1
|
Mukherjee A, Verma A, Das T, Ghosh B, Ghosh Z. Circulating microRNAs in Body Fluid: "Fingerprint" RNA Snippets Deeply Impact Reproductive Biology. Reprod Sci 2025; 32:555-574. [PMID: 39658771 DOI: 10.1007/s43032-024-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Circulating miRNAs (C-miRNAs) occuring in a cell-free form within body fluids and other extracellular environments have garnered attention in recent times. They offer deeper insight into various physiological and pathological processes which include reproductive health. This review delves into their diagnostic potential across a spectrum of reproductive disorders, including conditions affecting ovarian function, male infertility and post pregnancy issues. Through analysis of C-miRNA profiles in bodily fluids, researchers uncover crucial markers indicative of reproductive challenges. Dysregulated C-miRNAs emerge as important players in the progression of several reproductive disorders which is the main focus of this review. Advancements in technology, facilitate precise detection and quantification of C-miRNAs, paving the way for innovative diagnostic approaches. Challenges in studying C-miRNAs, such as their low abundance and variability in expression levels, underscore the need for standardized protocols and rigorous validation methods. Despite these challenges, ongoing research endeavors aim to unravel the complex regulatory roles of C-miRNAs in reproductive biology, with potential implications for clinical practice and therapeutic interventions.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, West Bengal, 741252, India.
| | - Arpana Verma
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Troyee Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Byapti Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Zhumur Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
2
|
Patronia MM, Potiris A, Mavrogianni D, Drakaki E, Karampitsakos T, Machairoudias P, Topis S, Zikopoulos A, Vrachnis D, Moustakli E, Skentou C, Domali E, Vrachnis N, Drakakis P, Stavros S. The Expression of microRNAs and Their Involvement in Recurrent Pregnancy Loss. J Clin Med 2024; 13:3361. [PMID: 38929888 PMCID: PMC11203554 DOI: 10.3390/jcm13123361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Recurrent pregnancy loss refers to the spontaneous demise of two or more pregnancies before the 24 weeks of gestation. In almost half of the cases of recurrent miscarriages, the causes remain unknown since there is no reliable way of prognosis, early diagnosis, or treatment. Recent research has detected differential expression of certain miRNAs in reproductive system pathologies. Methods: The aim of the present review is to focus on microRNAs and their relationship with idiopathic recurrent miscarriages and to correlate miRNA expression with recurrent miscarriage and examine their potential role as biomarkers. Pubmed/Medline and Scopus databases were searched up to 31st January 2024 with terms related to recurrent pregnancy loss and miRNAs. Results: In total, 21 studies were selected for the review. A total of 75 different miRNAs were identified, showing a statistically significant differential expression. Around 40 miRNAs had increased expression, such as miR-520, miR-184 and miR-100-5p, 21 decreased, such as let-7c, and 14 had either increased or decreased expression depending on the study, such as miR-21. Conclusions: The dysregulation of miRNA expression is strongly associated with recurrent miscarriages. The circulating in the peripheral blood miRNAs, miR-100-5p and let-7c, might be utilized as biomarkers and establish a valuable non-invasive prognostic and diagnostic tool in the future.
Collapse
Affiliation(s)
- Maria-Markella Patronia
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-M.P.); (D.M.); (E.D.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Despoina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-M.P.); (D.M.); (E.D.)
| | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-M.P.); (D.M.); (E.D.)
| | - Theodoros Karampitsakos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Pavlos Machairoudias
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Spyridon Topis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Athanasios Zikopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Dionysios Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Chara Skentou
- Department of Obstetrics and Gynecology, Medical School of the University of Ioannina, 45110 Ioannina, Greece;
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-M.P.); (D.M.); (E.D.)
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| |
Collapse
|
3
|
Soczewski E, Murrieta-Coxca JM, Miranda L, Fuentes-Zacarías P, Gutiérrez-Samudio R, Grasso E, Marti M, PérezLeirós C, Morales-Prieto D, Markert UR, Ramhorst R. miRNAs associated with endoplasmic reticulum stress and unfolded protein response during decidualization. Reprod Biomed Online 2023; 47:103289. [PMID: 37657301 DOI: 10.1016/j.rbmo.2023.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 09/03/2023]
Abstract
RESEARCH QUESTION Do microRNAs (miRNAs) play a role in regulating endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) in decidualized cells and endometrium associated with reproductive failures? DESIGN Endometrial stromal cell line St-T1b was decidualized in vitro with 8-Br-cAMP over 5 days, or treated with the ERS inducer thapsigargin. Expression of ERS sensors, UPR markers and potential miRNA regulators was analysed by quantitative PCR. Endometrial biopsies from patients with recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) were investigated for the location of miRNA expression. RESULTS Decidualization of St-T1b cells resulted in increased expression of ERS sensors including ATF6α, PERK and IRE1α, and the UPR marker, CHOP. TXNIP, which serves as a link between the ERS pathway and inflammation, as well as inflammasome NLRP3 and interleukin 1β expression increased in decidualized cells. An in-silico analysis identified miR-17-5p, miR-21-5p and miR-193b-3p as miRNAs potentially involved in regulation of the ERS/UPR pathways and inflammation associated with embryo implantation. Their expression decreased significantly (P ≤ 0.0391) in non-decidualized cells in the presence of thapsigargin. Finally, expression of the selected miRNAs was localized by in-situ hybridization in stromal and glandular epithelial cells in endometrial samples from patients with RPL and RIF. Expression in stroma cells from patients with RPL was lower in comparison with stroma cells from patients with RIF. CONCLUSIONS Decidualization in St-T1b cells is accompanied by ERS/UPR processes, associated with an inflammatory response that is potentially influenced by miR-17-5p, miR-21-5p and miR-193b-3p. These miRNAs are expressed differentially in stromal cells from patients with RPL and RIF, indicating an alteration in regulation of the ERS/UPR pathways.
Collapse
Affiliation(s)
- Elizabeth Soczewski
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | | | - Lucas Miranda
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | | | | | - Esteban Grasso
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - Marcelo Marti
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - Claudia PérezLeirós
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | | | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| | - Rosanna Ramhorst
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| |
Collapse
|
4
|
Pathare ADS, Saare M, Meltsov A, Lawarde A, Modhukur V, Kalinina A, Sekavin A, Kukushkina V, Karro H, Salumets A, Peters M. The cervical transcriptome changes during the menstrual cycle but does not predict the window of implantation. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1224919. [PMID: 37519341 PMCID: PMC10375708 DOI: 10.3389/frph.2023.1224919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The expression of genes in female reproductive organs is influenced by the cyclic changes in hormone levels during the menstrual cycle. While the molecular changes in the endometrium that facilitate embryo implantation have been extensively studied, there is limited knowledge about the impact of the menstrual cycle on cervical cells. Cervical cells can be easily and routinely collected using a cytobrush during gynecological examination, offering a standardized approach for diagnostic testing. In this study we investigated how the transcriptome of cervical cells changes during the menstrual cycle and assessed the utility of these cells to determine endometrial receptivity. Methods Endocervical cells were collected with cytobrushes from 16 healthy women at different menstrual cycle phases in natural cycles and from four women undergoing hormonal replacement cycles. RNA sequencing was applied to gain insight into the transcriptome of cervical cells. Results Transcriptome analysis identified four differentially expressed genes (DEGs) between early- and mid-secretory samples, suggesting that the transcriptome of cervical cells does not change significantly during the opening of the implantation window. The most differences appeared during the transition to the late secretory phase (2136 DEGs) before the onset of menstruation. Cervical cells collected during hormonal replacement cycles showed 1899 DEGs enriched in immune system processes. Conclusions The results of our study suggested that cervical cells undergo moderate transcriptomic changes throughout the menstrual cycle; however, these changes do not reflect the gene expression pattern of endometrial tissue and offer little or no potential for endometrial receptivity diagnostics.
Collapse
Affiliation(s)
- Amruta D. S. Pathare
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Merli Saare
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Alvin Meltsov
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ankita Lawarde
- Competence Centre on Health Technologies, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Aire Sekavin
- Women’s Clinic, Tartu University Hospital, Tartu, Estonia
| | | | - Helle Karro
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Women’s Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Maire Peters
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
5
|
Chen LH, Lo WC, Huang HY, Wu HM. A Lifelong Impact on Endometriosis: Pathophysiology and Pharmacological Treatment. Int J Mol Sci 2023; 24:7503. [PMID: 37108664 PMCID: PMC10139092 DOI: 10.3390/ijms24087503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Endometriosis is a chronic inflammatory disease associated with bothersome symptoms in premenopausal women and is complicated with long-term systemic impacts in the post-menopausal stage. It is generally defined by the presence of endometrial-like tissue outside the uterine cavity, which causes menstrual disorders, chronic pelvic pain, and infertility. Endometriotic lesions can also spread and grow in extra-pelvic sites; the chronic inflammatory status can cause systemic effects, including metabolic disorder, immune dysregulation, and cardiovascular diseases. The uncertain etiologies of endometriosis and their diverse presentations limit the treatment efficacy. High recurrence risk and intolerable side effects result in poor compliance. Current studies for endometriosis have paid attention to the advances in hormonal, neurological, and immunological approaches to the pathophysiology and their potential pharmacological intervention. Here we provide an overview of the lifelong impacts of endometriosis and summarize the updated consensus on therapeutic strategies.
Collapse
Affiliation(s)
- Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Che Lo
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
6
|
Naydenov M, Nikolova M, Apostolov A, Glogovitis I, Salumets A, Baev V, Yahubyan G. The Dynamics of miR-449a/c Expression during Uterine Cycles Are Associated with Endometrial Development. BIOLOGY 2022; 12:biology12010055. [PMID: 36671747 PMCID: PMC9855972 DOI: 10.3390/biology12010055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
The human endometrium is a highly dynamic tissue. Increasing evidence has shown that microRNAs (miRs) play essential roles in human endometrium development. Our previous assay, based on small RNA-sequencing (sRNA-seq) indicated the complexity and dynamics of numerous sequence variants of miRs (isomiRs) that can act together to control genes of functional relevance to the receptive endometrium (RE). Here, we used a greater average depth of sRNA-seq to detect poorly expressed small RNAs. The sequencing data confirmed the up-regulation of miR-449c and uncovered other members of the miR-449 family up-regulated in RE-among them miR-449a, as well as several isoforms of both miR-449a and miR-449c, while the third family member, miR-449b, was not identified. Stem-looped RT-qPCR analysis of miR expression at four-time points of the endometrial cycle verified the increased expression of the miR-449a/c family members in RE, among which the 5' isoform of miR-449c-miR-449c.1 was the most strongly up-regulated. Moreover, we found in a case study that the expression of miR-449c.1 and its precursor correlated with the histological assessment of the endometrial phase and patient age. We believe this study will promote the clinical investigation and application of the miR-449 family in the diagnosis and prognosis of human reproductive diseases.
Collapse
Affiliation(s)
- Mladen Naydenov
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Maria Nikolova
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Center for Women’s Health, 4000 Plovdiv, Bulgaria
| | - Apostol Apostolov
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Competence Centre on Health Technologies, 50406 Tartu, Estonia
| | - Ilias Glogovitis
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Andres Salumets
- Competence Centre on Health Technologies, 50406 Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital, 14186 Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Vesselin Baev
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
7
|
Bonavina G, Taylor HS. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front Endocrinol (Lausanne) 2022; 13:1020827. [PMID: 36387918 PMCID: PMC9643365 DOI: 10.3389/fendo.2022.1020827] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the clinically recognized association between endometriosis and infertility, the mechanisms implicated in endometriosis-associated infertility are not fully understood. Endometriosis is a multifactorial and systemic disease that has pleiotropic direct and indirect effects on reproduction. A complex interaction between endometriosis subtype, pain, inflammation, altered pelvic anatomy, adhesions, disrupted ovarian reserve/function, and compromised endometrial receptivity as well as systemic effects of the disease define endometriosis-associated infertility. The population of infertile women with endometriosis is heterogeneous, and diverse patients' phenotypes can be observed in the clinical setting, thus making difficult to establish a precise diagnosis and a single mechanism of endometriosis related infertility. Moreover, clinical management of infertility associated with endometriosis can be challenging due to this heterogeneity. Innovative non-invasive diagnostic tools are on the horizon that may allow us to target the specific dysfunctional alteration in the reproduction process. Currently the treatment should be individualized according to the clinical situation and to the suspected level of impairment. Here we review the etiology of endometriosis related infertility as well as current treatment options, including the roles of surgery and assisted reproductive technologies.
Collapse
Affiliation(s)
- Giulia Bonavina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Yu SL, Kang Y, Jeong DU, Lee DC, Jeon HJ, Kim TH, Lee SK, Han AR, Kang J, Park SR. The miR-182-5p/NDRG1 Axis Controls Endometrial Receptivity through the NF-κB/ZEB1/E-Cadherin Pathway. Int J Mol Sci 2022; 23:ijms232012303. [PMID: 36293154 PMCID: PMC9602861 DOI: 10.3390/ijms232012303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Endometrial receptivity is essential for successful pregnancy, and its impairment is a major cause of embryo-implantation failure. MicroRNAs (miRNAs) that regulate epigenetic modifications have been associated with endometrial receptivity. However, the molecular mechanisms whereby miRNAs regulate endometrial receptivity remain unclear. Therefore, we investigated whether miR-182 and its potential targets influence trophoblast cell attachment. miR-182 was expressed at lower levels in the secretory phase than in the proliferative phase of endometrium tissues from fertile donors. However, miR-182 expression was upregulated during the secretory phase in infertile women. Transfecting a synthetic miR-182-5p mimic decreased spheroid attachment of human JAr choriocarcinoma cells and E-cadherin expression (which is important for endometrial receptivity). miR-182-5p also downregulated N-Myc downstream regulated 1 (NDRG1), which was studied further. NDRG1 was upregulated in the secretory phase of the endometrium tissues and induced E-cadherin expression through the nuclear factor-κΒ (NF-κΒ)/zinc finger E-box binding homeobox 1 (ZEB1) signaling pathway. NDRG1-overexpressing or -depleted cells showed altered attachment rates of JAr spheroids. Collectively, our findings indicate that miR-182-5p-mediated NDRG1 downregulation impaired embryo implantation by upregulating the NF-κΒ/ZEB1/E-cadherin pathway. Hence, miR-182-5p is a potential biomarker for negative selection in endometrial receptivity and a therapeutic target for successful embryo implantation.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Yujin Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Da-Un Jeong
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hye Jin Jeon
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Tae-Hyun Kim
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Korea
| | - Sung Ki Lee
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Korea
| | - Ae Ra Han
- I-Dream Clinic, Department of Obstetrics and Gynecology, Mizmedi Hospital, Seoul 07639, Korea
- Daegu cha Fertility Center, CHA University, Daegu 42469, Korea
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Korea
- Correspondence: (J.K.); (S.-R.P.); Tel.: +82-42-600-8685 (J.K.); +82-42-600-8695 (S.-R.P.)
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea
- Correspondence: (J.K.); (S.-R.P.); Tel.: +82-42-600-8685 (J.K.); +82-42-600-8695 (S.-R.P.)
| |
Collapse
|
9
|
Bendifallah S, Dabi Y, Suisse S, Delbos L, Poilblanc M, Descamps P, Golfier F, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E. Endometriosis Associated-miRNome Analysis of Blood Samples: A Prospective Study. Diagnostics (Basel) 2022; 12:1150. [PMID: 35626305 PMCID: PMC9140062 DOI: 10.3390/diagnostics12051150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to describe the bioinformatics approach to analyze miRNome with Next Generation Sequencing (NGS) of 200 plasma samples from patients with and without endometriosis. Patients were prospectively included in the ENDO-miRNA study that selected patients with pelvic pain suggestive of endometriosis. miRNA sequencing was performed using an Novaseq6000 sequencer (Illumina, San Diego, CA, USA). Small RNA-seq of 200 plasma samples yielded ~4228 M raw sequencing reads. A total of 2633 miRNAs were found differentially expressed. Among them, 8.6% (n = 229) were up- or downregulated. For these 229 miRNAs, the F1-score, sensitivity, specificity, and AUC ranged from 0-88.2%, 0-99.4%, 4.3-100%, and 41.5-68%, respectively. Utilizing the combined bioinformatic and NGS approach, a specific and broad panel of miRNAs was detected as being potentially suitable for building a blood signature of endometriosis.
Collapse
Affiliation(s)
- Sofiane Bendifallah
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University (GRC6 C3E SU), 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (E.D.)
- Cancer Biology and Therapeutics INSERM UMR_S_938, Centre de Recherche Saint-Antoine (CRSA), 75020 Paris, France
| | - Yohann Dabi
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University (GRC6 C3E SU), 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (E.D.)
- Cancer Biology and Therapeutics INSERM UMR_S_938, Centre de Recherche Saint-Antoine (CRSA), 75020 Paris, France
| | | | - Léa Delbos
- Endometriosis Expert Center—Pays de la Loire, Department of Obstetrics and Reproductive Medicine—CHU d’Angers, 49100 Angers, France; (L.D.); (P.D.)
| | - Mathieu Poilblanc
- Endometriosis Expert Center—Steering Committee of the EndAURA Network, Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, 69310 Pierre Bénite, France; (M.P.); (F.G.)
| | - Philippe Descamps
- Endometriosis Expert Center—Pays de la Loire, Department of Obstetrics and Reproductive Medicine—CHU d’Angers, 49100 Angers, France; (L.D.); (P.D.)
| | - Francois Golfier
- Endometriosis Expert Center—Steering Committee of the EndAURA Network, Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, 69310 Pierre Bénite, France; (M.P.); (F.G.)
| | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 75006 Paris, France;
| | - Delphine Bouteiller
- Genotyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University (GRC6 C3E SU), 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (E.D.)
- Cancer Biology and Therapeutics INSERM UMR_S_938, Centre de Recherche Saint-Antoine (CRSA), 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France;
| | - Emile Daraï
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University (GRC6 C3E SU), 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (E.D.)
- Cancer Biology and Therapeutics INSERM UMR_S_938, Centre de Recherche Saint-Antoine (CRSA), 75020 Paris, France
| |
Collapse
|
10
|
Lipecki J, Mitchell AE, Muter J, Lucas ES, Makwana K, Fishwick K, Odendaal J, Hawkes A, Vrljicak P, Brosens JJ, Ott S. OUP accepted manuscript. Hum Reprod 2022; 37:747-761. [PMID: 35092277 PMCID: PMC8971653 DOI: 10.1093/humrep/deac006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
STUDY QUESTION Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by measuring the expression of a small number of genes and a continuous, non-categorical modelling approach? SUMMARY ANSWER Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample. WHAT IS KNOWN ALREADY Commercially available endometrial timing approaches based on gene expression require large gene sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive. STUDY DESIGN, SIZE, DURATION Gene expression was measured by RTq-PCR in different sample sets, comprising a total of 664 endometrial biopsies obtained 4–12 days after a self-reported positive home ovulation test. A further 36 endometrial samples were profiled by RTq-PCR as well as RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS A computational procedure, named ‘EndoTime’, was established that models the temporal profile of each gene and estimates the timing of each sample. Iterating these steps, temporal profiles are gradually refined as sample timings are being updated, and confidence in timing estimates is increased. After convergence, the method reports updated timing estimates for each sample while preserving the overall distribution of time points. MAIN RESULTS AND THE ROLE OF CHANCE The Wilcoxon rank-sum test was used to confirm that ordering samples by EndoTime estimates yields sharper temporal expression profiles for held-out genes (not used when determining sample timings) than ordering the same expression values by patient-reported times (GPX3: P < 0.005; CXCL14: P < 2.7e−6; DPP4: P < 3.7e−13). Pearson correlation between EndoTime estimates for the same sample set but based on RTq-PCR or RNA-sequencing data showed a high degree of congruency between the two (P = 8.6e−10, R2 = 0.687). Estimated timings did not differ significantly between control subjects and patients with recurrent pregnancy loss or recurrent implantation failure (P > 0.05). LARGE SCALE DATA The RTq-PCR data files are available via the GitHub repository for the EndoTime software at https://github.com/AE-Mitchell/EndoTime, as is the code used for pre-processing of RTq-PCR data. The RNA-sequencing data are available on GEO (accession GSE180485). LIMITATIONS, REASONS FOR CAUTION Timing estimates are informed by glandular gene expression and will only represent the temporal state of other endometrial cell types if in synchrony with the epithelium. Methods that estimate the day of ovulation are still required as these data are essential inputs in our method. Our approach, in its current iteration, performs batch correction such that larger sample batches impart greater accuracy to timing estimations. In theory, our method requires endometrial samples obtained at different days in the luteal phase. In practice, however, this is not a concern as timings based on urinary ovulation testing are associated with a sufficient level of noise to ensure that a variety of time points will be sampled. WIDER IMPLICATIONS OF THE FINDINGS Our method is the first to assay the temporal state of luteal-phase endometrial samples on a continuous domain. It is freely available with fully shared data and open-source software. EndoTime enables accurate temporal profiling of any gene in luteal endometrial samples for a wide range of research applications and, potentially, clinical use. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by a Wellcome Trust Investigator Award (Grant/Award Number: 212233/Z/18/Z) and the Tommy's National Miscarriage Research Centre. None of the authors have any competing interests. J.L. was funded by the Biotechnology and Biological Sciences Research Council (UK) through the Midlands Integrative Biology Training Partnership (MIBTP, BB/M01116X/1).
Collapse
Affiliation(s)
- Julia Lipecki
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Joanne Muter
- Warwick Medical School, University of Warwick, Coventry, UK
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Emma S Lucas
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Komal Makwana
- Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | - Amelia Hawkes
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Pavle Vrljicak
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Jan J Brosens
- Warwick Medical School, University of Warwick, Coventry, UK
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Sascha Ott
- Warwick Medical School, University of Warwick, Coventry, UK
- Bioinformatics RTP, Research Technology Platforms, University of Warwick, Coventry, UK
- Correspondence address. E-mail: https://orcid.org/0000-0002-5411-8114
| |
Collapse
|
11
|
Coupling miR/isomiR and mRNA Expression Signatures Unveils New Molecular Layers of Endometrial Receptivity. Life (Basel) 2021; 11:life11121391. [PMID: 34947922 PMCID: PMC8705090 DOI: 10.3390/life11121391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Embryo implantation depends on endometrial receptivity (ER). To achieve ER, the preparation of the uterine lining requires controlled priming by ovarian hormones and the expression of numerous genes in the endometrial tissue. microRNAs (miRs) have emerged as critical genetic regulators of ER in fertility and of the diseases that are associated with infertility. With the rapid development of next-generation sequencing technologies, it has become clear that miR genes can produce canonical miRs and variants—isomiRs. Here, we describe miR/isomiR expression dynamics across the four time points of natural chorionic gonadotropin (hCG)-administered cycles. Sequencing of the small RNAs (sRNA-seq) revealed that the most significant expression changes during the transition from the pre-receptive to the receptive phase occurred in the isomiR families of miR-125a, miR-125b, miR-10a, miR-10b, miR-449c, miR-92a, miR-92b, and miR-99a. Pairing the analysis of the differentially expressed (DE) miRs/isomiRs and their predicted DE mRNA targets uncovered 280 negatively correlating pairs. In the receptive endometrium, the 5′3′-isomiRs of miR-449c, which were among the most highly up-regulated isomiRs, showed a negative correlation with their target, transcription factor (TF) MYCN, which was down-regulated. Joint analysis of the miR/isomiR and TF expression identified several regulatory interactions. Based on these data, a regulatory TF-miR/isomiR gene-target circuit including let7g-5p and miR-345; the isomiR families of miR-10a, miR-10b, miR-92a, and miR-449c; and MYCN and TWIST1 was proposed to play a key role in the establishment of ER. Our work uncovers the complexity and dynamics of the endometrial isomiRs that can act cooperatively with miRs to control the functionally important genes that are critical to ER. Further studies of miR/isomiR expression patterns that are paired with those of their target mRNAs may provide a more in-depth picture of the endometrial pathologies that are associated with implantation failure.
Collapse
|
12
|
Zhao Y, He D, Zeng H, Luo J, Yang S, Chen J, Abdullah RK, Liu N. Expression and significance of miR-30d-5p and SOCS1 in patients with recurrent implantation failure during implantation window. Reprod Biol Endocrinol 2021; 19:138. [PMID: 34496883 PMCID: PMC8425163 DOI: 10.1186/s12958-021-00820-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Poor endometrial receptivity is a major factor that leads to recurrent implantation failure. However, the traditional method cannot accurately evaluate endometrial receptivity. Various studies have indicated that microRNAs (miRNAs) are involved in multiple processes of embryo implantation, but the role of miRNAs in endometrial receptivity in patients with recurrent implantation failure (RIF) remains elusive. In the present study, we investigated the presence of pinopodes and the roles of miR-30d-5p, suppressor of cytokine signalling 1 (SOCS1) and the leukaemia inhibitory factor (LIF) pathway in women with a history of RIF during the implantation window. METHODS Endometrial tissue samples were collected between January 2018 to June 2019 from two groups of women who underwent in vitro fertilisation and embryo transfer (IVF-ET) or frozen ET. The RIF group included 20 women who underwent ≥ 3 ETs, including a total of ≥ 4 good-quality embryos, without pregnancy, whereas the control group included 10 women who had given birth at least once in the past year. An endometrial biopsy was performed during the implantation window (LH + 7). The development of pinopodes in the endometrial biopsy samples from all groups was evaluated using scanning electron microscopy (SEM). Quantitative reverse transcription-polymerase chain reaction and western blotting were used to investigate the expression levels of miR-30d-5p, SOCS1, and the LIF pathway. RESULTS The presence of developed pinopodes decreased in patients with RIF on LH + 7. The expression level of miR-30d-5p decreased in the endometria during the implantation window of patients with RIF, whereas the mRNA and protein levels of SOCS1 were significantly higher in the RIF group than in the control group. Furthermore, a negative correlation was observed between the expression of miR-30d-5p and SOCS1 (r2 = 0.8362). In addition, a significant decrease in LIF and p-STAT3 expression was observed during the implantation window in patients with RIF. CONCLUSIONS MiR-30d-5p and SOCS1 may be potential biomarkers for endometrial receptivity. Changes in pinopode development and abnormal expression of miR-30d-5p, SOCS1 and LIF pathway in the endometrium could be the reasons for implantation failure.
Collapse
Affiliation(s)
- Yuhao Zhao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dongmei He
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Zeng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiefeng Luo
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuang Yang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jingjing Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Raed K Abdullah
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Nenghui Liu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
13
|
Xie Y, Liu G, Zang X, Hu Q, Zhou C, Li Y, Liu D, Hong L. Differential Expression Pattern of Goat Uterine Fluids Extracellular Vesicles miRNAs during Peri-Implantation. Cells 2021; 10:cells10092308. [PMID: 34571957 PMCID: PMC8470123 DOI: 10.3390/cells10092308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Early pregnancy failure occurs when a mature embryo attaches to an unreceptive endometrium. During the formation of a receptive endometrium, extracellular vesicles (EVs) of the uterine fluids (UFs) deliver regulatory molecules such as small RNAs to mediate intrauterine communication between the embryo and the endometrium. However, profiling of small RNAs in goat UFs’ EVs during pregnancy recognition (day 16) has not been carried out. In this study, EVs were isolated from UFs on day 16 of the estrous cycle or gestation. They were isolated by Optiprep™ Density G radient (ODG) and verified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. Immunostaining demonstrated that CD63 was present both in the endometrial epithelium and glandular epithelium, and stain intensity was greater in the pregnant endometrium compared to the non-pregnant endometrium. Small RNA sequencing revealed that UFs’ EVs contained numerous sRNA families and a total of 106 differentially expressed miRNAs (DEMs). Additionally, 1867 target genes of the DEMs were obtained, and miRNA–mRNA interaction networks were constructed. GO and KEGG analysis showed that miRNAs were significantly associated with the formation of a receptive endometrium and embryo implantation. In addition, the fluorescence in situ hybridization assay (FISH) showed that chi-miR-451-5p was mainly expressed in stromal cells of the endometrium and a higher level was detected in the endometrial luminal epithelium in pregnant states. Moreover, the dual-luciferase reporter assay showed that chi-miR-451-5p directly binds to PSMB8 and may play an important role in the formation of a receptive endometrium and embryo implantation. In conclusion, these results reveal that UFs’ EVs contain various small RNAs that may be vital in the formation of a receptive endometrium and embryo implantation.
Collapse
Affiliation(s)
- Yanshe Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Xupeng Zang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Qun Hu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (D.L.); (L.H.)
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.X.); (G.L.); (X.Z.); (Q.H.); (C.Z.); (Y.L.)
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (D.L.); (L.H.)
| |
Collapse
|
14
|
Li T, Greenblatt EM, Shin ME, Brown TJ, Chan C. Cargo small non-coding RNAs of extracellular vesicles isolated from uterine fluid associate with endometrial receptivity and implantation success. Fertil Steril 2020; 115:1327-1336. [PMID: 33272614 DOI: 10.1016/j.fertnstert.2020.10.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To optimize a method of isolating extracellular vesicles (EVs) from uterine fluid and to characterize small non-coding RNAs (sncRNAs) from the EVs, with the goal of identifying novel receptivity-associated biomarkers. DESIGN Longitudinal study comparing sncRNA expression profiles from endometrial EVs. SETTING University-affiliated, hospital-based fertility clinic. PATIENT(S) Healthy volunteers with no history of infertility (Group A) and women receiving controlled ovarian stimulation (COS)-in vitro fertilization treatment (Group B). INTERVENTIONS(S) In Group A, EVs were isolated from uterine fluid obtained on luteinizing hormone (LH)+2 and LH+7 in one natural menstrual cycle. In Group B, EVs were isolated from uterine fluid obtained on human chorionic gonadotropin (hCG)+2 and hCG+7 in one COS cycle. RNAs extracted from EVs were profiled using next-generation sequencing. MAIN OUTCOME MEASURE(S) Differential EV-sncRNAs between LH+2 and LH+7 (Group A), between hCG+2 and hCG+7 (Group B), and between pregnant and nonpregnant in vitro fertilization cycles (Group B). RESULT(S) Ultracentrifugation was validated as the most efficient method to isolate EVs from uterine fluid. We identified 12 endometrial EV-sncRNAs (11 microRNAs and 1 piwi-interacting RNA) as receptivity-associated transcripts conserved in both natural and COS cycles. These sncRNAs were associated strongly with biological functions related to immune response, extracellular matrix, and cell junction. Within COS cycles, we also identified a group of EV-sncRNAs that exhibited differential expression in patients who conceived versus those who did not, with hsa-miR-362-3p most robustly overexpressed in the nonpregnant patients. CONCLUSION(S) This study is the first to profile comprehensively sncRNAs in endometrial EVs from uterine fluid and identify sncRNA biomarkers of endometrial receptivity and implantation success.
Collapse
Affiliation(s)
- Tiantian Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ellen M Greenblatt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Mount Sinai Fertility, Sinai Health System, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | | | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Crystal Chan
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Mount Sinai Fertility, Sinai Health System, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Hernández-Vargas P, Muñoz M, Domínguez F. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update 2020; 26:264-301. [PMID: 32096829 DOI: 10.1093/humupd/dmz042] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Successful embryo implantation is a complex process that requires the coordination of a series of events, involving both the embryo and the maternal endometrium. Key to this process is the intricate cascade of molecular mechanisms regulated by endocrine, paracrine and autocrine modulators of embryonic and maternal origin. Despite significant progress in ART, implantation failure still affects numerous infertile couples worldwide and fewer than 10% of embryos successfully implant. Improved selection of both the viable embryos and the optimal endometrial phenotype for transfer remains crucial to enhancing implantation chances. However, both classical morphological embryo selection and new strategies incorporated into clinical practice, such as embryonic genetic analysis, morphokinetics or ultrasound endometrial dating, remain insufficient to predict successful implantation. Additionally, no techniques are widely applied to analyse molecular signals involved in the embryo-uterine interaction. More reliable biological markers to predict embryo and uterine reproductive competence are needed to improve pregnancy outcomes. Recent years have seen a trend towards 'omics' methods, which enable the assessment of complete endometrial and embryonic molecular profiles during implantation. Omics have advanced our knowledge of the implantation process, identifying potential but rarely implemented biomarkers of successful implantation. OBJECTIVE AND RATIONALE Differences between the findings of published omics studies, and perhaps because embryonic and endometrial molecular signatures were often not investigated jointly, have prevented firm conclusions being reached. A timely review summarizing omics studies on the molecular determinants of human implantation in both the embryo and the endometrium will help facilitate integrative and reliable omics approaches to enhance ART outcomes. SEARCH METHODS In order to provide a comprehensive review of the literature published up to September 2019, Medline databases were searched using keywords pertaining to omics, including 'transcriptome', 'proteome', 'secretome', 'metabolome' and 'expression profiles', combined with terms related to implantation, such as 'endometrial receptivity', 'embryo viability' and 'embryo implantation'. No language restrictions were imposed. References from articles were also used for additional literature. OUTCOMES Here we provide a complete summary of the major achievements in human implantation research supplied by omics approaches, highlighting their potential to improve reproductive outcomes while fully elucidating the implantation mechanism. The review highlights the existence of discrepancies among the postulated biomarkers from studies on embryo viability or endometrial receptivity, even using the same omic analysis. WIDER IMPLICATIONS Despite the huge amount of biomarker information provided by omics, we still do not have enough evidence to link data from all omics with an implantation outcome. However, in the foreseeable future, application of minimally or non-invasive omics tools, together with a more integrative interpretation of uniformly collected data, will help to overcome the difficulties for clinical implementation of omics tools. Omics assays of the embryo and endometrium are being proposed or already being used as diagnostic tools for personalised single-embryo transfer in the most favourable endometrial environment, avoiding the risk of multiple pregnancies and ensuring better pregnancy rates.
Collapse
Affiliation(s)
- Purificación Hernández-Vargas
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Manuel Muñoz
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Francisco Domínguez
- Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| |
Collapse
|
16
|
Azhari F, Pence S, Hosseini MK, Balci BK, Cevik N, Bastu E, Gunel T. The role of the serum exosomal and endometrial microRNAs in recurrent implantation failure. J Matern Fetal Neonatal Med 2020; 35:815-825. [PMID: 33249960 DOI: 10.1080/14767058.2020.1849095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE It has been identified that endometrium specific microRNAs have different expression levels in endometrial tissues and maternal serum during endometrial cycle. The aim of this study was to analyze microRNA expression levels in recurrent implantation failure patients and healthy controls endometrial samples for enlightening the aetiopathogenesis of the disease. The second aim was to search for a potential noninvasive molecular biomarker in early diagnosis and treatment of Recurrent Implantation Failure (RIF) patients. METHODS Endometrium and serum samples in two different phases (PP; proliferative phase and SP; secretory phase) from the same cases (RIF; n = 12 and Control; n = 8) were obtained. The expression levels of the microRNA by RT-qPCR method were measured. The expression levels of the healthy controls and study group were compared. Lastly performed target genes analysis of significantly dysregulated miRNA by target analyze databases for obtained related biological pathways. RESULTS This study showed that has-miR-145, has-miR-23b, has-miR-31 and has-miR-30b were significantly up-regulated in PP and down-regulated in SP endometrium samples. In serum samples, has-miR-145 and hsa-miR-23b were significantly down-regulated in both of PP and SP. Target gene and pathway analysis for dysregulated miRNAs identified important, validated and predicted genes for the implantation process. CONCLUSIONS This study is the first study to obtain endometrium and serum samples in two different phases from the same cases and measure the candidate miRNAs expression. Our finding suggests that expression level of four candidate miRNAs may be involved in RIF development in women. Furthermore, these miRNAs can be potential biomarker for early diagnosis of RIF patients.
Collapse
Affiliation(s)
- Fatemeh Azhari
- Department of Molecular Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sadrettin Pence
- Department of Molecular Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | | | - Nazife Cevik
- Department of Computer Engineering, Engineering-Architecture Faculty, Arel University, Istanbul, Turkey
| | - Ercan Bastu
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Salmasi S, Sharifi M, Rashidi B. Evaluating the effect of ovarian stimulation and exogenous progesterone on CD31-positive cell density, VEGF protein, and miR-17-5p expression of endometrium immediately before implantation. Biomed Pharmacother 2020; 133:110922. [PMID: 33232927 DOI: 10.1016/j.biopha.2020.110922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) form a special class of RNAs regulating endometrial functions like cell proliferation, differentiation, angiogenesis, and blastocyst implantation. In addition to providing suitable conditions for embryo development, angiogenesis is a prerequisite to natural pregnancy. The family of vascular endothelial growth factor (VEGF) and its receptors are the main physiological and pathological angiogenesis regulators in the endometrium. In the past, research has demonstrated alteration of angiogenesis and subsequent endometrial receptivity in the stimulated and luteal phase support cycles, when compared with natural cycles. OBJECTIVE The objective of this study is to investigate the effect of ovarian stimulation and exogenous progesterone on the density of CD31-positive cell (Endothelial cell), VEGF protein, and miR-17-5p expression in the mouse endometrium immediately before implantation. METHODS We employed ovarian stimulated and luteal phase support mice models induced by HMG/HCG and progesterone. The endometrial CD31-positive cell density was determined by immunohistochemistry (IHC) staining, the level of VEGF protein by IHC and western blot analysis, and finally the miR-17-5p expression was determined by the real-time PCR method. RESULTS The density of endothelial cell, VEGF protein, and miR-17-5p expression increased in all of the experimental mice when compared to the control group, with the maximum increase having been seen in the group that had received progesterone after ovarian stimulation. CONCLUSION This research indicates that ovarian stimulation and exogenous progesterone lead to an increase in the number of endothelial cells by upregulating the VEGF protein. Moreover, except for miR-17-5p, other microRNAs and molecules are presumably involved in angiogenic pathways, thereby requiring more studies.
Collapse
Affiliation(s)
- Soheila Salmasi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Hong L, Hu Q, Zang X, Xie Y, Zhou C, Zou X, Li Y, Deng M, Guo Y, Liu G, Liu D. Analysis and Screening of Reproductive Long Non-coding RNAs Through Genome-Wide Analyses of Goat Endometrium During the Pre-attachment Phase. Front Genet 2020; 11:568017. [PMID: 33193661 PMCID: PMC7649795 DOI: 10.3389/fgene.2020.568017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
Abstract
Reproduction in goat is highly impeded by implantation failure. Of concern, the underlying mechanism leading to embryo implantation remains unclear. In this study, deep sequencing was employed through strand-specific Ribo-Zero RNA-Seq to characterize transcriptome changes in the endometrium during the maternal recognition of pregnancy. A total of 996 differential transcripts (115 lncRNAs and 881 mRNAs) existing between the pregnant and non-pregnant endometrium were revealed through bioinformatics analysis. The screening was performed on lncRNAs (XR_001918173.1, LNC_002760, and LNC_000599) and LNC_009053, to determine their potential role in regulating the synthesis of retinol and endometrium remolding through the proteasome pathway, respectively. The hypothesis of whether certain lncRNAs, namely, LNC_007223, LNC_005256, and LNC_010092 could play important roles in embryo implantation was tested. These novel findings are of paramount relevance to further elucidate the molecular mechanisms of embryo implantation and uncover new targets to improve goat reproduction.
Collapse
Affiliation(s)
- Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Qun Hu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Xupeng Zang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Yanshe Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Chen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Xian Zou
- College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
19
|
Zhou W, Dimitriadis E. Secreted MicroRNA to Predict Embryo Implantation Outcome: From Research to Clinical Diagnostic Application. Front Cell Dev Biol 2020; 8:586510. [PMID: 33072767 PMCID: PMC7537741 DOI: 10.3389/fcell.2020.586510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Embryo implantation failure is considered a leading cause of infertility and a significant bottleneck for in vitro fertilization (IVF) treatment. Confirmed factors that lead to implantation failure involve unhealthy embryos, unreceptive endometrium, and asynchronous development and communication between the two. The quality of embryos is further dependent on sperm parameters, oocyte quality, and early embryo development after fertilization. The extensive involvement of such different factors contributes to the variability of implantation potential across different menstrual cycles. An ideal approach to predict the implantation outcome should not compromise embryo implantation. The use of clinical material, including follicular fluid, cumulus cells, sperm, seminal exosomes, spent blastocyst culture medium, blood, and uterine fluid, that can be collected relatively non-invasively without compromising embryo implantation in a transfer cycle opens new perspectives for the diagnosis of embryo implantation potential. Compositional comparison of these samples between fertile women and women or couples with implantation failure has identified both quantitative and qualitative differences in the expression of microRNAs (miRs) that hold diagnostic potential for implantation failure. Here, we review current findings of secreted miRs that have been identified to potentially be useful in predicting implantation outcome using material that can be collected relatively non-invasively. Developing non-invasive biomarkers of implantation potential would have a major impact on implantation failure and infertility.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia
| |
Collapse
|
20
|
Ovarian stimulation and exogenous progesterone affect the endometrial miR-16-5p, VEGF protein expression, and angiogenesis. Microvasc Res 2020; 133:104074. [PMID: 32949576 DOI: 10.1016/j.mvr.2020.104074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Angiogenesis, where vascular endothelial growth factor (VEGF) is critically involved, is an important factor in endometrial receptivity. Angio-miRNAs form a special class of microRNAs (miRNAs) that target angiogenic genes and regulate angiogenesis. Various studies have shown that ovarian stimulation and exogenous progesterone affect endometrial vascular density. The present research aimed to assess the impact of HMG/HCG and progesterone on miR-16-5p, VEGF protein expression, and angiogenesis in the mouse endometrium during the preimplantation period. Forty adult female mice were divided into four groups: 1) control, 2) ovarian stimulation (HMG and 48 h after HCG IP), 3) progesterone (progesterone IP for 3 days), 4) ovarian stimulation + progesterone (HMG and 48 h after HCG IP) + (progesterone IP for 3 days) groups.The mice were sacrificed 96 h following HCG administration. miR-16-5p, VEGF protein expression, and CD31-positive cell (Endothelial cell) density were specified.The results showed that endothelial cell density,VEGF protein, and miR-16-5p expression increased in all treatment groups, with the maximum increase belonging to the ovarian stimulation + progesterone group. This study provides evidence that ovarian stimulation and progesterone administration enhance endometrial angiogenesis through VEGF protein upregulation. Furthermore, except for miR-16-5p, other miRNAs and molecules appear to be involved in angiogenic pathways, thereby requiring further studies.
Collapse
|
21
|
Drissennek L, Baron C, Brouillet S, Entezami F, Hamamah S, Haouzi D. Endometrial miRNome profile according to the receptivity status and implantation failure. HUM FERTIL 2020; 25:356-368. [DOI: 10.1080/14647273.2020.1807065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Loubna Drissennek
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Chloé Baron
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Sophie Brouillet
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, ART/PDG department, Arnaud de Villeneuve Hospital, Montpellier, Montpellier, France
- Univ Grenoble-Alpes, INSERM 1036, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l’Infection (BCI), Grenoble, France
| | - Frida Entezami
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- American Hospital of Paris, IVF department, Neuilly-Sur-Seine, France
| | - Samir Hamamah
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, ART/PDG department, Arnaud de Villeneuve Hospital, Montpellier, Montpellier, France
| | - Delphine Haouzi
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, ART/PDG department, Arnaud de Villeneuve Hospital, Montpellier, Montpellier, France
| |
Collapse
|
22
|
Zhang Q, Ni T, Dang Y, Ding L, Jiang J, Li J, Xia M, Yu N, Ma J, Yan J, Chen ZJ. MiR-148a-3p may contribute to flawed decidualization in recurrent implantation failure by modulating HOXC8. J Assist Reprod Genet 2020; 37:2535-2544. [PMID: 32772270 DOI: 10.1007/s10815-020-01900-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To evaluate whether miR-148a-3p overexpression is associated with disrupted decidualization of recurrent implantation failure (RIF). METHODS Endometrial miRNA and mRNA expression profiles during the implantation window derived from women with and without RIF were identified using microarray and RT-qPCR. Immortalized human endometrial stromal cells (HESCs) were cultured for proliferation and in vitro decidualization assays after enhancing miR-148a-3p expression or inhibiting putative target gene homeobox C8 (HOXC8) expression. RT-qPCR, western blot, and luciferase reporter assays were used to confirm the relationship between miR-148a-3p and HOXC8 gene. RESULTS MiR-148a-3p was significantly upregulated in RIF endometrial tissues. Forced expression of miR-148a-3p notably attenuated HESC in vitro decidualization. Mechanistic studies revealed that miR-148a-3p directly bounds to the HOXC8 3' untranslated region (3'UTR) and suppressed HOXC8 expressions in both mRNA and protein levels. Further investigations demonstrated that inhibition of HOXC8 in HESCs induced similar effects on decidual process as those induced by miR-148a-3p overexpression. CONCLUSION Taken together, our findings suggested that elevated miR-148a-3p might account for flawed decidualization in RIF by negatively regulating HOXC8, raising the possibility that miR-148a-3p might be a novel therapeutic target in RIF.
Collapse
Affiliation(s)
- Qian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Tianxiang Ni
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Yujie Dang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Lingling Ding
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Jingjing Jiang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Mingdi Xia
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Na Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetic, Shanghai, 200127, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
23
|
Baron C, Haouzi D, Gala A, Ferrieres-Hoa A, Vintejoux E, Brouillet S, Hamamah S. [Endometrial receptivity in assisted reproductive techniques: An aspect to investigate in embryo implantation failure]. ACTA ACUST UNITED AC 2020; 49:128-136. [PMID: 32721539 DOI: 10.1016/j.gofs.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 10/23/2022]
Abstract
Infertility affects between 8 and 12% of reproductive-age couples worldwide. Despite improvements in assisted reproductive techniques (ART), live birth rates are still limited. In clinical practice, imaging and microscopy are currently widely used, but their diagnostic effectiveness remains limited. In research, the emergence of innovative techniques named OMICS would improve the identification of the implantation window, while progressing in the understanding of the pathophysiological mechanisms involved in embryo implantation failures. To date, transcriptomic analysis seems to be the most promising approach in clinical research. The objective of this review is to present the results obtained with the different approaches available in clinical practice and in research to assess endometrial receptivity in patients undergoing ART.
Collapse
Affiliation(s)
- C Baron
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France
| | - D Haouzi
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France
| | - A Gala
- Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France
| | - A Ferrieres-Hoa
- Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France
| | - E Vintejoux
- Département de médecine de la reproduction, CHU de Montpellier, 34000 Montpellier, France
| | - S Brouillet
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France; Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France; Inserm 1036, laboratoire biologie du cancer et de l'infection (BCI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), institut de biosciences et biotechnologies de Grenoble (BIG), université Grenoble-Alpes, 38000 Grenoble, France; Centre clinique et biologique d'assistance médicale à la procréation - centre d'étude et de conservation des œufs et du sperme humains (CECOS), hôpital Couple-Enfant, centre hospitalier universitaire de Grenoble, La Tronche, France.
| | - S Hamamah
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France; Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France.
| |
Collapse
|
24
|
Endometrial microRNAs and their aberrant expression patterns. Med Mol Morphol 2020; 53:131-140. [PMID: 32350620 DOI: 10.1007/s00795-020-00252-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression. They play fundamental roles in several biological processes, including cell differentiation and proliferation, embryo development, organ development, and organ metabolism. Besides regulating the physiological processes, miRNAs regulate various pathological conditions such as tumors, metastases, metabolic diseases, and osteoporosis. Although several studies have been performed on miRNAs, only few studies have described the miRNA expression and functions in human reproductive tract tissues. During menstruation, the human endometrium undergoes extensive cyclic morphological and biochemical modifications before embryo implantation. In addition to the ovarian steroid hormones (estrogen and progesterone), endometrial autocrine or paracrine factors and embryo-derived signals play a significant role in endometrial functions. miRNAs are considered key regulators of gene expression in the human endometrium and implantation process, and their aberrant expression levels are associated with the development of various disorders, including tumorigenesis. In this review, we summarize the studies that show the role of miRNAs in regulating the physiological conditions of the endometrium and the implantation process and discuss the aberrant expression of miRNAs in ectopic pregnancy, endometriosis, and endometrial cancer.
Collapse
|
25
|
Ghafouri-Fard S, Shoorei H, Taheri M. The role of microRNAs in ectopic pregnancy: A concise review. Noncoding RNA Res 2020; 5:67-70. [PMID: 32346661 PMCID: PMC7183093 DOI: 10.1016/j.ncrna.2020.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
Ectopic pregnancy (EP) is reported in about 1%–2% of pregnant females and is associated with mortality and morbidity. Several genetic and environmental factors might modulate occurrence of EP. Prediction of EP and patients' follow-up is an important task in management of pregnancy. MicroRNAs (miRNAs) as non-coding RNAs with sizes between 21 and 24 nucleotides have been shown to regulate several aspects of implantation and early fetal life. They have potential role in early detection of EP especially considering their presence in body fluids such as serum. Assessment of their expression in serum might provide a noninvasive method for diagnosis and patients' follow-up. However, data regarding their role in EP is not sufficient due to small sample sizes of the studies. Future studies are required to find miRNAs that regulate expression of EP-associated genes such as VEGFA, EGFR, ESR1 and immune response-related genes to provide new diagnostic biomarkers for EP.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Grasso A, Navarro R, Balaguer N, Moreno I, Alama P, Jimenez J, Simón C, Vilella F. Endometrial Liquid Biopsy Provides a miRNA Roadmap of the Secretory Phase of the Human Endometrium. J Clin Endocrinol Metab 2020; 105:5609155. [PMID: 31665361 DOI: 10.1210/clinem/dgz146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023]
Abstract
CONTEXT Endometrial liquid biopsy (ELB) is a minimally invasive alternative for research and diagnosis in endometrial biology. OBJECTIVE We sought to establish an endometrial micro ribonucleic acid (miRNA) roadmap based on ELB during the secretory phase of the menstrual cycle in both natural and hormonal replacement therapy (HRT) cycles. DESIGN Human ELB samples (n = 58) were obtained from healthy ovum donors undergoing a natural and an HRT cycle consecutively. miRNA profiles were identified using next-generation sequencing (NGS). For functional analysis, messenger ribonucleic acid targets were chosen among those reported in the endometrial receptivity analysis. RESULTS The human endometrial secretory phase is characterized by a dynamic miRNA secretion pattern that varies from the prereceptive to the receptive stages. No differences in miRNA profiles were found among natural versus HRT cycles in the same women, reinforcing the similarities in functional and clinical outcomes in natural versus medicated cycles. Bioinformatic analysis revealed 62 validated interactions and 81 predicted interactions of miRNAs differentially expressed in the HRT cycle. Annotation of these genes linked them to 51 different pathways involved in endometrial receptivity. CONCLUSION This NGS-based study describes the miRNA signature in human ELB during the secretory phase of natural and HRT cycles. A consistent endometrial miRNA signature was observed in the acquisition of endometrial receptivity. Interestingly, no significant differences in miRNA expression were found in natural versus HRT cycles reinforcing the functional clinical similarities between both approaches.
Collapse
Affiliation(s)
- Alessia Grasso
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Roser Navarro
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Inmaculada Moreno
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | | | - Jorge Jimenez
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - C Simón
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
- IVI Valencia, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | - F Vilella
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| |
Collapse
|
27
|
mir-320b rs755613466 T>C and mir-27a rs780199251 G>A polymorphisms and the risk of IVF failure in Kurdish women. Mol Biol Rep 2020; 47:1751-1758. [PMID: 32006196 DOI: 10.1007/s11033-020-05266-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022]
Abstract
In vitro fertilization failure is not only the cause of despair among couples and individuals undergoing the treatment, it has also been contributing to the impediment of assistive reproductive technologies' development. MicroRNAs (miRNAs) have been linked to significant events in the reproduction course. The identification of miRNA polymorphisms may provide a good lead for the potential of diagnosis and treatment of unidentified in vitro fertilization (IVF) failure causes. The aim of our study is to explore the association between miRNA polymorphisms (mir-320b T>C and mir-27a G >A) and IVF failure. Our case-control study consisted of 200 Kurdish women in total, 100 with IVF failure and the other 100 control who have had at least two successful pregnancies and no history of pregnancy loss, we used tetra amplification refractory mutation system PCR to identify the polymorphisms within the groups. The TT genotype of mir-320b was found more frequently in IVF failure patients when compared to the healthy women (OR 8.07, CI 2.18-29.78, P = 0.001) and T allele was more present in the case group (OR 1.83, CI 91.04-2.12, P = 0.034), however mir-27a seemed to show no association with IVF failure in regards to genotype and allele frequencies. The difference in genotype and allele frequencies of mir-320b of the two groups may indicate that it has an effect on the target mRNAs and alter the implantation of embryo during IVF cycles.
Collapse
|
28
|
Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The Role of MicroRNAs in Mammalian Fertility: From Gametogenesis to Embryo Implantation. Int J Mol Sci 2020; 21:ijms21020585. [PMID: 31963271 PMCID: PMC7014195 DOI: 10.3390/ijms21020585] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
The genetic codes inscribed during two key developmental processes, namely gametogenesis and embryogenesis, are believed to determine subsequent development and survival of adult life. Once the embryo is formed, its further development mainly depends on its intrinsic characteristics, maternal environment (the endometrial receptivity), and the embryo–maternal interactions established during each phase of development. These developmental processes are under strict genetic regulation that could be manifested temporally and spatially depending on the physiological and developmental status of the cell. MicroRNAs (miRNAs), one of the small non-coding classes of RNAs, approximately 19–22 nucleotides in length, are one of the candidates for post-transcriptional developmental regulators. These tiny non-coding RNAs are expressed in ovarian tissue, granulosa cells, testis, oocytes, follicular fluid, and embryos and are implicated in diverse biological processes such as cell-to-cell communication. Moreover, accumulated evidences have also highlighted that miRNAs can be released into the extracellular environment through different mechanisms facilitating intercellular communication. Therefore, understanding miRNAs mediated regulatory mechanisms during gametogenesis and embryogenesis provides further insights about the molecular mechanisms underlying oocyte/sperm formation, early embryo development, and implantation. Thus, this review highlights the role of miRNAs in mammalian gametogenesis and embryogenesis and summarizes recent findings about miRNA-mediated post-transcriptional regulatory mechanisms occurring during early mammalian development.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO 80523, USA;
| | - Michael Hoelker
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, 53639 Königswinter, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Tsige Hailay
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO 80523, USA;
- Correspondence: ; Tel.: +1-530-564-2806
| |
Collapse
|
29
|
He Y, Zheng H, Du H, Liu J, Li L, Liu H, Cao M, Chen S. Delayed frozen embryo transfer failed to improve live birth rate and neonatal outcomes in patients requiring whole embryo freezing. Reprod Biol Endocrinol 2020; 18:1. [PMID: 31924215 PMCID: PMC6953147 DOI: 10.1186/s12958-019-0560-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/27/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Controlled ovarian stimulation (COS) has a negative effect on the endometrial receptivity compared with natural menstrual cycle. Whether it's necessary to postpone the first frozen embryo transfer (FET) following a freeze-all strategy in order to avoid any residual effect on endometrial receptivity consequent to COS was inconclusive. OBJECTIVE The purpose of this retrospective study was to explore whether the delayed FET improve the live birth rate and neonatal outcomes stratified by COS protocols after a freeze-all strategy. METHODS A total of 4404 patients who underwent the first FET cycle were enrolled in this study between April 2014 to December 2017, and were divided into immediate (within the first menstrual cycle following withdrawal bleeding) or delayed FET (waiting for at least one menstrual cycle and the transferred embryos were cryopreserved for less than 6 months). Furthermore, each group was further divided into two subgroups according to COS protocols, and the pregnancy and neonatal outcomes were analyzed between the immediate and delayed FET following the same COS protocol. RESULTS When FET cycles following the same COS protocol, there was no significant difference regarding the rates of live birth, implantation, clinical pregnancy, multiple pregnancy, early miscarriage, premature birth and stillbirth between immediate and delayed FET groups. Similarly, no significant differences were found for the mean gestational age, the mean birth weight, and rates of low birth weight and very low birth weight between the immediate and delayed FET groups. The sex ratio (male/female) and the congenital anomalies rate also did not differ significantly between the two FET groups stratified by COS protocols. CONCLUSION Regardless of COS protocols, FET could be performed immediately after a freeze-all strategy for delaying FET failed to improve reproductive and neonatal outcomes.
Collapse
Affiliation(s)
- Yuxia He
- Department of Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, Guangdong, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Haiyan Zheng
- Department of Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, Guangdong, China
| | - Hongzi Du
- Department of Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, Guangdong, China
| | - Jianqiao Liu
- Department of Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, Guangdong, China
| | - Lei Li
- Department of Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, Guangdong, China
| | - Haiying Liu
- Department of Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, Guangdong, China
| | - Mingzhu Cao
- Department of Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, Guangdong, China
| | - Shiping Chen
- Department of Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, Guangdong, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, Guangzhou, Guangdong, China.
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Stepanjuk A, Koel M, Pook M, Saare M, Jääger K, Peters M, Krjutškov K, Ingerpuu S, Salumets A. MUC20 expression marks the receptive phase of the human endometrium. Reprod Biomed Online 2019; 39:725-736. [PMID: 31519421 DOI: 10.1016/j.rbmo.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
RESEARCH QUESTION How does mucin MUC20 expression change during the menstrual cycle in different cell types of human endometrium? DESIGN Study involved examination of MUC20 expression in two previously published RNA-seq datasets in whole endometrial tissue (n = 10), sorted endometrial epithelial (n = 44) or stromal (n = 42) cell samples. RNA-Seq results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) in whole tissue (n = 10), sorted epithelial (n = 17) and stromal (n = 17) cell samples. MUC20 protein localization and expression were analysed in human endometrium by immunohistochemical analysis of intact endometrial tissue (n = 6) and also Western blot of cultured stromal and epithelial cells (n = 2). RESULTS MUC20 is differentially expressed in the endometrium between the pre-receptive and receptive phases. We show that MUC20 is predominantly expressed by epithelial cells of the receptive endometrium, both at the mRNA (RNA-Seq, P = 0.005; qRT-PCR, P = 0.039) and protein levels (Western blot; immunohistochemistry, P = 0.029). CONCLUSION Our results indicate MUC20 as a novel marker of mid-secretory endometrial biology. We propose a model of MUC20 function in the hepatocyte growth factor (HGF)-activated mesenchymal-epithelial transition (MET) receptor signalling specifically in the receptive phase. Further investigations should reveal the precise function of MUC20 in human endometrium and the possible connection between MUC20 and HGF-activated MET receptor signalling. MUC20 could potentially be included in the list of endometrial receptivity markers after further clinical validation.
Collapse
Affiliation(s)
- Artjom Stepanjuk
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Mariann Koel
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia
| | - Martin Pook
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Merli Saare
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu 50406, Estonia
| | - Kersti Jääger
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu 50406, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Research Program of Molecular Neurology, Research Programs Unit, University of Helsinki, and Folkhälsan Institute of Genetics, Haartmaninkatu 8, Helsinki 00290, Finland
| | - Sulev Ingerpuu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu 50406, Estonia; Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki 00014, Finland.
| |
Collapse
|
31
|
Balaguer N, Moreno I, Herrero M, Gonzáléz-Monfort M, Vilella F, Simón C. MicroRNA-30d deficiency during preconception affects endometrial receptivity by decreasing implantation rates and impairing fetal growth. Am J Obstet Gynecol 2019; 221:46.e1-46.e16. [PMID: 30826341 DOI: 10.1016/j.ajog.2019.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/30/2019] [Accepted: 02/22/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Maternal-embryonic crosstalk between the endometrium and the preimplantation embryo is required for normal pregnancy. Our previous results demonstrated that maternal microRNAs secreted into the endometrial fluid, specifically miR-30d, act as a transcriptomic regulator of the preimplantation embryo by the maternal intrauterine environment. OBJECTIVE To investigate the reproductive and fetal effects of murine miR-30d deficiency at the maternal-embryonic interface according to the origin of its maternal or embryonic default. STUDY DESIGN A miR-30d knockout murine model was used as the animal model to investigate the impact of maternal and/or embryonic origin of miR-30d deficiency on embryonic implantation and fetal development. Wild-type and miR-30d knockout pseudopregnant mice were used to study the effect of miR-30d deficiency on the receptivity markers by means of real-time quantitative polymerase chain reaction, immunofluorescence, and western blotting. We assessed receptivity markers and implantation rates in 6 different transfer conditions in which embryos obtained from wild-type, knockout, and knockout embryos pretreated with a miR-30d analog were transferred into either wild-type or knockout pseudopregnant females. The impact of miR-30d deficiency on fetal development was evaluated by analyzing the implantation sites and resorbing sites under physiological conditions at days 5, 6, 8, and 12 of pregnancy. Fetal growth was evaluated by analyzing fetuses and placentas at days 12 and 16 of pregnancy. RESULTS Maternal miR-30d deficiency induced a significant downregulation of endometrial receptivity markers. In wild-type recipients, miR-30d knockout embryos had poorer implantation rates than wild-type embryos (48.86 ± 14.33% vs 75.00 ± 10.47%, respectively, P = .0061). In miR-30d knockout recipients, the lowest implantation rate was observed when knockout embryos were transferred compared to wild-type embryos (26.04 ± 7.15% and 49.71 ± 8.59%, respectively, P = .0059). A positive correlation (r = 0.9978) was observed for maternal leukemia inhibitor factor expression with implantation rates. Further, the course of gestation was compromised in miR-30d knockout mothers, which had smaller implantation sites, greater rates of resorption, and fetuses with smaller crown-rump length and fetal/placental weight ratio. CONCLUSION Our results demonstrate that maternal and/or embryonic miR-30d deficiency impairs embryonic implantation and fetal development in the animal model. This finding adds a novel miRNA dimension to the understanding of pregnancy and fetal growth restriction in humans.
Collapse
Affiliation(s)
- Nuria Balaguer
- Department of Pediatrics, Obstetrics, and Gynecology, Universidad de Valencia, Valencia, Spain
| | | | - María Herrero
- R&D Department, Igenomix Foundation, Valencia, Spain
| | | | - Felipe Vilella
- R&D Department, Igenomix Foundation, Valencia, Spain; Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.
| | - Carlos Simón
- Igenomix S.L., Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, INCLIVA, Valencia, Spain; Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
32
|
Loke H, Rainczuk K, Dimitriadis E. MicroRNA Biogenesis Machinery Is Dysregulated in the Endometrium of Infertile Women Suggesting a Role in Receptivity and Infertility. J Histochem Cytochem 2019; 67:589-599. [PMID: 31145039 DOI: 10.1369/0022155419854064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) regulate endometrial function and their dysregulation could underlie unexplained infertility in women. Ribonucleases including DICER and DROSHA, and the proteins, ARGONAUTE 1 (AGO 1) and 2 (AGO 2) regulate the biogenesis/maturation of miRs. We aimed to elucidate the expression and localization of miR biogenesis machinery components during the human menstrual cycle and compare their levels in endometrium from women with normal fertility and primary unexplained infertility. miR biogenesis components were measured by quantitative-RT-PCR and immunohistochemistry. In the endometrium of women with normal fertility, DROSHA immunolocalized maximally to the epithelium during the early and mid-secretory phases compared with the proliferative and late-secretory phases. Stromal DICER immunostaining intensity was higher in the late-secretory phase compared with all other phases in fertile women. DROSHA mRNA was reduced in the mid-secretory-infertile whole endometrial tissue (has all cells of the tissue), and primary epithelial and stromal cells while no differences were found in DICER, AGO1, and AGO2 mRNA. In the luminal epithelium, DROSHA staining intensity was reduced in early and mid-secretory-infertile while DICER staining was reduced in the early secretory-infertile compared with their respective fertile groups. DICER and DROSHA were dynamically regulated across the menstrual cycle and reduced levels during receptivity phase could underlie implantation failure/infertility.
Collapse
Affiliation(s)
- Hannah Loke
- Embryo Implantation Laboratory, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria, Australia
| | - Kate Rainczuk
- Embryo Implantation Laboratory, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Khordadmehr M, Jigari-Asl F, Ezzati H, Shahbazi R, Sadreddini S, Safaei S, Baradaran B. A comprehensive review on miR-451: A promising cancer biomarker with therapeutic potential. J Cell Physiol 2019; 234:21716-21731. [PMID: 31140618 DOI: 10.1002/jcp.28888] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are proposed as a family of short noncoding molecules able to manage and control the expression of the gene targets at the posttranscriptional level. They contribute in several fundamental physiological mechanisms as well as a verity of human and animal diseases such as cancer progression. Among these tiny RNAs, miR-451 placed on chromosome 17 at 17q11.2 presents an essential role in many biological processes in health condition and also in pathogenesis of different diseases. Besides, it has been recently considered as a valuable biomarker for cancer detection, prognosis and treatment. Therefore, this review will provide the critical functions of miR-451 on biological mechanisms including cell cycle and proliferation, cell survival and apoptosis, differentiation and development as well as disease initiation and progression such as tumor formation, migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Farinaz Jigari-Asl
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Song Y, Zhang L, Liu X, Niu M, Cui J, Che S, Liu Y, An X, Cao B. Analyses of circRNA profiling during the development from pre-receptive to receptive phases in the goat endometrium. J Anim Sci Biotechnol 2019; 10:34. [PMID: 31049198 PMCID: PMC6482587 DOI: 10.1186/s40104-019-0339-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/24/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recent studies have revealed that noncoding RNAs play important regulatory roles in the formation of endometrial receptivity. Circular RNAs (circRNAs) are a universally expressed noncoding RNA species that have been recently proposed to act as miRNA sponges that directly regulate expression of target genes or parental genes. RESULTS We used Illumina Solexa technology to analyze the expression profiles of circRNAs in the endometrium from three goats at gestational day 5 (pre-receptive endometrium, PE) and three goats at gestational day 15 (receptive endometrium, RE). Overall, 21,813 circRNAs were identified, of which 5,925 circRNAs were specific to the RE and 9,078 were specific to the PE, which suggested high stage-specificity. Further analysis found 334 differentially expressed circRNAs in the RE compared with PE (P < 0.05). The analysis of the circRNA-miRNA interaction network further supported the idea that circRNAs act as miRNA sponges to regulate gene expression. Moreover, some circRNAs were regulated by estrogen (E2)/progesterone (P4) in endometrial epithelium cell lines (EECs) and endometrial stromal cell line (ESCs), and each circRNA molecule exhibited unique regulation characteristics with respect to E2 and P4. CONCLUSIONS These data provide an endometrium circRNA expression atlas corresponding to the biology of the goat receptive endometrium during embryo implantation.
Collapse
Affiliation(s)
- Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Mengxiao Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| |
Collapse
|
35
|
Zhai J, Yao GD, Wang JY, Yang QL, Wu L, Chang ZY, Sun YP. Metformin Regulates Key MicroRNAs to Improve Endometrial Receptivity Through Increasing Implantation Marker Gene Expression in Patients with PCOS Undergoing IVF/ICSI. Reprod Sci 2019; 26:1439-1448. [PMID: 30599813 DOI: 10.1177/1933719118820466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To some extent, the use of metformin may improve endometrial receptivity and pregnancy outcomes of women with polycystic ovarian syndrome (PCOS) undergoing in vitro fertilization/intracytoplasmic sperm injection. However, the mechanism is not well-known. The endometrium of metformin-treated group (metformin-treated patients with PCOS) and the control group (non-metformin-treated patients with PCOS) were analyzed for the expression of homeobox A10 (HOXA10) and integrin beta-3 (ITGB3) and differential micro RNA (miRNA) expression profiles. On this basis, miRDB and Target Scan databases were used to predict and screen out that miR-491-3p and miR-1910-3p may target HOXA10 and ITGB3. Furthermore, we verified the effects of metformin on the expression of HOXA10 and ITGB3, and regulatory effects of miR-1910-3p and miR-491-3p on HOXA10 and ITGB3 using Ishikawa cell line. Metformin induced a significant dose-dependent upregulation of HOXA10 and ITGB3. The results from the microarray analyses showed there were 40 differentially expressed miRNAs between the 2 groups. Among them, miR-1910-3p and miR-491-3p were the 2 significantly downregulated miRNAs. Bioinformatics prediction indicated that HOXA10 and ITGB3 are potential target genes for miR-1910-3p and miR-491-3p. In Ishikawa cells transfected with miR-491-3p mimics, the expression of HOXA10 and ITGB3 on both messenger RNA (mRNA) and protein level were lower than those in control group (P < .001). Also, the expression of HOXA10 mRNA and protein was lower in Ishikawa cells transfected with miR-1910-3p mimics (P < .001). However, no significant changes in ITGB3 levels were observed in cells transfected with miR-1910-3p mimics (P > .05). Metformin likely improves endometrial receptivity through downregulating the expression of miR-491-3p and miR-1910-3p, thereby increasing the expression of HOXA10 and ITGB3 in the endometrium of PCOS women.
Collapse
Affiliation(s)
- Jun Zhai
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Gui-Dong Yao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jing-Yuan Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qing-Ling Yang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liang Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zi-Yin Chang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
36
|
A Two-Cohort RNA-seq Study Reveals Changes in Endometrial and Blood miRNome in Fertile and Infertile Women. Genes (Basel) 2018; 9:genes9120574. [PMID: 30477193 PMCID: PMC6315937 DOI: 10.3390/genes9120574] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
The endometrium undergoes extensive changes to prepare for embryo implantation and microRNAs (miRNAs) have been described as playing a significant role in the regulation of endometrial receptivity. However, there is no consensus about the miRNAs involved in mid-secretory endometrial functions. We analysed the complete endometrial miRNome from early secretory (pre-receptive) and mid-secretory (receptive) phases from fertile women and from patients with recurrent implantation failure (RIF) to reveal differentially expressed (DE) miRNAs in the mid-secretory endometrium. Furthermore, we investigated whether the overall changes during early to mid-secretory phase transition and with RIF condition could be reflected in blood miRNA profiles. In total, 116 endometrial and 114 matched blood samples collected from two different population cohorts were subjected to small RNA sequencing. Among fertile women, 91 DE miRNAs were identified in the mid-secretory vs. early secretory endometrium, while no differences were found in the corresponding blood samples. The comparison of mid-secretory phase samples between fertile and infertile women revealed 21 DE miRNAs from the endometrium and one from blood samples. Among discovered novel miRNAs, chr2_4401 was validated and showed up-regulation in the mid-secretory endometrium. Besides novel findings, we confirmed the involvement of miR-30 and miR-200 family members in mid-secretory endometrial functions.
Collapse
|
37
|
Genexpressions- und Proteomanalyse – Reif für die klinische Anwendung? GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-018-0195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Flöter VL, Lorenz AK, Kirchner B, Pfaffl MW, Bauersachs S, Ulbrich SE. Impact of preimplantational oral low-dose estradiol-17β exposure on the endometrium: The role of miRNA. Mol Reprod Dev 2018. [DOI: 10.1002/mrd.22975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veronika L. Flöter
- ETH Zurich, Animal Physiology; Institute of Agricultural Sciences; Zürich Switzerland
- Department of Animal Physiology and Immunology, School of Life Sciences, Life Science Center Weihenstephan; Technical University Munich; Freising-Weihenstephan Germany
| | - Anne-Kathrin Lorenz
- ETH Zurich, Animal Physiology; Institute of Agricultural Sciences; Zürich Switzerland
- Department of Animal Physiology and Immunology, School of Life Sciences, Life Science Center Weihenstephan; Technical University Munich; Freising-Weihenstephan Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, School of Life Sciences, Life Science Center Weihenstephan; Technical University Munich; Freising-Weihenstephan Germany
| | - Michael W. Pfaffl
- Department of Animal Physiology and Immunology, School of Life Sciences, Life Science Center Weihenstephan; Technical University Munich; Freising-Weihenstephan Germany
| | - Stefan Bauersachs
- ETH Zurich, Animal Physiology; Institute of Agricultural Sciences; Zürich Switzerland
| | - Susanne E. Ulbrich
- ETH Zurich, Animal Physiology; Institute of Agricultural Sciences; Zürich Switzerland
| |
Collapse
|
39
|
Sánchez-Ribas I, Diaz-Gimeno P, Quiñonero A, Ojeda M, Larreategui Z, Ballesteros A, Domínguez F. NGS Analysis of Human Embryo Culture Media Reveals miRNAs of Extra Embryonic Origin. Reprod Sci 2018; 26:214-222. [PMID: 29587610 DOI: 10.1177/1933719118766252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our objective in this work was to isolate, identify, and compare micro-RNAs (miRNAs) found in spent culture media of euploid and aneuploid in vitro fertilization (IVF) embryos. Seventy-two embryos from 62 patients were collected, and their spent media were retained. A total of 108 spent conditioned media samples were analyzed (n = 36 day 3 euploid embryos, n = 36 day 3 aneuploid embryos, and n = 36 matched control media). Fifty hed-control media embryos were analyzed using next-generation sequencing (NGS) technology. We detected 53 known human miRNAs present in the spent conditioned media of euploid and aneuploid IVF embryos. miR-181b-5p and miR-191-5p were found the most represented. We validated our results by quantitative polymerase chain reaction (qPCR), but no significant results were obtained between the groups. In conclusion, we obtained the list of miRNAs present in the spent conditioned media from euploid and aneuploid IVF embryos, but our data suggest that these miRNAs could have a nonembryonic origin.
Collapse
Affiliation(s)
- Immaculada Sánchez-Ribas
- 1 IVI Barcelona, Barcelona, Spain.,2 Fundación IVI-Instituto Universitario IVI, INCLIVA, Valencia, Spain
| | | | - Alicia Quiñonero
- 2 Fundación IVI-Instituto Universitario IVI, INCLIVA, Valencia, Spain
| | | | | | | | | |
Collapse
|
40
|
Zierau O, Helle J, Schadyew S, Morgenroth Y, Bentler M, Hennig A, Chittur S, Tenniswood M, Kretzschmar G. Role of miR-203 in estrogen receptor-mediated signaling in the rat uterus and endometrial carcinoma. J Cell Biochem 2018; 119:5359-5372. [PMID: 29331043 DOI: 10.1002/jcb.26675] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023]
Abstract
The role of microRNAs (miRNA) in estrogen receptor (ER) signaling in the uterus and in endometrial cancer is not well understood. We therefore analyzed miRNA expression in uterine samples from a standard 3-day uterotrophic assay using young female adult rats to identify E2-regulated miRNAs. Microarray analysis identified 47 E2 down-regulated miRNAs including miR-30a, and 25 E2up-regulated miRNAs including miR-672, miR-203, and miR-146b. The strongly E2-upregulated miR-203 was selected for further analysis. miR-203 was deleted in the rat endometrial adenocarcinoma cell line, RUCA-I, using CRISPR/CAS9. Five clones devoid of miR-203 expression were generated. Proliferation was reduced and G2-arrest was observed in all miR-203 deficient RUCA-I clones. Transfection with a miR-203-3p mimic partially rescues this effect. Comparison of mRNA expression in three miR-203 knockout clones to wild type RUCA-I cells reveals 566 miR-203-upregulated and 592 miR-203-downregulated genes. 43 of the genes that are upregulated by miR-203 knockout in vitro are downregulated in the uterus by E2. Of these Acer2, Zbtb20, Ptn, Rcbtb2, Mum1l1, Hmgn3, and Nfat5 possess one or more seed sequence matches in their 3'-UTR that are predicted to be targets of miR-203. These data demonstrate the importance of E2 regulated miRNAs in general, and miR-203 in particular, for E2 regulated gene expression and physiological processes including proliferation and cell migration, in the uterus as well as in the etiology of endometrial carcinomas.
Collapse
Affiliation(s)
- Oliver Zierau
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Janina Helle
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Sabina Schadyew
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Yanni Morgenroth
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Martin Bentler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Alexander Hennig
- Institute for Immunology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sridar Chittur
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, Rensselae, New York
| | - Martin Tenniswood
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, Rensselae, New York
| | - Georg Kretzschmar
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
41
|
Agrawal S, Tapmeier T, Rahmioglu N, Kirtley S, Zondervan K, Becker C. The miRNA Mirage: How Close Are We to Finding a Non-Invasive Diagnostic Biomarker in Endometriosis? A Systematic Review. Int J Mol Sci 2018; 19:ijms19020599. [PMID: 29463003 PMCID: PMC5855821 DOI: 10.3390/ijms19020599] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Endometriosis is a common disorder of the reproductive age group, characterised by the presence of ectopic endometrial tissue. The disease not only causes enormous suffering to the affected women, but also brings a tremendous medical and economic burden to bear on society. There is a long lag phase between the onset and diagnosis of the disease, mainly due to its non-specific symptoms and the lack of a non-invasive test. Endometriosis can only be diagnosed invasively by laparoscopy. A specific, non-invasive test to diagnose endometriosis is an unmet clinical need. The recent discovery of microRNAs (miRNAs) as modulators of gene expression, and their stability and specificity, make them an attractive candidate biomarker. Various studies on miRNAs in endometriosis have identified their cardinal role in the pathogenesis of the disease, and have proposed them as potential biomarkers in endometriosis. Rationale/Objectives: The aims of this review were to study the role of circulatory miRNAs in endometriosis, and bring to light whether circulatory miRNAs could be potential non-invasive biomarkers to diagnose the disease. Search methods: Three databases, PubMed, EMBASE, and BIOSIS were searched, using a combination of Mesh or Emtree headings and free-text terms, to identify literature relating to circulating miRNAs in endometriosis published from 1996 to 31 December 2017. Only peer-reviewed, full-text original research articles in English were included in the current review. The studies meeting the inclusion criteria were critically assessed and checked using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool. The dysregulated miRNAs were assessed regarding the concordance between the various studies and their role in the disease. Outcomes: Nine studies were critically analysed, and 42 different miRNAs were found to be dysregulated in them, with only one common miRNA (miR-20a) differentially expressed in more than one study. miR-17-5p/20a, miR-200, miR-199a, miR-143, and miR-145 were explored for their pivotal role in the aetiopathogenesis of endometriosis. Wider implications: It is emerging that miRNAs play a central role in the pathogenesis of endometriosis and have the potential of being promising biomarkers. Circulating miRNAs as a non-invasive diagnostic tool may shorten the delay in the diagnosis of the disease, thus alleviating the suffering of women and reducing the burden on health care systems. However, despite numerous studies on circulating miRNAs in endometriosis, no single miRNA or any panel of them seems to meet the criteria of a diagnostic biomarker. The disagreement between the various studies upholds the demand of larger, well-controlled systematic validation studies with uniformity in the research approaches and involving diverse populations.
Collapse
Affiliation(s)
- Swati Agrawal
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
| | - Thomas Tapmeier
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
| | - Nilufer Rahmioglu
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK.
| | - Shona Kirtley
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX1 2JD, UK.
| | - Krina Zondervan
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK.
| | - Christian Becker
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
| |
Collapse
|
42
|
Enciso M, Carrascosa JP, Sarasa J, Martínez-Ortiz PA, Munné S, Horcajadas JA, Aizpurua J. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis. Hum Reprod 2018; 33:220-228. [DOI: 10.1093/humrep/dex370] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/30/2017] [Indexed: 01/07/2023] Open
|
43
|
Challenges in endometriosis miRNA studies — From tissue heterogeneity to disease specific miRNAs. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2282-2292. [DOI: 10.1016/j.bbadis.2017.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/06/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
|
44
|
Zhang L, Liu X, Liu J, Ma L, Zhou Z, Song Y, Cao B. The developmental transcriptome landscape of receptive endometrium during embryo implantation in dairy goats. Gene 2017; 633:82-95. [PMID: 28866083 DOI: 10.1016/j.gene.2017.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/08/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
Under natural conditions, some embryos cannot implant successfully because of the dysfunction of receptive endometrium (RE). Thus, it is imperative for us to study the molecular mechanisms involved in the formation of the RE from pre-receptive endometrium (PE). In this study, the endometrium from gestational day 5 (D5, PE) and gestational day 15 (D15, RE) dairy goats were selected to systematically analyze the transcriptome using strand-specific Ribo-Zero RNA-Seq, >120 million high-quality paired-end reads were generated and 47,616 transcripts were identified in the endometrium of dairy goats. A total of 810 mRNAs were differentially expressed genes (DEGs) between the RE and PE meeting the criteria of P-values<0.05. Bioinformatics analysis of the DEGs revealed that a number of biological processes and pathways were potentially involved in the establishment of the RE, notably energy metabolism and amino acid metabolism. Furthermore, we speculated that CXCL14, IGFBP3, and LGALS15 potentially participated in the development of endometrium. What's more, putative SNPs, InDels and AS events were identified and analyzed in the endometrium. In a word, this resulting view of the transcriptome greatly enhances the comprehensive transcript catalog and uncovers the global trends in gene expression during the formation of receptive endometrium in dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - XiaoRui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - JunZe Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - ZhanQin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - YuXuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - BinYun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
45
|
Altmäe S, Koel M, Võsa U, Adler P, Suhorutšenko M, Laisk-Podar T, Kukushkina V, Saare M, Velthut-Meikas A, Krjutškov K, Aghajanova L, Lalitkumar PG, Gemzell-Danielsson K, Giudice L, Simón C, Salumets A. Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers. Sci Rep 2017; 7:10077. [PMID: 28855728 PMCID: PMC5577343 DOI: 10.1038/s41598-017-10098-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Previous transcriptome studies of the human endometrium have revealed hundreds of simultaneously up- and down-regulated genes that are involved in endometrial receptivity. However, the overlap between the studies is relatively small, and we are still searching for potential diagnostic biomarkers. Here we perform a meta-analysis of endometrial-receptivity associated genes on 164 endometrial samples (76 from 'pre-receptive' and 88 from mid-secretory, 'receptive' phase endometria) using a robust rank aggregation (RRA) method, followed by enrichment analysis, and regulatory microRNA prediction. We identify a meta-signature of endometrial receptivity involving 57 mRNA genes as putative receptivity markers, where 39 of these we confirm experimentally using RNA-sequencing method in two separate datasets. The meta-signature genes highlight the importance of immune responses, the complement cascade pathway and the involvement of exosomes in mid-secretory endometrial functions. Bioinformatic prediction identifies 348 microRNAs that could regulate 30 endometrial-receptivity associated genes, and we confirm experimentally the decreased expression of 19 microRNAs with 11 corresponding up-regulated meta-signature genes in our validation experiments. The 57 identified meta-signature genes and involved pathways, together with their regulatory microRNAs could serve as promising and sought-after biomarkers of endometrial receptivity, fertility and infertility.
Collapse
Affiliation(s)
- Signe Altmäe
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, 17176, Stockholm, Sweden.
- Competence Centre on Health Technologies, 50410, Tartu, Estonia.
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18016, Granada, Spain.
| | - Mariann Koel
- Competence Centre on Health Technologies, 50410, Tartu, Estonia
- Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, 14183, Huddinge, Sweden
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Urmo Võsa
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, 50409, Estonia
| | - Marina Suhorutšenko
- Competence Centre on Health Technologies, 50410, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 51014, Tartu, Estonia
| | - Triin Laisk-Podar
- Competence Centre on Health Technologies, 50410, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 51014, Tartu, Estonia
| | | | - Merli Saare
- Competence Centre on Health Technologies, 50410, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 51014, Tartu, Estonia
| | | | - Kaarel Krjutškov
- Competence Centre on Health Technologies, 50410, Tartu, Estonia
- Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Lusine Aghajanova
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, 94143-0132, CA, USA
| | - Parameswaran G Lalitkumar
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Linda Giudice
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, 94143-0132, CA, USA
| | - Carlos Simón
- Department of Obstetrics and Gynaecology, Valencia University & INCLIVA, Igenomix & Fundación IVI, 46021, Valencia, Spain
| | - Andres Salumets
- Competence Centre on Health Technologies, 50410, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 51014, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029, HUS, Finland
| |
Collapse
|
46
|
Schanzenbach CI, Kirchner B, Ulbrich SE, Pfaffl MW. Can milk cell or skim milk miRNAs be used as biomarkers for early pregnancy detection in cattle? PLoS One 2017; 12:e0172220. [PMID: 28234939 PMCID: PMC5325256 DOI: 10.1371/journal.pone.0172220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/01/2017] [Indexed: 01/07/2023] Open
Abstract
The most critical phase of pregnancy is the first three weeks following insemination. During this period about 50% of high yielding lactating cows suffer embryonic loss prior to implantation, which poses a high economic burden on dairy farmers. Early diagnosis of pregnancy in cattle is therefore essential for monitoring breeding outcome and efficient production intervals. Regulated microRNAs (miRNAs) that reach easily accessible body fluids via a ‘liquid biopsy’ could be a new class of pregnancy predicting biomarkers. As milk is obtained regularly twice daily and non-invasively from the animal, it represents an ideal sample material. Our aim was to establish a pregnancy test system based on the discovery of small RNA biomarkers derived from the bovine milk cellular fraction and skim milk of cows. Milk samples were taken on days 4, 12 and 18 of cyclic cows and after artificial insemination, respectively, of the same animals (n = 6). miRNAs were analysed using small RNA sequencing (small RNA Seq). The miRNA profiles of milk cells and skim milk displayed similar profiles despite the presence of immune cell related miRNAs in milk cells. Trends in regulation of miRNAs between the oestrous cycle and pregnancy were found in miR-cluster 25~106b and its paralog cluster 17~92, miR-125 family, miR-200 family, miR-29 family, miR-15a, miR-21, miR-26b, miR-100, miR-140, 193a-5p, miR-221, miR-223, miR-320a, miR-652, miR-2898 and let-7i. A separation of cyclic and pregnant animals was achieved in a principal component analysis. Bta-miRs-29b, -221, -125b and -200b were successfully technically validated using quantitative real-time PCR, however biological validation failed. Therefore we cannot recommend the diagnostic use of these miRNAs in milk as biomarkers for detection of bovine pregnancy for now.
Collapse
Affiliation(s)
- Corina I. Schanzenbach
- Animal Physiology and Immunology, Department of Animal Sciences, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Animal Physiology, Institute of Agricultural Science, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- * E-mail:
| | - Benedikt Kirchner
- Animal Physiology and Immunology, Department of Animal Sciences, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Susanne E. Ulbrich
- Animal Physiology, Institute of Agricultural Science, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Michael W. Pfaffl
- Animal Physiology and Immunology, Department of Animal Sciences, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
47
|
Foster BP, Balassa T, Benen TD, Dominovic M, Elmadjian GK, Florova V, Fransolet MD, Kestlerova A, Kmiecik G, Kostadinova IA, Kyvelidou C, Meggyes M, Mincheva MN, Moro L, Pastuschek J, Spoldi V, Wandernoth P, Weber M, Toth B, Markert UR. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit Rev Clin Lab Sci 2016; 53:379-95. [PMID: 27191915 DOI: 10.1080/10408363.2016.1190682] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are released from almost all cells and tissues. They are able to transport substances (e.g. proteins, RNA or DNA) at higher concentrations than in their environment and may adhere in a receptor-controlled manner to specific cells or tissues in order to release their content into the respective target structure. Blood contains high concentrations of EVs mainly derived from platelets, and, at a smaller amount, from erythrocytes. The female and male reproductive tracts produce EVs which may be associated with fertility or infertility and are released into body fluids and mucosas of the urogenital organs. In this review, the currently relevant detection methods are presented and critically compared. During pregnancy, placenta-derived EVs are dynamically detectable in peripheral blood with changing profiles depending upon progress of pregnancy and different pregnancy-associated pathologies, such as preeclampsia. EVs offer novel non-invasive diagnostic tools which may reflect the situation of the placenta and the foetus. EVs in urine have the potential of reflecting urogenital diseases including cancers of the neighbouring organs. Several methods for detection, quantification and phenotyping of EVs have been established, which include electron microscopy, flow cytometry, ELISA-like methods, Western blotting and analyses based on Brownian motion. This review article summarises the current knowledge about EVs in blood and cord blood, in the different compartments of the male and female reproductive tracts, in trophoblast cells from normal and pre-eclamptic pregnancies, in placenta ex vivo perfusate, in the amniotic fluid, and in breast milk, as well as their potential effects on natural killer cells as possible targets.
Collapse
Affiliation(s)
- B P Foster
- a Maternal and Fetal Health Research Centre, School of Biomedicine, University of Manchester, and Manchester Academic Health Sciences Centre, University Research , Manchester , UK
| | - T Balassa
- b Department of Medical Microbiology and Immunology , Medical School, University of Pécs , Pécs , Hungary
| | - T D Benen
- c Microtrac GmbH , Krefeld , Germany
| | - M Dominovic
- d Department of Physiology and Immunology , Medical Faculty, University of Rijeka , Rijeka , Croatia
| | - G K Elmadjian
- e Repro Inova Immunology Laboratory , Sofia , Bulgaria
| | - V Florova
- f Department of Obstetrics , Gynecology and Perinatology, First Moscow State Medical University , Moscow , Russia
| | - M D Fransolet
- g Laboratory of Tumor and Development Biology , GIGA-R, University of Liège , Liège , Belgium
| | - A Kestlerova
- h Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine , Charles University Prague , Czech Republic
- i Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University , Prague , Czech Republic
| | - G Kmiecik
- j Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero , Brescia , Italy
| | - I A Kostadinova
- k Department of Immunoneuroendocrinology , Institute of Biology and Immunology of Reproduction , Sofia , Bulgaria
| | - C Kyvelidou
- l Department of Biology , University of Crete , Crete , Greece
| | - M Meggyes
- b Department of Medical Microbiology and Immunology , Medical School, University of Pécs , Pécs , Hungary
| | - M N Mincheva
- m Repro Inova Immunology Laboratory , Sofia , Bulgaria
| | - L Moro
- n ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona , Barcelona , Spain
- o Department of Obstetrics , Placenta-Lab, University Hospital Jena , Jena , Germany
| | - J Pastuschek
- o Department of Obstetrics , Placenta-Lab, University Hospital Jena , Jena , Germany
| | - V Spoldi
- j Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero , Brescia , Italy
| | - P Wandernoth
- p Institute of Anatomy, University Hospital, University Duisburg-Essen , Essen , Germany
| | - M Weber
- o Department of Obstetrics , Placenta-Lab, University Hospital Jena , Jena , Germany
| | - B Toth
- q Department of Gynecological Endocrinology and Fertility Disorders , Ruprecht-Karls University of Heidelberg , Heidelberg , Germany
| | - U R Markert
- o Department of Obstetrics , Placenta-Lab, University Hospital Jena , Jena , Germany
| |
Collapse
|
48
|
Katzorke N, Vilella F, Ruiz M, Krüssel JS, Simón C. Diagnosis of Endometrial-Factor Infertility: Current Approaches and New Avenues for Research. Geburtshilfe Frauenheilkd 2016; 76:699-703. [PMID: 27365540 PMCID: PMC4922892 DOI: 10.1055/s-0042-103752] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 02/04/2023] Open
Abstract
Over the last decade, research to improve success rates in reproductive medicine has focused predominantly on the understanding and optimization of embryo quality. However, the emergence of personalized medicine in ovulation induction and embryology has shifted the focus to assessing the individual status of the endometrium. The endometrium is considered receptive during an individually defined period, the window of implantation (WOI), when the mother permits a blastocyst to attach and implant. This individual receptivity status can now be objectively diagnosed using the endometrial receptivity array (ERA) developed in 2011. The ERA, together with a computational algorithm, detects the unique transcriptomic signature of endometrial receptivity by analyzing 238 differentially expressed genes and reliably predicting the WOI. We and others have illustrated the utility of this personalized diagnostic approach to discriminate between individual physiological variation in endometrial receptivity and unknown endometrial pathology, deemed as causal in recurrent implantation failure (RIF). An international randomized controlled trial ("The ERA as a diagnostic guide for personalized embryo transfer." ClinicalTrials.gov Identifier: NCT01954758) is underway to determine the clinical value of this endometrial diagnostic intervention in the work-up for reproductive care. In this review, we analyse the current clinical practice in the diagnosis of the endometrial factor together with new avenues of research.
Collapse
Affiliation(s)
- N. Katzorke
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia University, Valencia, Spain
- Department of Obstetrics and Gynecology, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - F. Vilella
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia University, Valencia, Spain
| | - M. Ruiz
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia University, Valencia, Spain
| | - J.-S. Krüssel
- Department of Obstetrics and Gynecology, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - C. Simón
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia University, Valencia, Spain
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
49
|
Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martínez S, Marcilla A, Simón C. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development 2016; 142:3210-21. [PMID: 26395145 DOI: 10.1242/dev.124289] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During embryo implantation, the blastocyst interacts with and regulates the endometrium, and endometrial fluid secreted by the endometrial epithelium nurtures the embryo. Here, we propose that maternal microRNAs (miRNAs) might act as transcriptomic modifier of the pre-implantation embryo. Microarray profiling revealed that six of 27 specific, maternal miRNAs were differentially expressed in the human endometrial epithelium during the window of implantation--a brief phase of endometrial receptivity to the blastocyst--and were released into the endometrial fluid. Further investigation revealed that hsa-miR-30d, the expression levels of which were most significantly upregulated, was secreted as an exosome-associated molecule. Exosome-associated and free hsa-miR-30d was internalized by mouse embryos via the trophectoderm, resulting in an indirect overexpression of genes encoding for certain molecules involved in the murine embryonic adhesion phenomenon--Itgb3, Itga7 and Cdh5. Indeed, this finding was supported by evidence in vitro: treating murine embryos with miR-30d resulted in a notable increase in embryo adhesion. Our results suggest a model in which maternal endometrial miRNAs act as transcriptomic modifiers of the pre-implantation embryo.
Collapse
Affiliation(s)
- F Vilella
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, Universitat de València, Instituto Universitario IVI/INCLIVA, 46980 Valencia, Spain
| | - J M Moreno-Moya
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, Universitat de València, Instituto Universitario IVI/INCLIVA, 46980 Valencia, Spain
| | - N Balaguer
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, Universitat de València, Instituto Universitario IVI/INCLIVA, 46980 Valencia, Spain
| | - A Grasso
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, Universitat de València, Instituto Universitario IVI/INCLIVA, 46980 Valencia, Spain
| | - M Herrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, Universitat de València, Instituto Universitario IVI/INCLIVA, 46980 Valencia, Spain
| | - S Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, Universitat de València, Instituto Universitario IVI/INCLIVA, 46980 Valencia, Spain
| | - A Marcilla
- Departamento de Biología Celular y Parasitología, Facultad de Farmacia, Universitat de València, 46100 Burjassot (Valencia), Spain
| | - C Simón
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, Universitat de València, Instituto Universitario IVI/INCLIVA, 46980 Valencia, Spain Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
50
|
Nothnick WB. Non-coding RNAs in Uterine Development, Function and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:171-189. [PMID: 26659492 DOI: 10.1007/978-94-017-7417-8_9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major function of the uterus is to accept and provide a suitable environment for an embryo, ultimately leading the birth of offspring and successful propagation of the species. For this occur, there must be precise coordination of hormonal signalling within both the endometrial and myometrial components of this organ. Non-coding RNAs, specifically, microRNAs (miRNAs) have been shown to be essential for normal uterine development and function. Within this organ, miRNAs are proposed to fine-tune the actions of the female steroid hormones estradiol and progesterone. Not surprising, mis-expression of miRNAs has been documented in diseases of the endometrium and myometrium such as endometriosis and leiomyomas, respectively. In this chapter, I will review the current understanding on the role, regulation and function of non-coding RNAs focusing on miRNAs in both the normal physiology of the endometrium and myometrium as well as in pathologies of these tissues, namely endometriosis and leiomyomas.
Collapse
Affiliation(s)
- Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|