1
|
Kobayashi H, Imanaka S, Yoshimoto C, Matsubara S, Shigetomi H. Rethinking the pathogenesis of endometriosis: Complex interactions of genomic, epigenetic, and environmental factors. J Obstet Gynaecol Res 2024; 50:1771-1784. [PMID: 39293995 DOI: 10.1111/jog.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
AIM Endometriosis is a complex, multifactorial disease. Recent advances in molecular biology underscore that somatic mutations within the epithelial component of the normal endometrium, alongside aberrant epigenetic alterations within endometrial stromal cells, may serve as stimulators for the proliferation of endometriotic tissue within the peritoneal cavity. Nevertheless, pivotal inquiries persist: the deterministic factors driving endometriosis development in certain women while sparing others, notwithstanding comparable experiences of retrograde menstruation. Within this review, we endeavor to synopsize the current understanding of diverse pathophysiologic mechanisms underlying the initiation and progression of endometriosis and delineate avenues for future research. METHODS A literature search without time restriction was conducted utilizing PubMed and Google Scholar. RESULTS Given that aberrant clonal expansion stemming from cancer-associated mutations is common in normal endometrial tissue, only endometrial cells harboring mutations imparting proliferative advantages may be selected for survival outside the uterus. Endometriotic cells capable of engendering metabolic plasticity and modulating mitochondrial dynamics, thereby orchestrating responses to hypoxia, oxidative stress, inflammation, hormonal stimuli, and immune surveillance, and adeptly acclimating to their harsh surroundings, stand a chance at viability. CONCLUSION The genesis of endometriosis appears to reflect the evolutionary principles of mutation, selection, clonal expansion, and adaptation to the environment.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| |
Collapse
|
2
|
Hjelt A, Anttila S, Wiklund A, Rokka A, Al‐Ramahi D, Toivola DM, Polari L, Määttä J. Estrogen deprivation and estrogen receptor α antagonism decrease DSS colitis in female mice. Pharmacol Res Perspect 2024; 12:e1234. [PMID: 38961539 PMCID: PMC11222167 DOI: 10.1002/prp2.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
The association of hormonal contraception with increased risk of inflammatory bowel disease (IBD) observed in females suggests involvement of ovarian hormones, such as estradiol, and the estrogen receptors in the progression of intestinal inflammation. Here, we investigated the effects of prophylactic SERM2 and estradiol supplementation in dextran sulfate sodium-induced colitis using mice with intact ovaries and ovariectomized (OVX) female mice. We found that graded colitis score was threefold reduced in the OVX mice, compared to mice with intact ovaries. Estradiol supplementation, however, aggravated the colitis in OVX mice, increasing the colitis score to a similar level than what was observed in the intact mice. Further, we observed that immune infiltration and gene expression of inflammatory interleukins Il1b, Il6, and Il17a were up to 200-fold increased in estradiol supplemented OVX colitis mice, while a mild but consistent decrease was observed by SERM2 treatment in intact animals. Additionally, cyclo-oxygenase 2 induction was increased in the colon of colitis mice, in correlation with increased serum estradiol levels. Measured antagonist properties of SERM2, together with the other results presented here, indicates an exaggerating role of ERα signaling in colitis. Our results contribute to the knowledge of ovarian hormone effects in colitis and encourage further research on the potential use of ER antagonists in the colon, in order to alleviate inflammation.
Collapse
Affiliation(s)
- Anja Hjelt
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | | | - Anu Wiklund
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Anne Rokka
- Turku BioscienceUniversity of TurkuTurkuFinland
| | - Darin Al‐Ramahi
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Bioanalytical LaboratoryUniversity of TurkuTurkuFinland
| | - Diana M. Toivola
- Faculty of Science and Engineering, Department of Biosciences, Cell BiologyÅbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Centre for Disease ModelingUniversity of TurkuTurkuFinland
| | - Lauri Polari
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Faculty of Science and Engineering, Department of Biosciences, Cell BiologyÅbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
| | - Jorma Määttä
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Turku Centre for Disease ModelingUniversity of TurkuTurkuFinland
| |
Collapse
|
3
|
Muraoka A, Yokoi A, Kajiyama H. Emerging bacterial factors for understanding pathogenesis of endometriosis. iScience 2024; 27:108739. [PMID: 38269103 PMCID: PMC10805679 DOI: 10.1016/j.isci.2023.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of endometriosis is a complex process, and recent research has introduced novel hypotheses in this field. This review summarizes recent studies on the pathogenesis of endometriosis. We focused on several classical hypotheses, as well as their interactions with the microenvironment of hormonal dependence and immunosuppression. Furthermore, we highlighted the emergence of bacterial factors associated with endometriosis. Recent advances in next-generation sequencing (NGS) have revealed the presence and detailed distribution of these bacteria as well as the involvement of specific bacteria in pathogenesis. These factors alter the microenvironment in the early stages of endometriosis development, leading to lesion formation. Understanding the mechanisms underlying the early development of endometriosis from a new perspective would be helpful for the development of novel therapeutic agents for endometriosis.
Collapse
Affiliation(s)
- Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
4
|
Blankfield RP. Is fluid retention a cardiovascular risk factor? Clin Hemorheol Microcirc 2024; 88:277-288. [PMID: 39302357 PMCID: PMC11492017 DOI: 10.3233/ch-242128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Endothelial dysfunction, the earliest manifestation of atherosclerosis, can be initiated by both biochemicals and biomechanical forces. Atherosclerosis occurs predominantly at arterial branch points, arterial bifurcations and the curved segments of great arteries. These are the regions that blood flows turbulently. Turbulence promotes endothelial dysfunction by reducing shear stress upon endothelial cells. The endothelial glycocalyx mediates the effect of shear stress upon the endothelium. A mathematical analysis of cardiovascular hemodynamics demonstrates that fluid retention increases turbulence of blood flow. While there is no empirical data confirming this relationship, fluid retention is associated with adverse cardiovascular events. Every medical condition that causes fluid retention is associated with increased risk of both atherosclerotic cardiovascular disease and venous thromboembolic disease. In addition, most medications that cause fluid retention are associated with increased adverse cardiovascular effects. Calcium channel blockers (CCBs) and pioglitazone are exceptions to this generalization. Even though data regarding CCBs and pioglitazone contradict the hypothesis that fluid retention is a cardiovascular risk factor, these medications have favorable cardiovascular properties which may outweigh the negative effect of fluid retention. Determining whether or not fluid retention is a cardiovascular risk factor would require empirical data demonstrating a relationship between fluid retention and turbulence of blood flow. While this issue should be relevant to cardiovascular researchers, clinicians and patients, it is especially pertinent to the pharmaceutical industry. Four-dimensional magnetic resonance imaging and vector flow Doppler ultrasound have the capability to quantify turbulence of blood flow. These technologies could be utilized to settle the matter.
Collapse
Affiliation(s)
- Robert P. Blankfield
- Department of Family Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
5
|
Sharpe MA, Baskin DS, Jenson AV, Baskin AM. Hijacking Sexual Immuno-Privilege in GBM-An Immuno-Evasion Strategy. Int J Mol Sci 2021; 22:10983. [PMID: 34681642 PMCID: PMC8536168 DOI: 10.3390/ijms222010983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023] Open
Abstract
Regulatory T-cells (Tregs) are immunosuppressive T-cells, which arrest immune responses to 'Self' tissues. Some immunosuppressive Tregs that recognize seminal epitopes suppress immune responses to the proteins in semen, in both men and women. We postulated that GBMs express reproductive-associated proteins to manipulate reproductive Tregs and to gain immune privilege. We analyzed four GBM transcriptome databases representing ≈900 tumors for hypoxia-responsive Tregs, steroidogenic pathways, and sperm/testicular and placenta-specific genes, stratifying tumors by expression. In silico analysis suggested that the presence of reproductive-associated Tregs in GBM tumors was associated with worse patient outcomes. These tumors have an androgenic signature, express male-specific antigens, and attract reproductive-associated Related Orphan Receptor C (RORC)-Treg immunosuppressive cells. GBM patient sera were interrogated for the presence of anti-sperm/testicular antibodies, along with age-matched controls, utilizing monkey testicle sections. GBM patient serum contained anti-sperm/testicular antibodies at levels > six-fold that of controls. Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are associated with estrogenic tumors which appear to mimic placental tissue. We demonstrate that RORC-Tregs drive poor patient outcome, and Treg infiltration correlates strongly with androgen levels. Androgens support GBM expression of sperm/testicular proteins allowing Tregs from the patient's reproductive system to infiltrate the tumor. In contrast, estrogen appears responsible for MDSC/TAM immunosuppression.
Collapse
MESH Headings
- Androgens/metabolism
- Brain Neoplasms/immunology
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Databases, Factual
- Estrogens/metabolism
- Female
- Glioblastoma/immunology
- Glioblastoma/mortality
- Glioblastoma/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Kaplan-Meier Estimate
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Microglia/immunology
- Microglia/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Microenvironment
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
Collapse
Affiliation(s)
- Martyn A. Sharpe
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA; (D.S.B.); (A.V.J.); (A.M.B.)
| | - David S. Baskin
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA; (D.S.B.); (A.V.J.); (A.M.B.)
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amanda V. Jenson
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA; (D.S.B.); (A.V.J.); (A.M.B.)
| | - Alexandra M. Baskin
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA; (D.S.B.); (A.V.J.); (A.M.B.)
| |
Collapse
|
6
|
Tarszabó R, Bányai B, Ruisanchez É, Péterffy B, Korsós-Novák Á, Lajtai K, Sziva RE, Gerszi D, Hosszú Á, Benkő R, Benyó Z, Horváth EM, Masszi G, Várbíró S. Influence of Vitamin D on the Vasoactive Effect of Estradiol in a Rat Model of Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:ijms22179404. [PMID: 34502321 PMCID: PMC8431242 DOI: 10.3390/ijms22179404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
We examined the vasoactive effect of estradiol in a rat model of early PCOS and the influence of vitamin D deficiency (VDD). We created a model of chronic hyperandrogenism and VDD in adolescent female Wistar rats (N = 46) with four experimental groups: vitamin D supplemented (T-D+), VDD (T-D-), hyperandrogenic and vitamin D supplemented (T+D+), and hyperandrogenic and VDD (T+D-). T+ groups received an 8-week-long transdermal Androgel treatment, D-animals were on vitamin D-reduced diet and D+ rats were supplemented orally with vitamin D3. Estrogen-induced vasorelaxation of thoracic aorta segments were measured with a wire myograph system with or without the inhibition of endothelial nitric oxide synthase (eNOS) or cyclooxygenase-2 (COX-2). The distribution of estrogen receptor (ER), eNOS and COX-2 in the aortic wall was assessed by immunohistochemistry. VDD aortas showed significantly lower estradiol-induced relaxation independently of androgenic status that was further decreased by COX-2 inhibition. COX-2 inhibition failed to alter vessel function in D+ rats. Inhibition of eNOS abolished the estradiol-induced relaxation in all groups. Changes in vascular function in VDD were accompanied by significantly decreased ER and eNOS staining. Short-term chronic hyperandrogenism failed to, but VDD induced vascular dysfunction, compromised estrogen-dependent vasodilatation and changes in ER and eNOS immunostaining.
Collapse
Affiliation(s)
- Róbert Tarszabó
- Department of Obstetrics and Gynecology, Markusovszky Lajos University Teaching Hospital, Markusovszky Lajos Street 5, 9700 Szombathely, Hungary
- Correspondence:
| | - Bálint Bányai
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
| | - Éva Ruisanchez
- Department of Translational Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (É.R.); (Z.B.)
| | - Borbála Péterffy
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
| | - Ágnes Korsós-Novák
- Department of Pathology, Hetényi Géza Hospital, Tószegi Street 21, 5000 Szolnok, Hungary;
| | - Krisztina Lajtai
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Street 78/a, 1082 Budapest, Hungary;
| | - Réka Eszter Sziva
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Street 78/a, 1082 Budapest, Hungary;
| | - Dóra Gerszi
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Street 78/a, 1082 Budapest, Hungary;
| | - Ádám Hosszú
- 1st Department of Pediatrics, Semmelweis University, 1082 Budapest, Hungary;
| | - Rita Benkő
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
| | - Zoltán Benyó
- Department of Translational Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (É.R.); (Z.B.)
| | - Eszter Mária Horváth
- Department of Physiology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (B.P.); (K.L.); (R.E.S.); (D.G.); (R.B.); (E.M.H.)
| | - Gabriella Masszi
- Department of Internal Medicine, National Institute of Psychiatry and Addictions, Lehel Street 59-61, 1135 Budapest, Hungary;
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Street 78/a, 1082 Budapest, Hungary;
| |
Collapse
|
7
|
Hung SW, Zhang R, Tan Z, Chung JPW, Zhang T, Wang CC. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med Res Rev 2021; 41:2489-2564. [PMID: 33948974 PMCID: PMC8252000 DOI: 10.1002/med.21802] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Endometriosis (EM) is defined as endometrial tissues found outside the uterus. Growth and development of endometriotic cells in ectopic sites can be promoted via multiple pathways, including MAPK/MEK/ERK, PI3K/Akt/mTOR, NF-κB, Rho/ROCK, reactive oxidative stress, tumor necrosis factor, transforming growth factor-β, Wnt/β-catenin, vascular endothelial growth factor, estrogen, and cytokines. The underlying pathophysiological mechanisms include proliferation, apoptosis, autophagy, migration, invasion, fibrosis, angiogenesis, oxidative stress, inflammation, and immune escape. Current medical treatments for EM are mainly hormonal and symptomatic, and thus the development of new, effective, and safe pharmaceuticals targeting specific molecular and signaling pathways is needed. Here, we systematically reviewed the literature focused on pharmaceuticals that specifically target the molecular and signaling pathways involved in the pathophysiology of EM. Potential drug targets, their upstream and downstream molecules with key aberrant signaling, and the regulatory mechanisms promoting the growth and development of endometriotic cells and tissues were discussed. Hormonal pharmaceuticals, including melatonin, exerts proapoptotic via regulating matrix metallopeptidase activity while nonhormonal pharmaceutical sorafenib exerts antiproliferative effect via MAPK/ERK pathway and antiangiogenesis activity via VEGF/VEGFR pathway. N-acetyl cysteine, curcumin, and ginsenoside exert antioxidant and anti-inflammatory effects via radical scavenging activity. Natural products have high efficacy with minimal side effects; for example, resveratrol and epigallocatechin gallate have multiple targets and provide synergistic efficacy to resolve the complexity of the pathophysiology of EM, showing promising efficacy in treating EM. Although new medical treatments are currently being developed, more detailed pharmacological studies and large sample size clinical trials are needed to confirm the efficacy and safety of these treatments in the near future.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Ruizhe Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou
| | - Zhouyurong Tan
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | | | - Tao Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Reproduction and Development, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong
- Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive MedicineThe Chinese University of Hong KongHong Kong
| |
Collapse
|
8
|
Cai X, Liu M, Zhang B, Zhao SJ, Jiang SW. Phytoestrogens for the Management of Endometriosis: Findings and Issues. Pharmaceuticals (Basel) 2021; 14:569. [PMID: 34198709 PMCID: PMC8232159 DOI: 10.3390/ph14060569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Endometriosis, a chronic disease characterized by recurrent pelvic pain and infertility, severely impacts the health and life quality of many women worldwide. Since phytoestrogens are commonly found in a variety of foods, and estrogen is a major pathological factor for the pathogenesis of endometriosis, their possible involvement cannot be ignored. This review summarizes data on the relationship between phytoestrogen intake and endometriosis risk, and analyzes the findings from in vitro experiments, rodent endometriotic models, and human intervention trials. While favorable results were often obtained from endometrial primary cultures and animal models for resveratrol, isoflavones and puerarin, only resveratrol showed promising results in human intervention trials. Critical issues concerning the current study efforts are discussed: the possible reasons beneath the discrepant observations of estrogenic/anti-estrogenic effects by phytoestrogens; the complicated interplays between phytoestrogens and endogenous estrogens; the shortage of currently used animal models; the necessity to apply reasonable doses of phytoestrogens in experiments. It is expected that the analyses would help to more properly assess the phytoestrogens' effects on the endometriosis pathogenesis and their potential values for preventive or therapeutic applications.
Collapse
Affiliation(s)
- Xia Cai
- Department of Nursing, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China; (X.C.); (M.L.)
| | - Min Liu
- Department of Nursing, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China; (X.C.); (M.L.)
| | - Bing Zhang
- Department of Gynecology, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China;
| | - Shao-Jie Zhao
- Department of Gynecology, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China;
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| |
Collapse
|
9
|
Mikhaleva LM, Radzinsky VE, Orazov MR, Khovanskaya TN, Sorokina AV, Mikhalev SA, Volkova SV, Shustova VB, Sinelnikov MY. Current Knowledge on Endometriosis Etiology: A Systematic Review of Literature. Int J Womens Health 2021; 13:525-537. [PMID: 34104002 PMCID: PMC8179825 DOI: 10.2147/ijwh.s306135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To review the mechanisms of endometriosis development, including those related to epigenetic mutations, cellular dysregulation, inflammatory processes, and oxidative stress. Methods A systematic literature review regarding current aspects of endometriosis etiology, genesis and development was performed using the PubMed, Google Scholar, and eLibrary databases. Keywords included endometriosis, etiology, development, genesis, associations and mechanisms. A multilingual search was performed. Results Several mechanisms underline the pathophysiological pathways for endometriosis development. Epigenetic mutations, external and internal influences, and chronic conditions have a significant impact on endometriosis development, survival and regulation. Several historically valid theories on endometriosis development were discussed, as well as updated findings. Conclusion Despite recent advances, fundamental problems in understanding endometriosis remain unresolved. The identification of unknown circulating epithelial progenitors or stem cells that are responsible for epithelial growth in both the endometrium and endometriotic foci seems to be the next step in solving these questions.
Collapse
Affiliation(s)
- Lyudmila M Mikhaleva
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | | | | | - Tatyana N Khovanskaya
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | - Anastasia V Sorokina
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | | | | | - Victoria B Shustova
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | - Mikhail Y Sinelnikov
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
10
|
Up-regulation of DNA2 results in cell proliferation and migration in endometriosis. J Mol Histol 2021; 52:741-749. [PMID: 34047877 PMCID: PMC8324585 DOI: 10.1007/s10735-021-09983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/24/2021] [Indexed: 10/26/2022]
Abstract
Accumulating evidence has suggests that women with advanced endometriosis exhibit alterations in the expression of genes in the endometrium compared to healthy controls. Furthermore, replication stress is a characteristic feature of cancer cells, which results from sustained proliferative signaling induced by either the activation of oncogenes or the loss of tumor suppressors. In the present study, we propose that DNA replication ATP-dependent helicase/nuclease 2 (DNA2) might be upregulated in endometriosis. Immunohistochemical staining results confirmed the hypothesis that DNA2 is overexpressed in the eutopic/ectopic endometrium compared to that in a control endometrium from a healthy donor. Subsequently, ectopic endometrium-derived endometrial mesenchymal stem cells (EMSCs) showed the highest level of DNA2 and checkpoint kinase 1 (CHK1), as well as the strongest proliferation and migration capabilities, followed by eutopic endometrium-derived EMSCs, and then control EMSCs. To further analyze the function of DNA2, we knocked-down DNA2 expression in KLE cells. As expected, proliferation and migration declined when cells were transfected with DNA2 small interfering RNA. Taken together, our study demonstrated the overexpression of DNA2 in human endometriosis, which might be responsible for the upregulated cell proliferation and migration. This study provides insights into the mechanisms underlying human endometriosis.
Collapse
|
11
|
Vitamin D Deficiency Cause Gender Specific Alterations of Renal Arterial Function in a Rodent Model. Nutrients 2021; 13:nu13020704. [PMID: 33671779 PMCID: PMC7926839 DOI: 10.3390/nu13020704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Vitamin D deficiency shows positive correlation to cardiovascular risk, which might be influenced by gender specific features. Our goal was to examine the effect of Vitamin D supplementation and Vitamin D deficiency in male and female rats on an important hypertension target organ, the renal artery. Female and male Wistar rats were fed with Vitamin D reduced chow for eight weeks to induce hypovitaminosis. Another group of animals received normal chow with further supplementation to reach optimal serum vitamin levels. Isolated renal arteries of Vitamin D deficient female rats showed increased phenylephrine-induced contraction. In all experimental groups, both indomethacin and selective cyclooxygenase-2 inhibition (NS398) decreased the phenylephrine-induced contraction. Angiotensin II-induced contraction was pronounced in Vitamin D supplemented males. In both Vitamin D deficient groups, acetylcholine-induced relaxation was impaired. In the female Vitamin D supplemented group NS398, in males the indomethacin caused reduced acetylcholine-induced relaxation. Increased elastic fiber density was observed in Vitamin D deficient females. The intensity of eNOS immunostaining was decreased in Vitamin D deficient females. The density of AT1R staining was the highest in the male Vitamin D deficient group. Although Vitamin D deficiency induced renal vascular dysfunction in both sexes, female rats developed more extensive impairment that was accompanied by enzymatic and structural changes.
Collapse
|
12
|
Garcia CK, Sheikh LH, Iwaniec JD, Robinson GP, Berlet RA, Mattingly AJ, Murray KO, Laitano O, Clanton TL. Effects of Ibuprofen during Exertional Heat Stroke in Mice. Med Sci Sports Exerc 2021; 52:1870-1878. [PMID: 32175974 DOI: 10.1249/mss.0000000000002329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intestinal injury is one of the most prominent features of organ damage in exertional heat stroke (EHS). However, whether damage to the intestine in this setting is exacerbated by ibuprofen (IBU), the most commonly used nonsteroidal anti-inflammatory drug in exercising populations, is not well understood. PURPOSE We hypothesized that IBU would exacerbate intestinal injury, reduce exercise performance, and increase susceptibility to heat stroke. METHODS To test this hypothesis, we administered IBU via diet to male and female C57/BL6J mice, over 48 h before EHS. Susceptibility to EHS was determined by assessing exercise response using a forced running wheel, housed inside an environmental chamber at 37.5°C. Core temperature (Tc) was monitored by telemetry. Mice were allocated into four groups: exercise only (EXC); EHS + IBU; EXC + IBU; and EHS only. Exercise performance and Tc profiles were evaluated and stomachs, intestines and plasma were collected at 3 h post-EHS. RESULTS The EHS + IBU males ran approximately 87% longer when Tc was above 41°C (P < 0.03) and attained significantly higher peak Tc (P < 0.01) than EHS-only mice. Histological analyses showed decreased villi surface area throughout the small intestine for both sexes in the EXC + IBU group versus EXC only. Interestingly, though EHS in both sexes caused intestinal injury, in neither sex were there any additional effects of IBU. CONCLUSIONS Our results suggest that in a preclinical mouse model of EHS, oral IBU at pharmacologically effective doses does not pose additional risks of heat stroke, does not reduce exercise performance, and does not contribute further to intestinal injury, though this could have been masked by significant gut injury induced by EHS alone.
Collapse
Affiliation(s)
- Christian K Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li PC, Sung FC, Yang YC, Chen W, Wang JH, Lin SZ, Ding DC. Aspirin associated with a decreased incidence of uterine cancer: A retrospective population-based cohort study. Medicine (Baltimore) 2020; 99:e21446. [PMID: 32756162 PMCID: PMC7402752 DOI: 10.1097/md.0000000000021446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aspirin (ASA) exerts an anti-tumor effect via the COX pathway. Clinical studies on the chemopreventive effects of ASA on uterine cancer (UC) remain inconsistent. We used population-based retrospective cohort study to evaluate the UC in ASA users in Taiwanese women. From insurance claims data, we identified 23,342 women received ASA treatment between 2000 and 2010 and a comparison group of same sample size randomly selected from the same database matched by the propensity score. The incidence of UC in the ASA cohort was 10% of that in the comparison group (0.28 vs 2.73 per 10,000 person-years). The Poisson regression analysis estimated adjusted incidence rate ratio (IRR) was 0.10 (95% confidence interval (CI) = 0.09-0.11) for ASA users relatives to comparisons after controlling for covariates. The UC incidence in ASA users decreased with age, from 0.61 per 10,000 person-years in the 20 to 39 years old (adjusted IRR = 0.21, 95% CI = 0.15-0.29) to 0.21 per 10,000 person-years in the 65 to 80 years old (adjusted IRR = 0.15, 95% CI = 0.12-0.16). The incidence was higher in longer term users. Hormone therapy of estradiol was associated with the increase of UC risk in both cohorts, but less in ASA users than comparisons (1.34 vs 4.75 per 10,000 person-years). This study suggests that ASA use was associated with a decreased risk of UC. Further prospective randomized clinical trials are warranted to confirm the association.
Collapse
Affiliation(s)
- Pei-Chen Li
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University
| | - Fung-Chang Sung
- Management Office for Health Data, China Medical University Hospital
- Department of Health Services Administration, China Medical University
- Department of Food Nutrition and Health Biotechnology, Asia University
| | - Yu-Cih Yang
- Management Office for Health Data, China Medical University Hospital
- College of Medicine, China Medical University, Taichung
| | - Weishan Chen
- Management Office for Health Data, China Medical University Hospital
- College of Medicine, China Medical University, Taichung
| | - Jen-Hung Wang
- Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University
- Institute of Medical Sciences, Tzu Chi University, Hualien
| |
Collapse
|
14
|
Yilmaz BD, Bulun SE. Endometriosis and nuclear receptors. Hum Reprod Update 2020; 25:473-485. [PMID: 30809650 DOI: 10.1093/humupd/dmz005] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/03/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is recognized as a steroid-dependent disorder; however, the precise roles of nuclear receptors (NRs) in steroid responsiveness and other signaling pathways are not well understood. OBJECTIVE AND RATIONALE Over the past several years, a number of paradigm-shifting breakthroughs have occurred in the area of NRs in endometriosis. We review and clarify new information regarding the mechanisms responsible for: (i) excessive estrogen biosynthesis, (ii) estrogen-dependent inflammation, (iii) defective differentiation due to progesterone resistance and (iv) enhanced survival due to deficient retinoid production and action in endometriosis. We emphasize the roles of the relevant NRs critical for these pathological processes in endometriosis. SEARCH METHODS We conducted a comprehensive search using PubMed for human, animal and cellular studies published until 2018 in the following areas: endometriosis; the steroid and orphan NRs, estrogen receptors alpha (ESR1) and beta (ESR2), progesterone receptor (PGR), steroidogenic factor-1 (NR5A1) and chicken ovalbumin upstream promoter-transcription factor II (NR2F2); and retinoids. OUTCOMES Four distinct abnormalities in the intracavitary endometrium and extra-uterine endometriotic tissue underlie endometriosis progression: dysregulated differentiation of endometrial mesenchymal cells, abnormal epigenetic marks, inflammation activated by excess estrogen and the development of progesterone resistance. Endometriotic stromal cells compose the bulk of the lesions and demonstrate widespread epigenetic abnormalities. Endometriotic stromal cells also display a wide range of abnormal NR expression. The orphan NRs NR5A1 and NR2F2 compete to regulate steroid-synthesizing genes in endometriotic stromal cells; NR5A1 dominance gives rise to excessive estrogen formation. Endometriotic stromal cells show an abnormally low ESR1:ESR2 ratio due to excessive levels of ESR2, which mediates an estrogen-driven inflammatory process and prostaglandin formation. These cells are also deficient in PGR, leading to progesterone resistance and defective retinoid synthesis. The pattern of NR expression, involving low ESR1 and PGR and high ESR2, is reminiscent of uterine leiomyoma stem cells. This led us to speculate that endometriotic stromal cells may display stem cell characteristics found in other uterine tissues. The biologic consequences of these abnormalities in endometriotic tissue include intense inflammation, defective differentiation and enhanced survival. WIDER IMPLICATIONS Steroid- and other NR-related abnormalities exert genome-wide biologic effects via interaction with defective epigenetic programming and enhance inflammation in endometriotic stromal cells. New synthetic ligands, targeting PGR, retinoic acid receptors and ESR2, may offer novel treatment options.
Collapse
Affiliation(s)
- Bahar D Yilmaz
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| |
Collapse
|
15
|
17β-estradiol regulates prostaglandin E 2 and F 2α synthesis and function in endometrial explants of cattle. Anim Reprod Sci 2020; 216:106466. [PMID: 32414468 DOI: 10.1016/j.anireprosci.2020.106466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 11/23/2022]
Abstract
Prostaglandins (PG) have primary functions in the reproductive tract, however, the mechanism of regulation of PG secretion in the endometrium is unclear. Estrogen as a predominant regulator of uterine functions during the mammalian estrous cycle and effects of estrogen on synthesis of PG and function in uterine tissues of cattle are not fully understood. In this study, there was evaluation of the concentration- and time-effects of 17β-estradiol on PG synthesis in endometrial explants of cattle, focusing on the secretion of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) as well as relative abundance of mRNA transcript and protein for both the enzymes responsible for PGE2 and PGF2α synthesis, including prostaglandin-endoperoxide synthase 1 and 2 (PTGS1, PTGS2), PGE2 synthase (PGES), PGF2α synthase (PGFS), and carbonyl reductase (CBR1), and the receptors responsible for downstream PGE2 (PTGER2, PTGER4) and PGF2α (PTGFR) signaling. Results indicated that 17β-estradiol increased PGE2 and PGF2α production at concentrations ranging from 10-11 to 10-8 M. Furthermore, abundances of PTGS1, PTGS2, PGES, PGFS, PTGER2, PTGER4, and PTGFR mRNA transcripts and protein were greater immediately after 17β-estradiol treatment at almost all the concentrations, while these CBR1 abundances were less as a result of treatments with 17β-estradiol. These data support the hypothesis that estradiol modulates the synthesis and function of PG in the endometrium of cattle.
Collapse
|
16
|
Chantalat E, Valera MC, Vaysse C, Noirrit E, Rusidze M, Weyl A, Vergriete K, Buscail E, Lluel P, Fontaine C, Arnal JF, Lenfant F. Estrogen Receptors and Endometriosis. Int J Mol Sci 2020; 21:ijms21082815. [PMID: 32316608 PMCID: PMC7215544 DOI: 10.3390/ijms21082815] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is a frequent and chronic inflammatory disease with impacts on reproduction, health and quality of life. This disorder is highly estrogen-dependent and the purpose of hormonal treatments is to decrease the endogenous ovarian production of estrogens. High estrogen production is a consistently observed endocrine feature of endometriosis. mRNA and protein levels of estrogen receptors (ER) are different between a normal healthy endometrium and ectopic/eutopic endometrial lesions: endometriotic stromal cells express extraordinarily higher ERβ and significantly lower ERα levels compared with endometrial stromal cells. Aberrant epigenetic regulation such as DNA methylation in endometriotic cells is associated with the pathogenesis and development of endometriosis. Although there is a large body of data regarding ERs in endometriosis, our understanding of the roles of ERα and ERβ in the pathogenesis of endometriosis remains incomplete. The goal of this review is to provide an overview of the links between endometriosis, ERs and the recent advances of treatment strategies based on ERs modulation. We will also attempt to summarize the current understanding of the molecular and cellular mechanisms of action of ERs and how this could pave the way to new therapeutic strategies.
Collapse
Affiliation(s)
- Elodie Chantalat
- IUCT Oncopole, 31100 Toulouse, France
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Marie-Cécile Valera
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
- Correspondence:
| | | | - Emmanuelle Noirrit
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Mariam Rusidze
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | | | | | - Etienne Buscail
- Department of Visceral Surgery, CHU Rangueil, 31400 Toulouse, France
| | | | - Coralie Fontaine
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Jean-François Arnal
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Françoise Lenfant
- INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, CEDEX 04, 31 432 Toulouse, France
| |
Collapse
|
17
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
18
|
Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, Kohlmeier A, Yin P, Milad M, Wei J. Endometriosis. Endocr Rev 2019; 40:1048-1079. [PMID: 30994890 PMCID: PMC6693056 DOI: 10.1210/er.2018-00242] [Citation(s) in RCA: 402] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Pelvic endometriosis is a complex syndrome characterized by an estrogen-dependent chronic inflammatory process that affects primarily pelvic tissues, including the ovaries. It is caused when shed endometrial tissue travels retrograde into the lower abdominal cavity. Endometriosis is the most common cause of chronic pelvic pain in women and is associated with infertility. The underlying pathologic mechanisms in the intracavitary endometrium and extrauterine endometriotic tissue involve defectively programmed endometrial mesenchymal progenitor/stem cells. Although endometriotic stromal cells, which compose the bulk of endometriotic lesions, do not carry somatic mutations, they demonstrate specific epigenetic abnormalities that alter expression of key transcription factors. For example, GATA-binding factor-6 overexpression transforms an endometrial stromal cell to an endometriotic phenotype, and steroidogenic factor-1 overexpression causes excessive production of estrogen, which drives inflammation via pathologically high levels of estrogen receptor-β. Progesterone receptor deficiency causes progesterone resistance. Populations of endometrial and endometriotic epithelial cells also harbor multiple cancer driver mutations, such as KRAS, which may be associated with the establishment of pelvic endometriosis or ovarian cancer. It is not known how interactions between epigenomically defective stromal cells and the mutated genes in epithelial cells contribute to the pathogenesis of endometriosis. Endometriosis-associated pelvic pain is managed by suppression of ovulatory menses and estrogen production, cyclooxygenase inhibitors, and surgical removal of pelvic lesions, and in vitro fertilization is frequently used to overcome infertility. Although novel targeted treatments are becoming available, as endometriosis pathophysiology is better understood, preventive approaches such as long-term ovulation suppression may play a critical role in the future.
Collapse
Affiliation(s)
- Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bahar D Yilmaz
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christia Sison
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kaoru Miyazaki
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lia Bernardi
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shimeng Liu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Amanda Kohlmeier
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ping Yin
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Magdy Milad
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - JianJun Wei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Bechmann N, Kniess T, Pietzsch J. Nitric Oxide-Releasing Selective Estrogen Receptor Modulators: A Bifunctional Approach to Improve the Therapeutic Index. J Med Chem 2019; 62:6525-6539. [DOI: 10.1021/acs.jmedchem.9b00171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nicole Bechmann
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Torsten Kniess
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
20
|
Chiappini F, Sánchez M, Miret N, Cocca C, Zotta E, Ceballos L, Pontillo C, Bilotas M, Randi A. Exposure to environmental concentrations of hexachlorobenzene induces alterations associated with endometriosis progression in a rat model. Food Chem Toxicol 2018; 123:151-161. [PMID: 30393115 DOI: 10.1016/j.fct.2018.10.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Hexachlorobenzene (HCB) is a dioxin-like compound widely distributed and is a weak ligand of the aryl hydrocarbon receptor (AhR). Endometriosis is a disease characterized by growth of endometrial tissue in ectopic sites. Our aim was to investigate the impact of HCB on the endocrine, invasion and inflammatory parameters in a rat endometriosis model surgically induced. Female rats were exposed to HCB (1, 10 and 100 mg/kg b.w.) during 30 days. Results showed that HCB increases endometriotic like-lesions (L) volume in a dose-dependent manner. In L, HCB10 increases microvessel density (immunohistochemistry) and the vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2) and AhR levels (Western Blot), while HCB1 enhances aromatase expression (Western Blot). In addition, in eutopic endometrium (EU), HCB10/HCB100 augments microvessel density, VEGF and MMP-9 expression, while HCB1/HCB10 increases tumor necrosis factor-α (TNF-α) content in peritoneal fluid (ELISA). Interestingly, both L and EU from HCB-treated rats exhibited higher estrogen receptor α (ERα) (immunohistochemistry) and metalloproteases (MMP)-2 and -9 levels (Western Blot), as well as lower progesterone receptor (PR) expression (immunohistochemistry) than in control rats. Environmentally relevant concentrations of HCB could contribute to abnormal changes associated with endometriosis progression and development.
Collapse
Affiliation(s)
- Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5th Floor, CP1121, Buenos Aires, Argentina.
| | - Marcela Sánchez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5th Floor, CP1121, Buenos Aires, Argentina.
| | - Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5th Floor, CP1121, Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, CP1113, Buenos Aires, Argentina.
| | - Elsa Zotta
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Sección Patología, Laboratorio de Fisiopatogenia, Paraguay 2155, 7th Floor, CP1121, Buenos Aires, Argentina.
| | - Leandro Ceballos
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5th Floor, CP1121, Buenos Aires, Argentina.
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5th Floor, CP1121, Buenos Aires, Argentina.
| | - Mariela Bilotas
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Laboratorio de Inmunología de la Reproducción, Vuelta de Obligado 2490, CP1428, Buenos Aires, Argentina.
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5th Floor, CP1121, Buenos Aires, Argentina.
| |
Collapse
|
21
|
McKinnon B, Mueller M, Montgomery G. Progesterone Resistance in Endometriosis: an Acquired Property? Trends Endocrinol Metab 2018; 29:535-548. [PMID: 29934050 DOI: 10.1016/j.tem.2018.05.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Endometriosis is the growth of endometrial tissue outside the uterus and is characterized by progesterone resistance and changes in global and progesterone target gene expression. However, the mechanism behind this and whether it is innate, acquired, or present in both the eutopic and ectopic tissue in not always clear. We find large-scale gene expression studies in eutopic tissue, indicative of progesterone resistance, are often contradictory, potentially due to the dynamic nature of this tissue, whereas suppressed progesterone receptor expression is supported in ectopic but not eutopic tissue. This suggests more studies are required in eutopic tissue particularly, and that potentially the suppressed progesterone receptor (PR) expression is a consequence of the pathogenic process and exposure to the peritoneal environment.
Collapse
Affiliation(s)
- Brett McKinnon
- Department of Gynecology and Obstetrics, Frauenklinik, Inselspital Bern, Switzerland.
| | - Michael Mueller
- Department of Gynecology and Obstetrics, Frauenklinik, Inselspital Bern, Switzerland
| | - Grant Montgomery
- Genomics of Reproductive Disorders, Institute for Molecular Bioscience, University of Queensland, Australia
| |
Collapse
|
22
|
Oladosu FA, Tu FF, Hellman KM. Nonsteroidal antiinflammatory drug resistance in dysmenorrhea: epidemiology, causes, and treatment. Am J Obstet Gynecol 2018; 218:390-400. [PMID: 28888592 DOI: 10.1016/j.ajog.2017.08.108] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/14/2017] [Accepted: 08/31/2017] [Indexed: 11/25/2022]
Abstract
Although nonsteroidal antiinflammatory drugs can alleviate menstrual pain, about 18% of women with dysmenorrhea are unresponsive, leaving them and their physicians to pursue less well-studied strategies. The goal of this review is to provide a background for treating menstrual pain when first-line options fail. Research on menstrual pain and failure of similar drugs in the antiplatelet category suggested potential mechanisms underlying nonsteroidal antiinflammatory drug resistance. Based on these mechanisms, alternative options may be helpful for refractory cases. This review also identifies key pathways in need of further study to optimize menstrual pain treatment.
Collapse
|
23
|
Miller JE, Ahn SH, Monsanto SP, Khalaj K, Koti M, Tayade C. Implications of immune dysfunction on endometriosis associated infertility. Oncotarget 2018; 8:7138-7147. [PMID: 27740937 PMCID: PMC5351695 DOI: 10.18632/oncotarget.12577] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023] Open
Abstract
Endometriosis is a complex, inflammatory disease that affects 6-10% of reproductive-aged women. Almost half of the women with endometriosis experience infertility. Despite the excessive prevalence, the pathogenesis of endometriosis and its associated infertility is unknown and a cure is not available. While many theories have been suggested to link endometriosis and infertility, a consensus among investigators has not emerged. In this extensive review of the literature as well as research from our laboratory, we provide potential insights into the role of immune dysfunction in endometriosis associated infertility. We discuss the implication of the peritoneal inflammatory microenvironment on various factors that contribute to infertility such as hormonal imbalance, oxidative stress and how these could further lead to poor oocyte, sperm and embryo quality, impaired receptivity of the endometrium and implantation failure.
Collapse
Affiliation(s)
- Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
24
|
Can Aspirin Reduce the Risk of Endometrial Cancer?: A Systematic Review and Meta-analysis of Observational Studies. Int J Gynecol Cancer 2017; 26:1111-20. [PMID: 27177285 DOI: 10.1097/igc.0000000000000731] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Current evidences suggest that nonsteroidal anti-inflammatory drugs can reduce the risk of several types of cancer, including breast, prostate, and colorectal cancer. However, evidences regarding the chemopreventive effect of aspirin to endometrial cancer are inconsistent. Therefore, we aimed to further explore the association. We searched PubMed, EMBASE, Web of Science, and Scopus to identify potentially eligible studies. After title/abstract screening and full-text review, we identified 7 cohort studies and 6 case-control studies. Data extraction and quality assessment were performed independently, and a random-effects model was used for data synthesis. Subgroup analysis was conducted based on obesity, hormone replacement therapy use, and cancer subtype; sensitivity analysis was conducted by pooling risk ratios of the highest dosage or longest duration of use. Dose-response relationship was assessed by a 2-stage linear dose-response model. Statistical heterogeneity was assessed by the I value and a χ test for the Cochrane Q statistic. In overall meta-analysis, the pooled risk ratio was 0.93 (95% confidence interval, 0.88-0.99), and no substantial statistical heterogeneity was observed (I = 0.0%, P = 0.550). In subgroup analysis, a negative association was observed for obese women and type I endometrial cancer. Higher dosage or frequency of aspirin use was significantly associated with a reduced risk, and long-term aspirin use was protective only for obese women. In conclusion, our study suggests that the use of aspirin can reduce the risk of endometrial cancer, particularly for obese women. However, the generalizability of our conclusion should be further studied for premenopausal women and type II endometrial cancer.
Collapse
|
25
|
Affiliation(s)
- Jayasree Sengupta
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - G. Anupa
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Muzaffer Ahmed Bhat
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Debabrata Ghosh
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
26
|
Dobovišek L, Hojnik M, Ferk P. Overlapping molecular pathways between cannabinoid receptors type 1 and 2 and estrogens/androgens on the periphery and their involvement in the pathogenesis of common diseases (Review). Int J Mol Med 2016; 38:1642-1651. [PMID: 27779654 DOI: 10.3892/ijmm.2016.2779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/12/2016] [Indexed: 11/06/2022] Open
Abstract
The physiological and pathophysiological roles of sex hormones have been well documented and the modulation of their effects is applicable in many current treatments. On the other hand, the physiological role of endocannabinoids is not yet clearly understood and the endocannabinoid system is considered a relatively new therapeutic target. The physiological association between sex hormones and cannabinoids has been investigated in several studies; however, its involvement in the pathophysiology of common human diseases has been studied separately. Herein, we present the first systematic review of molecular pathways that are influenced by both the cannabinoids and sex hormones, including adenylate cyclase and protein kinase A, epidermal growth factor receptor, cyclic adenosine monophosphate response element-binding protein, vascular endothelial growth factor, proto-oncogene serine/threonine-protein kinase, mitogen-activated protein kinase, phosphatidylinositol-4,5-bisphosphate 3-kinase, C-Jun N-terminal kinase and extracellular-signal-regulated kinases 1/2. Most of these influence cell proliferative activity. Better insight into this association may prove to be beneficial for the development of novel pharmacological treatment strategies for many common diseases, including breast cancer, endometrial cancer, prostate cancer, osteoporosis and atherosclerosis. The associations between cannabinoids, estrogens and androgens under these conditions are also presented and the molecular interactions are highlighted.
Collapse
Affiliation(s)
- Luka Dobovišek
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Hojnik
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Polonca Ferk
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
27
|
Simsa P, Mihalyi A, Kyama CM, Mwenda JM, Fülöp V, D'Hooghe TM. Selective Estrogen-Receptor Modulators and Aromatase Inhibitors: Promising New Medical Therapies for Endometriosis? WOMENS HEALTH 2016; 3:617-28. [DOI: 10.2217/17455057.3.5.617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endometriosis is an estrogen-dependent disease and estrogen-related pathways are imbalanced in women with endometriosis. One of the key enzymes in estrogen synthesis is aromatase. Inhibiting this pathway at several points is a promising idea for the treatment of endometriosis. The third generation of aromatase inhibitors is becoming more potent in efficacy, with fewer side effects than previous generations, but cotreatment with other hormones is needed to inhibit ovarian stimulation. Other components that promote estrogen synthesis such as COX-2 can also be potentially targeted. Selective estrogen-receptor modulators could also be interesting in view of their tissue-specific effect. However, all these new drugs are still in an early phase of development. At present, it is too early to conclude that aromatase inhibitors, COX-2 inhibitors or selective estrogen-receptor modulators really present any added value compared with the existing drugs that can be used to achieve hormonal suppression in the medical treatment of endometriosis.
Collapse
Affiliation(s)
- Peter Simsa
- Leuven University Fertility Centre, Department of Obstetrics & Gynaecology, University Hospital Gasthuisberg, Leuven, Belgium, Tel: +32 1634 3624; Fax: +32 1634 3607
- National Institute of Health, Budapest, Hungary
| | - Attila Mihalyi
- Leuven University Fertility Centre, Department of Obstetrics & Gynaecology, University Hospital Gasthuisberg, Leuven, Belgium, Tel: +32 1634 3624; Fax: +32 1634 3607
| | - Cleophas M Kyama
- Leuven University Fertility Centre, Department of Obstetrics & Gynaecology, University Hospital Gasthuisberg, Leuven, Belgium, Tel: +32 1634 3624; Fax: +32 1634 3607
- Institute of Primate Research, Division of Reproduction, PO Box 24481, Karen, Nairobi, Kenya
| | | | | | - Thomas M D'Hooghe
- Leuven University Fertility Centre, Department of Obstetrics & Gynaecology, University Hospital Gasthuisberg, Leuven, Belgium, Tel: +32 1634 3624; Fax: +32 1634 3607
- Institute of Primate Research, Division of Reproduction, PO Box 24481, Karen, Nairobi, Kenya
| |
Collapse
|
28
|
DuCLOX-2/5 inhibition: a promising target for cancer chemoprevention. Breast Cancer 2016; 24:180-190. [DOI: 10.1007/s12282-016-0723-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/17/2016] [Indexed: 01/26/2023]
|
29
|
Popli P, Sirohi VK, Manohar M, Shukla V, Kaushal JB, Gupta K, Dwivedi A. Regulation of cyclooxygenase-2 expression in rat oviductal epithelial cells: Evidence for involvement of GPR30/Src kinase-mediated EGFR signaling. J Steroid Biochem Mol Biol 2015; 154:130-41. [PMID: 26241029 DOI: 10.1016/j.jsbmb.2015.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022]
Abstract
The oviduct plays a crucial role in female reproduction by regulating gamete transport, providing a specific microenvironment for fertilization and early embryonic development. Cyclooxygenase (COX)-derived prostaglandins play essential role in carrying out these oviduct-specific functions. Estrogen upregulates COX-2 expression in rat oviduct; however, the mechanisms responsible for regulation of COX-2 expression in rat oviductal epithelial cells (OECs) remain unclear. In the present study, we proposed that estrogen induces COX-2 expression via G-protein coupled receptor i.e., GPR30 in OECs. To investigate this hypothesis, we examined the effects of E2-BSA, ICI 182,780, GPR30 agonist and GPR30 antagonist on COX-2 expression and explored potential signaling pathway leading to COX-2 expression. Co-localization experiments revealed GPR30 to be primarily located in the peri-nuclear space, which was also the site of E2-BSA-fluorescein isothiocyanate (E2-BSA-FITC) binding. The E2-BSA induced-COX-2 and prostaglandin release were subjected to regulation by both EGFR and PI3K signaling as inhibitors of c-Src kinase (PP2), EGFR (EGFR inhibitor) and PI-3 kinase (LY294002) attenuated E2-BSA mediated effect. These results suggest that EGFR transactivation leading to activation of PI-3K/Akt pathway participates in COX-2 expression in rat OECs. Interestingly, E2-BSA induced COX-2 expression and subsequent prostaglandin release were abolished by NF-κB inhibitor. In addition, E2-BSA induced the nuclear translocation of p65-NF-κB and up-regulated the NF-κB promoter activity in rat OECs. Taken together, results demonstrated that E2-BSA induced the COX-2 expression and consequent PGE2 and PGF2α release in rat OECs. These effects are mediated through GPR30-derived EGFR transactivation and PI-3K/Akt cascade leading to NF-κB activation.
Collapse
Affiliation(s)
- Pooja Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Vijay Kumar Sirohi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Kanchan Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| |
Collapse
|
30
|
Su EJ. Role of the fetoplacental endothelium in fetal growth restriction with abnormal umbilical artery Doppler velocimetry. Am J Obstet Gynecol 2015; 213:S123-30. [PMID: 26428491 DOI: 10.1016/j.ajog.2015.06.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 01/30/2023]
Abstract
Growth-restricted fetuses with absent or reversed end-diastolic velocities in the umbilical artery are at substantially increased risk for adverse perinatal and long-term outcome, even in comparison to growth-restricted fetuses with preserved end-diastolic velocities. Translational studies show that this Doppler velocimetry correlates with fetoplacental blood flow, with absent or reversed end-diastolic velocities signifying abnormally elevated resistance within the placental vasculature. The fetoplacental vasculature is unique in that it is not subject to autonomic regulation, unlike other vascular beds. Instead, humoral mediators, many of which are synthesized by local endothelial cells, regulate placental vascular resistance. Existing data demonstrate that in growth-restricted pregnancies complicated by absent or reversed umbilical artery end-diastolic velocities, an imbalance in production of these vasoactive substances occurs, favoring vasoconstriction. Morphologically, placentas from these pregnancies also demonstrate impaired angiogenesis, whereby vessels within the terminal villi are sparsely branched, abnormally thin, and elongated. This structural deviation from normal placental angiogenesis restricts blood flow and further contributes to elevated fetoplacental vascular resistance. Although considerable work has been done in the field of fetoplacental vascular development and function, much remains unknown about the mechanisms underlying impaired development and function of the human fetoplacental vasculature, especially in the context of severe fetal growth restriction with absent or reversed umbilical artery end-diastolic velocities. Fetoplacental endothelial cells are key regulators of angiogenesis and vasomotor tone. A thorough understanding of their role in placental vascular biology carries the significant potential of discovering clinically relevant and innovative approaches to prevention and treatment of fetal growth restriction with compromised umbilical artery end-diastolic velocities.
Collapse
|
31
|
Greaves E, Collins F, Critchley HOD, Saunders PTK. ERβ-dependent effects on uterine endothelial cells are cell specific and mediated via Sp1. Hum Reprod 2013; 28:2490-501. [PMID: 23756706 PMCID: PMC3748858 DOI: 10.1093/humrep/det235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION What are the in vitro effects of estrogen receptor β (ERβ) activation on the function of endothelial cells (ECs) from different vascular beds: human endometrial ECs (HEECs; endometrium), uterine myometrial microvascular ECs (UtMVECs; myometrium) and human umbilical vein ECs (HUVECs)? SUMMARY ANSWER Studies conducted in vitro demonstrate that the ERβ agonist 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN) has EC type-specific effects on patterns of gene expression and network formation. Identification of a key role for the transcription factor Sp1 in ERβ-dependent signaling in uterine ECs offers new insights into cell-specific molecular mechanisms of estrogen action in the human uterus. WHAT IS KNOWN ALREADY Estrogens, acting via ERs (ERα and ERβ), have important, body-wide impacts on the vasculature. The human uterus is an estrogen target organ, the endometrial lining of which exhibits physiological, cyclical angiogenesis. In fixed tissue sections, human endometrial ECs are immunopositive for ERβ. STUDY DESIGN, SIZE, DURATION Cells were treated with a vehicle control or the ERβ agonist, DPN, for 2 h or 24 h (n = 5) followed by gene expression analysis. Functional assays were analyzed after a 16 h incubation with ligand (n = 5). PARTICIPANT/MATERIALS, SETTING, METHODS Analysis of DPN-treated ECs using Taqman gene array cards focused on genes involved in angiogenesis and inflammation identified cell type-specific ERβ-dependent changes in gene expression, with validation using qPCR and immunohistochemistry. Molecular mechanisms involved in ERβ signaling were investigated using bioinformatics, reporter assays, immunoprecipitation, siRNA and a specific inhibitor blocking Sp1-binding sites. The endometrium and myometrium from women with regular menses were used to validate the protein expression of candidate genes. MAIN RESULTS AND THE ROLE OF CHANCE HEECs and UtMVECs were ERβ+/ERα−. Treatment of ECs with DPN had opposite effects on network formation: a decrease in network formation in HEECs (P ≤ 0.001) but an increase in UtMVECs (P ≤ 0.05). Genomic analysis identified opposite changes in ERβ target gene expression with only three common transcripts (HEY1, ICAM1, CASP1) in all three ECs; a unique profile was observed for each. An important role for Sp1 was identified, consistent with the regulation of ERβ target genes via association with the transcription factor (‘tethered’ mechanism). LIMITATIONS, REASONS FOR CAUTION The study was mainly carried out in vitro using ECs of which one type was immortalized. Although the analysis of the protein expression of candidate genes was carried out using intact tissue samples from patients, investigations into in vivo angiogenesis were not carried out. WIDER IMPLICATIONS OF THE FINDINGS These results have implications for our understanding of the mechanisms responsible for ERβ-dependent changes in EC gene expression in hormone-dependent disorders. STUDY FUNDING/COMPETEING INTEREST(S) The study was funded by a Medical Research Council Programme Grant. E.G. is the recipient of an MRC Career Development Fellowship. The authors have nothing to disclose.
Collapse
|
32
|
Harel Z. Dysmenorrhea in adolescents and young adults: an update on pharmacological treatments and management strategies. Expert Opin Pharmacother 2013; 13:2157-70. [PMID: 22984937 DOI: 10.1517/14656566.2012.725045] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dysmenorrhea is the most common gynecologic complaint among adolescents/young adults. Dysmenorrhea is usually primary and is associated with normal ovulatory cycles and with no pelvic pathology. Potent prostaglandins and potent leukotrienes play an important role in generating primary dysmenorrhea symptoms. Adolescents/young adults with severe dysmenorrhea symptoms may have pelvic abnormalities, such as endometriosis or uterine anomalies (secondary dysmenorrhea). AREAS COVERED This review provides an update on treatments and management strategies of dysmenorrhea in adolescents/young adults. Medical literature articles were retrieved using a Medline search on primary and secondary dysmenorrhea. Original articles from peer-reviewed journals were selected based on relevance. EXPERT OPINION Treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) is the preferred initial treatment for dysmenorrhea in nonsexually active adolescents/young adults. Adolescents/young adults with symptoms that do not respond to NSAIDs for three menstrual periods should be offered hormonal treatment, such as combined estrogen and progestin oral contraceptive pills (OCPs), for three menstrual cycles. If dysmenorrhea does not improve within 6 months of NSAIDs and OCPs, a laparoscopy is indicated to look for endometriosis, which is the most common reason for secondary dysmenorrhea.
Collapse
Affiliation(s)
- Zeev Harel
- Warren Alpert Medical School of Brown University, Department of Pediatrics, Division of Adolescent Medicine/Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI 02903, USA.
| |
Collapse
|
33
|
Huhtinen K, Ståhle M, Perheentupa A, Poutanen M. Estrogen biosynthesis and signaling in endometriosis. Mol Cell Endocrinol 2012; 358:146-54. [PMID: 21875644 DOI: 10.1016/j.mce.2011.08.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/03/2011] [Accepted: 08/15/2011] [Indexed: 12/21/2022]
Abstract
Endometriosis is an estrogen-dependent gynecological disease where endometrium-like tissue grows outside uterine cavity. Endometriotic cell proliferation is stimulated by estrogens acting predominantly via their nuclear receptors. Estrogen receptors (ESR1, ESR2) are ligand activated transcription factors whose activation is dependent on the cell-specific dynamic expression of the receptors, on the interacting proteins and on the ligand availability. The different types of endometriotic lesions, peritoneal, deep, and ovarian endometriosis, may respond to estrogens differentially due to differences in the expression of the receptors and interacting proteins, and due to potential differences in the ligand availability regulated by the local estrogen synthesis. This review summarizes the current knowledge of estrogen synthesizing enzymes and estrogen receptors in different types of endometriosis lesions. Further studies are still needed to define the possible differences in steroid metabolism in different types of endometriotic lesions.
Collapse
Affiliation(s)
- Kaisa Huhtinen
- Department of Physiology, Institute of Biomedicine, University of Turku, 20014 Turku, Finland.
| | | | | | | |
Collapse
|
34
|
Li X, Bao Y, Fang P, Chen Y, Qiao Z. Effect of mifepristone on COX-2 both in eutopic and ectopic endometrium in mouse endometriotic model. Arch Gynecol Obstet 2012; 286:939-46. [DOI: 10.1007/s00404-012-2379-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
35
|
Lim WY, Chuah KL, Eng P, Leong SS, Lim E, Lim TK, Ng A, Poh WT, Tee A, Teh M, Salim A, Seow A. Aspirin and non-aspirin non-steroidal anti-inflammatory drug use and risk of lung cancer. Lung Cancer 2012; 77:246-51. [PMID: 22480996 DOI: 10.1016/j.lungcan.2012.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 02/03/2012] [Accepted: 03/10/2012] [Indexed: 11/18/2022]
Abstract
There is evidence that aspirin and non-aspirin non-steroidal anti-inflammatory drug (NSAID) have anti-carcinogenic properties, but their effect on lung cancer, in particular in never-smokers, is unclear. Information on past or current use of anti-inflammatory medication was obtained in 398 Chinese female primary lung cancer cases and 814 controls in a hospital-based study in Singapore. 65% of cases and 88% of controls were never-smokers. Controls were excluded if they had been admitted for conditions associated with aspirin or NSAID use (n=174). Regular aspirin use (twice a week or more, for a month or more) was associated with a reduced risk of lung cancer (adjusted odds ratio [OR] 0.50, 95% confidence intervals [95%CI] 0.31-0.81 in non-smokers; OR 0.38, 95%CI 0.16-0.93 in smokers). Regular use of non-aspirin NSAID, paracetamol, steroid creams and steroid pills was uncommon and no association with lung cancer was detected. Our results suggest that aspirin consumption may reduce lung cancer risk in Asian women and are consistent with current understanding of the role of cyclooxygenase in lung carcinogenesis.
Collapse
Affiliation(s)
- Wei-Yen Lim
- Saw Swee Hock School of Public Health, National University of Singapore, MD3, 16 Medical Drive, Singapore 117597, Singapore. wei-yen
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
May-Panloup P, Ferré-L'Hôtellier V, Morinière C, Marcaillou C, Lemerle S, Malinge MC, Coutolleau A, Lucas N, Reynier P, Descamps P, Guardiola P. Molecular characterization of corona radiata cells from patients with diminished ovarian reserve using microarray and microfluidic-based gene expression profiling. Hum Reprod 2012; 27:829-43. [DOI: 10.1093/humrep/der431] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
37
|
Su EJ, Ernst L, Abdallah N, Chatterton R, Xin H, Monsivais D, Coon J, Bulun SE. Estrogen receptor-β and fetoplacental endothelial prostanoid biosynthesis: a link to clinically demonstrated fetal growth restriction. J Clin Endocrinol Metab 2011; 96:E1558-67. [PMID: 21832119 PMCID: PMC3200254 DOI: 10.1210/jc.2011-1084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Fetal growth restriction (FGR) due to placental dysfunction impacts short- and long-term neonatal outcomes. Abnormal umbilical artery Doppler velocimetry indicating elevated fetoplacental vascular resistance has been associated with fetal morbidity and mortality. Estrogen receptors are regulators of vasomotor tone, and fetoplacental endothelium expresses estrogen receptor-β (ESR2) as its sole estrogen receptor. OBJECTIVE Our objective was to elucidate the mechanism whereby ESR2 regulates placental villous endothelial cell prostanoid biosynthesis. DESIGN AND PARTICIPANTS We conducted immunohistochemical analysis of human placental specimens and studies of primary fetoplacental endothelial cells isolated from subjects with uncomplicated pregnancies. MAIN OUTCOME MEASURES We evaluated in vivo levels of ESR2 and cyclooxygenase-2 (PTGS2) in villous endothelial cells from fetuses with or without FGR and/or abnormal umbilical artery Doppler indices and in vitro effects of ESR2 on prostanoid biosynthetic gene expression. RESULTS ESR2 and PTGS2 expression were significantly higher within subjects with FGR with abnormal umbilical artery Doppler indices in comparison with controls (P < 0.01). ESR2 knockdown led to decreased cyclooxygenase-1 (PTGS1), PTGS2, prostaglandin F synthase (AKR1C3), and increased prostacyclin synthase (PTGIS), with opposing results found after ESR2 overexpression (P < 0.05). ESR2 mediates prostaglandin H2 substrate availability and, in the setting of differential regulation of AKR1C3 and PTGIS, altered the balance between vasodilatory and vasoconstricting prostanoid production. CONCLUSIONS Higher ESR2 expression in the placental vasculature of FGR subjects with abnormal blood flow is associated with an endothelial cell phenotype that preferentially produces vasoconstrictive prostanoids. Endothelial ESR2 appears to be a master regulator of prostanoid biosynthesis and contributes to high-resistance fetoplacental blood flow, thereby increasing morbidity and mortality associated with FGR.
Collapse
Affiliation(s)
- Emily J Su
- Northwestern University Feinberg School of Medicine, 250 East Superior Street, Suite 05-2175, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hunter DA, Barr GA, Amador N, Shivers KY, Kemen L, Kreiter CM, Jenab S, Inturrisi CE, Quinones-Jenab V. Estradiol-induced antinociceptive responses on formalin-induced nociception are independent of COX and HPA activation. Synapse 2011; 65:643-51. [PMID: 21132813 PMCID: PMC3075311 DOI: 10.1002/syn.20890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 01/23/2023]
Abstract
Estrogen modulates pain perception but how it does so is not fully understood. The aim of this study was to determine if estradiol reduces nociceptive responses in part via hypothalamic-pituitary-adrenal (HPA) axis regulation of cyclooxygenase (COX)-1/COX-2 activity. The first study examined the effects of estradiol (20%) or vehicle with concurrent injection nonsteroidal antiinflammatory drugs (NSAIDs) on formalin-induced nociceptive responding (flinching) in ovariectomized (OVX) rats. The drugs were ibuprofen (COX-1 and COX-2 inhibitor), SC560 (COX-1 inhibitor), or NS398 (COX-2 inhibitor). In a second study, estradiol's effects on formalin-induced nociception were tested in adrenalectomized (ADX), OVX, and ADX+OVX rats. Serum levels of prostaglandins (PG) PGE(2) and corticosterone were measured. Estradiol significantly decreased nociceptive responses in OVX rats with effects during both the first and the second phase of the formalin test. The nonsteroidal antiinflammatory drugs (NSAIDs) did not alter nociception at the doses used here. Adrenalectomy neither altered flinching responses in female rats nor reversed estradiol-induced antinociceptive responses. Estradiol alone had no effect on corticosterone (CORT) or prostaglandin levels after the formalin test, dissociating the effects of estradiol on behavior and these serum markers. Ibuprofen and NS398 significantly reduced PGE2 levels. CORT was not decreased by OVX surgery or by estradiol below that of ADX. Only IBU significantly increased corticosterone levels. Taken together, our results suggest that estradiol-induced antinociception in female rats is independent of COX activity and HPA axis activation.
Collapse
Affiliation(s)
- Deirtra A Hunter
- Hunter College and The Graduate Center, The City University of New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim KH, Kim HY, Kim HH, Lee KS, Cheong J. Hypoxia induces expression of COX-2 through the homeodomain transcription factor CDX1 and orphan nuclear receptor SHP in human endometrial cells. ACTA ACUST UNITED AC 2011; 17:710-9. [DOI: 10.1093/molehr/gar036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
P450Arom induction in isolated control endometrial cells by peritoneal fluid from women with endometriosis. Fertil Steril 2010; 94:2521-7. [DOI: 10.1016/j.fertnstert.2010.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 11/21/2022]
|
41
|
Li Y, Pu D, Li Y. The expression of cyclooxygenase-2 in cervical cancers and Hela cells was regulated by estrogen/progestogen. ACTA ACUST UNITED AC 2010; 27:457-60. [PMID: 17828511 DOI: 10.1007/s11596-007-0428-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Indexed: 10/22/2022]
Abstract
To investigate the relationship between the expression of cyclooxygenase-2 (COX-2) and menstrual cycle, the regulatory effects of 17-beta-estradiol (E(2)) and medroxyprogesterone acetate (MPA) on the expression of COX-2 in cervical cancer Hela cells were examined. Cervical cancer specimens were obtained from 47 pre-menopausal patients. The phase of menstrual cycle was determined by case history and HE staining of uterine endometrium. COX-2 was immunohistochemically stained by SABC staining and the staining intensity was determined with computerized image analysis system. Hela cells were incubated with alcohol, E(2), E(2)+MPA, MPA for 12, 24 and 48 h respectively. The expression of COX-2 in Hela cells was detected by Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Our results showed that the expression of COX-2 was significantly higher during proliferative phase than secretory phase (P<0.05), but there was no difference in the positive rate between proliferative phase and secretory phase (P>0.05). Incubation with E(2) could significantly enhance the expression of COX-2 continually. On the contrary, E(2)+MPA and MPA alone could decrease the expression of COX-2 as compared with the control and E(2) group (P<0.05 and P<0.01 respectively). It is concluded that the expression of COX-2 in cervical cancer of pre-menopausal patients and Hela cells was regulated by estrogen/progestogen.
Collapse
Affiliation(s)
- Yunguang Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250021, China.
| | | | | |
Collapse
|
42
|
Bilotas M, Meresman G, Stella I, Sueldo C, Barañao RI. Effect of aromatase inhibitors on ectopic endometrial growth and peritoneal environment in a mouse model of endometriosis. Fertil Steril 2010; 93:2513-8. [DOI: 10.1016/j.fertnstert.2009.08.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
|
43
|
Exposure to herbal products during pregnancy and the risk of preterm birth. Eur J Obstet Gynecol Reprod Biol 2010; 150:107-8. [DOI: 10.1016/j.ejogrb.2010.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/22/2010] [Accepted: 02/01/2010] [Indexed: 11/20/2022]
|
44
|
Liedert A, Wagner L, Seefried L, Ebert R, Jakob F, Ignatius A. Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun 2010; 394:755-9. [DOI: 10.1016/j.bbrc.2010.03.065] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/10/2010] [Indexed: 11/17/2022]
|
45
|
do Nascimento GRA, Barros YVR, Wells AK, Khalil RA. Research into Specific Modulators of Vascular Sex Hormone Receptors in the Management of Postmenopausal Cardiovascular Disease. Curr Hypertens Rev 2009; 5:283-306. [PMID: 20694192 DOI: 10.2174/157340209789587717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Studies on the vasculature have identified estrogen receptors ERα, ERβ and a novel estrogen binding membrane protein GPR30, that mediate genomic and/or non-genomic effects. Estrogen promotes endothelium-dependent relaxation by inducing the production/activity of nitric oxide, prostacyclin, and hyperpolarizing factor, and inhibits the mechanisms of vascular smooth muscle contraction including [Ca(2+)](i), protein kinase C, Rho kinase and mitogen-activated protein kinase. Additional effects of estrogen on the cytoskeleton, matrix metalloproteinases and inflammatory factors contribute to vascular remodeling. However, the experimental evidence did not translate into vascular benefits of menopausal hormone therapy (MHT), and the HERS, HERS-II and WHI clinical trials demonstrated adverse cardiovascular events. The discrepancy has been partly related to delayed MHT and potential changes in the vascular ER amount, integrity, affinity, and downstream signaling pathways due to the subjects' age and preexisting CVD. The adverse vascular effects of MHT also highlighted the need of specific modulators of vascular sex hormone receptors. The effectiveness of MHT can be improved by delineating the differences in phramcokinetics and pharmacodynamics of natural, synthetic, and conjugated equine estrogens. Estriol, "hormone bioidenticals" and phytoestrogens are potential estradiol substitutes. The benefits of low dose MHT, and transdermal or vaginal estrogens over oral preparations are being evaluated. Specific ER modulators (SERMs) and ER agonists are being developed to maximize the effects on vascular ERs. Also, the effects of estrogen are being examined in the context of the whole body hormonal environment and the levels of progesterone and androgens. Thus, the experimental vascular benefits of estrogen can be translated to the outcome of MHT in postmenopausal CVD, as more specific modulators of sex hormone receptors become available and are used at the right dose, route of administration and timing, depending on the subject's age and preexisting cardiovascular condition.
Collapse
|
46
|
Collins F, MacPherson S, Brown P, Bombail V, Williams ARW, Anderson RA, Jabbour HN, Saunders PTK. Expression of oestrogen receptors, ERalpha, ERbeta, and ERbeta variants, in endometrial cancers and evidence that prostaglandin F may play a role in regulating expression of ERalpha. BMC Cancer 2009; 9:330. [PMID: 19758455 PMCID: PMC2755482 DOI: 10.1186/1471-2407-9-330] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/16/2009] [Indexed: 11/10/2022] Open
Abstract
Background Endometrial cancer is the most common gynaecological malignancy; risk factors include exposure to oestrogens and high body mass index. Expression of enzymes involved in biosynthesis of oestrogens and prostaglandins (PG) is often higher in endometrial cancers when compared with levels detected in normal endometrium. Oestrogens bind one of two receptors (ERα and ERβ) encoded by separate genes. The full-length receptors function as ligand-activated transcription factors; splice variant isoforms of ERβ lacking a ligand-binding domain have also been described. PGs act in an autocrine or paracrine manner by binding to specific G-protein coupled receptors. Methods We compared expression of ERs, progesterone receptor (PR) and cyclooxygenase-2 (COX-2) in stage 1 endometrial adenocarcinomas graded as well (G1), moderately (G2) or poorly (G3) differentiated (n ≥ 10 each group) using qRTPCR, single and double immunohistochemistry. We used endometrial adenocarcinoma cell lines to investigate the impact of PGF2α on expression of ERs and PR. Results Full length ERβ (ERβ1) and two ERβ variants (ERβ2, ERβ5) were expressed in endometrial cancers regardless of grade and the proteins were immunolocalised to the nuclei of cells in both epithelial and stromal compartments. Immunoexpression of COX-2 was most intense in cells that were ERαneg/low. Expression of PR in endometrial adenocarcinoma (Ishikawa) cell lines and tissues broadly paralleled that of ERα. Treatment of adenocarcinoma cells with PGF2α reduced expression of ERα but had no impact on ERβ1. Cells incubated with PGF2α were unable to increase expression of PR mRNA when they were incubated with E2. Conclusion We have demonstrated that ERβ5 protein is expressed in stage 1 endometrial adenocarcinomas. Expression of three ERβ variants, including the full-length protein is not grade-dependent and most cells in poorly differentiated cancers are ERβpos/ERαneg. We found evidence of a link between COX-2, its product PGF2α, and expression of ERα and PR that sheds new light on the cross talk between steroid and PG signalling pathways in this disease.
Collapse
Affiliation(s)
- Frances Collins
- MRC Human Reproductive Sciences Unit, The University of Edinburgh Centre for Reproductive Biology, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rizner TL. Estrogen metabolism and action in endometriosis. Mol Cell Endocrinol 2009; 307:8-18. [PMID: 19524121 DOI: 10.1016/j.mce.2009.03.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/02/2009] [Accepted: 03/31/2009] [Indexed: 12/30/2022]
Abstract
Endometriosis is a complex estrogen-dependent disease that is defined as the presence of endometrial glands and stroma outside the uterine cavity. The etiology of endometriosis is multifactorial and includes complex interactions of genetic, immunological, hormonal and environmental factors. Many theories have been proposed, but no single theory can explain all aspects of endometriosis, suggesting that endometriosis is a heterogeneous disease. This review presents the current theories on the pathogenesis of endometriosis, followed by an overview on estrogen metabolism in normal endometrium and diseased endometrium of endometriosis patients. The potential role of aberrant expression of individual estrogen-metabolizing enzymes is discussed, and a model mechanism for increased formation of estradiol is presented separately for different types of endometriosis. The disturbed expression of estrogen receptors in endometriosis is detailed, and the estrogen biosynthetic enzymes and receptors are discussed as novel therapeutic targets for the treatment of endometriosis.
Collapse
Affiliation(s)
- Tea Lanisnik Rizner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
48
|
Estrogen receptor-beta mediates cyclooxygenase-2 expression and vascular prostanoid levels in human placental villous endothelial cells. Am J Obstet Gynecol 2009; 200:427.e1-8. [PMID: 19318151 DOI: 10.1016/j.ajog.2009.01.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 01/07/2009] [Accepted: 01/21/2009] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Regulation of fetoplacental blood flow is likely mediated by factors such as prostanoids. Estrogen and its receptors affect prostanoid biosynthesis. Previously, we demonstrated that villous endothelial cells express estrogen receptor-beta (ESR2), and we sought to determine its role in the mediation of fetoplacental vascular function. STUDY DESIGN Villous endothelial cells from uncomplicated pregnancies were isolated, cultured, and treated with estrogen. RNA interference, real-time polymerase chain reaction, Western blotting, and enzyme immunoassays were performed. RESULTS Cyclooxygenase-2 (COX-2) expression levels were not altered consistently by estrogen. RNA interference of ESR2 led to a concomitant decrease in COX-2 messenger RNA (P < .0001) and protein (P < .05) in the presence and absence of estradiol. ESR2 knock-down also led to diminished prostacyclin and thromboxane concentrations in the absence of estradiol (P < .005). CONCLUSION ESR2 mediates COX-2 expression levels and both prostacyclin and thromboxane concentrations in the basal state, which suggests the possibility of ligand-independent regulation of COX-2 activity and prostaglandin H2 substrate availability. Further investigation regarding ESR2 regulation of prostanoid biosynthesis and its effects on the fetoplacental vasculature is warranted.
Collapse
|
49
|
Müller JC, Botelho GGK, Bufalo AC, Boareto AC, Rattmann YD, Martins ES, Cabrini DA, Otuki MF, Dalsenter PR. Morinda citrifolia Linn (Noni): in vivo and in vitro reproductive toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2009; 121:229-233. [PMID: 19015020 DOI: 10.1016/j.jep.2008.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 10/10/2008] [Accepted: 10/18/2008] [Indexed: 05/27/2023]
Abstract
UNLABELLED Morinda citrifolia Linn (syn. Noni) is a plant widely used as food and medicine worldwide but there are no toxicological tests about this plant focused on reproduction. AIM OF THE STUDY To investigate possible endocrine activity and toxic effect on the reproductive system of Wistar rats by exposure of aqueous extract of the Morinda citrifolia. MATERIALS AND METHODS Two experimental protocols in vivo were developed, (a) uterotrophic assay and (b) in utero and lactational assay, and one test in vitro to investigate the effect on the contractility of pregnant uteri isolated from rats (doses of the extract: 7.5, 75 and 750 mg/kg). RESULTS The uterotrophic assay indicates presence of in vivo antiestrogenic activity of extract at doses of 7.5 and 750 mg/kg. The in utero and lactation exposure showed that the treatment with extract at the dose of 7.5mg/kg induced a reduction of 50% in parturition index and an increase of 74% in postimplantation losses index. The in vitro test showed that uteri from rats treated with 7.5mg/kg of the extract presented a 50% reduction on contraction induced by arachidonic acid. CONCLUSION The exposure of aqueous extract of Morinda citrifolia in Wistar rats induced reproductive toxicity in nonlinear dose-response.
Collapse
Affiliation(s)
- Juliane C Müller
- Department of Pharmacology, Federal University of Paraná, P.O. Box 19031, CEP 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Maia H, Casoy J, Pimentel K, Correia T, Athayde C, Cruz T, Coutinho EM. Effect of oral contraceptives on vascular endothelial growth factor, Cox-2 and aromatase expression in the endometrium of uteri affected by myomas and associated pathologies. Contraception 2008; 78:479-85. [DOI: 10.1016/j.contraception.2008.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 07/05/2008] [Accepted: 07/05/2008] [Indexed: 10/21/2022]
|