1
|
Ao J, Zhu W, Jiang W, Zeng X, Qiu W, Yin S, Wang W, Zhang J. The mixture of non-persistent endocrine-disrupting chemicals in relation to endometriosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117129. [PMID: 39388968 DOI: 10.1016/j.ecoenv.2024.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Non-persistent endocrine-disrupting chemicals (EDCs) are of significant concern due to their reproductive toxicity. Previous research reported a relationship between a single type of EDCs and endometriosis. Yet, evidence regarding mixed exposure of multiple categories of EDCs is scarce. Between 2014 and 2018, our hospital-based case-control study recruited 238 endometriosis cases diagnosed by laparoscopy and 296 normal controls in China. Seventeen non-persistent EDCs (phthalates and bisphenols) were measured in urine. The association of single EDC with endometriosis was estimated using logistic regression, while the association between EDC mixture and endometriosis was modeled by Bayesian kernel machine regression (BKMR), quantile-based g-computation (q-gcomp), and principal component analysis (PCA). Consistent results were observed in both single and mixture models where phthalates and bisphenols were associated with increased risk of endometriosis (mixture effect: adjusted odds ratio (aOR)=1.44, 1.22-1.70) and the major contributors were bisphenol A (BPA) and the metabolites of di(2-ethylhexyl) phthalate (DEHP). Interaction analysis showed that bisphenols exhibited significant synergistic interactions with phthalates. Our results suggest that non-persistent EDCs are associated with endometriosis but the underlying mechanisms remain to be elucidated. Our finding may have important public health implications in preventing endometriosis.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenting Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wen Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojing Zeng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wei Qiu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengju Yin
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Visser N, Silva AV, Tarvainen I, Damdimopoulos A, Davey E, Roos K, Björvang RD, Kallak TK, Lager S, Lavogina D, Laws M, Piltonen T, Salumets A, Flaws JA, Öberg M, Velthut-Meikas A, Damdimopoulou P, Olovsson M. Epidemiologically relevant phthalates affect human endometrial cells in vitro through cell specific gene expression changes related to the cytoskeleton and mitochondria. Reprod Toxicol 2024; 128:108660. [PMID: 38992643 DOI: 10.1016/j.reprotox.2024.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Phthalates are endocrine disrupting chemicals (EDCs) found in common consumer products such as soft plastics and cosmetics. Although the knowledge regarding the adverse effects of phthalates on female fertility are accumulating, information on the hormone sensitive endometrium is still scarce. Here, we studied the effects of phthalates on endometrial cell proliferation and gene expression. Human endometrial primary epithelial and stromal cells were isolated from healthy fertile-aged women (n=3), and were compared to endometrial cell lines T-HESC and Ishikawa. Three different epidemiologically relevant phthalate mixtures were used, defined by urine samples in the Midlife Women Health Study (MWHS) cohort. Mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was used as a single phthalate control. Cells were harvested for proliferation testing and transcriptomic analyses after 24 h exposure. Even though all cell models responded differently to the phthalate exposures, many overlapping differentially expressed genes (DEGs, FDR<0.1), related to cell adhesion, cytoskeleton and mitochondria were found in all cell types. The qPCR analysis confirmed that MEHHP significantly affected cell adhesion gene vinculin (VCL) and NADH:ubiquinone oxidoreductase subunit B7 (NDUFB7), important for oxidative phosphorylation. Benchmark dose modelling showed that MEHHP had significant concentration-dependent effects on cytoskeleton gene actin-beta (ACTB). In conclusion, short 24 h phthalate exposures significantly altered gene expression cell-specifically in human endometrial cells, with six shared DEGs. The mixture effects were similar to those of MEHHP, suggesting MEHHP could be the main driver in the mixture. Impact of phthalate exposures on endometrial functions including receptivity should be addressed.
Collapse
Affiliation(s)
- Nadja Visser
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Antero Vieira Silva
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ilari Tarvainen
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden; Department of Obstetrics and Gynaecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki 00029 HUS, Finland
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Eva Davey
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Kristine Roos
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Nova Vita Clinic, Tallinn, Estonia
| | - Richelle D Björvang
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia; Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Terhi Piltonen
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Andres Salumets
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden; Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Mattias Öberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Ribeiro B, Mariana M, Lorigo M, Oliani D, Ramalhinho AC, Cairrao E. Association between the Exposure to Phthalates and the Risk of Endometriosis: An Updated Review. Biomedicines 2024; 12:1932. [PMID: 39200395 PMCID: PMC11352157 DOI: 10.3390/biomedicines12081932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Endometriosis is a chronic gynecological disease, primarily associated with pelvic pain and infertility, that affects approximately 10% of the women of reproductive age. Estrogen plays a central role in endometriosis, and there is growing evidence that endocrine disruptors, such as phthalates, may contribute to its development. This review aimed to determine whether there is a causal relationship between phthalate exposure and the development of endometriosis, as well as the possible effects of phthalates on fertility, by analyzing epidemiological data. After a literature search with a combination of specific terms on this topic, we found that although there are limitations to the current studies, there is a clear association between phthalate exposure and endometriosis. Phthalates can interfere with the cellular processes of the endometrium; specifically, they can bind to PPAR and ER-α and activate TGF-β, promoting different signaling cascades that regulate the expression of specific target genes. This may lead to inflammation, invasion, cytokine alteration, increased oxidative stress, and impaired cell viability and proliferation, culminating in endometriosis. Nevertheless, future research is important to curb the progression and development of endometriosis, and strategies for prevention, diagnosis, and treatment are a priority. In this regard, public policies and recommendations to reduce exposure to phthalates and other endocrine disruptors should be promptly implemented.
Collapse
Affiliation(s)
- Bárbara Ribeiro
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
| | - Melissa Mariana
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
- Faculty of Sciences (FC), University of Beira Interior (UBI), 6201-001 Covilhã, Portugal
| | - Margarida Lorigo
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
| | - Denise Oliani
- Assisted Reproduction Laboratory, Academic Hospital of Cova da Beira, 6200-251 Covilhã, Portugal;
- São José do Rio Preto School of Medicine, Gynaecology and Obstetrics, São José do Rio Preto 15090-000, Brazil
- Cova da Beira Local Unit of Health, 6200-251 Covilhã, Portugal
| | - Ana Cristina Ramalhinho
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
- Cova da Beira Local Unit of Health, 6200-251 Covilhã, Portugal
| | - Elisa Cairrao
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
| |
Collapse
|
4
|
Martínez-Ibarra A, Cerbón M, Martínez-Razo LD, Morales-Pacheco M, Torre-Villalvazo I, Kawa S, Rodríguez-Dorantes M. Impact of DEHP exposure on female reproductive health: Insights into uterine effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104391. [PMID: 38367918 DOI: 10.1016/j.etap.2024.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Several endocrine disrupting compounds released from plastics, including polyfluoroalkyl substances, bisphenols, flame retardants, phthalates and others, are of great concern to human health due to their high toxicity. This review discusses the effects of di-(2-ethylhexyl) phthalate (DEHP), the most common member of the phthalate family, on female reproduction. In vitro and in vivo studies link DEHP exposure to impaired hypothalamic-pituitary-ovarian s (HPO) axis function, alteration of steroid-hormone levels and dysregulation of their receptors, and changes in uterine morphophysiology. In addition, high urinary DEPH levels have been associated with several reproductive disorders in women, including endometriosis, fibromyoma, fetal growth restriction and pregnancy loss. These data suggest that DEHP may be involved in the pathophysiology of various female reproductive diseases. Therefore, exposure to these compounds should be considered a concern in clinician surveillance practices for women at reproductive age and should be regulated to protect their health and that of their progeny.
Collapse
Affiliation(s)
| | - Marco Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | | | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Simón Kawa
- Dirección General del Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | | |
Collapse
|
5
|
Yang S, Yang S, Luo A. Phthalates and uterine disorders. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0159. [PMID: 38452364 DOI: 10.1515/reveh-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Humans are ubiquitously exposed to environmental endocrine disrupting chemicals such as phthalates. Phthalates can migrate out of products and enter the human body through ingestion, inhalation, or dermal application, can have potential estrogenic/antiestrogenic and/or androgenic/antiandrogenic activity, and are involved in many diseases. As a female reproductive organ that is regulated by hormones such as estrogen, progesterone and androgen, the uterus can develop several disorders such as leiomyoma, endometriosis and abnormal bleeding. In this review, we summarize the hormone-like activities of phthalates, in vitro studies of endometrial cells exposed to phthalates, epigenetic modifications in the uterus induced by phthalate exposure, and associations between phthalate exposure and uterine disorders such as leiomyoma and endometriosis. Moreover, we also discuss the current research gaps in understanding the relationship between phthalate exposure and uterine disorders.
Collapse
Affiliation(s)
- Shuhong Yang
- Department of Obstetrics and Gynecology, 10487 National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People's Republic of China
| | - Shuhao Yang
- Department of Obstetrics and Gynecology, 10487 National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People's Republic of China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, 10487 National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People's Republic of China
| |
Collapse
|
6
|
Zhang M, Liu C, Yuan XQ, Yao W, Yao QY, Huang Y, Li NJ, Deng YL, Chen PP, Miao Y, Cui FP, Li YF, Zeng Q. Urinary phthalate metabolites and the risk of endometrial polyp: A pilot study from the TREE cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120711. [PMID: 36427821 DOI: 10.1016/j.envpol.2022.120711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Phthalates, as endocrine disrupting chemicals that can alter the endogenous hormones, may be involved in the incidence of endometrial polyp, a benign hormone-dependent condition. We conducted a pilot case-control study from the Tongji Reproductive and Environmental (TREE) cohort to investigate the associations between phthalate exposures and the risk of endometrial polyp. A total of 40 endometrial polyp patients were matched to 80 controls by age and body mass index in the ratio of 1:2. Two spot urine samples from each subject were quantified for eight phthalate metabolites to enhance exposure assessment. The conditional logistic regression and quantile-based g-computation models were separately used to explore the associations between individual and mixture of urinary phthalate metabolites and the risk of endometrial polyp. After adjusting for covariates, individual chemical analyses showed that urinary monobenzyl phthalate (MBzP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono(2-ethylhexyl) phthalate (MEHHP) and the sum of di(2-ethylhexyl) phthalate (ΣDEHP) were associated with increased risks of endometrial polyp, with adjusted odds ratios ranging from 2.62 (95% CI: 0.88, 7.84) for MECPP to 6.96 (95% CI: 1.87, 25.87) for ΣDEHP comparing the extreme exposure categories (all P for trends <0.05 or = 0.057). These associations still persisted when these exposures were modeled as continuous variables. Chemical mixture analyses showed that a simultaneous one-quartile increase in concentrations of eight phthalate metabolites was associated with an elevated odds ratio of 3.14 (95% CI: 1.49, 6.60) in endometrial polyp. Our data suggests that exposure to individual benzylbutyl phthalate (BBzP) and DEHP, as well as mixture of phthalates is associated with increased risk of endometrial polyp. This may inform public health recommendations and policies to avoid phthalate exposures for improving female reproductive health.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Wen Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Qing-Yun Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Yong Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Ni-Jie Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Dutta S, Banu SK, Arosh JA. Endocrine disruptors and endometriosis. Reprod Toxicol 2023; 115:56-73. [PMID: 36436816 DOI: 10.1016/j.reprotox.2022.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis is a hormone-dependent inflammatory gynecological disease of reproductive-age women. It is clinically and pathologically characterized by the presence of functional endometrium as heterogeneous lesions outside the uterine cavity. The two major symptoms are chronic pelvic pain and infertility, which profoundly affect women's reproductive health and quality of life. This significant individual and public health concerns underscore the importance of understanding the pathogenesis of endometriosis. The environmental endocrine-disrupting chemicals (EDCs) are exogenous agents that interfere with the synthesis, secretion, transport, signaling, or metabolism of hormones responsible for homeostasis, reproduction, and developmental processes. Endometriosis has been potentially linked to exposure to EDCs. In this review, based on the robust literature search, we have selected four endocrine disruptors (i) polychlorinated biphenyls (PCB)s (ii) dioxins (TCDD) (iii) bisphenol A (BPA) and its analogs and (iv) phthalates to elucidate their critical role in the etiopathogenesis of endometriosis. The epidemiological and experimental data discussed in this review indicate that these four EDCs activate multiple intracellular signaling pathways associated with proinflammation, estrogen, progesterone, prostaglandins, cell survival, apoptosis, migration, invasion, and growth of endometriosis. The available information strongly indicates that environmental exposure to EDCs such as PCBs, dioxins, BPA, and phthalates individually or collectively contribute to the pathophysiology of endometriosis. Further understanding of the molecular mechanisms of how these EDCs establish endometriosis and therapeutic strategies to mitigate the effects of these EDCs in the pathogenesis of endometriosis are timely needed. Moreover, understanding the interactive roles of these EDCs in the pathogenesis of endometriosis will help regulate the exposure to these EDCs in reproductive age women.
Collapse
Affiliation(s)
- Sudipta Dutta
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| | - Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| |
Collapse
|
8
|
Gonzalez-Martin R, Palomar A, Medina-Laver Y, Quiñonero A, Domínguez F. Endometrial Cells Acutely Exposed to Phthalates In Vitro Do Not Phenocopy Endometriosis. Int J Mol Sci 2022; 23:ijms231911041. [PMID: 36232341 PMCID: PMC9569573 DOI: 10.3390/ijms231911041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental factors that have been linked to an increased endometriosis risk include exposure to di-(2-ethylhexyl)-phthalate (DEHP), an endocrine disruptor. This study aims to investigate whether DEHP in vitro exposure in primary endometrial stromal cells (EnSC), primary endometrial epithelial cells (EnEC), and the human endometrial adenocarcinoma cell line Ishikawa properly mimics alterations described in the eutopic endometrium of women with endometriosis. Primary EnSC and EnEC, isolated from six fertile egg donors, and Ishikawa cells were exposed to DEHP (0.1, 1, and 10 µM) and were assessed for viability, endometriosis markers (IL-6, VEGF-A, HOXA10, EZH2, and LSD1), steroid receptor gene expressions (ER-1, ER-2, PR-T, PR-B, and PGRMC1), and invasive capacity. Viability after 72 h of DEHP exposure was not significantly affected. None of the endometriosis markers studied were altered after acute DEHP exposure, nor was the expression of steroid receptors. The invasive capacity of EnSC was significantly increased after 10 µM of DEHP exposure. In conclusion, acute DEHP exposure in primary endometrial cells does not fully phenocopy the changes in the viability, expression of markers, or steroidal receptors described in endometriosis. However, the significant increase in EnSC invasiveness observed after DEHP exposure could be a link between DEHP exposure and increased endometriosis likelihood.
Collapse
|
9
|
EL-Desouky NA, Elyamany M, Hanon AF, Atef A, Issak M, Taha SHN, Hussein RF. Association of Phthalate Exposure with Endometriosis and Idiopathic Infertility in Egyptian Women. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Phthalates are compounds found in medical supplies, cellophane wraps, beverage containers, metal can linings, and other products. They have the potential to be significant endocrine disruptors. In experimental animals, thereby affecting their reproductive capacity. Endometriosis is a gynecological condition defined by ectopic endometrial glands and stromal development. Exposure to phthalates has been linked to the development of endometriosis in numerous studies. The dangers of phthalates to women’s reproductive health and fertility have been widely reported.
AIM: So far, the relationship between phthalates and infertility is not proven so we decided to see if there was a link between the urine phthalate metabolite levels and endometriosis or idiopathic infertility in Egyptian women.
METHODS: Our research was carried out at the infertility outpatient clinic of the Faculty of Medicine of Cairo University. It included 100 female subjects aged 18−40-years-old. Group A (idiopathic infertility; n = 40), Group B (endometriosis; n = 40), and Group C (control; n = 20) were the three age-matched groups that were studied. Using high-performance liquid chromatography (HPLC), the urine levels of mono-2-ethylhexyl phthalate (MEHP) were quantified.
RESULTS: The comparison between the study groups has revealed statistically significant differences regarding the urine MEHP levels between Groups A and B. An analysis of the urine MEHP levels in the study Groups A and B has also revealed that the significantly higher urinary MEHP levels are correlated with the use of dietary plastic containers, the use of cosmetics, and the patients’ estrogen levels. Moreover, the urinary MEHP levels of Group A were associated with a history of abortions.
CONCLUSIONS: Higher levels of urinary MEHP are positively associated with female reproductive disorders, specifically endometriosis, idiopathic infertility, and abortion.
Collapse
|
10
|
Kim HG, Lim YS, Hwang S, Kim HY, Moon Y, Song YJ, Na YJ, Yoon S. Di-(2-ethylhexyl) Phthalate Triggers Proliferation, Migration, Stemness, and Epithelial-Mesenchymal Transition in Human Endometrial and Endometriotic Epithelial Cells via the Transforming Growth Factor-β/Smad Signaling Pathway. Int J Mol Sci 2022; 23:ijms23073938. [PMID: 35409294 PMCID: PMC8999884 DOI: 10.3390/ijms23073938] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a frequently used plasticizer that may be linked to the development of endometriosis, a common gynecological disorder with a profound impact on quality of life. Despite its prevalence, vital access to treatment has often been hampered by a lack of understanding of its pathogenesis as well as reliable disease models. Recently, epithelial–mesenchymal transition (EMT) has been suggested to have a significant role in endometriosis pathophysiology. In this study, we found that DEHP treatment enhanced proliferation, migration, and inflammatory responses, along with EMT and stemness induction in human endometrial and endometriotic cells. The selective transforming growth factor-β (TGF-β) receptor type 1/2 inhibitor LY2109761 reversed the DEHP-induced cell proliferation and migration enhancement as well as the increased expression of crucial molecules involved in inflammation, EMT, and stemness, indicating that DEHP-triggered phenomena occur via the TGF-β/Smad signaling pathway. Our study clearly defines the role of DEHP in the etiology and pathophysiological mechanisms of endometriosis and establishes an efficient disease model for endometriosis using a biomimetic 3D cell culture technique. Altogether, our data provide novel etiological and mechanistic insights into the role of DEHP in endometriosis pathogenesis, opening avenues for developing novel preventive and therapeutic strategies for endometriosis.
Collapse
Affiliation(s)
- Hwi Gon Kim
- Department of Obstetrics and Gynecology, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea; (H.G.K.); (Y.J.S.); (Y.-J.N.)
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea; (Y.S.L.); (S.H.); (H.-Y.K.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea;
| | - Seonyeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea; (Y.S.L.); (S.H.); (H.-Y.K.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea;
| | - Hye-Yoon Kim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea; (Y.S.L.); (S.H.); (H.-Y.K.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea;
| | - Yuseok Moon
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea;
- Department of Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea
| | - Yong Jung Song
- Department of Obstetrics and Gynecology, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea; (H.G.K.); (Y.J.S.); (Y.-J.N.)
| | - Yong-Jin Na
- Department of Obstetrics and Gynecology, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea; (H.G.K.); (Y.J.S.); (Y.-J.N.)
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea; (Y.S.L.); (S.H.); (H.-Y.K.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Gyeongsangnam-do, Korea;
- Correspondence:
| |
Collapse
|
11
|
Basso CG, de Araujo-Ramos AT, Martino-Andrade AJ. Exposure to phthalates and female reproductive health: a literature review. Reprod Toxicol 2022; 109:61-79. [DOI: 10.1016/j.reprotox.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
12
|
Song H, Won JE, Lee J, Han HD, Lee Y. Korean red ginseng attenuates Di-(2-ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model. J Ginseng Res 2021; 46:592-600. [PMID: 35818422 PMCID: PMC9270657 DOI: 10.1016/j.jgr.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through the induction of inflammation. The major therapeutic approaches against endometrial cancer and endometriosis involve the suppression of inflammatory response. Korean Red Ginseng (KRG) is a natural product with anti-inflammatory and anti-carcinogenic properties. Thus, the purpose of this study is to investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa cells and a mouse model of endometriosis. Methods RNA-sequencing was performed and analyzed on DEHP-treated Ishikawa cells in the presence and absence of KRG. The effects of KRG on DEHP-induced cyclooxygenase-2 (COX-2) mRNA levels in Ishikawa cells were determined by RT-qPCR. Furthermore, the effects of KRG on the extracellular signal-regulated kinases (ERKs) pathway, COX-2, and nuclear factor-kappa B (NF-κB) p65 after DEHP treatment of Ishikawa cells were evaluated by western blotting. In the mouse model, the severity of endometriosis induced by DEHP and changes in immunohistochemistry were used to assess the protective effect of KRG. Results According to the RNA-sequencing data, DEHP-induced inflammatory response-related gene expression was downregulated by KRG. Moreover, KRG significantly inhibited DEHP-induced ERK1/2/NF-κB/COX-2 levels in Ishikawa cells. In the mouse model, KRG administration significantly inhibited ectopic endometriosis growth after DEHP-induced endometriosis. Conclusions Overall, these results suggest that KRG may be a promising lead for the treatment of endometrial cancer and endometriosis via suppression of the inflammatory response.
Collapse
Affiliation(s)
- Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Ji Eun Won
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Jeonggeun Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
- Corresponding author. Department of Immunology, School of Medicine, Konkuk University, Chungwondae-Ro, Chungju, Republic of Korea.
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
- Corresponding author. Department of Integrative Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Conforti A, Carbone L, Simeon V, Chiodini P, Marrone V, Bagnulo F, Cariati F, Strina I, Alviggi C. Unravelling the link between phthalate exposure and endometriosis in humans: a systematic review and meta-analysis of the literature. J Assist Reprod Genet 2021; 38:2543-2557. [PMID: 34227050 PMCID: PMC8581146 DOI: 10.1007/s10815-021-02265-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/19/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Endometriosis is a chronic debilitating inflammatory pathology which interests females in their reproductive age. Its pathogenesis has not yet been clearly defined. Recent evidence linked chemical agents as endocrine-disrupting chemicals to endometriosis. Phthalates are a widely used class of such compounds. This study aimed to summarize the current literature evaluating the link between exposure to phthalates and occurrence of endometriosis. METHODS A systematic review of literature and meta-analysis has been carried out following PRISMA guidelines to assess such link. Fourteen studies have been included in the review. Risk of bias has been assessed through the Newcastle Ottawa Scale. RESULTS We observed association between endometriosis and increased urinary levels of MBP/MnBP, MEOHP, and MEHHP, but not for others. Blood-derived analysis showed statistically significant link between endometriosis and BBP, DEHP, DnBP, and MEHP. CONCLUSION Given the wide heterogeneity of included studies, results should be taken with caution. Further studies with more rigorous methodology are encouraged to unravel the true link between this class of toxic compounds and manifestation of endometriosis.
Collapse
Affiliation(s)
- Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Via Sergio Pansini no. 5, 80131, Naples, Italy
| | - Luigi Carbone
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Via Sergio Pansini no. 5, 80131, Naples, Italy.
| | - Vittorio Simeon
- Medical Statistic Unit, Luigi Vanvitelli University, Naples, Italy
| | - Paolo Chiodini
- Medical Statistic Unit, Luigi Vanvitelli University, Naples, Italy
| | - Vincenzo Marrone
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Via Sergio Pansini no. 5, 80131, Naples, Italy
| | - Francesca Bagnulo
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Via Sergio Pansini no. 5, 80131, Naples, Italy
| | - Federica Cariati
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Via Sergio Pansini no. 5, 80131, Naples, Italy
| | - Ida Strina
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Via Sergio Pansini no. 5, 80131, Naples, Italy
| | - Carlo Alviggi
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Via Sergio Pansini no. 5, 80131, Naples, Italy
| |
Collapse
|
14
|
Chou Y, Tzeng C. The impact of phthalate on reproductive function in women with endometriosis. Reprod Med Biol 2021; 20:159-168. [PMID: 33850448 PMCID: PMC8022091 DOI: 10.1002/rmb2.12364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endometriosis is a common gynecological condition in which stromal or glandular epithelium is implanted in extrauterine locations. Endometriosis causes detrimental effects on the granulosa cells, and phthalate interferes with the biological and reproductive function of endometrial cells at a molecular level. METHODS This article retrospectively reviewed the studies on phthalate exposure and its relationship with endometriosis. A literature search was performed for scientific articles using the keywords "phthalate and endometriosis," "endometriosis and granulosa cells," "phthalate and granulosa cells," and "phthalates and endometrial cells." RESULTS Endometriosis can affect cytokine production, steroidogenesis, cell cycle progression, expression of estrogen receptor-α (ER-α)/progesterone receptor (PR), and cause endoplasmic reticulum stress, senescence, apoptosis, autophagy, and oxidative stress in the granulosa cells. Mono-n-butyl phthalate (MnBP) alters the expression of cytokines, cell cycle-associated genes, ovarian stimulation, steroidogenesis, and progesterone production. Several in vitro studies have demonstrated that phthalate caused inflammation, invasion, change in cytokines, increased oxidative stress, viability, resistance to hydrogen peroxide, and proliferation of endometrial cells. CONCLUSION This might provide new insights about the impact of phthalate on the pathogenesis of endometriosis and its consequences on the ovarian function.
Collapse
Affiliation(s)
- Ya‐Ching Chou
- Department of Biological Science and TechnologyCollege of Biological Science and TechnologyNational Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDSB)National Chiao Tung UniversityHsinchuTaiwan
| | - Chii‐Ruey Tzeng
- Department of Obstetrics and GynecologyTaipei Medical UniversityTaipeiTaiwan
- Taipei Fertility Center, TaipeiTaiwan
| |
Collapse
|
15
|
Kim HJ, Kim SH, Oh YS, Heo SH, Kim KH, Kim DY, Lee SR, Chae HD. Effects of Phthalate Esters on Human Myometrial and Fibroid Cells: Cell Culture and NOD-SCID Mouse Data. Reprod Sci 2021; 28:479-487. [PMID: 33037561 DOI: 10.1007/s43032-020-00341-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023]
Abstract
Evidence is growing that phthalate esters play an important role in the pathogenesis of estrogen-dependent gynecologic diseases, especially uterine fibroids. We aimed to investigate whether in vitro treatment with di-(2-ethylhexyl)-phthalate (DEHP) affects angiogenesis, proliferation, and apoptosis in uterine fibroids. To ascertain this, we evaluated vascular endothelial growth factor (VEGF) expression and AKT/ERT phosphorylation and compared the fibroid volume between nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice fed with and without DEHP. VEGF expression was measured using enzyme-linked immunosorbent assay, and AKT/ERK phosphorylation was analyzed by western blot analysis in human myometrial and fibroid cells. The volume of the fibroid tissues implanted to NOD/SCID mice was measured, and the expression of collagen type I protein, Ki-67, proliferating cell nuclear antigen, and B cell lymphoma 2 were analyzed using immunohistochemistry. We could see significant increases in VEGF expression and AKT phosphorylation in human myometrial and fibroid cells treated with DEHP. The volume of the fibroid tissues was significantly increased in NOD/SCID mice fed with DEHP, which was accompanied by increased expression of collagen type I and AKT phosphorylation. Taken together, these results suggest that exposure to phthalate esters may influence uterine fibroid pathogenesis by increasing VEGF and collagen expression and upregulating AKT phosphorylation.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Obstetrics and Gynecology, University of Kyung Hee College of Medicine, Kyung Hee University Hospital, Seoul, South Korea
| | - Sung Hoon Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Young Sang Oh
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seung-Ho Heo
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Kang-Hyun Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Do Young Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Sa Ra Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Hee Dong Chae
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| |
Collapse
|
16
|
Kim JH, Kim SH. Exposure to Phthalate Esters and the Risk of Endometriosis. Dev Reprod 2020; 24:71-78. [PMID: 32734124 PMCID: PMC7375982 DOI: 10.12717/dr.2020.24.2.71] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
Endometriosis is a common gynecologic disease, worldwide, whose true prevalence
is uncertain because it is a difficult disease to diagnose. Endometriosis is a
common cause of chronic pelvic pain, dysmenorrhea, and infertility, and is also
associated with ovarian cancer. Although the risk factors for endometriosis are
unclear, there is increasing evidence that exposure to environmental
contaminants, especially phthalates, could affect the pathogenesis of
endometriosis. Phthalates are industrial chemicals, used to make flexible
plastics, and are present in numerous common plastic products, including medical
devices and materials. Several in vitro studies have suggested
a positive association between exposure to phthalate, or phthalate metabolites,
and the risk of endometriosis. Since the 2000s, studies based on human plasma
and urinary concentrations of various phthalate metabolites have been published,
but there are still limitations to our understanding of the pathophysiology of
phthalates and endometriosis. This report aims to review the current state of
knowledge about a possible role of phthalates in the pathogenesis of
endometriosis based on cell culture, animal models, and human data.
Collapse
Affiliation(s)
- Ju Hee Kim
- Dept. of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Sung Hoon Kim
- Dept. of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
17
|
Nonpersistent endocrine disrupting chemicals and reproductive health of women. Obstet Gynecol Sci 2019; 63:1-12. [PMID: 31970122 PMCID: PMC6962585 DOI: 10.5468/ogs.2020.63.1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Nonpersistent endocrine disrupting chemicals (npEDCs) are exogenous chemicals or mixtures of industrial agents that can interfere with the normal action of hormone with a shorter half-life and lower liposolubility. These are commonly found in plastics, medical equipment, detergents, and cosmetics. Recently, role of npEDCs on the changes of ovary and/or uterus development and alterations in hormonal signaling has been emphasized. However, many controversial results exist on the effects of npEDCs and reproductive health of women. Thus, we have focused to review the scientific evidence of a causal relationship between exposure to npEDCs and representative female reproductive issues such as menstrual cycle, endometriosis, uterine fibroids, polycystic ovarian syndrome and infertility/subfertility. Though not all studies indicated a positive correlation of npEDCs with female reproductive issues, the reviewed data illustrated that the majority of the available data strengthen the evidence of reproductive health-related actions of npEDCs. In future, recommendations should be made in order to reduce human exposure to npEDCs and to protect from steadily increasing reproductive health risks.
Collapse
|
18
|
Cai W, Yang J, Liu Y, Bi Y, Wang H. Association between Phthalate Metabolites and Risk of Endometriosis: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3678. [PMID: 31574938 PMCID: PMC6801736 DOI: 10.3390/ijerph16193678] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/13/2019] [Accepted: 09/29/2019] [Indexed: 12/31/2022]
Abstract
Objective: The association between phthalates and endometriosis risk is inconclusive. This meta-analysis aims to evaluate the association between five different phthalate metabolites and endometriosis, based on current evidence. Methods: The literature included PubMed, WOS (web of science), and EMBASE, published until 3 March 2019. We selected the related literature and evaluated the relationship between phthalates exposure and endometriosis risk. All statistical analyses were conducted with STATA version 12.0. Results: Data from eight studies were used in this review. The results of this analysis showed that mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) exposure was potentially associated with endometriosis (OR = 1.246, 95% CI = 1.003-1.549). We have not found positive results in mono(2-ethylhexyl) phthalate (MEHP), monoethyl phthalate (MEP), monobenzyl phthalate (MBzP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) analyses (MEHP: OR = 1.089, 95% CI = 0.858-1.383; MEP: OR = 1.073, 95% CI = 0.899-1.282; MBzP: OR = 0.976, 95% CI = 0.810-1.176; MEOHP: OR = 1.282, 95% CI = 0.874-1.881). In subgroup analyses for regions, the associations were significant between MEHHP and endometriosis in Asia (OR = 1.786, 95% CI = 1.005-3.172, I² = 0%), but not in USA (OR = 1.170, 95% CI = 0.949-1.442, I² = 45.6%). Conclusions: Our findings suggested a potential statistical association between MEHHP exposure and endometriosis, particularly, the exposure of MEHHP might be a potential risk for women with endometriosis in Asia. However, positive associations between the other four Phthalate acid esters (PAEs) and endometriosis was not found. Given the weak strength of the results, well-designed cohort studies, with large sample sizes, should be performed in future.
Collapse
Affiliation(s)
- Wei Cai
- School of Health Sciences, Wuhan University, Wuhan 430071, China.
| | - Jule Yang
- School of Health Sciences, Wuhan University, Wuhan 430071, China.
| | - Yini Liu
- School of Health Sciences, Wuhan University, Wuhan 430071, China.
| | - Yongyi Bi
- School of Health Sciences, Wuhan University, Wuhan 430071, China.
| | - Hong Wang
- School of Health Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
19
|
Wen X, Xiong Y, Qu X, Jin L, Zhou C, Zhang M, Zhang Y. The risk of endometriosis after exposure to endocrine-disrupting chemicals: a meta-analysis of 30 epidemiology studies. Gynecol Endocrinol 2019; 35:645-650. [PMID: 30907174 DOI: 10.1080/09513590.2019.1590546] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are suspected to be associated with endometriosis (EMs). This study aimed to synthesize published data and evaluate the relationship between four classic EDCs exposure and the risk of EMs. A systematic literature search for original peer reviewed papers was performed in the databases PubMed, EMBASE, and Web of Science based on inclusion criteria up to January 2018. Subsequently, a total of 20 papers conducting 30 studies fulfilled the eligibility criteria and were included in this meta-analysis (four studies for bisphenol A (BPA), 12 studies for polychlorinated biphenyls (PCBs), eight studies for organochlorine pesticides (OCPs), and six studies for phthalate esters (PAEs)). The overall odds ratio (OR) across all exposures and EMs was 1.41 (95% confidence interval (CI): 1.23-1.60). When assessing four specific chemicals, respectively, consistent increases in the risk of EMs were found in PCBs group (OR = 1.58; 95% CI: 1.18-2.12), OCPs group (OR = 1.40; 95% CI: 1.02-1.92) and PAEs group (OR = 1.27; 95% CI: 1.00-1.60), while BPA showed no significant association with EMs. Besides, in the di-(2-ethylhexyl)-phthalate (DEHP) group - the most commonly used PAEs, significant risk was also found (OR = 1.42; 95% CI: 1.19-1.70). The current meta-analysis strengthens the evidence that specific EDCs or their metabolites may promote the occurrence of EMs.
Collapse
Affiliation(s)
- Xue Wen
- a Center of Reproductive Medicine , Zhongnan Hospital of Wuhan University , Wuhan , P. R. China
| | - Yao Xiong
- a Center of Reproductive Medicine , Zhongnan Hospital of Wuhan University , Wuhan , P. R. China
| | - Xinlan Qu
- a Center of Reproductive Medicine , Zhongnan Hospital of Wuhan University , Wuhan , P. R. China
| | - Ling Jin
- a Center of Reproductive Medicine , Zhongnan Hospital of Wuhan University , Wuhan , P. R. China
| | - Chun Zhou
- a Center of Reproductive Medicine , Zhongnan Hospital of Wuhan University , Wuhan , P. R. China
| | - Ming Zhang
- a Center of Reproductive Medicine , Zhongnan Hospital of Wuhan University , Wuhan , P. R. China
| | - Yuanzhen Zhang
- a Center of Reproductive Medicine , Zhongnan Hospital of Wuhan University , Wuhan , P. R. China
| |
Collapse
|
20
|
Crobeddu B, Ferraris E, Kolasa E, Plante I. Di(2-ethylhexyl) phthalate (DEHP) increases proliferation of epithelial breast cancer cells through progesterone receptor dysregulation. ENVIRONMENTAL RESEARCH 2019; 173:165-173. [PMID: 30909102 DOI: 10.1016/j.envres.2019.03.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/20/2019] [Accepted: 03/15/2019] [Indexed: 05/05/2023]
Abstract
The di(2-ethylhexyl) phthalate (DEHP) is a plasticizer incorporated to plastic matrices of widely used consumer products. However, it is gradually released from these products, resulting in a chronic exposure for humans. Although DEHP, similar to other members of the phthalates family, is generally considered as an endocrine disruptor, the mechanisms implicated in its toxicity are yet poorly understood. Our objective was to determine the effects of an exposure to DEHP and to one of its major metabolite, the mono(2-ethylhexyl) phthalate (MEHP) on markers involved in breast carcinogenesis. T-47D cells were exposed to environmentally relevant and higher doses of DEHP and MEHP (0.1-10 000 nM) for 4 days. Our results showed that an exposure to 10 000 nM of DEHP and 0.1 nM of MEHP significantly increased the proliferation of T-47D cells, without inducing apoptosis. In addition, a significant increase in the protein levels of the isoform A of the progesterone receptor (PR) and of nuclear levels of PR were observed in T-47D cells exposed to 10 000 nM of DEHP. Importantly, the increased proliferation and nuclear levels of PR were totally and partially inhibited, respectively, by Mifepristone, a PR antagonist. These results suggest that an exposure to DEHP or MEHP increase cell proliferation by activating PR signaling, which could potentially increase the risks to develop breast cancer. The mechanism of activation of the progesterone pathway by DEHP and the long-term consequences of this activation remained to be elucidated.
Collapse
Affiliation(s)
| | | | - Elise Kolasa
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | |
Collapse
|
21
|
Piazza MJ, Urbanetz AA. Environmental toxins and the impact of other endocrine disrupting chemicals in women's reproductive health. JBRA Assist Reprod 2019; 23:154-164. [PMID: 30875185 PMCID: PMC6501744 DOI: 10.5935/1518-0557.20190016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
This review aimed to look into agents and mechanisms characterized as endocrine disrupting chemicals (EDCs). These agents are known to cause several harmful effects to the reproductive system of women and wildlife. There is a wide range of chemicals, developed for commercial use mainly in agriculture, which may cause endocrine disruption. Numerous studies show evidence of environmental contamination. However, no one is being held liable for the damages. The most important potentially harmful agents are identified and described, along with the different effects they have on the female genital area. Brazil is a large consumer of pesticides and others chemicals that may interfere with a normal women's life. We analyzed and described the mode of action and the impacts of different EDCs (bisphenols, phthalates, atrazine, polychlorinated and polybrominated biphenyls, DDT-dichlorodiphenyltrichloroethane; DDE-dichlorodiphenyldichloroethylene; DDD-dichlorodiphenyldichloroethane; and DES-diethylstilbestrol) on the genital area, ovarian steroidogenesis, polycystic ovary syndrome, endometriosis, the structure of the uterus and the vagina, and on the formation of leiomyomas.
Collapse
Affiliation(s)
- Mauri José Piazza
- Tocogynecology Department, Universidade Federal do
Paraná – UFPR – Curitiba (PR), Brazil
| | - Almir Antônio Urbanetz
- Tocogynecology Department, Universidade Federal do
Paraná – UFPR – Curitiba (PR), Brazil
| |
Collapse
|
22
|
Choi JS. Analysis of Toxicity in Endometrial Cells Exposed Phthalate. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.1.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jae-Sun Choi
- Department of Biomedical Laboratory Science, Far East University, Eumseong, Korea
| |
Collapse
|
23
|
Toxic Effects of Di-2-ethylhexyl Phthalate: An Overview. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1750368. [PMID: 29682520 PMCID: PMC5842715 DOI: 10.1155/2018/1750368] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/13/2018] [Accepted: 01/28/2018] [Indexed: 01/19/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is extensively used as a plasticizer in many products, especially medical devices, furniture materials, cosmetics, and personal care products. DEHP is noncovalently bound to plastics, and therefore, it will leach out of these products after repeated use, heating, and/or cleaning of the products. Due to the overuse of DEHP in many products, it enters and pollutes the environment through release from industrial settings and plastic waste disposal sites. DEHP can enter the body through inhalation, ingestion, and dermal contact on a daily basis, which has raised some concerns about its safety and its potential effects on human health. The main aim of this review is to give an overview of the endocrine, testicular, ovarian, neural, hepatotoxic, and cardiotoxic effects of DEHP on animal models and humans in vitro and in vivo.
Collapse
|
24
|
In vitro effects of phthalate esters in human myometrial and leiomyoma cells and increased urinary level of phthalate metabolite in women with uterine leiomyoma. Fertil Steril 2017; 107:1061-1069.e1. [DOI: 10.1016/j.fertnstert.2017.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/11/2017] [Accepted: 01/20/2017] [Indexed: 11/23/2022]
|
25
|
Effects of Di-(2-ethylhexyl) Phthalate on the Hypothalamus-Uterus in Pubertal Female Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111130. [PMID: 27845755 PMCID: PMC5129340 DOI: 10.3390/ijerph13111130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Abstract
The pollution of endocrine disruptors and its impact on human reproductive system have attracted much attention. Di-(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is widely used in food packages, containers, medical supplies and children's toys. It can cause diseases such as infertility, sexual precocity and uterine bleeding and thus arouse concerns from the society and scholars. The effect of DEHP on pubertal female reproductive system is still not well-studied. This study was to investigate the effects of DEHP on the hypothalamus-uterus in pubertal female rats, reveal the reproductive toxicity of DEHP on pubertal female rats and its mechanism, and provide scientific evidence for the evaluation of toxicity and toxic mechanism of DEHP on reproductive system. Forty-eight pubertal female rats were randomly divided into four groups and respectively administered via oral gavage 0, 250, 500, or 1000 mg/kg/d DEHP in 0.1 mL corn oil/20 g body weight for up to four weeks. Compared with control rats, the DEHP-treated rats showed: (1) higher gonadotropin-releasing hormone (GnRH) level in the hypothalamus; (2) higher protein levels of GnRH in the hypothalamus; and (3) higher mRNA and protein levels of GnRH receptor (GnRHR) in the uterus. Our data reveal that DEHP exposure may lead to a disruption in pubertal female rats and an imbalance of hypothalamus-uterus. Meanwhile, DEHP may, through the GnRH in the hypothalamus and its receptor on the uterus, lead to diseases of the uterus. DEHP may impose a negative influence on the development and functioning of the reproductive system in pubertal female rats.
Collapse
|
26
|
The Inflammation Response to DEHP through PPARγ in Endometrial Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030318. [PMID: 26985901 PMCID: PMC4808981 DOI: 10.3390/ijerph13030318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/28/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have shown the possible link between phthalates and endometrium-related gynecological diseases, however the molecular mechanism(s) behind this is/are still unclear. In the study, both primary cultured endometrial cells and an endometrial adenocarcinoma cell line (Ishikawa) were recruited to investigate the effects of di-(2-ethylhexyl) phthalate (DEHP) at human-relevant concentrations. The results showed that DEHP did not affect the viability of either type of cell, which showed different responses to inflammation. Primary cultured cells showed stronger inflammatory reactions than the Ishikawa cell line. The expression of inflammatory factors was induced both at the mRNA and protein levels, however the inflammation did not induce the progress of epithelial-mesenchymal transition (EMT) as the protein levels of EMT markers were not affected after exposure to either cell type. Further study showed that the mRNA levels of peroxisome proliferator-activated receptor gamma (PPARγ) wereup-regulated after exposure. In all, our study showed that human-relevant concentrations of DEHP could elicit the inflammatory response in primary cultured endometrial cells rather than in Ishikawa cell line. PPARγ may act as the mediating receptor in the inflammation reaction.
Collapse
|
27
|
Kim SH, Cho S, Ihm HJ, Oh YS, Heo SH, Chun S, Im H, Chae HD, Kim CH, Kang BM. Possible Role of Phthalate in the Pathogenesis of Endometriosis: In Vitro, Animal, and Human Data. J Clin Endocrinol Metab 2015; 100:E1502-11. [PMID: 26439087 DOI: 10.1210/jc.2015-2478] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Although phthalates were shown to have several negative effects on reproductive function in animals, its role in the pathogenesis of endometriosis remains to be elucidated. OBJECTIVE We aimed to investigate the in vitro and in vivo effects of di-(2-ethylhexyl)-phthalate (DEHP) and to compare the urinary levels of several phthalate metabolites between women with and without endometriosis. DESIGN For experimental studies, we used endometrial cell culture and nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse models. We also performed a prospective case-control study for human sample analyses. SETTING The study was conducted at an academic center. MAIN OUTCOME MEASURES The activities of matrix metalloproteinase (MMP)-2 and 9, cellular invasiveness, phosphorylation of extracellular signal-regulated kinase (Erk), and expression of p21-activated kinase 4 were analyzed in endometrial cells treated with DEHP. The implant size was compared between NOD/SCID mice fed with and without DEHP. Urinary concentrations of several phthalate metabolites were compared between women with and without endometriosis. RESULTS In vitro treatment of endometrial cells with DEHP led to significant increases of MMP-2 and 9 activities, cellular invasiveness, Erk phosphorylation, and p21-activated kinase 4 expression. The size of the endometrial implant was significantly larger in the NOD/SCID mice fed with DEHP compared with those fed with vehicle. The urinary concentration of mono (2-ethyl-5-hydroxyhexyl) phthalate, mono (2-ethyl-5-oxohexyl) phthalate, and mono (2-ethyl-5-carboxyphentyl) phthalate were significantly higher in women with endometriosis compared with controls. CONCLUSION These findings strongly suggest that exposure to phthalate may lead to establishment of endometriosis by enhancing invasive and proliferative activities of endometrial cells.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| | - SiHyun Cho
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| | - Hyo Jin Ihm
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| | - Young Sang Oh
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| | - Seung-Ho Heo
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| | - Sail Chun
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| | - Hosub Im
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| | - Hee Dong Chae
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| | - Chung-Hoon Kim
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| | - Byung Moon Kang
- Department of Obstetrics & Gynecology (S.H.K., H.J.I., Y.S.O., H.D.C., C.-H.K., B.M.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; Department of Obstetrics & Gynecology (S.Cho.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea; Asan Institute for Life Sciences (S.-H.H.), University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Laboratory Medicine (S.Chu.), University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea; and Center for Life & Environmental Science (H.I.), Seegene Medical Foundation, Seoul 138-828, Korea
| |
Collapse
|
28
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1338] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
29
|
Cho YJ, Park SB, Han M. Di-(2-ethylhexyl)-phthalate induces oxidative stress in human endometrial stromal cells in vitro. Mol Cell Endocrinol 2015; 407:9-17. [PMID: 25766500 DOI: 10.1016/j.mce.2015.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/12/2023]
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP) accumulates in the environment, and its exposure is possibly associated with endocrine-related disease in women of reproductive age. The effects of DEHP on human endometrial cells are unknown. We treated human endometrial stromal cells with 10, 100, and 1000 pmol of DEHP and measured reactive oxygen species (ROS) generation, expression levels of antioxidant enzymes, alteration of MAPK/NF-κB signaling and hormonal receptors. DEHP increased reactive oxygen species (ROS) generation and decreased expression of superoxide dismutase (SOD), glutathione peroxidase (GPX), heme oxygenase (HO), and catalase (CAT). By DEHP exposure, p-ERK/p-p38 and NF-κB mediated transcription was increased. Additionally, DEHP induced estrogen receptor-α (ER-α) expression in a dose-dependent manner. This study shows the need for future mechanistic studies of oxidative stress, MAPK/NF-κB signaling, and ER-α as molecular mediators of DEHP-associated endometrial stromal cell alterations, which may be associated with the development of endocrine-related disease such as endometriosis.
Collapse
Affiliation(s)
- Yeon Jean Cho
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seung Bin Park
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Myoungseok Han
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, College of Medicine, Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
30
|
Huang TS, Chen YJ, Chou TY, Chen CY, Li HY, Huang BS, Tsai HW, Lan HY, Chang CH, Twu NF, Yen MS, Wang PH, Chao KC, Lee CC, Yang MH. Oestrogen-induced angiogenesis promotes adenomyosis by activating the Slug-VEGF axis in endometrial epithelial cells. J Cell Mol Med 2014; 18:1358-71. [PMID: 24758741 PMCID: PMC4124020 DOI: 10.1111/jcmm.12300] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/18/2014] [Indexed: 01/22/2023] Open
Abstract
Adenomyosis is an oestrogen-dependent disease characterized by the invasion of endometrial epithelial cells into the myometrium of uterus, and angiogenesis is thought to be required for the implantation of endometrial glandular tissues during the adenomyotic pathogenesis. In this study, we demonstrate that compared with eutopic endometria, adenomyotic lesions exhibited increased vascularity as detected by sonography. Microscopically, the lesions also exhibited an oestrogen-associated elevation of microvascular density and VEGF expression in endometrial epithelial cells. We previously reported that oestrogen-induced Slug expression was critical for endometrial epithelial–mesenchymal transition and development of adenomyosis. Our present studies demonstrated that estradiol (E2) elicited a Slug-VEGF axis in endometrial epithelial cells, and also induced pro-angiogenic activity in vascular endothelial cells. The antagonizing agents against E2 or VEGF suppressed endothelial cells migration and tubal formation. Animal experiments furthermore confirmed that blockage of E2 or VEGF was efficient to attenuate the implantation of adenomyotic lesions. These results highlight the importance of oestrogen-induced angiogenesis in adenomyosis development and provide a potential strategy for treating adenomyosis through intercepting the E2-Slug-VEGF pathway.
Collapse
Affiliation(s)
- Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gene expression profile of endometrial carcinoma cells exposed to di-(2-ethylhexyl) phthalate. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0015-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Epigenetic control of endocrine disrupting chemicals on gynecological disease: Focused on phthalates. ACTA ACUST UNITED AC 2012. [DOI: 10.5468/kjog.2012.55.9.619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Park MA, Hwang KA, Choi KC. Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Lab Anim Res 2011; 27:265-73. [PMID: 22232634 PMCID: PMC3251756 DOI: 10.5625/lar.2011.27.4.265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 11/26/2011] [Accepted: 12/02/2011] [Indexed: 01/01/2023] Open
Abstract
Acting as hormone mimics or antagonists in the interaction with hormone receptors, endocrine disrupting chemicals (EDCs) have the potentials of disturbing the endocrine system in sex steroid hormone-controlled organs and tissues. These effects may lead to the disruption of major regulatory mechanisms, the onset of developmental disorders, and carcinogenesis. Especially, among diverse EDCs, xenoestrogens such as bisphenol A, dioxins, and di(2-ethylhexyl)phthalate, have been shown to activate estrogen receptors (ERs) and to modulate cellular functions induced by ERs. Furthermore, they appear to be closely related with carcinogenicity in estrogen-dependant cancers, including breast, ovary, and prostate cancers. In in vivo animal models, prenatal exposure to xenoestrogens changed the development of the mouse reproductive organs and increased the susceptibility to further carcinogenic exposure and tumor occurence in adults. Unlike EDCs, which are chemically synthesized, several phytoestrogens such as genistein and resveratrol showed chemopreventive effects on specific cancers by contending with ER binding and regulating normal ER action in target tissues of mice. These results support the notion that a diet containing high levels of phytoestrogens can have protective effects on estrogen-related diseases. In spite of the diverse evidences of EDCs and phytoestrogens on causation and prevention of estrogen-dependant cancers provided in this article, there are still disputable questions about the dose-response effect of EDCs or chemopreventive potentials of phytoestrogens. As a wide range of EDCs including phytoestrogens have been remarkably increasing in the environment with the rapid growth in our industrial society and more closely affecting human and wildlife, the potential risks of EDCs in endocrine disruption and carcinogenesis are important issues and needed to be verified in detail.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
34
|
Wang W, Craig ZR, Basavarajappa MS, Gupta RK, Flaws JA. Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway. Toxicol Appl Pharmacol 2011; 258:288-95. [PMID: 22155089 DOI: 10.1016/j.taap.2011.11.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/24/2011] [Accepted: 11/10/2011] [Indexed: 01/12/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice (age 31-35days) were cultured with vehicle control (dimethylsulfoxide [DMSO]) or DEHP (1-100μg/ml)±N-acetyl cysteine (NAC, an antioxidant at 0.25-1mM). During culture, follicles were measured daily. At the end of culture, follicles were collected and processed for in vitro reactive oxygen species (ROS) assays to measure the presence of free radicals or for measurement of the expression and activity of various key antioxidant enzymes: Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX) and catalase (CAT). The results indicate that DEHP inhibits the growth of follicles compared to DMSO control and that NAC (0.25-1mM) blocks the ability of DEHP to inhibit follicle growth. Furthermore, DEHP (10μg/ml) significantly increases ROS levels and reduces the expression and activity of SOD1 compared to DMSO controls, whereas NAC (0.5mM) rescues the effects of DEHP on ROS levels and SOD1. However, the expression and activity of GPX and CAT were not affected by DEHP treatment. Collectively, these data suggest that DEHP inhibits follicle growth by inducing production of ROS and by decreasing the expression and activity of SOD1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, USA.
| | | | | | | | | |
Collapse
|
35
|
Kim SH, Chun S, Jang JY, Chae HD, Kim CH, Kang BM. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case-control study. Fertil Steril 2011; 95:357-9. [DOI: 10.1016/j.fertnstert.2010.07.1059] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 11/29/2022]
|