and serotype D, respectively) and important genomic differences. Cryptococcosis includes a high proportion of proven or probable infections (21.5%) due to a mixture of genotypes, serotypes, and/or ploidies. Multivariate analysis showed that parameters independently associated with failure to achieve cerebrospinal fluid (CSF) sterilization by week 2 were a high serum antigen titer, the lack of flucytosine during induction therapy, and the occurrence of mixed infection, while infections caused by AD hybrids were more likely to be associated with CSF sterilization. Our study provides additional evidence for the possible speciation of C. neoformans var. neoformans and grubii and highlights the importance of careful characterization of causative isolates. Cryptococcus neoformans is an environmental fungus causing severe disease, estimated to be responsible for 600,000 deaths per year worldwide. This species is divided into serotypes A and D and an AD hybrid, and these could be considered two different species and an interspecies hybrid. The objectives of our study were to compare population structures of serotype A and serotype D and to assess whether infections with AD hybrids differ from infections with serotype A or D isolates in terms of clinical presentation and outcome. For this purpose, we used clinical data and strains from patients diagnosed with cryptococcosis in France. Our results suggest that, according to the serotype, isolates have different routes of multiplication and high genomic differences, confirming the possible speciation of serotypes A and D. Furthermore, we observed a better prognosis for infections caused by AD hybrid than those caused by serotype A or D, at least for those diagnosed in France.
Collapse
|
15
|
Yurkov A, Guerreiro MA, Sharma L, Carvalho C, Fonseca Á. Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales). PLoS One 2015; 10:e0120400. [PMID: 25811603 PMCID: PMC4374795 DOI: 10.1371/journal.pone.0120400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus flavescens and C. terrestris are phenotypically indistinguishable sister species that belong to the order Tremellales (Tremellomycetes, Basidiomycota) and which may be mistaken for C. laurentii based on phenotype. Phylogenetic separation between C. flavescens and C. terrestris was based on rDNA sequence analyses, but very little is known on their intraspecific genetic variability or propensity for sexual reproduction. We studied 59 strains from different substrates and geographic locations, and used a multilocus sequencing (MLS) approach complemented with the sequencing of mating type (MAT) genes to assess genetic variation and reexamine the boundaries of the two species, as well as their sexual status. The following five loci were chosen for MLS: the rDNA ITS-LSU region, the rDNA IGS1 spacer, and fragments of the genes encoding the largest subunit of RNA polymerase II (RPB1), the translation elongation factor 1 alpha (TEF1) and the p21-activated protein kinase (STE20). Phylogenetic network analyses confirmed the genetic separation of the two species and revealed two additional cryptic species, for which the names Cryptococcus baii and C. ruineniae are proposed. Further analyses of the data revealed a high degree of genetic heterogeneity within C. flavescens as well as evidence for recombination between lineages detected for this species. Strains of C. terrestris displayed higher levels of similarity in all analysed genes and appear to make up a single recombining group. The two MAT genes (STE3 and SXI1/SXI2) sequenced for C. flavescens strains confirmed the potential for sexual reproduction and suggest the presence of a tetrapolar mating system with a biallelic pheromone/receptor locus and a multiallelic HD locus. In C. terrestris we could only sequence STE3, which revealed a biallelic P/R locus. In spite of the strong evidence for sexual recombination in the two species, attempts at mating compatible strains of both species on culture media were unsuccessful.
Collapse
Affiliation(s)
- Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- * E-mail:
| | - Marco A. Guerreiro
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Lav Sharma
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Cláudia Carvalho
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Álvaro Fonseca
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
16
|
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015; 78:16-48. [PMID: 25721988 DOI: 10.1016/j.fgb.2015.02.009] [Citation(s) in RCA: 473] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
Abstract
Phylogenetic analysis of 11 genetic loci and results from many genotyping studies revealed significant genetic diversity with the pathogenic Cryptococcus gattii/Cryptococcus neoformans species complex. Genealogical concordance, coalescence-based, and species tree approaches supported the presence of distinct and concordant lineages within the complex. Consequently, we propose to recognize the current C. neoformans var. grubii and C. neoformans var. neoformans as separate species, and five species within C. gattii. The type strain of C. neoformans CBS132 represents a serotype AD hybrid and is replaced. The newly delimited species differ in aspects of pathogenicity, prevalence for patient groups, as well as biochemical and physiological aspects, such as susceptibility to antifungals. MALDI-TOF mass spectrometry readily distinguishes the newly recognized species.
Collapse
Affiliation(s)
- Ferry Hagen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Kantarawee Khayhan
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Bart Theelen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Anna Kolecka
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Edward Sionov
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Sittiporn Parnmen
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Danesi P, Drigo I, Iatta R, Firacative C, Capelli G, Cafarchia C, Meyer W. MALDI-TOF MS for the identification of veterinary non-C. neoformans-C. gattii Cryptococcus spp. isolates from Italy. Med Mycol 2014; 52:659-66. [PMID: 24951721 DOI: 10.1093/mmy/myu031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) offers an effective alternative to phenotypic and molecular methods for the rapid identification of microorganisms. Our aim in this study was to create an in-house library for a set of strains of nine uncommonly reported human and animal cryptococcal species, including Cryptococcus adeliensis, C. albidosimilis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus, C. victoriae and C. uniguttulatus, and to use this library to make timely and correct identifications using MALDI-TOF MS for use in routine laboratory diagnostics. Protein extracts obtained via the formic acid extraction method of 62 veterinary non-C. neoformans-C. gattii cryptococcal isolates were studied. The obtained mass spectra correctly grouped all 62 studied isolates according to species identification previously obtained by internal transcribe spacer sequence analysis. The in-house database was than exported and successfully uploaded to the Microflex LT (Maldi Biotyper; Bruker Daltonics) instrument at a different diagnostic laboratory in Italy. Scores >2.7 obtained from isolates reanalyzed in the latter laboratory supported the high reproducibility of the method. The possibility of creating and transferring an in-house library adds to the usefulness MALDI-TOF MS an important tool for the rapid and inexpensive identification of pathogenic and saprophytic fungi as required for differential diagnosis of human and animal mycoses.
Collapse
Affiliation(s)
- Patrizia Danesi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padua), Italy Department of Veterinary Medicine, University of Bari, Italy
| | - Ilenia Drigo
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padua), Italy
| | - Roberta Iatta
- Department of Veterinary Medicine, University of Bari, Italy
| | - Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Millennium Institute, Sydney, Australia Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padua), Italy
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Millennium Institute, Sydney, Australia
| |
Collapse
|
18
|
Gago S, Alastruey-Izquierdo A, Marconi M, Buitrago MJ, Kerhornou A, Kersey PJ, Mellado E, Cuenca-Estrella M, Rodríguez-Tudela JL, Cuesta I. Ribosomic DNA intergenic spacer 1 region is useful when identifying Candida parapsilosis spp. complex based on high-resolution melting analysis. Med Mycol 2014; 52:472-81. [PMID: 24847037 DOI: 10.1093/mmy/myu009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The epidemiology of Candida parapsilosis and the closely related species C. orthopsilosis and C. metapsilosis has changed in recent years, justify the need to identify this complex at the species level. In this study we investigate the intergenic spacer 1 (IGS1) of the ribosomal DNA (rDNA) to evaluate the utility of this gene region as a phylogenetic molecular marker and the suitability of a high-resolution melting (HRM) strategy based on this region for identification of members of the C. parapsilosis spp. complex. We sequenced the IGS1 and the internal transcribed spacer (ITS) regions of the rDNA from 33 C. parapsilosis sensu lato strains. Although both regions are useful in identifying species, comparative sequence analysis showed that the diversity in the IGS1 region was higher than in the ITS sequences. We also developed an HRM analysis that reliably identifies C. parapsilosis spp. complex based on the amplification of 70 bp in the IGS1 region. All isolates were correctly identified with a confidence interval >98%. Our results demonstrate that HRM analysis based on the IGS1 region is a powerful tool for distinguishing C. parapsilosis from cryptic species.
Collapse
Affiliation(s)
- Sara Gago
- Mycology Service, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Service, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain Spanish Network for Research on Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Marco Marconi
- Bioinformatic Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María José Buitrago
- Mycology Service, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Arnaud Kerhornou
- Protein and Nucleotide Database (PANDA) Group, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul J Kersey
- Protein and Nucleotide Database (PANDA) Group, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Emilia Mellado
- Mycology Service, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Service, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Luis Rodríguez-Tudela
- Mycology Service, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Isabel Cuesta
- Bioinformatic Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
19
|
Genotype Analyses of Human Commensal Scalp Fungi, Malassezia globosa, and Malassezia restricta on the Scalps of Patients with Dandruff and Healthy Subjects. Mycopathologia 2014; 177:263-9. [DOI: 10.1007/s11046-014-9748-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
|
20
|
Cogliati M. Global Molecular Epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An Atlas of the Molecular Types. SCIENTIFICA 2013; 2013:675213. [PMID: 24278784 PMCID: PMC3820360 DOI: 10.1155/2013/675213] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 05/08/2023]
Abstract
Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge.
Collapse
Affiliation(s)
- Massimo Cogliati
- Lab. Micologia Medica, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
- *Massimo Cogliati:
| |
Collapse
|
21
|
Han SH, Chung TH, Nam EH, Park SH, Hwang CY. Molecular analysis of Malassezia pachydermatis isolated from canine skin and ear in Korea. Med Mycol 2012; 51:396-404. [PMID: 23167706 DOI: 10.3109/13693786.2012.740575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated Malassezia species and genotypes colonizing dogs, comparing those recovered from the ear canal with those from other anatomical body sites, as well as from diseased and healthy skin. The Malassezia isolates were obtained from four types of skin samples, i.e., diseased ear, diseased skin, healthy ear, and healthy skin. Sequences of the 26S ribosomal DNA region, the intergenic spacer 1 (IGS-1) and the internal transcribed spacer 1 (ITS-1) DNA region were analyzed. These confirmed the presence of Malassezia pachydermatis, which could be separated into three main sequence genotype groups (A, B, C). Genotype A was the most common, only two genotype B isolates were recovered from diseased skin lesion and genotype C was more likely to be isolated from ear samples than from other healthy or diseased-skin sites. The present findings provide the basis for further studies of genotypic diversity in M. pachydermatis, as well as their pathogenic potential.
Collapse
Affiliation(s)
- Seung-Hee Han
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | |
Collapse
|
22
|
Firacative C, Trilles L, Meyer W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One 2012; 7:e37566. [PMID: 22666368 PMCID: PMC3362595 DOI: 10.1371/journal.pone.0037566] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022] Open
Abstract
Background The Cryptococcus neoformans/C. gattii species complex comprises two sibling species that are divided into eight major molecular types, C. neoformans VNI to VNIV and C. gattii VGI to VGIV. These genotypes differ in host range, epidemiology, virulence, antifungal susceptibility and geographic distribution. The currently used phenotypic and molecular identification methods for the species/molecular types are time consuming and expensive. As Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) offers an effective alternative for the rapid identification of microorganisms, the objective of this study was to examine its potential for the identification of C. neoformans and C. gattii strains at the intra- and inter-species level. Methodology Protein extracts obtained via the formic acid extraction method of 164 C. neoformans/C. gattii isolates, including four inter-species hybrids, were studied. Results The obtained mass spectra correctly identified 100% of all studied isolates, grouped each isolate according to the currently recognized species, C. neoformans and C. gattii, and detected potential hybrids. In addition, all isolates were clearly separated according to their major molecular type, generating greater spectral differences among the C. neoformans molecular types than the C. gattii molecular types, most likely reflecting a closer phylogenetic relationship between the latter. The number of colonies used and the incubation length did not affect the results. No spectra were obtained from intact yeast cells. An extended validated spectral library containing spectra of all eight major molecular types was established. Conclusions MALDI-TOF MS is a rapid identification tool for the correct recognition of the two currently recognized human pathogenic Cryptococcus species and offers a simple method for the separation of the eight major molecular types and the detection of hybrid strains within this species complex in the clinical laboratory. The obtained mass spectra provide further evidence that the major molecular types warrant variety or even species status.
Collapse
Affiliation(s)
- Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School–Westmead, The University of Sydney, Westmead Hospital, Sydney, Australia
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luciana Trilles
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School–Westmead, The University of Sydney, Westmead Hospital, Sydney, Australia
- Laboratório de Micologia, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School–Westmead, The University of Sydney, Westmead Hospital, Sydney, Australia
- * E-mail:
| |
Collapse
|
23
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for discrimination between molecular types of Cryptococcus neoformans and Cryptococcus gattii. J Clin Microbiol 2012; 50:2472-6. [PMID: 22573595 DOI: 10.1128/jcm.00737-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We evaluated the usefulness of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for Cryptococcus identification at the species and subspecies levels by using an in-house database of 25 reference cryptococcal spectra. Eighty-one out of the 82 Cryptococcus isolates (72 Cryptococcus neoformans and 10 Cryptococcus gattii) tested were correctly identified with respect to their molecular type designations. We showed that MALDI-TOF MS is a practicable alternative to conventional mycology or DNA-based methods.
Collapse
|
24
|
Resistance of Asian Cryptococcus neoformans serotype A is confined to few microsatellite genotypes. PLoS One 2012; 7:e32868. [PMID: 22427900 PMCID: PMC3302784 DOI: 10.1371/journal.pone.0032868] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/01/2012] [Indexed: 01/03/2023] Open
Abstract
Background Cryptococcus neoformans is a pathogenic yeast that causes cryptococcosis, a life threatening disease. The prevalence of cryptococcosis in Asia has been rising after the onset of the AIDS epidemic and estimates indicate more than 120 cases per 1,000 HIV-infected individuals per year. Almost all cryptococcal disease cases in both immunocompromised and immunocompetent patients in Asia are caused by C. neoformans var. grubii. Epidemiological studies on C. neoformans in pan-Asia have not been reported. The present work studies the genetic diversity of the fungus by microsatellite typing and susceptibility analysis of approximately 500 isolates from seven Asian countries. Methodology/Principal Findings Genetic diversity of Asian isolates of C. neoformans was determined using microsatellite analysis with nine microsatellite markers. The analysis revealed eight microsatellite complexes (MCs) which showed different distributions among geographically defined populations. A correlation between MCs and HIV-status was observed. Microsatellite complex 2 was mainly associated with isolates from HIV-negative patients, whereas MC8 was associated with those from HIV-positive patients. Most isolates were susceptible to amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole, but 17 (3.4%) and 10 (2%) were found to be resistant to 5-flucytosine and fluconazole, respectively. Importantly, five Indonesian isolates (approximately 12.5% from all Indonesian isolates investigated and 1% from the total studied isolates) were resistant to both antifungals. The majority of 5-flucytosine resistant isolates belonged to MC17. Conclusions The findings showed a different distribution of genotypes of C. neoformans var. grubii isolates from various countries in Asia, as well as a correlation of the microsatellite genotypes with the original source of the strains and resistance to 5-flucytosine.
Collapse
|
25
|
Slechta ES, Hohmann SL, Simmon K, Hanson KE. Internal transcribed spacer region sequence analysis using SmartGene IDNS software for the identification of unusual clinical yeast isolates. Med Mycol 2011; 50:458-66. [PMID: 22103344 DOI: 10.3109/13693786.2011.630683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid and accurate identification of clinically important yeasts is essential given their inherent differences in antifungal susceptibility. We implemented nucleic acid sequencing for those species that could not be identified by phenotypic methods. Internal Transcribed Spacer region 1 and 2 (ITS1 and ITS2) sequences were investigated using SmartGene IDNS software, an rDNA sequence database and analysis program for microbial identification (ID). Over a 2.5-year period, 2,938 specimens were evaluated. Most (94%) isolates were fully identified by conventional methods, with Candida species accounting for the majority of them. Of the 169 organisms that required molecular analysis, 79% were identified to species level, 19% to genus and 2% remained unresolved. Sequenced isolates encompassed 33 unique species of which approximately half (52%) were common pathogens with atypical biochemical profiles and the remainder were rarer yeast species. A significant proportion (33%) of sequenced organisms displayed elevated MICs to fluconazole. Our experience supports the use of molecular techniques as an adjunct to conventional methods for the identification of medically important yeasts. Susceptibility testing alone may provide valuable treatment information in situations where phenotypic assessments are inconclusive and molecular or proteomic testing is not readily available.
Collapse
Affiliation(s)
- E Susan Slechta
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
26
|
Debourgogne A, Iriart X, Blanchet D, Veron V, Boukhari R, Nacher M, Carme B, Aznar C. Characteristics and specificities of Cryptococcus infections in French Guiana, 1998–2008. Med Mycol 2011; 49:864-71. [DOI: 10.3109/13693786.2011.584198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Zhang E, Sugita T, Tsuboi R, Yamazaki T, Makimura K. The opportunistic yeast pathogen Trichosporon asahii colonizes the skin of healthy individuals: analysis of 380 healthy individuals by age and gender using a nested polymerase chain reaction assay. Microbiol Immunol 2011; 55:483-8. [PMID: 21707737 DOI: 10.1111/j.1348-0421.2011.00341.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Deep-seated trichosporonosis is an opportunistic fungal infection with a poor prognosis and high mortality rate. The major causative agent is Trichosporon asahii; its route of infection is not clear. To elucidate whether this microorganism is part of the cutaneous microbiota, we examined skin samples from 380 healthy Japanese ranging in age from 0 to 82 years using a nested PCR assay. The colonization frequency of T. asahii increased with age up to 13-15 years in male and 30-39 years in female subjects, subsequently decreasing gradually in both sexes until senescence. Of the nine genotypes of the intergenic spacer region of the T. asahii rRNA gene, type 1 predominated (81.7%), followed by types 4 (6.7%) and 6 (5.5%). The distribution of identified genotypes was similar to that for T. asahii isolated from clinical specimens (blood and urine) of patients with deep-seated trichosporonosis and quite different from that of environmental isolates. Additionally, T. asahii DNA was detected stably from skin samples over 1 year. The opportunistic yeast pathogen T. asahii is part of the cutaneous fungal microbiota in humans. Cutaneous T. asahii may be one of the routes through which deep-seated trichosporonosis is acquired, whereas environmental T. asahii is not associated with this infection.
Collapse
Affiliation(s)
- Enshi Zhang
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo
| | | | | | | | | |
Collapse
|
28
|
Cogliati M, Chandrashekar N, Esposto MC, Chandramuki A, Petrini B, Viviani MA. Cryptococcus gattii serotype-C strains isolated in Bangalore, Karnataka, India. Mycoses 2011; 55:262-8. [PMID: 21815945 DOI: 10.1111/j.1439-0507.2011.02082.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During a retrospective study on cryptococcosis carried out in Bangalore, Karnataka, India, four Cryptococcus gattii strains were isolated from one HIV-positive and three HIV-negative patients, two of which had unknown predisposing conditions. Serotyping and genotyping showed that the isolates were C. gattii serotype C, mating-type α and genotype VGIV. All the isolates were identical by multilocus sequence typing, but presented a low similarity compared with a set of 17 C. gattii global control strains. The comparison with a larger number of previously reported C. gattii strains, including African isolates, revealed a close relationship between Indian and African serotype-C isolates.
Collapse
Affiliation(s)
- Massimo Cogliati
- Department of Public Health-Microbiology-Virology, Università degli Studi, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Sugita T, Takashima M. Recent trend of taxonomy and identification in pathogenic yeasts. Med Mycol J 2011; 52:107-15. [PMID: 21788722 DOI: 10.3314/jjmm.52.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University
| | | |
Collapse
|
30
|
Sequence‐Based Fungal Identification and Classification. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2011; 49:3050-3. [PMID: 21653762 DOI: 10.1128/jcm.00651-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Compared to DNA sequence analysis, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) correctly identified 100% of Cryptococcus species, distinguishing the notable pathogens Cryptococcus neoformans and C. gattii. Identification was greatly enhanced by supplementing a commercial spectral library with additional entries to account for subspecies variability.
Collapse
|
32
|
Rapid identification of Cryptococcus neoformans var. grubii, C. neoformans var. neoformans, and C. gattii by use of rapid biochemical tests, differential media, and DNA sequencing. J Clin Microbiol 2011; 49:2522-7. [PMID: 21593254 DOI: 10.1128/jcm.00502-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid identification of Cryptococcus neoformans var. grubii, Cryptococcus neoformans var. neoformans, and Cryptococcus gattii is imperative for facilitation of prompt treatment of cryptococcosis and for understanding the epidemiology of the disease. Our purpose was to evaluate a test algorithm incorporating commercial rapid biochemical tests, differential media, and DNA sequence analysis that will allow us to differentiate these taxa rapidly and accurately. We assessed 147 type, reference, and clinical isolates, including 6 other Cryptococcus spp. (10 isolates) and 14 other yeast species (24 isolates), using a 4-hour urea broth test (Remel), a 24-hour urea broth test (Becton Dickinson), a 4-hour caffeic acid disk test (Hardy Diagnostics and Remel), 40- to 44-hour growth assessment on l-canavanine glycine bromothymol blue (CGB) agar, and intergenic spacer (IGS) sequence analysis. All 123 Cryptococcus isolates hydrolyzed urea, along with 7 isolates of Rhodotorula and Trichosporon. Eighty-five of 86 C. neoformans (99%) and 26 of 27 C. gattii (96%) isolates had positive caffeic acid results, unlike the other cryptococci (0/10) and yeast species (0/24). Together, these two tests positively identified virtually all C. neoformans/C. gattii isolates (98%) within 4 h. CGB agar or IGS sequencing further differentiated these isolates within 48 h. On CGB, 25 of 27 (93%) C. gattii strains induced a blue color change, in contrast to 0 of 86 C. neoformans isolates. Neighbor-joining cluster analysis of IGS sequences differentiated C. neoformans var. grubii, C. neoformans var. neoformans, and C. gattii. Based on these results, we describe a rapid identification algorithm for use in a microbiology laboratory to distinguish clinically relevant Cryptococcus spp.
Collapse
|
33
|
Feng X, Yao Z, Ren D, Liao W. Rapid differentiation of VGII/AFLP6 genotype within Cryptococcus gattii by polymerase chain reaction. Diagn Microbiol Infect Dis 2011; 68:471-3. [PMID: 20926223 DOI: 10.1016/j.diagmicrobio.2010.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023]
Abstract
VGII/AFLP6 genotype, also considered to be a cryptic species within Cryptococcus gattii, is an emerging pathogen and always related to higher incidence of C. gattii infection. Here, a polymerase chain reaction-based method with specific primers was developed to rapid differentiation of this emerging pathogen.
Collapse
Affiliation(s)
- Xiaobo Feng
- Medical Mycology Laboratory, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | | | | | | |
Collapse
|
34
|
Variability in the IGS1 region of Rhodocollybia laulaha: is it allelic, genomic, or artificial? Fungal Biol 2011; 115:310-6. [DOI: 10.1016/j.funbio.2011.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 12/08/2010] [Accepted: 01/04/2011] [Indexed: 11/23/2022]
|
35
|
Cornet M, Sendid B, Fradin C, Gaillardin C, Poulain D, Nguyen HV. Molecular identification of closely related Candida species using two ribosomal intergenic spacer fingerprinting methods. J Mol Diagn 2010; 13:12-22. [PMID: 21227390 DOI: 10.1016/j.jmoldx.2010.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2010] [Indexed: 12/24/2022] Open
Abstract
Recent changes in the epidemiology of candidiasis highlighted an increase in non- Candida albicans species emphasizing the need for reliable identification methods. Molecular diagnostics in fungal infections may improve species characterization, particularly in cases of the closely related species in the Candida complexes. We developed two PCR/restriction fragment length polymorphism assays, targeting either a part of the intergenic spacer 2 or the entire intergenic spacer (IGS) of ribosomal DNA using a panel of 270 isolates. A part of the intergenic spacer was used for discrimination between C. albicans and C. dubliniensis and between species of the C. glabrata complex (C. glabrata/C. bracarensis/C. nivariensis). The whole IGS was applied to C. parapsilosis, C. metapsilosis, and C. orthopsilosis, and to separate C. famata (Debaryomyces hansenii) from C. guilliermondii (Pichia guilliermondii) and from the other species within this complex (ie, C. carpophila, C. fermentati and C. xestobii). Sharing similar biochemical patterns, Pichia norvegensis and C. inconspicua exhibited specific IGS profiles. Our study confirmed that isolates of C. guilliermondii were frequently mis-identified as C. famata. As much as 67% of the clinical isolates phenotypically determined as C. famata were recognized mostly as true P. guilliermondii. Conversely, 44% of the isolates initially identified as C. guilliermondii were corrected by the IGS fingerprints as C. parapsilosis, C. fermentati, or C. zeylanoides. These two PCR/restriction fragment length polymorphism methods may be used as reference tools [either alternatively or adjunctively to the existing ribosomal DNA (26S or ITS) sequence comparisons] for unambiguous determination of the Candida species for which phenotypic characterization remains problematic.
Collapse
Affiliation(s)
- Muriel Cornet
- Laboratoire de Microbiologie, Hôtel-Dieu, AP-HP, Université Paris Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
36
|
San-Blas G, Burger E. Experimental medical mycological research in Latin America - a 2000-2009 overview. Rev Iberoam Micol 2010; 28:1-25. [PMID: 21167301 DOI: 10.1016/j.riam.2010.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022] Open
Abstract
An overview of current trends in Latin American Experimental Medical Mycological research since the beginning of the 21(st) century is done (search from January 2000 to December 2009). Using the PubMed and LILACS databases, the authors have chosen publications on medically important fungi which, according to our opinion, are the most relevant because of their novelty, interest, and international impact, based on research made entirely in the Latin American region or as part of collaborative efforts with laboratories elsewhere. In this way, the following areas are discussed: 1) molecular identification of fungal pathogens; 2) molecular and clinical epidemiology on fungal pathogens of prevalence in the region; 3) cell biology; 4) transcriptome, genome, molecular taxonomy and phylogeny; 5) immunology; 6) vaccines; 7) new and experimental antifungals.
Collapse
Affiliation(s)
- Gioconda San-Blas
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| | | |
Collapse
|
37
|
Wang J, Yamada S, Ohashi E. Rapid identification of Listeria species and screening for variants by melting curve and high-resolution melting curve analyses of the intergenic spacer region of the rRNA gene. Can J Microbiol 2010; 56:676-82. [PMID: 20725130 DOI: 10.1139/w10-054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The presence of any Listeria species in food may be an indicator of poor hygiene in food processing facilities. The biochemical identification of Listeria species is laborious and time consuming. Therefore, the development of novel identification methods that are rapid and simple to perform would be an asset. In this study, large intergenic spacer region amplicons of 343-374 bp were generated from 207 Listeria isolates. The melting curve analysis of these amplicons specifically classified all isolates into 6 Listeria species and generated 11 high-resolution melting (HRM) curve profiles. In this study, 3 HRM profiles were found in Listeria monocytogenes and Listeria innocua, and 2 were found in Listeria seeligeri. Sequencing of the amplicons representing these profiles revealed that each profile related to a unique sequence. The smallest difference recognized in this study was 1 nt. The results represented in this study show that HRM curve analysis of Listeria intergenic spacer sequences is a simple, quick, and reproducible method of simultaneously identifying 6 Listeria species and screening for variants. In particular, the completion of both reaction and analysis in a closed tube saves time by eliminating the separate steps and lowers the risk of contamination.
Collapse
Affiliation(s)
- Jun Wang
- Nippon Suisan Kaisha, Ltd., Food Safety Research Center, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan.
| | | | | |
Collapse
|
38
|
Mekha N, Sugita T, Makimura K, Poonwan N, Sawanpanyalert P, Ikeda R, Nishikawa A. The intergenic spacer region of the ribosomal RNA gene of Penicillium marneffei shows almost no DNA sequence diversity. Microbiol Immunol 2010; 54:714-6. [DOI: 10.1111/j.1348-0421.2010.00270.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Wrent P, Rivas EM, Peinado JM, de Silóniz MI. Strain typing of Zygosaccharomyces yeast species using a single molecular method based on polymorphism of the intergenic spacer region (IGS). Int J Food Microbiol 2010; 142:89-96. [DOI: 10.1016/j.ijfoodmicro.2010.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 05/27/2010] [Accepted: 06/12/2010] [Indexed: 10/19/2022]
|
40
|
Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, Fisher M, Gilgado F, Hagen F, Kaocharoen S, Litvintseva AP, Mitchell TG, Simwami SP, Trilles L, Viviani MA, Kwon-Chung J. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 2010; 47:561-70. [PMID: 19462334 DOI: 10.1080/13693780902953886] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This communication describes the consensus multi-locus typing scheme established by the Cryptococcal Working Group I (Genotyping of Cryptococcus neoformans and C. gattii) of the International Society for Human and Animal Mycology (ISHAM) using seven unlinked genetic loci for global strain genotyping. These genetic loci include the housekeeping genes CAP59,GPD1, LAC1, PLB1, SOD1, URA5 and the IGS1 region. Allele and sequence type information are accessible at http://www.mlst.net/ .
Collapse
Affiliation(s)
- Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney Western Clinical School at Westmead Hospital, Westmead, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bellis FD, Castellá G, Cabañes FJ, Bond R. Absence of DNA sequence diversity of the intergenic spacer 1 region inMalassezia nanaisolates from cats. Med Mycol 2010. [DOI: 10.3109/13693780903170894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Datta K, Bartlett KH, Baer R, Byrnes E, Galanis E, Heitman J, Hoang L, Leslie MJ, MacDougall L, Magill SS, Morshed MG, Marr KA. Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg Infect Dis 2009; 15:1185-91. [PMID: 19757550 PMCID: PMC2815957 DOI: 10.3201/eid1508.081384] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This organism should be recognized as an emerging pathogen in the United States. Cryptococcus gattii has emerged as a human and animal pathogen in the Pacific Northwest. First recognized on Vancouver Island, British Columbia, Canada, it now involves mainland British Columbia, and Washington and Oregon in the United States. In Canada, the incidence of disease has been one of the highest worldwide. In the United States, lack of cryptococcal species identification and case surveillance limit our knowledge of C. gattii epidemiology. Infections in the Pacific Northwest are caused by multiple genotypes, but the major strain is genetically novel and may have emerged recently in association with unique mating or environmental changes. C. gattii disease affects immunocompromised and immunocompetent persons, causing substantial illness and death. Successful management requires an aggressive medical and surgical approach and consideration of potentially variable antifungal drug susceptibilities. We summarize the study results of a group of investigators and review current knowledge with the goal of increasing awareness and highlighting areas where further knowledge is required.
Collapse
Affiliation(s)
- Kausik Datta
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. PLoS One 2009; 4:e5862. [PMID: 19517012 PMCID: PMC2690690 DOI: 10.1371/journal.pone.0005862] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 05/13/2009] [Indexed: 01/02/2023] Open
Abstract
The Cryptococcus species complex contains two sibling taxa, Cryptococcus neoformans and Cryptococcus gattii. Both species are basidiomycetous yeasts and major pathogens of humans and other mammals. Genotyping methods have identified major haploid molecular types of C. neoformans (VNI, VNII, VNB and VNIV) and of C. gattii (VGI, VGII, VGIII and VGIV). To investigate the phylogenetic relationships among these haploid genotypes, we selected 73 strains from 2000 globally collected isolates investigated in our previous typing studies, representing each of these genotypes and carried out multigene sequence analyses using four genetically unlinked nuclear loci, ACT1, IDE, PLB1 and URA5. The separate or combined sequence analyses of all four loci revealed seven clades with significant support for each molecular type. However, three strains of each species revealed some incongruence between the original molecular type and the sequence-based type obtained here. The topology of the individual gene trees was identical for each clade of C. neoformans but incongruent for the clades of C. gattii indicating recent recombination events within C. gattii. There was strong evidence of recombination in the global VGII population. Both parsimony and likelihood analyses supported three major clades of C. neoformans (VNI/VNB, VNII and VNIV) and four major clades of C. gattii (VGI, VGII, VGIII and VGIV). The sequence variation between VGI, VGIII and VGIV was similar to that between VNI/VNB and VNII. MATa was for the first time identified for VGIV. The VNIV and VGII clades are basal to the C. neoformans or the C. gattii clade, respectively. Divergence times among the seven haploid monophyletic lineages in the Cryptococcus species complex were estimated by applying the hypothesis of the molecular clock. The genetic variation found among all of these haploid monophyletic lineages indicates that they warrant varietal status.
Collapse
|
44
|
Frasés S, Ferrer C, Sánchez M, Colom-Valiente MF. Molecular epidemiology of isolates of the Cryptococcus neoformans species complex from Spain. Rev Iberoam Micol 2009; 26:112-7. [DOI: 10.1016/s1130-1406(09)70021-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 12/02/2008] [Indexed: 10/20/2022] Open
|
45
|
Georgi A, Schneemann M, Tintelnot K, Calligaris-Maibach RC, Meyer S, Weber R, Bosshard PP. Cryptococcus gattii Meningoencephalitis in an Immunocompetent Person 13 Months after Exposure. Infection 2009; 37:370-3. [DOI: 10.1007/s15010-008-8211-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 10/16/2008] [Indexed: 01/28/2023]
|
46
|
Feng X, Yao Z, Ren D, Liao W. Simultaneous identification of molecular and mating types within the Cryptococcus species complex by PCR-RFLP analysis. J Med Microbiol 2009; 57:1481-1490. [PMID: 19018017 DOI: 10.1099/jmm.0.2008/003665-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Cryptococcus species complex consists of two species, Cryptococcus neoformans and Cryptococcus gattii, which cause systemic infections in both immunocompromised and immunocompetent patients. Both species have a bipolar mating system, with mating type (MAT) alpha being predominant in clinical and environmental isolates. The strains of the Cryptococcus species complex have been divided into eight major molecular types, which show differences in epidemiology, biology and pathogenicity. In this study, two PCR-RFLP analyses, based on the CAP1 and GEF1 genes, which are both located at the MAT locus, were developed for simultaneous identification of the molecular and mating types of isolates of the Cryptococcus species complex. The molecular and mating types of all 144 cryptococcal isolates, including rare subtypes, were successfully determined by both PCR-RFLP approaches. Pattern analysis of the AD hybrids revealed that the serotype A MATa allele in strains of AaDalpha derived from genotype VNB, whereas the serotype A MATalpha allele among strains of AalphaDa and AalphaDalpha derived from molecular type VNI.
Collapse
Affiliation(s)
- Xiaobo Feng
- Medical Mycology Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Zhirong Yao
- Medical Mycology Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Daming Ren
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai, PR China
| | - Wanqing Liao
- Medical Mycology Laboratory, Shanghai Changzheng Hospital, Shanghai, PR China
| |
Collapse
|
47
|
James SA, O'Kelly MJT, Carter DM, Davey RP, van Oudenaarden A, Roberts IN. Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole-genome resequencing. Genome Res 2009; 19:626-35. [PMID: 19141593 PMCID: PMC2665781 DOI: 10.1101/gr.084517.108] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ribosomal DNA (rDNA) plays a key role in ribosome biogenesis, encoding genes for the structural RNA components of this important cellular organelle. These genes are vital for efficient functioning of the cellular protein synthesis machinery and as such are highly conserved and normally present in high copy numbers. In the baker's yeast Saccharomyces cerevisiae, there are more than 100 rDNA repeats located at a single locus on chromosome XII. Stability and sequence homogeneity of the rDNA array is essential for function, and this is achieved primarily by the mechanism of gene conversion. Detecting variation within these arrays is extremely problematic due to their large size and repetitive structure. In an attempt to address this, we have analyzed over 35 Mbp of rDNA sequence obtained from whole-genome shotgun sequencing (WGSS) of 34 strains of S. cerevisiae. Contrary to expectation, we find significant rDNA sequence variation exists within individual genomes. Many of the detected polymorphisms are not fully resolved. For this type of sequence variation, we introduce the term partial single nucleotide polymorphism, or pSNP. Comparative analysis of the complete data set reveals that different S. cerevisiae genomes possess different patterns of rDNA polymorphism, with much of the variation located within the rapidly evolving nontranscribed intergenic spacer (IGS) region. Furthermore, we find that strains known to have either structured or mosaic/hybrid genomes can be distinguished from one another based on rDNA pSNP number, indicating that pSNP dynamics may provide a reliable new measure of genome origin and stability.
Collapse
Affiliation(s)
- Stephen A James
- National Collection of Yeast Cultures, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Faganello J, Dutra V, Schrank A, Meyer W, Schrank IS, Vainstein MH. Identification of genomic differences betweenCryptococcus neoformansandCryptococcus gattiiby Representational Difference Analysis (RDA). Med Mycol 2009; 47:584-91. [DOI: 10.1080/13693780802272148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
49
|
Yuanjie Z, Julin G, Fubing C, Jianghan C. Recurrent pulmonary cryptococcosis in a patient with idiopathic CD4 lymphocytopenia. Med Mycol 2008; 46:729-34. [PMID: 18654919 DOI: 10.1080/13693780802256083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A case of recurrent cryptococcosis with idiopathic CD4 lymphocytopenia is reported in this article. After an initial cryptococcal infection in the lung, the patient experienced one episode of cryptococcal meningitis and two more episodes of cryptococcal pneumonia within a period of 12 years. Genetic studies revealed that all isolated microbes were identical, indicating that all subsequent episodes were recurrence instead of re-infection.
Collapse
Affiliation(s)
- Zhu Yuanjie
- Cryptococcus Lab, Department of Dermatology, Changzheng Hospital, Shanghai, China
| | | | | | | |
Collapse
|
50
|
Chen J, Varma A, Diaz MR, Litvintseva AP, Wollenberg KK, Kwon-Chung KJ. Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg Infect Dis 2008; 14:755-62. [PMID: 18439357 PMCID: PMC2600263 DOI: 10.3201/eid1405.071312] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To determine the population structure of the cryptococcosis agents in China, we analyzed the genotype of 120 Cryptococcus neoformans and 9 Cryptococcus gattii strains isolated from 1980 through 2006 from cryptococcosis patients residing in 16 provinces of mainland China. A total of 71% (91/129) of the clinical strains isolated from 1985 through 2006 were from patients without any apparent risk factors. Only 8.5% (11/129) were from AIDS patients; the remaining 20.5% (27/129) were from patients with underlying diseases other than HIV infection. One hundred twenty of the 129 isolates were C. neoformans serotype A, mating type MATalpha strains that exhibited an identical M13-based VNI subtype, which was distinguishable from the reference VNI molecular type. The 9 remaining isolates were serotype B, MATalpha strains of C. gattii and portrayed a typical VGI molecular type. Data analyzed from multilocus sequences showed no variation and that these Chinese C. neoformans isolates belong to a cluster that has phylogenetically diverged from the VNI reference strain. Our finding that most cryptococcosis patients in China had no apparent risk factor is in stark contrast with reports from other countries.
Collapse
Affiliation(s)
- Jianghan Chen
- Shanghai Changzheng Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|