1
|
Rahbar M, Asadpour R, Mazaheri Z. The effect of epididymosomes on the development of frozen-thawed mouse spermatogonial stem cells after culture in a decellularized testicular scaffold and transplantation into azoospermic mice. J Assist Reprod Genet 2024; 41:2079-2098. [PMID: 38839698 PMCID: PMC11339233 DOI: 10.1007/s10815-024-03157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study examined SSC proliferation on an epididymosome-enriched decellularized testicular matrix (DTM) hydrogel and spermatogenesis induction in azoospermic mice. METHODS Epididymosomes were extracted and characterized using SEM and western blotting. After cryopreservation, thawed SSCs were cultured in a hydrogel-based three-dimensional (3D) culture containing 10 ng/mL GDNF or 20 µg/mL epididymosomes. SSCs were assessed using the MTT assay, flow cytometry, and qRT-PCR after two weeks of culture. The isolated SSCs were microinjected into the efferent ducts of busulfan-treated mice. DiI-labeled SSCs were followed, and cell homing was assessed after two weeks. After 8 weeks, the testes were evaluated using morphometric studies and immunohistochemistry. RESULTS The expression of PLZF, TGF-β, and miR-10b did not increase statistically significantly in the 3D + GDNF and 3D + epididymosome groups compared to the 3D group. Among the groups, the GDNF-treated group exhibited the highest expression of miR-21 (*P < 0.05). Caspase-3 expression was lower in the epididymosome-treated group than in the other groups (***P < 0.001). Compared to the 3D and negative control groups, the 3D + epididymosomes and 3D + GDNF groups showed an increase in spermatogenic cells. Immunohistochemical results confirmed the growth and differentiation of spermatogonial cells into spermatids in the treatment groups. CONCLUSION The DTM hydrogel containing 20 µg/mL epididymosomes or 10 ng/mL GDNF is a novel and safe culture system that can support SSC proliferation in vitro to obtain adequate SSCs for transplantation success. It could be a novel therapeutic agent that could recover deregulated SSCs in azoospermic patients.
Collapse
Affiliation(s)
- Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
2
|
Jung H, Yoon M. Transplantation of spermatogonial stem cells in stallions. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:635-644. [PMID: 39165739 PMCID: PMC11331362 DOI: 10.5187/jast.2024.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 08/22/2024]
Abstract
Spermatogonial stem cells originate from gonocytes and undergo self-renewal and differentiation to generate mature spermatozoa via spermatogenesis in the seminiferous tubules of the testis in male mammals. Owing to the unique capacity of these cells, the spermatogonial stem cell transplantation technique, which enables the restoration of male fertility by transfer of germlines between donor and recipient males, has been developed. Thus, spermatogonial stem cell transplantation can be used as an important next-generation reproductive and breeding tool in livestock production. However, in large animals, this approach is associated with many technical limitations and inefficiency. Furthermore, research regrading spermatogonial stem cell transplantation in stallions is limited. Therefore, this review article describes the history and current knowledge regarding spermatogonial stem cell transplantation in animals and challenges in establishing an experimental protocol for successful spermatogonial stem cell transplantation in stallions, which have been presented under the following heads: spermatogonial stem cell isolation, recipient preparation, and spermatogonial stem cell transplantation. Additionally, we suggest that further investigation based on previous unequivocal evidence regarding donor-derived spermatogenesis in large animals must be conducted. A detailed and better understanding of the physical and physiological aspects is required to discuss the current status of this technique field and develop future directions for the establishment of spermatogonial stem cell transplantation in stallions.
Collapse
Affiliation(s)
- Heejun Jung
- Research Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
| | - Minjung Yoon
- Research Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
3
|
van Maaren J, Alves LF, van Wely M, van Pelt AMM, Mulder CL. Favorable culture conditions for spermatogonial propagation in human and non-human primate primary testicular cell cultures: a systematic review and meta-analysis. Front Cell Dev Biol 2024; 11:1330830. [PMID: 38259514 PMCID: PMC10800969 DOI: 10.3389/fcell.2023.1330830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Autologous transplantation of spermatogonial stem cells (SSCs) isolated from cryopreserved testicular biopsies obtained before oncological treatment could restore fertility in male childhood cancer survivors. There is a clear necessity for in vitro propagation of the limited SSCs from the testicular biopsy prior to transplantation due to limited numbers of spermatogonia in a cryopreserved testicular biopsy. Still, there is no consensus regarding their optimal culture method. Methods: We performed a systematic review and meta-analysis of studies reporting primary testicular cell cultures of human and non-human primate origin through use of Pubmed, EMBASE, and Web of Science core collection databases. Of 760 records, we included 42 articles for qualitative and quantitative analysis. To quantify in vitro spermatogonial propagation, spermatogonial colony doubling time (CDT) was calculated, which measures the increase in the number of spermatogonial colonies over time. A generalized linear mixed model analysis was used to assess the statistical effect of various culture conditions on CDT. Results: Our analysis indicates decreased CDTs, indicating faster spermatogonial propagation in cultures with a low culture temperature (32°C); with use of non-cellular matrices; use of StemPro-34 medium instead of DMEM; use of Knockout Serum Replacement; and when omitting additional growth factors in the culture medium. Discussion: The use of various methods and markers to detect the presence of spermatogonia within the reported cultures could result in detection bias, thereby potentially influencing comparability between studies. However, through use of CDT in the quantitative analysis this bias was reduced. Our results provide insight into critical culture conditions to further optimize human spermatogonial propagation in vitro, and effectively propagate and utilize these cells in a future fertility restoration therapy and restore hope of biological fatherhood for childhood cancer survivors.
Collapse
Affiliation(s)
- Jillis van Maaren
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Luis F. Alves
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Madelon van Wely
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Callista L. Mulder
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
De Windt S, Kourta D, Kanbar M, Wyns C. Optimized Recovery of Immature Germ Cells after Prepubertal Testicular Tissue Digestion and Multi-Step Differential Plating: A Step towards Fertility Restoration with Cancer-Cell-Contaminated Tissue. Int J Mol Sci 2023; 25:521. [PMID: 38203691 PMCID: PMC10779385 DOI: 10.3390/ijms25010521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Undifferentiated germ cells, including the spermatogonial stem cell subpopulation required for fertility restoration using human immature testicular tissue (ITT), are difficult to recover as they do not easily adhere to plastics. Due to the scarcity of human ITT for research, we used neonatal porcine ITT. Strategies for maximizing germ cell recovery, including a comparison of two enzymatic digestion protocols (P1 and P2) of ITT fragment sizes (4 mm3 and 8 mm3) and multi-step differential plating were explored. Cellular viability and yield, as well as numbers and proportions of DDX4+ germ cells, were assessed before incubating the cell suspensions overnight on uncoated plastics. Adherent cells were processed for immunocytochemistry (ICC) and floating cells were further incubated for three days on Poly-D-Lysine-coated plastics. Germ cell yield and cell types using ICC for SOX9, DDX4, ACTA2 and CYP19A1 were assessed at each step of the multi-step differential plating. Directly after digestion, cell suspensions contained >92% viable cells and 4.51% DDX4+ germ cells. Pooled results for fragment sizes revealed that the majority of DDX4+ cells adhere to uncoated plastics (P1; 82.36% vs. P2; 58.24%). Further incubation on Poly-D-Lysine-coated plastics increased germ cell recovery (4.80 ± 11.32 vs. 1.90 ± 2.07 DDX4+ germ cells/mm2, respectively for P1 and P2). The total proportion of DDX4+ germ cells after the complete multi-step differential plating was 3.12%. These results highlight a reduced proportion and number of germ cells lost when compared to data reported with other methods, suggesting that multi-step differential plating should be considered for optimization of immature germ cell recovery. While Poly-D-Lysine-coating increased the proportions of recovered germ cells by 16.18% (P1) and 28.98% (P2), future studies should now focus on less cell stress-inducing enzymatic digestion protocols to maximize the chances of fertility restoration with low amounts of cryo-banked human ITT.
Collapse
Affiliation(s)
- Sven De Windt
- Laboratoire d’andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (S.D.W.); (D.K.); (M.K.)
| | - Dhoha Kourta
- Laboratoire d’andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (S.D.W.); (D.K.); (M.K.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Marc Kanbar
- Laboratoire d’andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (S.D.W.); (D.K.); (M.K.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Christine Wyns
- Laboratoire d’andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (S.D.W.); (D.K.); (M.K.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
5
|
Albamonte MI, Vitullo AD. Preservation of fertility in female and male prepubertal patients diagnosed with cancer. J Assist Reprod Genet 2023; 40:2755-2767. [PMID: 37770817 PMCID: PMC10656407 DOI: 10.1007/s10815-023-02945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past two decades, the importance of fertility preservation has grown not only in the realm of medical and clinical patient care, but also in the field of basic and applied research in human reproduction. With advancements in cancer treatments resulting in higher rates of patient survival, it is crucial to consider the quality of life post-cure. Therefore, fertility preservation must be taken into account prior to antitumor treatments, as it can significantly impact a patient's future fertility. For postpubertal patients, gamete cryopreservation is the most commonly employed preservation strategy. However, for prepubertal patients, the situation is more intricate. Presently, ovarian tissue cryopreservation is the standard practice for prepubertal girls, but further scientific evidence is required in several aspects. Testicular tissue cryopreservation, on the other hand, is still experimental for prepubertal boys. The primary aim of this review is to address the strategies available for possible fertility preservation in prepubertal girls and boys, such as ovarian cryopreservation/transplantation, in vitro follicle culture and meiotic maturation, artificial ovary, transplantation of cryopreserved spermatogonia, and cryopreservation/grafting of immature testicular tissue and testicular organoids.
Collapse
Affiliation(s)
- María Itatí Albamonte
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Singh A, Hermann BP. Conserved Transcriptome Features Define Prepubertal Primate Spermatogonial Stem Cells as A dark Spermatogonia and Identify Unique Regulators. Int J Mol Sci 2023; 24:4755. [PMID: 36902187 PMCID: PMC10002546 DOI: 10.3390/ijms24054755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Antineoplastic treatments for cancer and other non-malignant disorders can result in long-term or permanent male infertility by ablating spermatogonial stem cells (SSCs). SSC transplantation using testicular tissue harvested before a sterilizing treatment is a promising approach for restoring male fertility in these cases, but a lack of exclusive biomarkers to unequivocally identify prepubertal SSCs limits their therapeutic potential. To address this, we performed single-cell RNA-seq on testis cells from immature baboons and macaques and compared these cells with published data from prepubertal human testis cells and functionally-defined mouse SSCs. While we found discrete groups of human spermatogonia, baboon and rhesus spermatogonia appeared less heterogenous. A cross-species analysis revealed cell types analogous to human SSCs in baboon and rhesus germ cells, but a comparison with mouse SSCs revealed significant differences with primate SSCs. Primate-specific SSC genes were enriched for components and regulators of the actin cytoskeleton and participate in cell-adhesion, which may explain why the culture conditions for rodent SSCs are not appropriate for primate SSCs. Furthermore, correlating the molecular definitions of human SSC, progenitor and differentiating spermatogonia with the histological definitions of Adark/Apale spermatogonia indicates that both SSCs and progenitor spermatogonia are Adark, while Apale spermatogonia appear biased towards differentiation. These results resolve the molecular identity of prepubertal human SSCs, define novel pathways that could be leveraged for advancing their selection and propagation in vitro, and confirm that the human SSC pool resides entirely within Adark spermatogonia.
Collapse
Affiliation(s)
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
7
|
Aydos OS, Yukselten Y, Ozkan T, Ozkavukcu S, Tuten Erdogan M, Sunguroglu A, Aydos K. Co-Culture of Cryopreserved Healthy Sertoli Cells with Testicular Tissue of Non-Obstructive Azoospermia (NOA) Patients in Culture Media Containing Follicle-Stimulating Hormone (FSH)/Testosterone Has No Advantage in Germ Cell Maturation. J Clin Med 2023; 12:jcm12031073. [PMID: 36769720 PMCID: PMC9917953 DOI: 10.3390/jcm12031073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Different cell culture conditions and techniques have been used to mature spermatogenic cells to increase the success of in vitro fertilization. Sertoli cells (SCs) are essential in maintaining spermatogenesis and FSH stimulation exerts its effect through direct or indirect actions on SCs. The effectiveness of FSH and testosterone added to the co-culture has been demonstrated in other studies to provide microenvironment conditions of the testicular niche and to contribute to the maturation and meiotic progression of spermatogonial stem cells (SSCs). In the present study, we investigated whether co-culture of healthy SCs with the patient's testicular tissue in the medium supplemented with FSH/testosterone provides an advantage in the differentiation and maturation of germ cells in NOA cases (N = 34). In men with obstructive azoospermia (N = 12), healthy SCs from testicular biopsies were identified and purified, then cryopreserved. The characterization of healthy SCs was done by flow cytometry (FC) and immunohistochemistry using antibodies specific for GATA4 and vimentin. FITC-conjugated annexin V/PI staining and the MTT assay were performed to compare the viability and proliferation of SCs before and after freezing. In annexin V staining, no difference was found in percentages of live and apoptotic SCs, and MTT showed that cryopreservation did not inhibit SC proliferation compared to the pre-freezing state. Then, tissue samples from NOA patients were processed in two separate environments containing FSH/testosterone and FSH/testosterone plus co-culture with thawed healthy SCs for 7 days. FC was used to measure 7th-day levels of specific markers expressed in spermatogonia (VASA), meiotic cells (CREM), and post-meiotic cells (protamine-2 and acrosin). VASA and acrosin basal levels were found to be lower in infertile patients compared to the OA group (8.2% vs. 30.6% and 12.8% vs. 30.5%, respectively; p < 0.05). Compared to pre-treatment measurements, on the 7th day in the FSH/testosterone environment, CREM levels increased by 58.8% and acrosin levels increased by 195.5% (p < 0.05). Similarly, in medium co-culture with healthy SCs, by day 7, CREM and acrosin levels increased to 92.2% and 204.8%, respectively (p < 0.05). Although VASA and protamine levels increased in both groups, they did not reach a significant level. No significant difference was found between the day 7 increase rates of CREM, VASA, acrosin and protamine-2 in either FSH/testosterone-containing medium or in medium additionally co-cultured with healthy SCs (58.8% vs. 92.2%, 120.6% vs. 79.4%, 195.5% vs. 204.8%, and 232.3% vs. 198.4%, respectively; p > 0.05). Our results suggest that the presence of the patient's own SCs for maturation of germ cells in the culture medium supplemented with FSH and testosterone is sufficient, and co-culture with healthy SCs does not have an additional advantage. In addition, the freezing-thawing process would not impair the viability and proliferation of SCs.
Collapse
Affiliation(s)
- O. Sena Aydos
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
- Correspondence: (O.S.A.); (Y.Y.); Tel.: +90-3125958050 (O.S.A.)
| | - Yunus Yukselten
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520, USA
- Correspondence: (O.S.A.); (Y.Y.); Tel.: +90-3125958050 (O.S.A.)
| | - Tulin Ozkan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Sinan Ozkavukcu
- Center for Assisted Reproduction, School of Medicine, Ankara University, Ankara 06230, Turkey
- Postgraduate Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Meltem Tuten Erdogan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Kaan Aydos
- Department of Urology, School of Medicine, Ankara University, Ankara 06230, Turkey
| |
Collapse
|
8
|
Munyoki SK, Orwig KE. Perspectives: Methods for Evaluating Primate Spermatogonial Stem Cells. Methods Mol Biol 2023; 2656:341-364. [PMID: 37249880 DOI: 10.1007/978-1-0716-3139-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian spermatogenesis is a complex, highly productive process generating millions of sperm per day. Spermatogonial stem cells (SSCs) are at the foundation of spermatogenesis and can either self-renew, producing more SSCs, or differentiate to initiate spermatogenesis and produce sperm. The biological potential of SSCs to produce and maintain spermatogenesis makes them a promising tool for the treatment of male infertility. However, translating knowledge from rodents to higher primates (monkeys and humans) is challenged by different vocabularies that are used to describe stem cells and spermatogenic lineage development in those species. Furthermore, while rodent SSCs are defined by their biological potential to produce and maintain spermatogenesis in a transplant assay, there is no equivalent routine and accessible bioassay to test monkey and human SSCs or replicate their functions in vitro. This chapter describes progress characterizing, isolating, culturing, and transplanting SSCs in higher primates.
Collapse
Affiliation(s)
- Sarah K Munyoki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Micol LA, Adenubi F, Williamson E, Lane S, Mitchell RT, Sangster P. The importance of the urologist in male oncology fertility preservation. BJU Int 2022; 130:637-645. [PMID: 35535513 PMCID: PMC9796952 DOI: 10.1111/bju.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To demonstrate that surgical sperm retrieval (SSR) and spermatogonial stem cell retrieval (SSCR) in an oncological context are safe and successful. PATIENTS AND METHODS This a retrospective study in a tertiary hospital in the UK. Patients requiring fertility preservation from December 2017 to January 2020 were included. Data were analysed with Microsoft Excel 2016 and the Statistical Package for the Social Sciences (version 20). RESULTS Among 1264 patients referred to the Reproductive Medical Unit at the University College of London Hospitals for cryopreservation prior to gonadotoxic treatment, 39 chose to go forward with SSR/SSCR because they presented as azoo-/cryptozoospermic or an inability to masturbate/ejaculate. Interventions were testicular sperm extraction (23 patients) or aspiration (one), electroejaculation (one), and testicular wedge biopsy for SSCR (14). The median (range) age was 15.0 (10-65) years and the median testosterone level was 4.4 nmoL/L. Primary diagnoses were sarcoma in 11 patients, leukaemia in nine, lymphoma in eight, testicular tumour in five, other oncological haematological entities in two, other solid cancers in two, while two patients had non-oncological haematological diseases. SSR/SSCR could be offered within 7.5 days on average. Chemotherapy could follow within 2 days from SSR/SSCR, and bone marrow transplant occurred within 19.5 days (all expressed as medians). The success rate for SSR was 68.0% (at least one vial/straw collected). The mean (SD) Johnsen score of testicular biopsies was 5.23 (2.25) with a trend towards positive correlation with SSR success (P = 0.07). However, age, hormonal profile and type of cancer did not predict SSR outcome. CONCLUSION We show that SSR and SSCR in an oncological context are valid treatment options with a high success rate for patients in which sperm cryopreservation from semen is impossible. By providing an effective pathway, fertility preservation is possible with minimal delay to oncological treatment.
Collapse
Affiliation(s)
- Lionel A. Micol
- Institute of AndrologyUniversity College London Hospitals NHS Foundation TrustLondonUK,UrologyCHUVLausanneSwitzerland,CPMALausanneSwitzerland
| | - Funmi Adenubi
- Reproductive Medicine UnitUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Elizabeth Williamson
- Reproductive Medicine UnitUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Sheila Lane
- Children's Haematology and OncologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Rod T. Mitchell
- Centre for Reproductive HealthEdinburgh Royal Hospital for Sick ChildrenThe University of Edinburgh MRCEdinburghUK
| | - Philippa Sangster
- Institute of AndrologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| |
Collapse
|
10
|
Obermeier M, Vadolas J, Verhulst S, Goossens E, Baert Y. Lipofection of Non-integrative CRISPR/Cas9 Ribonucleoproteins in Male Germline Stem Cells: A Simple and Effective Knockout Tool for Germline Genome Engineering. Front Cell Dev Biol 2022; 10:891173. [PMID: 35774227 PMCID: PMC9237505 DOI: 10.3389/fcell.2022.891173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gene editing in male germline stem (GS) cells is a potent tool to study spermatogenesis and to create transgenic mice. Various engineered nucleases already demonstrated the ability to modify the genome of GS cells. However, current systems are limited by technical complexity diminishing application options. To establish an easier method to mediate gene editing, we tested the lipofection of site-specific Cas9:gRNA ribonucleoprotein (RNP) complexes to knockout the enhanced green fluorescent protein (Egfp) in mouse EGFP-GS cells via non-homologous end joining. To monitor whether gene conversion through homology-directed repair events occurred, single-stranded oligodeoxynucleotides were co-lipofected to deliver a Bfp donor sequence. Results showed Egfp knockout in up to 22% of GS cells, which retained their undifferentiated status following transfection, while only less than 0.7% EGFP to BFP conversion was detected in gated GS cells. These data show that CRISPR/Cas9 RNP-based lipofection is a promising system to simply and effectively knock out genes in mouse GS cells. Understanding the genes involved in spermatogenesis could expand therapeutic opportunities for men suffering from infertility.
Collapse
Affiliation(s)
- Mariella Obermeier
- Biology of the Testis Lab, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jim Vadolas
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ellen Goossens
- Biology of the Testis Lab, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yoni Baert
- Biology of the Testis Lab, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Yoni Baert,
| |
Collapse
|
11
|
Tran KTD, Valli-Pulaski H, Colvin A, Orwig KE. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies†. Biol Reprod 2022; 107:382-405. [PMID: 35403667 PMCID: PMC9382377 DOI: 10.1093/biolre/ioac072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells, such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms from immature cryopreserved testicular tissues or somatic cells.
Collapse
Affiliation(s)
- Kien T D Tran
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Amanda Colvin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Correspondence: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA. Tel: 412-641-2460; E-mail:
| |
Collapse
|
12
|
Sanou I, van Maaren J, Eliveld J, Lei Q, Meißner A, de Melker AA, Hamer G, van Pelt AMM, Mulder CL. Spermatogonial Stem Cell-Based Therapies: Taking Preclinical Research to the Next Level. Front Endocrinol (Lausanne) 2022; 13:850219. [PMID: 35444616 PMCID: PMC9013905 DOI: 10.3389/fendo.2022.850219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 01/15/2023] Open
Abstract
Fertility preservation via biobanking of testicular tissue retrieved from testicular biopsies is now generally recommended for boys who need to undergo gonadotoxic treatment prior to the onset of puberty, as a source of spermatogonial stem cells (SSCs). SSCs have the potential of forming spermatids and may be used for therapeutic fertility approaches later in life. Although in the past 30 years many milestones have been reached to work towards SSC-based fertility restoration therapies, including transplantation of SSCs, grafting of testicular tissue and various in vitro and ex vivo spermatogenesis approaches, unfortunately, all these fertility therapies are still in a preclinical phase and not yet available for patients who have become infertile because of their treatment during childhood. Therefore, it is now time to take the preclinical research towards SSC-based therapy to the next level to resolve major issues that impede clinical implementation. This review gives an outline of the state of the art of the effectiveness and safety of fertility preservation and SSC-based therapies and addresses the hurdles that need to be taken for optimal progression towards actual clinical implementation of safe and effective SSC-based fertility treatments in the near future.
Collapse
Affiliation(s)
- Iris Sanou
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jillis van Maaren
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jitske Eliveld
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Qijing Lei
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Andreas Meißner
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
- Department of Urology, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Annemieke A de Melker
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Callista L Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Jiang M, Wang J, Yu R, Hu R, Li J. A narrative review on the research progress of gonadal function protection in children with cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:374. [PMID: 35434006 PMCID: PMC9011244 DOI: 10.21037/atm-22-681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective The global incidence of malignant tumors in children (0-14 years) and adolescents (15-19 years) ranges between 95 per 1 million and 255 per 1 million, which seriously affects the survival of patients. In the past 30 years, with the application of comprehensive treatments (including surgery, chemotherapy, radiotherapy, and bone marrow transplantation), great progress has been made in the treatment of malignant tumors in children and adolescents. The 5-year survival rate now exceeds 80%, and most patients can smoothly enter adolescence or the reproductive period. However, due to the particular age of patients with malignant tumors in children and adolescents, treatment may cause abnormal growth of the patient's height, bones, and some vital organs (such as the pituitary gland and reproductive organs). Treatment may also cause abnormal secretion of growth hormones, thyroid hormones, and sex hormones. These complications seriously affect the quality of life of tumor patients. In the past ten years, countries have established long-term follow-up specifications for children with tumors. These programs have found that, in adulthood, 67% to 75% of children who survived having tumors have at least one treatment-related complication. Among patients receiving chemotherapy, gonadal dysfunction is the most common related endocrine dysfunction. Methods This paper reviews the literature on fertility protection services for cancer patients in foreign countries was conducted to provide a reference for developing gonadal protection services for cancer patients and for establishing consensus or guidelines on gonadal protection in China. Key Content and Findings In the treatment of childhood cancer, the assistance of reproductive technology can effectively reduce the occurrence of complications from treatment. Conclusions Therefore, minimizing the effects of radiotherapy and chemotherapy on the growth and endocrine of children and adolescents while treating tumors is a new challenge for oncologists.
Collapse
Affiliation(s)
- Mingyan Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jialing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ruixin Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ruolan Hu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinrong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
14
|
In Vitro Propagation of XXY Undifferentiated Mouse Spermatogonia: Model for Fertility Preservation in Klinefelter Syndrome Patients. Int J Mol Sci 2021; 23:ijms23010173. [PMID: 35008599 PMCID: PMC8745151 DOI: 10.3390/ijms23010173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 01/15/2023] Open
Abstract
Klinefelter syndrome (KS) is characterized by a masculine phenotype, supernumerary sex chromosomes (usually XXY), and spermatogonial stem cell (SSC) loss in their early life. Affecting 1 out of every 650 males born, KS is the most common genetic cause of male infertility, and new fertility preservation strategies are critically important for these patients. In this study, testes from 41, XXY prepubertal (3-day-old) mice were frozen-thawed. Isolated testicular cells were cultured and characterized by qPCR, digital PCR, and flow cytometry analyses. We demonstrated that SSCs survived and were able to be propagated with testicular somatic cells in culture for up to 120 days. DNA fluorescent in situ hybridization (FISH) showed the presence of XXY spermatogonia at the beginning of the culture and a variety of propagated XY, XX, and XXY spermatogonia at the end of the culture. These data provide the first evidence that an extra sex chromosome was lost during innate SSC culture, a crucial finding in treating KS patients for preserving and propagating SSCs for future sperm production, either in vitro or in vivo. This in vitro propagation system can be translated to clinical fertility preservation for KS patients.
Collapse
|
15
|
Jung H, Yoon M. Germ Cell Transplantation in Stallion Testes. J Equine Vet Sci 2021; 106:103748. [PMID: 34670702 DOI: 10.1016/j.jevs.2021.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The production of donor-derived sperm using spermatogonial stem cell transplantation has been studied in various animals including mice, rats, goats, boar, dogs, sheep, and monkeys. However, germ cell transplantation has not been applied in stallions. The objective of this study was to produce donor germ cell-derived sperm using germ cell transplantation in stallions. Donor germ cells were transplanted into the parenchyma of 3 recipient stallions that had been treated with busulfan IV injections of 15 mg/kg body weight. For the preparation of donor single germ cells, tissue (20 g) from each testis was subjected to a 2-enzyme digestion procedure. Donor testicular germ cells in minimum essential medium α supplemented with 10% fetal bovine serum were transplanted in the testis of recipient stallions at a rate of 2 ml/min. The semen of each recipient stallion was collected using an artificial vagina at 8 weeks after germ cell transplantation. General sperm evaluation and libido tests were performed. Microsatellite fingerprinting with 17 markers was performed to identify the presence of donor-derived sperm in the semen of the recipient stallions. Sperm were observed to have total and progressive motility exceeding 50% throughout the experimental period. The libido of the recipient stallions was unchanged. No donor-derived sperm could be detected in the semen of the recipient stallions by genotyping. In conclusion, the transplantation of donor germ cells into the testicular parenchyma of stallions was not an optimal transplantation technique for producing donor-derived sperm.
Collapse
Affiliation(s)
- Heejun Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea; Department of Horse, Companion and Wild Animal Science, Kyungpook National University, Sangju, Republic of Korea.
| |
Collapse
|
16
|
Survivable potential of germ cells after trehalose cryopreservation of bovine testicular tissues. Cryobiology 2021; 101:105-114. [PMID: 33989617 DOI: 10.1016/j.cryobiol.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/23/2021] [Accepted: 05/01/2021] [Indexed: 12/26/2022]
Abstract
Germplasm preservation of livestock or endangered animals and expansion of germline stem cells are important. The purpose of this study is to investigate whether supplementation of trehalose to the freezing medium (FM) reduces tissular damage and improves the quality of testicular cells in the cryopreserved bovine testicular tissues. We herein established an optimized protocol for the cryopreservation of bovine testicular tissues, and the isolation as well as culture of bovine germ cells containing spermatogonial stem cells (SSCs) from these tissues. The results showed that FM containing 10% dimethyl sulfoxide (Me2SO/DMSO), 10% knockout serum replacement (KSR) and 20% trehalose (FM5) combined with the uncontrolled slow freezing (USF) procedures has the optimized cryoprotective effect on bovine testicular tissues. The FM5 + USF protocol reduced the cell apoptosis, maintained high cell viability, supported the structural integrity and seminiferous epithelial cohesion similar to that in the fresh tissues. Viable germ cells containing SSCs were effectively isolated from these tissues and they maintained germline marker expressions in the co-testicular cells and co-mouse embryonic fibroblasts (MEF) feeder culture systems respectively, during the short-term culture. Additionally, upregulated transcriptions of spermatogenic differentiation marker C-KIT and meiotic marker SYCP3 were detected in these cells after retinoic acid-induced differentiation. Together, FM5 + USF is suitable for the cryopreservation of bovine testicular tissues, with benefits of reducing the apoptosis, maintaining the cell viability, supporting the testicular structure integrity, and sustaining the survival and differentiation potential of bovine germ cells containing SSCs.
Collapse
|
17
|
Valdivia M, Bravo Z, Reyes J, Gonzales GF. Rescue and Conservation of Male Adult Alpacas ( Vicugna pacos) Based on Spermatogonial Stem Cell Biotechnology Using Atomized Black Maca as a Supplement of Cryopreservation Medium. Front Vet Sci 2021; 8:597964. [PMID: 33816583 PMCID: PMC8010694 DOI: 10.3389/fvets.2021.597964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/18/2021] [Indexed: 12/02/2022] Open
Abstract
This is the first time that testicular tissue (n = 44) and isolated testicular cells (n = 51) were cryopreserved from alpaca testes 24 h postmortem. For this purpose, internally designed freezing media and cryopreservation protocols were used. Testicular tissue fragments (25 mg) and isolated testicular cells were frozen in MTDB (trehalose and black maca), MTD (trehalose), MSDB (sucrose and black maca), and MSD (sucrose) media. Isolated spermatogonial cells were cryopreserved in two ways, before and after proliferation in vitro. After cryopreservation, the percentage of cell viability in Group 1 (>50% of cell viability) by trypan blue did not show differences within each group (p > 0.05) but showed significant differences when comparing fragments with isolated cells (p < 0.05). Spermatogonial stem cells (SSC) were identified by flow cytometry as strong Dolichos biflorus agglutinin (sDBA) and mitochondrial activity of SSC as strongly positive for MitoSense (sMitoSense+) in intact mitochondria cells, weakly positive for MitoSense (wMitoSense+) in early apoptosis, and necrosis with 7-Aminoactinomycin-D positive (7-AAD). After freezing, in Group 1M (≥30% sMitoSense+), the fragments did not show differences between the media (p > 0.05), but in the isolated cells frozen in MSDB medium, 63.68 ± 8.90% (p < 0.05). In Group 2M (<30% sMitoSense+), necrosis (7AAD+) in MSDB medium was 27.03 ± 5.80%, and necrosis in isolated cells was 14.05 ± 9.3% with significant differences between these groups (p < 0.05); in sMitoSense+, the isolated cells (34.40 ± 23%) had a higher percentage than the fragments (12.4 ± 5.2) (p < 0.05). On the other hand, MSDB and MSD media were significantly higher for isolated cells than for fragments in sDBA+ (p < 0.05). On the other hand, the SSC (sDBA+) had significant differences (p < 0.05) between fresh cells 7.43 ± 1.3% (sDBA+) compared with those cryopreserved in MSDB medium 1.46 ± 0.34% (sDBA+). Additionally, the proliferated and cryopreserved SSC 6.29 ± 1.17% (sDBA+) did not show significant differences concerning the fresh cells (p > 0.05). In conclusion, the black maca showed antioxidant properties when it was included in the freezing medium and, therefore, improved the SSC's conservation of the alpaca. Furthermore, the proliferation of isolated cells in vitro produces a higher amount of SSC after thawing them for further preclinical or clinical work.
Collapse
Affiliation(s)
- Martha Valdivia
- Laboratory of Reproductive Physiology, Research Institute "Antonio Raimondi," Zoology Department, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Zezé Bravo
- Laboratory of Reproductive Physiology, Research Institute "Antonio Raimondi," Zoology Department, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Jhakelin Reyes
- Laboratory of Reproductive Physiology, Research Institute "Antonio Raimondi," Zoology Department, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Gustavo F Gonzales
- Endocrine and Reproductive Laboratory, Department of Biological and Physiological Science, and Laboratory of Investigation and Development (LID), Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
18
|
Gul M, Hildorf S, Dong L, Thorup J, Hoffmann ER, Jensen CFS, Sønksen J, Cortes D, Fedder J, Andersen CY, Goossens E. Review of injection techniques for spermatogonial stem cell transplantation. Hum Reprod Update 2020; 26:368-391. [PMID: 32163572 DOI: 10.1093/humupd/dmaa003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the prognosis of childhood cancer survivors has increased dramatically during recent years, chemotherapy and radiation treatments for cancer and other conditions may lead to permanent infertility in prepubertal boys. Recent developments have shown that spermatogonial stem cell (SSC) transplantation may be a hope for restoring fertility in adult survivors of childhood cancers. For this reason, several centres around the world are collecting and cryopreserving testicular tissue or cells anticipating that, in the near future, some patients will return for SSC transplantation. This review summarizes the current knowledge and utility of SSC transplantation techniques. OBJECTIVE AND RATIONALE The aim of this narrative review is to provide an overview of the currently used experimental injection techniques for SSC transplantation in animal and human testes. This is crucial in understanding and determining the role of the different techniques necessary for successful transplantation. SEARCH METHODS A comprehensive review of peer-reviewed publications on this topic was performed using the PubMed and Google Scholar databases. The search was limited to English language work and studies between 1994 (from the first study on SSC transplantation) and April 2019. Key search terms included mouse, rat, boar, ram, dog, sheep, goat, cattle, monkey, human, cadaver, testes, SSC transplantation, injection and technique. OUTCOMES This review provides an extensive clinical overview of the current research in the field of human SSC transplantation. Rete testis injection with ultrasonography guidance currently seems the most promising injection technique thus far; however, the ability to draw clear conclusions is limited due to long ischemia time of cadaver testis, the relatively decreased volume of the testis, the diminishing size of seminiferous tubules, a lack of intratesticular pressure and leakage into the interstitium during the injection on human cadaver testis. Current evidence does not support improved outcomes from multiple infusions through the rete testes. Overall, further optimization is required to increase the efficiency and safety of the infusion method. WIDER IMPLICATIONS Identifying a favourable injection method for SSC transplantation will provide insight into the mechanisms of successful assisted human reproduction. Future research could focus on reducing leakage and establishing the optimal infusion cell concentrations and pressure.
Collapse
Affiliation(s)
- Murat Gul
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Urology, Selcuk University School of Medicine, 42250 Konya, Turkey
| | - Simone Hildorf
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jorgen Thorup
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens Sønksen
- Department of Urology, Herlev and Gentofte University Hospital, 2930 Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Pediatrics, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, 5000 Odense, Denmark.,Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
19
|
Struijk RB, Mulder CL, van Daalen SKM, de Winter-Korver CM, Jongejan A, Repping S, van Pelt AMM. ITGA6+ Human Testicular Cell Populations Acquire a Mesenchymal Rather than Germ Cell Transcriptional Signature during Long-Term Culture. Int J Mol Sci 2020; 21:ijms21218269. [PMID: 33158248 PMCID: PMC7672582 DOI: 10.3390/ijms21218269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Autologous spermatogonial stem cell transplantation is an experimental technique aimed at restoring fertility in infertile men. Although effective in animal models, in vitro propagation of human spermatogonia prior to transplantation has proven to be difficult. A major limiting factor is endogenous somatic testicular cell overgrowth during long-term culture. This makes the culture both inefficient and necessitates highly specific cell sorting strategies in order to enrich cultured germ cell fractions prior to transplantation. Here, we employed RNA-Seq to determine cell type composition in sorted integrin alpha-6 (ITGA6+) primary human testicular cells (n = 4 donors) cultured for up to two months, using differential gene expression and cell deconvolution analyses. Our data and analyses reveal that long-term cultured ITGA6+ testicular cells are composed mainly of cells expressing markers of peritubular myoid cells, (progenitor) Leydig cells, fibroblasts and mesenchymal stromal cells and only a limited percentage of spermatogonial cells as compared to their uncultured counterparts. These findings provide valuable insights into the cell type composition of cultured human ITGA6+ testicular cells during in vitro propagation and may serve as a basis for optimizing future cell sorting strategies as well as optimizing the current human testicular cell culture system for clinical use.
Collapse
Affiliation(s)
- Robert B. Struijk
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Callista L. Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Saskia K. M. van Daalen
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Cindy M. de Winter-Korver
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Aldo Jongejan
- Department of Epidemiology & Data Science, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Sjoerd Repping
- Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
- Correspondence: ; Tel.: +31-20-56-67837
| |
Collapse
|
20
|
Chen W, Bai MZ, Yang Y, Sun D, Wu S, Sun J, Wu Y, Feng Y, Wei Y, Chen Z, Zhang Z. ART strategies in Klinefelter syndrome. J Assist Reprod Genet 2020; 37:2053-2079. [PMID: 32562095 DOI: 10.1007/s10815-020-01818-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/10/2020] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Patients with Klinefelter syndrome (KS) who receive assisted reproductive technology (ART) treatment often experience poor pregnancy rates due to decreased fertilization, cleavage, and implantation rates and even an increased miscarriage rate. Mounting evidence from recent studies has shown that various technological advances and approaches could facilitate the success of ART treatment for KS patients. In this review, we summarize the methods for guiding KS patients during ART and for developing optimal strategies for preserving fertility, improving pregnancy rate and live birth rate, and avoiding the birth of KS infants. METHODS We searched PubMed and Google Scholar publications related to KS patients on topics of controlled ovarian stimulation protocols, sperm extraction, fertility preservation, gamete artificial activation, round spermatid injection (ROSI), and non-invasive prenatal screening (PGD) methods. RESULTS This review outlines the different ovulation-inducing treatments for female partners according to the individual sperm status in the KS patient. We further summarize the methods of retrieving sperm, storing, and freezing rare sperm. We reviewed different methods of gamete artificial activation and discussed the feasibility of ROSI for sterile KS patients who absolutely lack sperm. The activation of eggs in the process of intracytoplasmic sperm injection and non-invasive PGD are urgently needed to prevent the birth of KS infants. CONCLUSION The integrated strategies will pave the way for the establishment of ART treatment approaches and improve the clinical outcome for KS patients.
Collapse
Affiliation(s)
- Wei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Ming Zhu Bai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Yixia Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Di Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Sufang Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jian Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Yu Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Youji Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Youheng Wei
- Institute of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zijiang Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China.
| |
Collapse
|
21
|
Abstract
Infertility caused by chemotherapy or radiation treatments negatively impacts patient-survivor quality of life. The only fertility preservation option available to prepubertal boys who are not making sperm is cryopreservation of testicular tissues that contain spermatogonial stem cells (SSCs) with potential to produce sperm and/or restore fertility. SSC transplantation to regenerate spermatogenesis in infertile adult survivors of childhood cancers is a mature technology. However, the number of SSCs obtained in a biopsy of a prepubertal testis may be small. Therefore, methods to expand SSC numbers in culture before transplantation are needed. Here we review progress with human SSC culture.
Collapse
Affiliation(s)
- Sherin David
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
22
|
Xie Y, Chen H, Luo D, Yang X, Yao J, Zhang C, Lv L, Guo Z, Deng C, Li Y, Liang X, Deng C, Sun X, Liu G. Inhibiting Necroptosis of Spermatogonial Stem Cell as a Novel Strategy for Male Fertility Preservation. Stem Cells Dev 2020; 29:475-487. [PMID: 32024413 DOI: 10.1089/scd.2019.0220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fertility preservation is a common concern for male cancer survivors of reproductive age. However, except for testicular tissue cryopreservation, which is not very effective, there is no feasible and precise therapy capable of protecting spermatogenesis for prepubertal boys before or during gonadotoxic treatment. This study aims to investigate the effects of inhibiting necroptosis of spermatogonial stem cell (SSC) in fertility preservation. Male mice 12 weeks of age were used to establish gonadotoxicity with two intraperitoneal injections of busulfan at a total dose of 40 mg kg-1. The mouse model and the primary cultured mouse SSCs were used to characterize the relationship between necroptosis of SSC and gonadotoxicity. Meanwhile, the effects of an inhibitor of necroptosis pathway, RIPA-56, were observed on day 36 in the mouse model of busulfan-induced gonadotoxicity. We found that the number of SSCs was decreased, but the level of necroptosis was upregulated on day 18 after busulfan treatment in testes from gonadotoxic mice. Further experiments in primary cultured cells showed that the necroptosis caused cell death in busulfan-treated SSCs and could be inhibited by RIPA-56. After suppressing the necroptosis of SSCs, the busulfan-induced mice had a decreased loss of spermatogenic cells as shown by histology and an increased Johnsen's score. Moreover, the quantities of SSCs and epididymal spermatozoa were restored after intervention with RIPA-56, indicating a series of beneficial effects by targeting the necroptosis of SSCs in mice undergoing busulfan treatment. In conclusion, our findings reveal that the necroptosis of SSCs plays a critical role in busulfan-induced gonadotoxicity and may be a potential target for male fertility preservation.
Collapse
Affiliation(s)
- Yun Xie
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Haicheng Chen
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daosheng Luo
- Department of Urology, Southern Medical University Affiliate Dongguan People's Hospital, Dongguan, China
| | - Xing Yang
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linyan Lv
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Gastrointestinal Diseases Research Institute of Guangdong Province, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zexin Guo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuncan Deng
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Gastrointestinal Diseases Research Institute of Guangdong Province, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Li
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Gastrointestinal Diseases Research Institute of Guangdong Province, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guihua Liu
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Pelzman DL, Orwig KE, Hwang K. Progress in translational reproductive science: testicular tissue transplantation and in vitro spermatogenesis. Fertil Steril 2020; 113:500-509. [PMID: 32111477 DOI: 10.1016/j.fertnstert.2020.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Since the birth of the first child conceived via in vitro fertilization 40 years ago, fertility treatments and assisted reproductive technology have allowed many couples to reach their reproductive goals. As of yet, no fertility options are available for men who cannot produce functional sperm, but many experimental therapies have demonstrated promising results in animal models. Both autologous (stem cell transplantation, de novo morphogenesis, and testicular tissue grafting) and outside-the-body (xenografting and in vitro spermatogenesis) approaches exist for restoring sperm production in infertile animals with varying degrees of success. Once safety profiles are established and an ideal patient population is chosen, some of these techniques may be ready for human experimentation in the near future, with likely clinical implementation within the next decade.
Collapse
Affiliation(s)
- Daniel L Pelzman
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathleen Hwang
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
24
|
Murdock MH, David S, Swinehart IT, Reing JE, Tran K, Gassei K, Orwig KE, Badylak SF. Human Testis Extracellular Matrix Enhances Human Spermatogonial Stem Cell Survival In Vitro. Tissue Eng Part A 2019; 25:663-676. [PMID: 30311859 DOI: 10.1089/ten.tea.2018.0147] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This study developed and characterized human testis extracellular matrix (htECM) and porcine testis ECM (ptECM) for testing in human spermatogonial stem cell (hSSC) culture. Results confirmed the hypothesis that ECM from the homologous species (human) and homologous tissue (testis) is optimal for maintaining hSSCs. We describe a simplified feeder-free, serum-free condition for future iterative testing to achieve the long-term goal of stable hSSC cultures. To facilitate analysis and understand the fate of hSSCs in culture, we describe a multiparameter, high-throughput, quantitative flow cytometry approach to rapidly count undifferentiated spermatogonia, differentiated spermatogonia, apoptotic spermatogonia, and proliferative spermatogonia in hSSC cultures.
Collapse
Affiliation(s)
- Mark H Murdock
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sherin David
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ilea T Swinehart
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Janet E Reing
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kien Tran
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Gassei
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- 3 Department of Surgery, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- 4 Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Vermeulen M, Giudice MG, Del Vento F, Wyns C. Role of stem cells in fertility preservation: current insights. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:27-48. [PMID: 31496751 PMCID: PMC6689135 DOI: 10.2147/sccaa.s178490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
While improvements made in the field of cancer therapy allow high survival rates, gonadotoxicity of chemo- and radiotherapy can lead to infertility in male and female pre- and postpubertal patients. Clinical options to preserve fertility before starting gonadotoxic therapies by cryopreserving sperm or oocytes for future use with assisted reproductive technology (ART) are now applied worldwide. Cryopreservation of pre- and postpubertal ovarian tissue containing primordial follicles, though still considered experimental, has already led to the birth of healthy babies after autotransplantation and is performed in an increasing number of centers. For prepubertal boys who do not produce gametes ready for fertilization, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells may be proposed as an experimental strategy with the aim of restoring fertility. Based on achievements in nonhuman primates, autotransplantation of ITT or testicular cell suspensions appears promising to restore fertility of young cancer survivors. So far, whether in two- or three-dimensional culture systems, in vitro maturation of immature male and female gonadal cells or tissue has not demonstrated a capacity to produce safe gametes for ART. Recently, primordial germ cells have been generated from embryonic and induced pluripotent stem cells, but further investigations regarding efficiency and safety are needed. Transplantation of mesenchymal stem cells to improve the vascularization of gonadal tissue grafts, increase the colonization of transplanted cells, and restore the damaged somatic compartment could overcome the current limitations encountered with transplantation.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Maria-Grazia Giudice
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Federico Del Vento
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| |
Collapse
|
26
|
Sharma S, Schlatt S, Van Pelt A, Neuhaus N. Characterization and population dynamics of germ cells in adult macaque testicular cultures. PLoS One 2019; 14:e0218194. [PMID: 31226129 PMCID: PMC6588212 DOI: 10.1371/journal.pone.0218194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND From a biological and clinical perspective, it is imperative to establish primate spermatogonial cultures. Due to limited availability of human testicular tissues, the macaque (Macaca fascicularis) was employed as non-human primate model. The aim of this study was to characterize the expression of somatic as well as germ cell markers in testicular tissues and to establish macaque testicular primary cell cultures. MATERIALS AND METHODS Characterization of macaque testicular cell population was performed by immunohistochemical analyses for somatic cell markers (SOX9, VIM, SMA) as well as for germ cell markers (UTF1, MAGEA4, VASA). Testicular cells from adult macaque testes (n = 4) were isolated and cultured for 21 days using three stem cell culture media (SSC, PS and SM). An extended marker gene panel (SOX9, VIM, ACTA2; UTF1, FGFR3, MAGEA4, BOLL, DDX4) was then employed to assess the changes in gene expression levels and throughout the in vitro culture period. Dynamics of the spermatogonial population was further investigated by quantitative analysis of immunofluorescence-labeled MAGEA4-positive cells (n = 3). RESULTS RNA expression analyses of cell cultures revealed that parallel to decreasing SOX9-expressing Sertoli cells, maintenance of VIM and ACTA2-expressing somatic cells was observed. Expression levels of germ cell marker genes UTF1, FGFR3 and MAGEA4 were maintained until day 14 in SSC and SM media. Findings from MAGEA4 immunofluorescence staining corroborate mRNA expression profiling and substantiate the overall maintenance of MAGEA4-positive pre- and early meiotic germ cells until day 14. CONCLUSIONS Our findings demonstrate maintenance of macaque germ cell subpopulations in vitro. This study provides novel perspective and proof that macaques could be used as a research model for establishing in vitro germ cell-somatic cell cultures, to identify ideal culture conditions for long-term maintenance of primate germ cell subpopulation in vitro.
Collapse
Affiliation(s)
- Swati Sharma
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Münster, North Rhine-Westphalia, Germany
| | - Stefan Schlatt
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Münster, North Rhine-Westphalia, Germany
| | - Ans Van Pelt
- Center for Reproductive Medicine, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina Neuhaus
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Münster, North Rhine-Westphalia, Germany
| |
Collapse
|
27
|
Abstract
Tissue cryopreservation uses very low temperatures to preserve structurally intact living cells in their natural microenvironment. Cell survival is strongly influenced by the biophysical effects of ice during both the freezing and the subsequent thawing. These effects can be controlled by optimizing the fragment size, type of cryoprotectant, and cooling rate. The challenge is to determine cryopreservation parameters that suit all cell types present in the tissue. Here we describe a quick and convenient protocol for the cryopreservation of testicular tissue using an isopropyl-insulated freezing device, which was validated in both a mouse and a human model.
Collapse
|
28
|
Kanbar M, de Michele F, Wyns C. Cryostorage of testicular tissue and retransplantation of spermatogonial stem cells in the infertile male. Best Pract Res Clin Endocrinol Metab 2019; 33:103-115. [PMID: 30448111 DOI: 10.1016/j.beem.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transplantation of own cryostored spermatogonial stem cells (SSCs) is a promising technique for fertility restoration when the SSC pool has been depleted. In this regard, cryopreservation of pre-pubertal testicular tissue or SSCs suspensions before gonadotoxic therapies is ethically accepted and increasingly proposed. SSC transplantation has also been considered to treat other causes of infertility relying on the possibility of propagating SSCs retrieved in the testes of infertile men before autologous re-transplantation. Although encouraging results were achieved in animals and in preclinical experiments, clinical perspectives are still limited by a number of unresolved technical and safety issues, such as the risk of cancer cell contamination of cells intended for transplantation and the genetic and epigenetic stability of SCCs when cultured before re-transplantation. Moreover, while genome editing techniques raise the hope of modifying the SSCs genome before re-transplantation, their application for reproductive purposes might be a step too far for the moment.
Collapse
Affiliation(s)
- Marc Kanbar
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Francesca de Michele
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium
| | - Christine Wyns
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium.
| |
Collapse
|
29
|
Zarandi NP, Galdon G, Kogan S, Atala A, Sadri-Ardekani H. Cryostorage of immature and mature human testis tissue to preserve spermatogonial stem cells (SSCs): a systematic review of current experiences toward clinical applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2018; 11:23-38. [PMID: 30013372 PMCID: PMC6039063 DOI: 10.2147/sccaa.s137873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While the survival rate of children with cancer is increasing, preserving fertility for prepubertal boys is still a challenge. Although intracytoplasmic sperm injection (ICSI) using frozen sperms has revolutionized infertility treatment, it is not applicable for the patients who undergo chemotherapy before puberty since spermatogenesis has not begun. Therefore, preserving spermatogonial stem cells (SSCs) as an experimental option can be provided to prepubertal patients at a risk of damage or loss of their SSCs due to cancer treatments and developmental or genetic disorders. Using frozen SSCs in testicular tissue, successful SSC autotransplantation in mouse and nonhuman primates has shown a promising future for SSC-based cell therapy. Cryopreservation of testicular tissue containing SSCs is the first step to translate SSC-based cell therapy into clinical male infertility treatment, and in the investigation into SSCs, it is very important to evaluate their quantity and functionality during this process. This systematic review summarizes the published data on cryopreservation techniques in human testis tissue for potential utilization in future clinical applications.
Collapse
Affiliation(s)
- Nima Pourhabibi Zarandi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Guillermo Galdon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Stanley Kogan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA, .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA, .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA, .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| |
Collapse
|
30
|
Aliberti P, Perez Garrido N, Marino R, Ramirez P, Solari AJ, Sciurano R, Costanzo M, Guercio G, Warman DM, Bailez M, Baquedano MS, Rivarola MA, Belgorosky A, Berensztein E. Androgen Insensitivity Syndrome at Prepuberty: Marked Loss of Spermatogonial Cells at Early Childhood and Presence of Gonocytes up to Puberty. Sex Dev 2018; 11:225-237. [PMID: 29393262 DOI: 10.1159/000486089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 01/01/2023] Open
Abstract
Androgen insensitivity syndrome (AIS) is a hereditary condition in patients with a 46,XY karyotype in which loss-of-function mutations of the androgen receptor (AR) gene are responsible for defects in virilization. The aim of this study was to investigate the consequences of the lack of AR activity on germ cell survival and the degree of testicular development reached by these patients by analyzing gonadal tissue from patients with AIS prior to Sertoli cell maturation at puberty. Twenty-three gonads from 13 patients with AIS were assessed and compared to 18 testes from 17 subjects without endocrine disorders. The study of the gonadal structure using conventional microscopy and the ultrastructural characteristics of remnant germ cells using electron microscopy, combined with the immunohistochemical analysis of specific germ cell markers (MAGE-A4 for premeiotic germ cells and of OCT3/4 for gonocytes), enabled us to carry out a thorough investigation of germ cell life in an androgen-insensitive microenvironment throughout prepuberty until young adulthood. Here, we show that germ cell degeneration starts very early, with a marked decrease in number after only 2 years of life, and we demonstrate the permanence of gonocytes in AIS testis samples until puberty, describing 2 different populations. Additionally, our results provide further evidence for the importance of AR signaling in peritubular myoid cells during prepuberty to maintain Sertoli and spermatogonial cell health and survival.
Collapse
Affiliation(s)
- Paula Aliberti
- Servicio de Endocrinología, Hospital de Pediatría 'Prof. Dr. Juan Pedro Garrahan', Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gat I, Maghen L, Filice M, Wyse B, Zohni K, Jarvi K, Lo KC, Gauthier Fisher A, Librach C. Optimal culture conditions are critical for efficient expansion of human testicular somatic and germ cells in vitro. Fertil Steril 2017; 107:595-605.e7. [PMID: 28259258 DOI: 10.1016/j.fertnstert.2016.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To optimize culture conditions for human testicular somatic cells (TSCs) and spermatogonial stem cells. DESIGN Basic science study. SETTING Urology clinic and stem cell research laboratory. PATIENT(S) Eight human testicular samples. INTERVENTIONS(S) Testicular tissues were processed by mechanical and enzymatic digestion. Cell suspensions were subjected to differential plating (DP) after which floating cells (representing germ cells) were removed and attached cells (representing TSCs) were cultured for 2 passages (P0-P1) in StemPro-34- or DMEM-F12-based medium. Germ cell cultures were established in both media for 12 days. MAIN OUTCOME MEASURE(S) TSC cultures: proliferation doubling time (PDT), fluorescence-activated cell sorting for CD90, next-generation sequencing for 89 RNA transcripts, immunocytochemistry for TSC and germ cell markers, and conditioned media analysis; germ cell cultures: number of aggregates. RESULT(S) TSCs had significantly prolonged PDT in DMEM-F12 versus StemPro-34 (319.6 ± 275.8 h and 110.5 ± 68.3 h, respectively). The proportion of CD90-positive cells increased after P1 in StemPro-34 and DMEM-F12 (90.1 ± 10.8% and 76.5 ± 17.4%, respectively) versus after DP (66.3 ± 7%). Samples from both media after P1 clustered closely in the principle components analysis map whereas those after DP did not. After P1 in either medium, CD90-positive cells expressed TSC markers only, and fibroblast growth factor 2 and bone morphogenetic protein 4 were detected in conditioned medium. A higher number of germ cell aggregates formed in DMEM-F12 (59 ± 39 vs. 28 ± 17, respectively). CONCLUSION(S) Use of DMEM-F12 reduces TSC proliferation while preserving their unique characteristics, leading to improved germ cell aggregates formation compared with StemPro-34, the standard basal medium used in the majority of previous reports.
Collapse
Affiliation(s)
- Itai Gat
- Create Fertility Centre, Toronto, Ontario, Canada; Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel; Sackler school of medicine, Tel Aviv university, Tel Aviv, Israel
| | - Leila Maghen
- Create Fertility Centre, Toronto, Ontario, Canada
| | | | - Brandon Wyse
- Create Fertility Centre, Toronto, Ontario, Canada
| | - Khaled Zohni
- Create Fertility Centre, Toronto, Ontario, Canada; Department of Reproductive Health and Family Planning, National Research Center, Cairo, Egypt
| | - Keith Jarvi
- Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kirk C Lo
- Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Clifford Librach
- Create Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Update on fertility restoration from prepubertal spermatogonial stem cells: How far are we from clinical practice? Stem Cell Res 2017; 21:171-177. [DOI: 10.1016/j.scr.2017.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
|
33
|
Hosoda T, Iguchi N, Cho Y, Inoue M, Murakami T, Tabata M, Takanashi S, Tomoike H. The proliferative potential of human cardiac stem cells was unaffected after a long-term cryopreservation of tissue blocks. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:41. [PMID: 28251120 DOI: 10.21037/atm.2017.01.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human c-kit-positive cardiac stem cells (CSCs) have been used to treat patients suffering from ischemic cardiomyopathy. This study aimed to investigate whether a long-term storage of cardiac tissues would influence the growth potential of the subsequently isolated CSCs. METHODS A total of 34 fresh samples were obtained from various cardiac regions [right atrium (RA), left atrium (LA), and/or left ventricle (LV)] of 21 patients. From 12 of these patients, 18 samples kept frozen for ~2 years were employed to prepare and characterize the CSCs. After confirming the specificity of the cell sorting by c-kit immunolabeling, the growth rate (number of doublings per day), BrdU positivity, and colony forming unit (CFU) were measured in each CSC population; the values were compared among distinct cardiac regions as well as between fresh and frozen tissues from which CSCs were derived. RESULTS Among independent measurements indicating growth potential, the growth rate and BrdU positivity remarkably correlated in freshly prepared CSCs. The cells obtained from every examined region displayed a high proliferative capacity with the growth rate of 0.48±0.19 and the BrdU positivity of 15.0%±7.6%. The right atrial CSCs tended to show a greater growth than those in the other two areas. Similarly, the CSCs were isolated from tissue blocks, cryopreserved for ~2 years, and compared with CSCs derived from the fresh specimens of the same patients. Importantly, we were able to obtain and culture CSCs from every frozen material, and their proliferative potential, represented by the growth rate of 0.47±0.22 and the BrdU positivity of 13.7%±7.9%, was not inferior to that of the freshly prepared cells. CONCLUSIONS The long-term cryopreservation of cardiac tissues did not affect the growth potential of the derivative CSCs. Our findings should expand the therapeutic applications of these cells over a longer time span.
Collapse
Affiliation(s)
- Toru Hosoda
- Tokai University Institute of Innovative Science and Technology, Kanagawa, Japan;; Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Nobuo Iguchi
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Yasunori Cho
- Department of Cardiovascular Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaki Inoue
- Tokai University Institute of Innovative Science and Technology, Kanagawa, Japan
| | - Tsutomu Murakami
- Department of Cardiology, Tokai University School of Medicine, Kanagawa, Japan
| | - Minoru Tabata
- Department of Cardiovascular Surgery, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| | - Shuichiro Takanashi
- Department of Cardiovascular Surgery, Sakakibara Heart Institute, Tokyo, Japan
| | - Hitonobu Tomoike
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| |
Collapse
|
34
|
Sukhorum W, Iamsaard S. Changes in testicular function proteins and sperm acrosome status in rats treated with valproic acid. Reprod Fertil Dev 2017; 29:1585-1592. [DOI: 10.1071/rd16205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
Valproic acid (VPA), an anti-epileptic drug, reduces testosterone levels and sperm quality. However, the degree to which testosterone levels and sperm quality are decreased under VPA treatment needs to be clarified. The aim of the present study was to investigate the testicular proteins involved in testosterone synthesis and spermatogenesis, histopathology and sperm acrosome status in VPA-treated rats. Adult rats were divided into control and experimental groups (n = 8 in each). Rats in the experimental group were treated with 500 mg kg–1, i.p., VPA for 10 consecutive days. Expression of Ki-67, tyrosine phosphorylated proteins and testicular steroidogenic proteins was examined. As expected, VPA-treated rats exhibited adverse changes in almost all reproductive parameters, particularly an increase in precocious acrosome reactions, compared with the control group. In addition, fibrosis of the tunica albuginea and tubule basement membrane was observed in testes from VPA-treated rats. Moreover, the expression of testicular Ki-67, cholesterol side-chain cleavage enzyme (P450scc) and phosphorylated proteins (41, 51 and 83 kDa) was decreased significantly in VPA-treated rats compared with control. In contrast, the expression of steroidogenic acute regulatory proteins in the VPA-treated group was significantly higher than in the control group. In conclusion, VPA treatment changes the expression of testicular proteins responsible for spermatogenesis and testosterone production, resulting in male infertility.
Collapse
|
35
|
Onofre J, Baert Y, Faes K, Goossens E. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update 2016; 22:744-761. [PMID: 27566839 PMCID: PMC5099994 DOI: 10.1093/humupd/dmw029] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Germ cell depletion caused by chemical or physical toxicity, disease or genetic predisposition can occur at any age. Although semen cryopreservation is the first reflex for preserving male fertility, this cannot help out prepubertal boys. Yet, these boys do have spermatogonial stem cells (SSCs) that able to produce sperm at the start of puberty, which allows them to safeguard their fertility through testicular tissue (TT) cryopreservation. SSC transplantation (SSCT), TT grafting and recent advances in in vitro spermatogenesis have opened new possibilities to restore fertility in humans. However, these techniques are still at a research stage and their efficiency depends on the amount of SSCs available for fertility restoration. Therefore, maintaining the number of SSCs is a critical step in human fertility preservation. Standardizing a successful cryopreservation method for TT and testicular cell suspensions (TCSs) is most important before any clinical application of fertility restoration could be successful. OBJECTIVE AND RATIONALE This review gives an overview of existing cryopreservation protocols used in different animal models and humans. Cell recovery, cell viability, tissue integrity and functional assays are taken into account. Additionally, biosafety and current perspectives in male fertility preservation are discussed. SEARCH METHODS An extensive PubMED and MEDline database search was conducted. Relevant studies linked to the topic were identified by the search terms: cryopreservation, male fertility preservation, (immature)testicular tissue, testicular cell suspension, spermatogonial stem cell, gonadotoxicity, radiotherapy and chemotherapy. OUTCOMES The feasibility of fertility restoration techniques using frozen-thawed TT and TCS has been proven in animal models. Efficient protocols for cryopreserving human TT exist and are currently applied in the clinic. For TCSs, the highest post-thaw viability reported after vitrification is 55.6 ± 23.8%. Yet, functional proof of fertility restoration in the human is lacking. In addition, few to no data are available on the safety aspects inherent to offspring generation with gametes derived from frozen-thawed TT or TCSs. Moreover, clarification is needed on whether it is better to cryopreserve TT or TCS. WIDER IMPLICATIONS Fertility restoration techniques are very promising and expected to be implemented in the clinic in the near future. However, inter-center variability needs to be overcome and the gametes produced for reproduction purposes need to be subjected to safety studies. With the perspective of a future clinical application, there is a dire need to optimize and standardize cryopreservation and safety testing before using frozen-thawed TT of TCSs for fertility restoration.
Collapse
Affiliation(s)
- J Onofre
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Y Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - K Faes
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
36
|
Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril 2016; 106:1539-1549.e8. [PMID: 27490045 DOI: 10.1016/j.fertnstert.2016.07.1065] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To study the ability of human spermatogonial stem cells (hSSCs) to proliferate in vitro under mouse spermatogonial stem cell (mSSC) culture conditions. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) Cryopreserved testicular tissue with normal spermatogenesis obtained from three donors subjected to orchiectomy due to a prostate cancer treatment. INTERVENTION(S) Testicular cells used to create in vitro cell cultures corresponding to the following groups: [1] unsorted human testicular cells, [2] differentially plated human testicular cells, and [3] cells enriched with major histocompatibility complex class 1 (HLA-)/epithelial cell surface antigen (EPCAM+) in coculture with inactivated testicular feeders from the same patient. MAIN OUTCOME MEASURE(S) Analyses and characterization including immunocytochemistry and quantitative reverse-transcription polymerase chain reaction for somatic and germ cell markers, testosterone and inhibin B quantification, and TUNEL assay. RESULT(S) Putative hSSCs appeared in singlets, doublets, or small groups of up to four cells in vitro only when testicular cells were cultured in StemPro-34 medium supplemented with glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF). Fluorescence-activated cell sorting with HLA-/EPCAM+ resulted in an enrichment of 27% VASA+/UTF1+ hSSCs, compared to 13% in unsorted controls. Coculture of sorted cells with inactivated testicular feeders gave rise to an average density of 112 hSSCs/cm2 after 2 weeks in vitro compared with unsorted cells (61 hSSCs/cm2) and differentially plated cells (49 hSSCS/cm2). However, putative hSSCs rarely stained positive for the proliferation marker Ki67, and their presence was reduced to the point of almost disappearing after 4 weeks in vitro. CONCLUSION(S) We found that hSSCs show limited proliferation in vitro under mSSC culture conditions. Coculture of HLA-/EPCAM+ sorted cells with testicular feeders improved the germ cell/somatic cell ratio.
Collapse
|
37
|
von Kopylow K, Schulze W, Salzbrunn A, Spiess AN. Isolation and gene expression analysis of single potential human spermatogonial stem cells. Mol Hum Reprod 2016; 22:229-39. [PMID: 26792870 DOI: 10.1093/molehr/gaw006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 12/18/2022] Open
Abstract
STUDY HYPOTHESIS It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. STUDY FINDING We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. WHAT IS KNOWN ALREADY The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). STUDY DESIGN, SAMPLES/MATERIALS, METHODS We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT-PCR, immunocytochemistry and live/dead staining. MAIN RESULTS AND THE ROLE OF CHANCE Single-cell real-time RT-PCR and real-time RT-PCR of pooled cells indicate that bead-labeled single cells express FGFR3 with high heterogeneity at the mRNA level, while bead-unlabeled cells lack FGFR3 mRNA. Furthermore, isolated cells exhibit strong immunocytochemical staining for the stem cell factor UTF1 and are viable. LIMITATIONS, REASONS FOR CAUTION The cell population isolated in this study has to be tested for their potential stem cell characteristics via xenotransplantation. Due to the small amount of the isolated cells, propagation by cell culture will be essential. Other potential hSSC without FGFR3 surface expression will not be captured with the provided experimental design. WIDER IMPLICATIONS OF THE FINDINGS The technical approach as developed in this work could encourage the scientific community to test other established or novel hSSC markers on single SPG that present with potential stem cell-like features. STUDY FUNDING AND COMPETING INTERESTS The project was funded by the DFG Research Unit FOR1041 Germ cell potential (SCH 587/3-2) and DFG grants to K.v.K. (KO 4769/2-1) and A.-N.S. (SP 721/4-1). The authors declare no competing interests.
Collapse
Affiliation(s)
- K von Kopylow
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - W Schulze
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany MVZ Fertility Center Hamburg GmbH, amedes-group, 20095 Hamburg, Germany
| | - A Salzbrunn
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - A-N Spiess
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
38
|
Advances in cryopreservation of spermatogonial stem cells and restoration of male fertility. Microsc Res Tech 2015; 79:122-9. [DOI: 10.1002/jemt.22605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/07/2015] [Indexed: 11/07/2022]
|
39
|
Smith JF, Tran ND. Freezing and thawing testicular cells may not affect growth of cultured testicular cells. Fertil Steril 2015; 104:1129. [PMID: 26342245 DOI: 10.1016/j.fertnstert.2015.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 11/27/2022]
Affiliation(s)
- James F Smith
- Department of Urology, Philip R. Lee Institute for Health Policy Studies, and Department of Obstetrics, Gynecology, and Reproductive Medicine, University of California, San Francisco, San Francisco, California
| | - Nam D Tran
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|