1
|
Zhang X, Ma L, Liu X, Zhou X, Wang A, Lai Y, Zhang J, Li Y, Chen S. Sustained release of miR-21 carried by mesenchymal stem cell-derived exosomes from GelMA microspheres inhibits ovarian granulosa cell apoptosis in premature ovarian insufficiency. Mater Today Bio 2025; 31:101469. [PMID: 39906205 PMCID: PMC11790500 DOI: 10.1016/j.mtbio.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Background Premature ovarian insufficiency (POI) refers to the severe decline or failure of ovarian function in women younger than 40 years of age. It is a serious hazard to women's physical and mental health, but current treatment options are limited. Mesenchymal stem cell-derived exosomes (MSC-Exo) exhibit promising potential as a therapeutic approach for POI. However, their clinical application is hindered by their instability and low long-term retention rate in vivo. Methods and results In this study, miR-21 was identified as the predominant miRNA with low-expression in follicular fluid exosomes of POI patients and was shown to possess antiapoptotic activity. Next, we loaded miR-21 agomir to MSC-Exo to form Agomir21-Exo, which significantly reversed the apoptosis of granulosa cells in vitro. Moreover, we successfully developed GelMA hydrogel microspheres for encapsulating Agomir21-Exo through microfluidic technology, named GelMA-Ag21Exo, which had good injectability and significantly enhanced the stability and long-term retention of Agomir21-Exo in mice through sustained release. The release of Agomir21-Exo from GelMA-Ag21Exo notably alleviated the apoptosis of ovarian granulosa cells and improved the ovarian reserve and fertility in POI mice. Conclusion Our findings illustrate that activating miR-21 through Agomir21-Exo could improve the function of ovarian granulosa cells. The GelMA-Ag21Exo enhanced the exosome-based therapeutic efficacy of the Agomir21-Exo in vivo. These findings provide a novel and promising treatment strategy for POI patients.
Collapse
Affiliation(s)
| | | | | | - Xingyu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ao Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunhui Lai
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
2
|
Avdeev M, Tal S, Fishman R, Vortman Y, Shanas U. THE EFFECT OF 4-VINYLCYCLOHEXENE DIEPOXIDE ON FEMALE NUTRIA ( MYOCASTOR COYPUS) FERTILITY IN CAPTIVITY-A PILOT STUDY. J Zoo Wildl Med 2024; 55:412-423. [PMID: 38875197 DOI: 10.1638/2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 06/16/2024] Open
Abstract
The nutria (Myocastor coypus) is a globally widespread invasive species. Attempts to eradicate nutria by shooting, poisoning, and trapping have been mostly unsuccessful, leading to calls for the development of new control methods. The compound 4-vinylcyclohexene diepoxide (VCD) is known to cause follicular atresia in mammals and may control conception when administered orally. It was hypothesized that VCD administered PO will cause follicular destruction in female nutria. VCD (250 mg/kg PO) was administered or coconut oil, as a control, to five nutria females each for 12 d. Sixty days following VCD exposure, males were introduced to the females. Over the following 7 mon, the effect of VCD on nutria fertility was assessed by conducting ultrasound monitoring to determine pregnancy status and measuring blood serum progesterone and estradiol levels. Finally, after performing ovariectomies, viable follicles were counted on histologic ovarian cortical sections. It was found that the female estrous cycles became synchronized, suggesting a Whitten effect in this species. Also, an increase in the females' serum progesterone levels following the introduction of males occurred, suggesting a male presence effect. Orally administered doses of 250 mg/kg VCD for 12 d had no significant effect on nutria pregnancy rates or on the number of follicles in the ovaries examined. Further studies, using a higher dose or longer administration period, are necessary to conclude whether orally administered VCD can be used as a contraceptive agent for nutria.
Collapse
Affiliation(s)
- Michal Avdeev
- Department of Evolutionary and Environmental Biology, University of Haifa, Mount Carmel, Haifa 3498838, Israel,
| | - Smadar Tal
- Department of Animal Science, Tel Hai College, Upper Galilee 1220800, Israel
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ruth Fishman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Yoni Vortman
- Department of Animal Science, Tel Hai College, Upper Galilee 1220800, Israel
| | - Uri Shanas
- Department of Evolutionary and Environmental Biology, University of Haifa, Mount Carmel, Haifa 3498838, Israel
- Department of Biology and Environment, University of Haifa-Oranim, Oranim, Tivon 3600600, Israel
| |
Collapse
|
3
|
Li Y, He R, Qin X, Zhu Q, Ma L, Liang X. Transcriptome analysis during 4-vinylcyclohexene diepoxide exposure-induced premature ovarian insufficiency in mice. PeerJ 2024; 12:e17251. [PMID: 38646488 PMCID: PMC11032656 DOI: 10.7717/peerj.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
The occupational chemical 4-Vinylcyclohexene diepoxide (VCD) is a reproductively toxic environmental pollutant that causes follicular failure, leading to premature ovarian insufficiency (POI), which significantly impacts a woman's physical health and fertility. Investigating VCD's pathogenic mechanisms can offer insights for the prevention of ovarian impairment and the treatment of POI. This study established a mouse model of POI through intraperitoneal injection of VCD into female C57BL/6 mice for 15 days. The results were then compared with those of the control group, including a comparison of phenotypic characteristics and transcriptome differences, at two time points: day 15 and day 30. Through a comprehensive analysis of differentially expressed genes (DEGs), key genes were identified and validated some using RT-PCR. The results revealed significant impacts on sex hormone levels, follicle number, and the estrous cycle in VCD-induced POI mice on both day 15 and day 30. The DEGs and enrichment results obtained on day 15 were not as significant as those obtained on day 30. The results of this study provide a preliminary indication that steroid hormone synthesis, DNA damage repair, and impaired oocyte mitosis are pivotal in VCD-mediated ovarian dysfunction. This dysfunction may have been caused by VCD damage to the primordial follicular pool, impairing follicular development and aggravating ovarian damage over time, making it gradually difficult for the ovaries to perform their normal functions.
Collapse
Affiliation(s)
- Yi Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Ruifen He
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Qin
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qinying Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Liangjian Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolei Liang
- Gansu Provincial Clinical Research Center for Gynecological Oncology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Li A, Li F, Song W, Lei ZL, Zhou CY, Zhang X, Sun QY, Zhang Q, Zhang T. Maternal exposure to 4-vinylcyclohexene diepoxide during pregnancy leads to disorder of gut microbiota and bile acid metabolism in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115811. [PMID: 38086265 DOI: 10.1016/j.ecoenv.2023.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our previous study reveals that maternal exposure to 4-vinylcyclohexene diepoxide (VCD) during pregnancy causes insufficient ovarian follicle reserve and decreased fertility in offspring. The present study aims to further explore the reasons for the significant decline of fecundity in mice caused by VCD, and to clarify the changes of gut microbiota and microbial metabolites in F1 mice. The ovarian metabolomics, gut microbiota and microbial metabolites were analyzed. The results of ovarian metabolomics analysis showed that maternal VCD exposure during pregnancy significantly reduced the concentration of carnitine in the ovaries of F1 mice, while supplementation with carnitine (isovalerylcarnitine and valerylcarnitine) significantly increased the number of ovulation. The results of 16 S rDNA-seq and microbial metabolites analysis showed that maternal VCD exposure during pregnancy caused disordered gut microbiota, increased abundance of Parabacteroides and Flexispira bacteria that are involved in secondary bile acid synthesis. The concentrations of NorDCA, LCA-3S, DCA and other secondary bile acids increased significantly. Our results indicate that maternal exposure to VCD during pregnancy leads to disorder in gut microbiota and bile acid metabolism in F1 mice, accompanying with decreased ovarian function, providing further evidence that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on offspring.
Collapse
Affiliation(s)
- Ang Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Wei Song
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zi-Li Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chang-Yin Zhou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xue Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Qin Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
5
|
Use of biomarker data and metabolite relative potencies to support derivation of noncancer reference values based on the reproductive and developmental toxicity effects of 1,3-butadiene. Regul Toxicol Pharmacol 2022; 134:105239. [DOI: 10.1016/j.yrtph.2022.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
6
|
Xu H, Xia Y, Qin J, Xu J, Li C, Wang Y. Effects of low intensity pulsed ultrasound on expression of B-cell lymphoma-2 and BCL2-Associated X in premature ovarian failure mice induced by 4-vinylcyclohexene diepoxide. Reprod Biol Endocrinol 2021; 19:113. [PMID: 34284777 PMCID: PMC8290625 DOI: 10.1186/s12958-021-00799-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a common disease in the field of Gynecology. Low intensity pulsed ultrasound (LIPUS) can promote tissue repair and improve function. This study was performed to determine the effects of LIPUS on granulosa cells (GCs) apoptosis and protein expression of B-cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) in 4-vinylcyclohexene diepoxide (VCD)-induced POF mice and investigate the mechanisms of LIPUS on ovarian function and reserve capacity. METHODS The current POF mice model was administrated with VCD (160 mg/kg) by intraperitoneal injection for 15 consecutive days. The mice were divided into the POF group, LIPUS group and control group. In the LIPUS group, the right ovary of mice was treated by LIPUS (acoustic intensity was 200 mW/cm2, frequency was 0.3 MHz, and duty cycle was 20%) for 20 min, 15 consecutive days from day 16. The mice of the POF group and control group were treated without ultrasonic output. The basic observation and body weight were recorded. Hematoxylin and eosin staining (H&E staining) and enzyme-linked immunosorbent assay (ELISA) were applied to detect ovarian follicle development, ovarian morphology and sex hormone secretion. Ovarian GCs apoptosis was detected by TUNEL assay and immunohistochemistry. RESULTS The results showed that VCD can induce estrus cycle disorder, follicular atresia, sex hormone secretion decreased and GCs apoptosis in mice to establish POF model successfully. LIPUS significantly promoted follicular development, increased sex hormone secretion, inhibited excessive follicular atresia and GCs apoptosis. The mechanism might be achieved by increasing the protein expression of Bcl-2 and decreasing the expression of Bax in ovaries. CONCLUSIONS LIPUS can improve the POF induced by VCD. These findings have the potential to provide novel methodological foundation for the future research, which help treat POF patients in the clinic.
Collapse
Affiliation(s)
- Haopeng Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yi Xia
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Juan Qin
- Department of Gynaecology, Guiyang Maternal and Child Health Hospital, Guizhou, 550003, China
| | - Jie Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Chongyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
7
|
Cao LB, Liu HB, Lu G, Lv Y, Leung CK, Du YZ, Wang WM, Xiong ZQ, Su XW, Li HJ, Chen ZJ, Ma JL, Chan WY. Hormone-Like Effects of 4-Vinylcyclohexene Diepoxide on Follicular Development. Front Cell Dev Biol 2020; 8:587. [PMID: 32850784 PMCID: PMC7412635 DOI: 10.3389/fcell.2020.00587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background 4-vinylcyclohexene diepoxide (VCD) has long been considered a hazardous occupational chemical that promotes ovarian failure. However, VCD is also used as a research compound to chemically induce animal models of premature ovarian insufficiency (POI), and in related work we unexpectedly found that VCD apparently exhibits both dose- and duration-dependent opposing, hormone-like effects on the maintenance of the primordial follicle pool, follicle development, and ovulation induction. Results We conducted experiments with cultured murine ovaries and performed transplantation experiments using postnatal day (PD) 2 and PD12 mice and found that low-dose, short-term exposure to VCD (VCDlow) actually protects the primordial/primary follicle pool and improves the functional ovarian reserve (FOR) by disrupting follicular atresia. VCDlow inhibits follicular apoptosis and regulates the Pten-PI3K-Foxo3a pathway. Short-term VCD exposure in vivo (80 mg/kg, 5 days) significantly increases the number of superovulated metaphase II oocytes, preovulatory follicles, and corpus luteum in middle-aged mice with diminished ovarian reserve (DOR). We demonstrate that low-dose but not high-dose VCD promotes aromatase levels in granulosa cells (GCs), thereby enhancing the levels of estradiol secretion. Conclusion Our study illustrates a previously unappreciated, hormone-like action for the occupational “ovotoxin” molecule VCD and strongly suggests that VCDlow should be explored for its potential utility for treating human ovarian follicular development disorders, including subfertility in perimenopausal women.
Collapse
Affiliation(s)
- Lian Bao Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Hong Bin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yue Lv
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Chi Kwan Leung
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Yan Zhi Du
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wu Ming Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Zhi Qiang Xiong
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Xian Wei Su
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Hong Jian Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Long Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| |
Collapse
|
8
|
Mecklenburg L, Luetjens CM, Weinbauer GF. Toxicologic Pathology Forum*: Opinion on Sexual Maturity and Fertility Assessment in Long-tailed Macaques ( Macaca fascicularis) in Nonclinical Safety Studies. Toxicol Pathol 2019; 47:444-460. [PMID: 30898082 DOI: 10.1177/0192623319831009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
If nonhuman primates represent the only relevant species for nonclinical safety evaluation of biotechnology-derived products, male and female fertility effects can be assessed in repeat dose toxicity studies given that sexually mature monkeys are used. This opinion piece provides recommendations for determining sexual maturity and when/how fertility assessments should be conducted in the cynomolgus monkey. Male sexual maturity should be proven by presence of sperm in a semen sample, female sexual maturity by at least two consecutive menstrual bleedings. As per regulatory guidance, default parameters for an indirect assessment of fertility in both sexes are reproductive organ weight and histopathology. Beyond default parameters, daily vaginal swabs are recommended for females, and for males, it is recommended to include blood collections (for potential analysis of reproductive hormones), testis volume sonography, and collection of frozen testis samples at necropsy. Only if there is a cause for concern, blood collection for potential reproductive hormone analysis should be conducted in females and semen analysis in males. In principle, adverse reproductive effects can be detected within 4 weeks of test article administration, depending on study design and reproductive end point chosen. Therefore, there are options for addressing reproductive toxicity aspects with studies of less than 3 months dosing duration. *This is an opinion article submitted to the Toxicologic Pathology Forum. It represents the views of the authors. It does not constitute an official position of the Society of Toxicologic Pathology, British Society of Toxicological Pathology, or European Society of Toxicologic Pathology, and the views expressed might not reflect the best practices recommended by these Societies. This article should not be construed to represent the policies, positions, or opinions of their respective organizations, employers, or regulatory agencies.
Collapse
|
9
|
Taketa Y, Horie K, Goto T, Ohta E, Nakano-Ito K, Hayakawa K, Seki Y, Goto A, Hosokawa S. Histopathologic Characterization of Mifepristone-induced Ovarian Toxicity in Cynomolgus Monkeys. Toxicol Pathol 2018; 46:283-289. [PMID: 29558845 DOI: 10.1177/0192623318763586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mifepristone, which is an orally active synthetic steroid with antiprogesterone activity, is known as an ovarian toxicant. Because the available data regarding the histopathologic characteristics of ovarian toxicity in nonhuman primates are limited, the present study was undertaken in order to investigate detailed histopathologic changes accompanying mifepristone-induced ovarian toxicity and its relationship to changes in menstrual cycle and circulating sex steroid hormone. Twenty mg/kg of mifepristone was orally administered daily to 4 cynomolgus monkeys for 2 months. Mifepristone inhibited the cyclic increases in circulating estradiol-17β and progesterone levels with associated absence of menstruation. Histopathologically, the ovary in the treated animals showed follicular phase without changes in the percentage of atretic antral follicles, and reduced endometrial thickness was noted in the uterus. These changes indicated that a certain degree of antral follicle development had been retained in spite of the menstrual cycle having been arrested in mifepristone-treated animals. Our investigation suggested that it is important to perform detailed histopathologic examination of reproductive organs with precise knowledge of the characteristics of each menstrual stage to detect ovarian toxicity in nonhuman primates. Monitoring menstrual signs and circulating sex steroid hormone levels provides additional evidence for the investigation of the mechanism of ovarian toxicity.
Collapse
Affiliation(s)
- Yoshikazu Taketa
- 1 Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kanta Horie
- 2 Translational Medicine, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Tetsuya Goto
- 3 Preclinical Safety Research Unit, Tsukuba R&D Support Division, Sunplanet Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Etsuko Ohta
- 1 Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kyoko Nakano-Ito
- 1 Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kazuhiro Hayakawa
- 1 Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yuki Seki
- 1 Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Aya Goto
- 1 Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Satoru Hosokawa
- 1 Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Jacob J, Buckle A. Use of Anticoagulant Rodenticides in Different Applications Around the World. EMERGING TOPICS IN ECOTOXICOLOGY 2018. [DOI: 10.1007/978-3-319-64377-9_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ 2017; 8:33. [PMID: 29065927 PMCID: PMC5655818 DOI: 10.1186/s13293-017-0152-8] [Citation(s) in RCA: 494] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022] Open
Abstract
Epidemiologic studies have previously suggested that premenopausal females have reduced incidence of cardiovascular disease (CVD) when compared to age-matched males, and the incidence and severity of CVD increases postmenopause. The lower incidence of cardiovascular disease in women during reproductive age is attributed at least in part to estrogen (E2). E2 binds to the traditional E2 receptors (ERs), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ), as well as the more recently identified G-protein-coupled ER (GPR30), and can exert both genomic and non-genomic actions. This review summarizes the protective role of E2 and its receptors in the cardiovascular system and discusses its underlying mechanisms with an emphasis on oxidative stress, fibrosis, angiogenesis, and vascular function. This review also presents the sexual dimorphic role of ERs in modulating E2 action in cardiovascular disease. The controversies surrounding the clinical use of exogenous E2 as a therapeutic agent for cardiovascular disease in women due to the possible risks of thrombotic events, cancers, and arrhythmia are also discussed. Endogenous local E2 biosynthesis from the conversion of testosterone to E2 via aromatase enzyme offers a novel therapeutic paradigm. Targeting specific ERs in the cardiovascular system may result in novel and possibly safer therapeutic options for cardiovascular protection.
Collapse
Affiliation(s)
- Andrea Iorga
- Present address: Department of Medicine, Division of Gastroenterology/Liver, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Christine M Cunningham
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA
| | - Shayan Moazeni
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA
| | - Gregoire Ruffenach
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
12
|
Mogheiseh A, Khafi MSA, Ahmadi N, Farkhani SR, Bandariyan E. Ultrasonographic and histopathologic changes following injection of neutral zinc gluconate in dog’s ovaries. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Abolaji AO, Toloyai PE, Odeleye TD, Akinduro S, Teixeira Rocha JB, Farombi EO. Hepatic and renal toxicological evaluations of an industrial ovotoxic chemical, 4-vinylcyclohexene diepoxide, in both sexes of Wistar rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:28-40. [PMID: 27258136 DOI: 10.1016/j.etap.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
4-Vinylcyclohexene diepoxide (VCD) is an industrial occupational health hazard chemical because it induces ovotoxicity in rodents. The current study investigated the impacts of VCD on selected hepatic and renal markers of oxidative stress and inflammation in both sexes of Wistar rats. Thus, male and female rats were randomly distributed into four groups of ten rats per group, and dosed orally with VCD for 28days. The control male and female groups of rats received corn oil only, while each of the three remaining groups of both sexes of rats received VCD (100, 250 and 500mg/kg BW) respectively. Thereafter, biomarkers of hepatic and renal oxidative damage, inflammation and immunohistochemical expressions of iNOS, COX-2, caspase-9 and caspase-3 were evaluated. The results revealed that VCD increased markers of liver and kidney functions, oxidative damage and inflammation, and disrupted the antioxidant homeostasis of the rats (p<0.05). Lastly, VCD enhanced the immunohistochemical expressions of iNOS, COX-2, caspase-9 and caspase-3 in the liver of the rats. Thus, our data imply that VCD induced toxicity in the liver and kidney of rats via the combined impacts of oxidative damage and inflammation.
Collapse
Affiliation(s)
- Amos Olalekan Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Pere-Ebi Toloyai
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Titilope Deborah Odeleye
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Susan Akinduro
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao Batista Teixeira Rocha
- Departamento de Bioquimica e Biologia Molecular, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Ebenezer Olatunde Farombi
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
14
|
Liu W, Wang LY, Xing XX, Fan GW. Conditions and possible mechanisms of VCD-induced ovarian failure. Altern Lab Anim 2016; 43:385-92. [PMID: 26753941 DOI: 10.1177/026119291504300606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Perimenopause is an important period in women's lives, in which they experience a series of physiological changes. Current animal models of perimenopause fail to adequately replicate this particular stage in female life, while current in vitro models are too simplistic and cannot account for systemic effects. Neither the naturally-ageing animal model, nor the ovariectomised animal model, mimic the natural transitional process that is the menopause. In vivo and in vitro studies have confirmed that the occupational chemical, 4-vinylcyclohexene diepoxide (VCD), can cause selective destruction of the ovarian primordial and primary follicles of rats and mice by accelerating the apoptotic process, which successfully mimics the perimenopausal state in women. However, it is the in vivo VCD-induced rodent perimenopausal models that are currently the most widely used in research, rather than any of the available in vitro models. Studies on the mechanisms involved have found that VCD induces ovotoxicity via interference with the c-kit/kit ligand and apoptotic signalling pathways, among others. Overall, the VCD-induced perimenopausal animal models have provided some insight into female perimenopause, but they are far from ideal models of the human situation.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ling-Yan Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Xue Xing
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guan-Wei Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Zanni PC, Negri M, Salci TP, Bonfim-Mendonça PDS, Kioshima ES, Svidzinski TI, Consolaro ME. Animal models for the effective development of atrophic vaginitis therapies: possibilities and limitations. Expert Opin Drug Discov 2014; 9:269-81. [PMID: 24397873 DOI: 10.1517/17460441.2014.877883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Vaginal atrophy (VA) is an inflammation of the vagina that develops when there is a significant decrease in levels of the estrogen. Prolonged periods of hypoestrogenism may induce severe VA and treatment is essential. This is a significant problem which requires more focused attention for the development of existing and future therapies. AREAS COVERED This review evaluates the suitable animal models of VA, including: mice, rodents and non-human primates. It focuses particularly on the possibilities and limitations of these in vivo models for the effective development of VA therapies. EXPERT OPINION Hormone replacement therapy (HRT) has been prescribed and successfully used for VA. However, some studies have shown that HRT may be linked to an increased risk of breast cancer, coronary heart diseases and others risks. Thus, there is a growing interest in effective and safe alternatives to VA symptoms. There are, however, a number of things that must be considered for future drug discovery efforts. One major consideration is what animal model should be used and whether the model is appropriate for the study aim. Similarly, research studies must also consider the influencing factors on these animal models, so that these models can effectively mimic the actual disease. The authors also highlight the need to standardize research parameters to produce more reliable and reproducible data.
Collapse
Affiliation(s)
- Pamela Cmd Zanni
- State University of Maringá, Department of Clinical Analysis and Biomedicine , Maringá , Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Sobinoff AP, Beckett EL, Jarnicki AG, Sutherland JM, McCluskey A, Hansbro PM, McLaughlin EA. Scrambled and fried: cigarette smoke exposure causes antral follicle destruction and oocyte dysfunction through oxidative stress. Toxicol Appl Pharmacol 2013; 271:156-67. [PMID: 23693141 DOI: 10.1016/j.taap.2013.05.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 01/09/2023]
Abstract
Cigarette smoke is a reproductive hazard associated with pre-mature reproductive senescence and reduced clinical pregnancy rates in female smokers. Despite an increased awareness of the adverse effects of cigarette smoke exposure on systemic health, many women remain unaware of the adverse effects of cigarette smoke on female fertility. This issue is compounded by our limited understanding of the molecular mechanisms behind cigarette smoke induced infertility. In this study we used a direct nasal exposure mouse model of cigarette smoke-induced chronic obstructive pulmonary disease to characterise mechanisms of cigarette-smoke induced ovotoxicity. Cigarette smoke exposure caused increased levels of primordial follicle depletion, antral follicle oocyte apoptosis and oxidative stress in exposed ovaries, resulting in fewer follicles available for ovulation. Evidence of oxidative stress also persisted in ovulated oocytes which escaped destruction, with increased levels of mitochondrial ROS and lipid peroxidation resulting in reduced fertilisation potential. Microarray analysis of ovarian tissue correlated these insults with a complex mechanism of ovotoxicity involving genes associated with detoxification, inflammation, follicular activation, immune cell mediated apoptosis and membrane organisation. In particular, the phase I detoxifying enzyme cyp2e1 was found to be significantly up-regulated in developing oocytes; an enzyme known to cause molecular bioactivation resulting in oxidative stress. Our results provide a preliminary model of cigarette smoke induced sub-fertility through cyp2e1 bioactivation and oxidative stress, resulting in developing follicle depletion and oocyte dysfunction.
Collapse
Affiliation(s)
- A P Sobinoff
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Estrogen is a potent steroid with pleiotropic effects, which have yet to be fully elucidated. Estrogen has both nuclear and non-nuclear effects. The rapid response to estrogen, which involves a membrane associated estrogen receptor(ER) and is protective, involves signaling through PI3K, Akt, and ERK 1/2. The nuclear response is much slower, as the ER-estrogen complex moves to the nucleus, where it functions as a transcription factor, both activating and repressing gene expression. Several different ERs regulate the specificity of response to estrogen, and appear to have specific effects in cardiac remodeling and the response to injury. However, much remains to be understood about the selectivity of these receptors and their specific effects on gene expression. Basic studies have demonstrated that estrogen treatment prevents apoptosis and necrosis of cardiac and endothelial cells. Estrogen also attenuates pathologic cardiac hypertrophy. Estrogen may have great benefit in aging as an anti-inflammatory agent. However, clinical investigations of estrogen have had mixed results, and not shown the clear-cut benefit of more basic investigations. This can be explained in part by differences in study design: in basic studies estrogen treatment was used immediately or shortly after ovariectomy, while in some key clinical trials, estrogen was given years after menopause. Further basic research into the underlying molecular mechanisms of estrogen's actions is essential to provide a better comprehension of the many properties of this powerful hormone.
Collapse
Affiliation(s)
- A A Knowlton
- Molecular and Cellular Cardiology, Department of Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
18
|
Kirman C, Grant R. Quantitative human health risk assessment for 1,3-butadiene based upon ovarian effects in rodents. Regul Toxicol Pharmacol 2012; 62:371-84. [DOI: 10.1016/j.yrtph.2011.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 10/18/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
19
|
Béranger R, Hoffmann P, Christin-Maitre S, Bonneterre V. Occupational exposures to chemicals as a possible etiology in premature ovarian failure: a critical analysis of the literature. Reprod Toxicol 2012; 33:269-79. [PMID: 22281303 DOI: 10.1016/j.reprotox.2012.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 01/25/2023]
Abstract
Premature ovarian failure (POF) is a cause of infertility that affects about 1% of women under 40, and is considered as idiopathic in 75% of cases. An occupational chemical origin has been identified at least once with 2-bromopropane, but human studies are rare and experimental data are sparse. This review aims to carry out a critical synthesis of knowledge of the chemical agents likely to affect follicular stock in humans and/or animals, by direct toxicity to follicles, or by increasing their recruitments. Of 140 chemical agents (or groups) studied, 20 have been identified as potentially damaging to the ovarian reserve. For the majority of toxic agents, only experimental data are currently available. At least four of these agents are likely to lead to POF in descendents (ethylene glycol methyl ether; 2,2-bis(bromomethyl)-1,3-propanediol; benzo[a]pyrene; dimethylbenzantracene). We propose a strategy aiming to encourage progress in identifying occupational factors responsible for POF.
Collapse
Affiliation(s)
- Rémi Béranger
- UJF-Grenoble 1/CNRS/TIMC-IMAG UMR 5525 (EPSP Team: Environnement et Prédiction de la Santé des Populations), Grenoble F-38041, France.
| | | | | | | |
Collapse
|
20
|
Van Kempen TA, Milner TA, Waters EM. Accelerated ovarian failure: a novel, chemically induced animal model of menopause. Brain Res 2011; 1379:176-87. [PMID: 21211517 PMCID: PMC3078694 DOI: 10.1016/j.brainres.2010.12.064] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Current rodent models of menopause fail to adequately recapitulate the menopause transition. The intact aging model fails to achieve very low estrogen levels, and the ovariectomy model lacks a perimenopause phase. A new rodent model of accelerated ovarian failure (AOF) successfully replicates human perimenopause and postmenopause, including estrous acyclicity and fluctuating, followed by undetectable, estrogen levels, and allows for the dissociation of the effects of hormone levels from the effects of aging. In this model, an ovotoxic chemical, 4-vinylcyclohexene diepoxide (VCD), selective for primary and primordial follicles, is injected intraperitonelly in animals for 15 days. As the mature follicle population is depleted through natural cycling, ovarian failure follows increasing periods of acyclity. Administered at low doses, VCD specifically causes apoptotic cell death of primordial follicles but does not affect other peripheral tissues, including the liver and spleen, nor does it affect brain inflammation markers. In addition to reducing confounds associated with genetic and surgical manipulations, the AOF model maintains the presence of ovarian tissue which importantly parallels to the menopause transition in humans. The VCD injection procedure can be applied to studies using transgenic or knockout mice strains, or in other disease-state models (e.g., ischemia, atherosclerosis, or diabetes). This AOF model of menopause will generate new insights into women's health particularly in determining the critical periods (i.e., a window of opportunity) during perimenopause for restoring ovarian hormones for the most efficacious effect on memory and mood disorders as well as other menopausal symptoms.
Collapse
Affiliation(s)
- Tracey A Van Kempen
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | |
Collapse
|
21
|
The effect of diet and cardiovascular risk on ovarian aging in cynomolgus monkeys (Macaca fascicularis). Menopause 2010; 17:741-8. [PMID: 20458254 DOI: 10.1097/gme.0b013e3181d20cd2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to determine the relationships among dietary protein source, cardiovascular risk, reproductive hormones, and ovarian aging. METHODS Adult female cynomolgus monkeys (Macaca fascicularis) were assigned randomly to one of two diets containing saturated fat and cholesterol, differing only by protein source: (1) casein-lactalbumin (n = 29) or (2) soy protein with isoflavones (n = 32). Cardiovascular risk markers and reproductive hormones were measured at baseline and after 32 months of treatment, at which time the ovaries were removed and serially sectioned and ovarian follicles were counted in every 100th section. RESULTS Casein-lactalbumin-fed monkeys had fewer primordial, primary, and secondary follicles (all P values < 0.05) than did their soy-fed counterparts. Antimüllerian hormone was significantly correlated with all follicle types (r values > or = 0.66, P < 0.001) for casein-fed monkeys and was significantly correlated with primary (rsoy = 0.47, P = 0.005) and secondary (rsoy = 0.45, P = 0.007) follicles in soy-fed monkeys. No significant associations were seen between any of the other reproductive hormones measured and follicle counts. Casein-lactalbumin-fed monkeys had a more atherogenic lipoprotein profile and increased atherosclerosis extent (P < 0.05), but despite these differences in cardiovascular risk between monkeys fed with casein-lactalbumin and monkeys fed with soy, none of the individual cardiovascular risk markers measured in this study explained the relationship between dietary protein source and follicle counts (linear regression, all P values > 0.05). CONCLUSIONS Diet influences the rate of follicular depletion in cynomolgus macaques; however, the mechanism for this effect remains undetermined.
Collapse
|
22
|
Appt SE, Ethun KF. Reproductive aging and risk for chronic disease: Insights from studies of nonhuman primates. Maturitas 2010; 67:7-14. [PMID: 20430541 PMCID: PMC2941880 DOI: 10.1016/j.maturitas.2010.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/08/2023]
Abstract
Reproductive aging and ovarian senescence have considerable public health relevance because they are associated with increased risk for coronary heart disease (CHD), osteoporosis and other degenerative conditions including cognitive decline and potentially the metabolic syndrome. It has been suggested that the hormonal dysregulation that occurs during the perimenopausal transition may play a role in the initiation of pathobiological changes (e.g., adverse lipid profiles, atherosclerotic plaques) that will increase risk for chronic disease (e.g., CHD) during the postmenopausal years. Moreover, these early changes are suspected to establish a trajectory of disease progression that may be difficult to alter if interventions are not begun until after menopause. Even a slight increase in the rate of disease progression during the pre- or perimenopausal years could have substantial consequences for health and quality of life over the postmenopausal lifespan. Thus, the years leading up to menopause may offer a "critical window" for interventions aimed at reducing the postmenopausal disease burden. The relationship between perimenopausal hormonal dysregulation and the risk for chronic disease is poorly understood due, in large part, to the lack of appropriate animal models of the perimenopausal transition and natural menopause. In this review we assesses studies of nonhuman primates (NHPs) evaluated in various reproductive stages (naturally pre-, peri- and postmenopausal, surgically menopausal) and their contribution to our understanding about risk factors for chronic disease. Finally, because large numbers of naturally perimenopausal and menopausal NHPs are not available for research at present, experimental approaches that have the potential to hasten the onset of the perimenopausal transition will be described.
Collapse
Affiliation(s)
- Susan E Appt
- Wake Forest University School of Medicine, Department of Pathology (Comparative Medicine), Wake Forest University Primate Center, Winston-Salem, NC 27157-1040, USA.
| | | |
Collapse
|
23
|
Miller VM, Black DM, Brinton EA, Budoff MJ, Cedars MI, Hodis HN, Lobo RA, Manson JE, Merriam GR, Naftolin F, Santoro N, Taylor HS, Harman SM. Using basic science to design a clinical trial: baseline characteristics of women enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). J Cardiovasc Transl Res 2009; 2:228-39. [PMID: 19668346 PMCID: PMC2721728 DOI: 10.1007/s12265-009-9104-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/27/2009] [Indexed: 12/24/2022]
Abstract
Observational and epidemiological studies suggest that menopausal hormone therapy (MHT) reduces cardiovascular disease (CVD) risk. However, results from prospective trials showed neutral or adverse effects most likely due to differences in participant demographics, such as age, timing of initiation of treatment, and preexisting cardiovascular disease, which reflected in part the lack of basic science information on mechanisms of action of hormones on the vasculature at the time clinical trials were designed. The Kronos Early Estrogen Replacement Study (KEEPS) is a prospective, randomized, controlled trial designed, using findings from basic science studies, to test the hypothesis that MHT when initiated early in menopause reduces progression of atherosclerosis. KEEPS participants are younger, healthier, and within 3 years of menopause thus matching more closely demographics of women in prior observational and epidemiological studies than women in the Women's Health Initiative hormone trials. KEEPS will provide information relevant to the critical timing hypothesis for MHT use in reducing risk for CVD.
Collapse
Affiliation(s)
- V M Miller
- Medical Science 4-62, College of Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Jacob J, Singleton GR, Hinds LA. Fertility control of rodent pests. WILDLIFE RESEARCH 2008. [DOI: 10.1071/wr07129] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ricefield rats (Rattus argentiventer) in south-east Asian rice fields and house mice (Mus domesticus) in Australian grain fields are major pest species. They cause damage before and after harvest and carry zoonotic diseases. For both species, management techniques have been pursued using the approach of immunocontraceptive vaccination. We review results from a series of enclosure and field studies conducted with these species to assess the effects of fertility control in small rodents. In the experiments, fertility control was simulated by tubal ligation, ovariectomy or progesterone treatment. A once-off sterilisation of 50–75% of enclosed founder females considerably reduced reproductive output of ricefield rat populations until the end of the reproductive period. In house mice, similar success was achieved when a sterility level of 67% of female founders and offspring was maintained. Repeated antifertility treatments are required because of the much longer breeding period of house mice versus ricefield rats. Comparing the results of enclosure trials with the outcome of simulation models suggests that partial compensation of treatment effects can occur through enhanced reproduction of the remaining fertile females and improved survival of juveniles. However, such compensatory effects as well as behavioural consequences of sterility in field populations are not likely to prevent the management effect at the population level. The challenge for effective fertility control of small rodents in the field is the wide-scale delivery of an antifertility treatment to founders at the beginning of the breeding season and to fertile immigrants that are recruited into the population, which otherwise contribute to the reproductive output at the population level. Future research efforts should focus on species-specific techniques and on agents that can be effectively delivered via bait.
Collapse
|