1
|
Mousavi SO, Reshi QUA, Godakumara K, Kodithuwakku S, Fazeli A. Extracellular vesicles as mediators of stress response in embryo-maternal communication. Front Cell Dev Biol 2024; 12:1440849. [PMID: 39161594 PMCID: PMC11330882 DOI: 10.3389/fcell.2024.1440849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: The pivotal role of extracellular vesicles (EVs) in facilitating effective communication between the embryo and maternal cells during the preimplantation stage of pregnancy has been extensively explored. Nonetheless, inquiries persist regarding the alterations in EV cargo from endometrial cells under stress conditions and its potential to elicit specific stress responses in trophoblast cells. Thus, the aim of this study was to elucidate the involvement of EV miRNA miRNAs in transmitting stress signals from maternal cells to trophoblasts. Methods: The receptive endometrial epithelium analogue RL95-2 cells were subjected to stress induction with 200 µM CoCl2 for 24 h before EV isolation. JAr trophoblast spheroids, which serve as embryos, were subjected to treatment with stressed or unstressed EVs derived from RL95-2 cells for 24 h. Transcriptomic alterations in the treated JAr spheroids as well as in the untreated group, as a negative control, were investigated by mRNA sequencing. Furthermore, the changes in EV miRNAs were assessed by sequencing EV samples. Results: A comprehensive analysis comparing the miRNA profiles between stressed and unstressed EVs revealed significant changes in 25 miRNAs. Furthermore, transcriptomic analysis of JAr spheroids treated with stressed RL95-2EVs versus unstressed EVs or the untreated group demonstrated 6 and 27 differentially expressed genes, respectively. Pathway enrichment analysis showed that stressed EVs induce alterations in gene expression in trophoblast cells, which is partially mediated by EV microRNAs. Discussion: Our results suggest that EVs can transfer stress signals from endometrial cells to the embryo. These discoveries shed new light on the mechanism underlying implantation failures under stress conditions. Unraveling the role of EVs in transmitting stress signals, can extend our knowledge to pave the way for targeted interventions to manage stress-related implantation failures.
Collapse
Affiliation(s)
- Seyed Omid Mousavi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Han X, Wu TQ, Bian Y, Chen L, Feng X. Asthma and risk of adverse pregnancy outcomes: A Mendelian randomization study. Heliyon 2024; 10:e33857. [PMID: 39044964 PMCID: PMC11263667 DOI: 10.1016/j.heliyon.2024.e33857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Background Multiple empirical investigations have indicated a connection between asthma and adverse pregnancy outcomes (APOs). Nevertheless, the effects of asthma on APOs remain uncertain. Methods We performed bi-directional Univariable Mendelian randomization (UVMR) analyses using combined information obtained from genome-wide association studies (GWAS) data that is publicly accessible. The principal approach used to analyze the causal association between asthma or age when diagnosed and APOs was the inverse variance weighted (IVW) method. The two types of data regarding exposure originate from the IEU Open GWAS project, which includes 56,167 and 47,222 European asthma patients, respectively. The data of four APOs were acquired via the GWAS dataset of the FinnGen collaboration. In addition, we implemented multivariable Mendelian randomization (MVMR), controlling for confounding factors such as smoking status, frequent drinking, body mass index (BMI), and live birth quantity. Furthermore, we executed several meticulous sensitivity studies to ascertain the reliability of our MR results. Results Following the implementation of the Bonferroni adjustment, the UVMR assessment revealed that in the IVW model, asthma was significantly linked to an elevated risk of spontaneous abortion (SA) (odds ratio [OR]: 1.115; 95 % confidence interval [CI]: 1.031-1.206; P = 0.006) and gestational diabetes mellitus (GDM) (OR: 1.125; 95 % CI: 1.037-1.220; P = 0.005). However, there was no causal correlation between asthma and preterm birth (PTB) (OR: 0.979; 95 % CI: 0.897-1.068; P = 0.629) or preeclampsia (PE) (OR: 1.059; 95 % CI: 0.951-1.179; P = 0.297). After adjusting for confounding factors, including smoking status, frequent drinking, BMI, and live birth quantity, the MVMR analysis shows a statistically significant causal relationship between asthma and SA or GDM. Furthermore, our investigation's findings did not reveal a substantial correlation between the age of asthma onset based on genetics and the likelihood of SA or GDM. The inverse MR outcomes indicate a lack of causal connection linking APOs to the incidence of asthma. The validity of these findings were verified by sensitivity analyses. Conclusions The evidence provided by this study proves that genetically determined asthma is linked to a higher likelihood of SA and GDM. Further research is required to examine potential pathways. However, no conclusive evidence has been found to support the increased risk of SA and GDM in early asthma diagnosis or the interaction between asthma and PTB or PE, indicating that confounding factors may affect the results of previous observational studies.
Collapse
Affiliation(s)
- Xinyu Han
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tian qiang Wu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyuan Bian
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Chen
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Tian P, Xu Z, Guo J, Zhao J, Chen W, Huang W, Wang M, Mi C, Zhang Y, Yang Y, Zhang H. Hypoxia causes trophoblast cell ferroptosis to induce miscarriage through lnc-HZ06/HIF1α-SUMO/NCOA4 axis. Redox Biol 2024; 70:103073. [PMID: 38335622 PMCID: PMC10869313 DOI: 10.1016/j.redox.2024.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Defects of human trophoblast cells may induce miscarriage (abnormal early embryo loss), which is generally regulated by lncRNAs. Ferroptosis is a newly identified iron-dependent programmed cell death. Hypoxia is an important and unavoidable feature in mammalian cells. However, whether hypoxia might induce trophoblast cell ferroptosis and then induce miscarriage, as well as regulated by a lncRNA, was completely unknown. In this work, we discovered at the first time that hypoxia could result in ferroptosis of human trophoblast cells and then induce miscarriage. We also identified a novel lncRNA (lnc-HZ06) that simultaneously regulated hypoxia (indicated by HIF1α protein), ferroptosis, and miscarriage. In mechanism, HIF1α-SUMO, instead of HIF1α itself, primarily acted as a transcription factor to promote the transcription of NCOA4 (ferroptosis indicator) in hypoxic trophoblast cells. Lnc-HZ06 promoted the SUMOylation of HIF1α by suppressing SENP1-mediated deSUMOylation. HIF1α-SUMO also acted as a transcription factor to promote lnc-HZ06 transcription. Thus, both lnc-HZ06 and HIF1α-SUMO formed a positive auto-regulatory feedback loop. This loop was up-regulated in hypoxic trophoblast cells, in RM villous tissues, and in placental tissues of hypoxia-treated mice, which further induced ferroptosis and miscarriage by up-regulating HIF1α-SUMO-mediated NCOA4 transcription. Furthermore, knockdown of either murine lnc-hz06 or Ncoa4 could efficiently suppress ferroptosis and alleviate miscarriage in hypoxic mouse model. Taken together, this study provided new insights in understanding the regulatory roles of lnc-HZ06/HIF1α-SUMO/NCOA4 axis among hypoxia, ferroptosis, and miscarriage, and also offered an effective approach for treatment against miscarriage.
Collapse
Affiliation(s)
- Peng Tian
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiarong Guo
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Wenxin Huang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Manli Wang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Ying Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yang Yang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
4
|
Lin X, Dai Y, Gu W, Zhang Y, Zhuo F, Zhao F, Jin X, Li C, Huang D, Tong X, Zhang S. The involvement of RNA N6-methyladenosine and histone methylation modification in decidualization and endometriosis-associated infertility. Clin Transl Med 2024; 14:e1564. [PMID: 38344897 PMCID: PMC10859880 DOI: 10.1002/ctm2.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
Defective decidualization of endometrial stromal cells (ESCs) in endometriosis (EM) patients leads to inadequate endometrial receptivity and EM-associated infertility. Hypoxia is an inevitable pathological process of EM and participates in deficient decidualization of the eutopic secretory endometrium. Enhancer of zeste homology 2 (EZH2) is a methyltransferase which catalyses H3K27Me3, leading to decreased expression levels of target genes. Although EZH2 expression is low under normal decidualization, it is abundantly increased in the eutopic secretory endometrium of EM and is induced by hypoxia. Chromatin immunoprecipitation-PCR results revealed that decidua marker IGFBP1 is a direct target of EZH2, partially explaining the increased levels of histone methylation modification in defected decidualization of EM. To mechanism controlling this, we examined the effects of hypoxia on EZH2 and decidualization. EZH2 mRNA showed decreased m6 A modification and increased expression levels under hypoxia and decidualization combined treatment. Increased EZH2 expression was due to the increased expression of m6 A demethylase ALKBH5 and decreased expression of the m6 A reader protein YTHDF2. YTHDF2 directly bind to the m6 A modification site of EZH2 to promote EZH2 mRNA degradation in ESCs. Moreover, selective Ezh2 depletion in mouse ESCs increased endometrial receptivity and improved mouse fertility by up-regulating decidua marker IGFBP1 expression. This is the first report showing that YTHDF2 can act as a m6 A reader to promote decidualization by decreasing the stability of EZH2 mRNA and further increasing the expression of IGFBP1 in ESCs. Taken together, our findings highlight the critical role of EZH2/H3K27Me3 in decidualization and reveal a novel epigenetic mechanism by which hypoxia can suppress EM decidualization by decreasing the m6 A modification of EZH2 mRNA.
Collapse
Affiliation(s)
- Xiang Lin
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Yongdong Dai
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Weijia Gu
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Yi Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Feng Zhuo
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Fanxuan Zhao
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaoying Jin
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Chao Li
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Dong Huang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Xiaomei Tong
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Songying Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
5
|
Liang L, Yang Y, Yang L, Zhang X, Xu S, Liu Y, Wu X, Chao L. HIF-1α is positively associated with endometrial receptivity by regulating PKM2. J Obstet Gynaecol Res 2023; 49:2734-2745. [PMID: 37533344 DOI: 10.1111/jog.15752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Numerous advancements have been introduced into the field of assisted reproductive technology (ART) in the past four decades. Nonetheless, implantation failure is still a key limiting step for a successful pregnancy. Building of endometrial receptivity (ER) is essential for successful implantation. However, the fundamental biological processes and mechanisms of ER remain elusive. Our study investigates the function of hypoxia inducible factor-1α (HIF-1α) during ER establishment and shed lights on the novel molecular mechanism by which HIF-1α regulates ER-related gene expression network. METHODS Levels of HIF-1α, homeobox A10 (HOXA10), insulin-like growth factor-binding protein 1 (IGFBP1), pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA) in endometrial tissues were measured via real-time PCR, immunoblotting and immunohistochemistry. The correlation between HIF-1α and HOXA10, IGFBP1, PKM2, LDHA were analyzed separately. Ishikawa cells were treated with vector HIF-1α, HIF-1α-siRNA, and PKM2-siRNA. After transfection, the levels of HOXA10, IGFBP1, LDHA, and PKM2 were measured via real-time PCR and immunoblotting, and the lactate concentrations and cell migration of Ishikawa cells were measured. RESULTS Levels of HIF-1α, IGFBP1, HOXA10, LDHA, and PKM2 were significantly decreased in recurrent implantation failure (RIF) patients and levels of HOXA10, IGFBP1, PKM2, and LDHA were correlated with HIF-1α in endometrium. Then in a cellular model established by HIF-1α vector and HIF-1α-siRNA, the expression of HOXA10, IGFBP1, LDHA, PKM2, and lactate concentrations were dramatically upregulated and downregulated. And the expression of HOXA10, and IGFBP1 were dramatically decreased by PKM2-siRNA. CONCLUSIONS HIF-1α plays a crucial role in the building of ER through regulating glycolysis.
Collapse
Affiliation(s)
- Lixia Liang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
- Center for Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, People's Republic of China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiuping Zhang
- Center for Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, People's Republic of China
| | - Suming Xu
- Center for Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, People's Republic of China
| | - Yanling Liu
- Center for Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, People's Republic of China
| | - Xueqing Wu
- Center for Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, People's Republic of China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
6
|
Halpern G, Braga DPDAF, Morishima C, Setti AS, Setti Jr. AI, Borges Jr. E. Beetroot, watermelon and ginger juice supplementation may increase the clinical outcomes of Intracytoplasmic Sperm Injection cycles. JBRA Assist Reprod 2023; 27:490-495. [PMID: 37459441 PMCID: PMC10712821 DOI: 10.5935/1518-0557.20230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/20/2023] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVE To prove the hypothesis that beetroot, watermelon and ginger juice supplementation improves the endometrial receptivity and clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles. METHODS This prospective randomized study enrolled 436 female patients undergoing ICSI cycles from January/2018 to June/2021, in a private university-affiliated IVF center. Female patients were randomized in a 1:3 ratio to either Control (n=109) or Supplementation Group (n=327). All patients received nutritional orientation before the beginning of the treatment. Participants in the Supplementation Group were instructed to intake a daily dose of homemade juice, prepared with fresh beetroot, watermelon and ginger, from the day of embryo transfer until the day of pregnancy test, while patients in Control Group did not follow the juice protocol. Generalized Linear Models, adjusted for potential confounders (female age, body mass index - BMI, endometrial thickness upon embryo transfer, and number of transferred embryos), followed by Bonferroni post hoc test for the comparison of means between groups, were used to investigate the impact of juice supplementation on the clinical outcomes of ICSI. RESULTS Patients and cycles characteristics were equally distributed among Supplementation and Control groups. Implantation rate (25.2% vs. 20.5%, p<0.001) and clinical pregnancy rate (41.0% vs. 22.0%, p=0.039) were significantly higher in the Supplementation compared to the Control group. CONCLUSIONS The use of beetroot, watermelon and ginger juice may be considered a promising strategy for improving clinical outcomes in assisted reproductive technology (ART), without any side effects.
Collapse
Affiliation(s)
- Gabriela Halpern
- Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545.
São Paulo – SP, Brazil. Zip: 01401-002
| | - Daniela Paes de Almeida Ferreira Braga
- Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545.
São Paulo – SP, Brazil. Zip: 01401-002
- Instituto Sapientiae – Centro de Estudos e Pesquisa em
Reprodução Assistida Rua Vieira Maciel, 62. São Paulo – SP,
Brazil. Zip: 04503-040
| | - Christina Morishima
- Instituto Sapientiae – Centro de Estudos e Pesquisa em
Reprodução Assistida Rua Vieira Maciel, 62. São Paulo – SP,
Brazil. Zip: 04503-040
| | - Amanda Souza Setti
- Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545.
São Paulo – SP, Brazil. Zip: 01401-002
- Instituto Sapientiae – Centro de Estudos e Pesquisa em
Reprodução Assistida Rua Vieira Maciel, 62. São Paulo – SP,
Brazil. Zip: 04503-040
| | | | - Edson Borges Jr.
- Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545.
São Paulo – SP, Brazil. Zip: 01401-002
- Instituto Sapientiae – Centro de Estudos e Pesquisa em
Reprodução Assistida Rua Vieira Maciel, 62. São Paulo – SP,
Brazil. Zip: 04503-040
| |
Collapse
|
7
|
Kou J, Yuan E, Yan G. Association between HIF-1α, BNIP3, and autophagy in the chorionic villi of missed abortion. J Obstet Gynaecol Res 2023. [PMID: 37150840 DOI: 10.1111/jog.15667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
AIM To investigate the expression of autophagy mediated by the hypoxia-inducible factor 1α (HIF-1α)/BNIP3 signaling pathway in villus tissues of missed abortion and HTR-8/SVneo cells and to elucidate the association of HIF-1α and BNIP3 in autophagy of missed abortion. METHODS Villus tissues from 30 healthy women with induced abortion and 35 patients with missed abortion were collected, and HTR-8/SVneo cells were cultured under hypoxia and transfected with HIF-1α-siRNA. Real-time polymerase chain reaction was utilized to measure the mRNA levels of HIF-1α and BNIP3; Western blotting was performed to determine the protein levels of HIF-1α, BNIP3, LC3 II/I, and Beclin 1 in villus tissues and HTR-8/SVneo cells. Cellular invasion activity was detected by transwell matrigel assay. The level of autophagy was confirmed by transmission electron microscopy of autophagosome formation. RESULTS The mRNA levels of HIF-1α and BNIP3 were significantly lower in the missed abortion villi than in the induced abortion samples. The protein levels of HIF-1α, BNIP3, Beclin 1, and LC3II/I were significantly decreased in villus tissues from missed abortion, and autophagosomes were significantly decreased in villus tissues from missed abortion. Under hypoxia, the mRNA expression of HIF-1α and BNIP3 was inhibited after silencing HIF-1α by RNAi, while the protein expression of HIF-1α, BNIP3, Beclin1, and LC3II/I was significantly downregulated. The number of invading cells was significantly decreased, and autophagosomes were significantly decreased after silencing HIF-1α by RNAi in HTR-8/SVneo cells. CONCLUSIONS Autophagy mediated by the HIF-1α/BNIP3 signaling pathway in villous trophoblast cells may be associated with the progression and development of missed abortion.
Collapse
Affiliation(s)
- Junna Kou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangwei Yan
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Yang Y, Shen Y, Lin J, Dai S, Lu X, Xun G, Li Y, Wu R, Xia K, Luo X, Zhao J, Ou J. Association between history of miscarriage and autism spectrum disorder. Eur Arch Psychiatry Clin Neurosci 2023; 273:687-697. [PMID: 36251093 DOI: 10.1007/s00406-022-01494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
Abstract
This case-control study was designed to examine the association between different types of miscarriage history and autism spectrum disorder (ASD), and determine whether the number of miscarriage history affects the risk of ASD. All of 2274 children with ASD and 1086 healthy controls were recruited. Sociodemographic and prenatal, perinatal, and neonatal characteristics were compared between the two groups. Multivariable logistic regression analyses were applied to investigate association between miscarriage history and ASD. Stratified analyses based on sex and types of miscarriages were similarly performed. History of miscarriage was potential risk factors for ASD ([aOR] = 2.919; 95% [CI] = 2.327-3.517). Stratified analyses revealed that induced ([aOR] = 2.763, 95% [CI] = 2.259-3.379) and spontaneous miscarriage history ([aOR] = 3.341, 95% [CI] = 1.939-4.820) were associated with high risk of ASD, respectively. A sex-biased ratio in the risk of ASD was observed between females ([aOR] = 3.049, 95% [CI] = 2.153-4.137) and males ([aOR] = 2.538, 95% [CI] = 1.978-3.251). Stratified analysis of induced miscarriage history revealed that only iatrogenic miscarriage history was associated with an increased risk ASD ([aOR] = 2.843, 95% [CI] = 1.534-4.268). Also, multiple spontaneous miscarriage histories ([aOR] = 1.836, 95% [CI] = 1.252-2.693) were associated with higher autism risk than one spontaneous miscarriages history ([aOR] = 3.016, 95% [CI] = 1.894-4.174). In conclusion, miscarriage history is related to an increased risk for ASD in offspring, which is affected by the types of miscarriage and sex of the fetus.
Collapse
Affiliation(s)
- Ye Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yidong Shen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingjing Lin
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Si Dai
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaozi Lu
- Qingdao Mental Health Center, Qingdao, 266034, Shandong, China
| | - Guanglei Xun
- Shandong Mental Health Center, 49 East Wenhua Road, Jinan, 250014, Shandong, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Kun Xia
- Center for Medical Genetics and School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xuerong Luo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jianjun Ou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Parhizkar F, Kiani A, Darzi S, Motavalli R, Noori Dolama F, Yousefzadeh Y, Aghebati-Maleki L, Pia H, Abdollahi-Fard S, Mardi A, Danaii S, Ahmadian Heris J, Yousefi M, Soltani-Zangbar MS. The evaluation of CD39, CD73, and HIF-1 α expression besides their related miRNAs in PBMCs of women with recurrent pregnancy loss. J Reprod Immunol 2023; 156:103820. [PMID: 36758470 DOI: 10.1016/j.jri.2023.103820] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/24/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
The molecular mechanisms involved in the pathogenesis of recurrent pregnancy loss (RPL) are not completely recognized. The present study aimed to assess the molecules associated with ATP catabolism and hypoxia besides their related miRNAs in patients with RPL. The frequency of Th17 and Treg cells in PBMCs of RPL women and healthy pregnant women were evaluated with Flow cytometry. The expression levels of CD39, CD73, and Hypoxia-inducible factor-alpha (HIF-1α), miR-18a, miR-30a, and miR-206 in PBMCs of two groups were measured with real-time PCR and western blotting. Then, serum levels of IGF-1, TGF-β, and HIF-1α were measured by ELISA. Our results indicated a higher (p = 0.0002) and lower (p < 0.0001) frequency of Th17 and Treg lymphocytes in RPL women, respectively. The expression level of CD39 decreased in PBMCs of RPL women whereas the level of CD73 and HIF-α increased (p = 0.0010, 0.0023, 0.0006 respectively). The results of CD39 and CD37 were also confirmed by protein analysis (p = 0.0047, 0.0364 respectively). Almost, the same results for CD39 and CD73 expression at mRNA and protein levels were observed in isolated Treg cells. Moreover, we found the higher expression of miR-206 and miRNA-30a (p = 0.0038, 0.0123), but the lower expression of miRNA-18a (p = 0.0101) in RPL. The concentration level of IGF-1, and TGF-β reduced (p = 0.0017, 0.0065 respectively) while the level of HIF-α elevated (p = 0.0235) in serum samples of RPL. In conclusion, we observed the dysregulation of molecules that are involved in ATP catabolism and hypoxia, including CD39, CD73, and HIF-1a which is related to miR-18a, miR-30a, and miR-206 change in RPL women. It may be potentially used for RPL prognosis by more comprehensive future studies.
Collapse
Affiliation(s)
- Forough Parhizkar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Kiani
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Satinik Darzi
- Department of Obstetrics and Gynecology, Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yousef Yousefzadeh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Helen Pia
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART center, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Yaghoobi A, Nazerian Y, Meymand AZ, Ansari A, Nazerian A, Niknejad H. Hypoxia-sensitive miRNA regulation via CRISPR/dCas9 loaded in hybrid exosomes: A novel strategy to improve embryo implantation and prevent placental insufficiency during pregnancy. Front Cell Dev Biol 2023; 10:1082657. [PMID: 36704201 PMCID: PMC9871368 DOI: 10.3389/fcell.2022.1082657] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Assisted reproductive techniques as a new regenerative medicine approach have significantly contributed to solving infertility problems that affect approximately 15% of couples worldwide. However, the success rate of an in vitro fertilization (IVF) cycle remains only about 20%-30%, and 75% of these losses are due to implantation failure (the crucial rate-limiting step of gestation). Implantation failure and abnormal placenta formation are mainly caused by defective adhesion, invasion, and angiogenesis. Placental insufficiency endangers both the mother's and the fetus's health. Therefore, we suggested a novel treatment strategy to improve endometrial receptivity and implantation success rate. In this strategy, regulating mir-30d expression as an upstream transcriptomic modifier of the embryo implantation results in modified expression of the involved genes in embryonic adhesion, invasion, and angiogenesis and consequently impedes implantation failure. For this purpose, "scaffold/matrix attachment regions (S/MARs)" are employed as non-viral episomal vectors, transfecting into trophoblasts by exosome-liposome hybrid carriers. These vectors comprise CRISPR/dCas9 with a guide RNA to exclusively induce miR-30d gene expression in hypoxic stress conditions. In order to avoid concerns about the fetus's genetic manipulation, our vector would be transfected specifically into the trophoblast layer of the blastocyst via binding to trophoblast Erb-B4 receptors without entering the inner cell mass. Additionally, S/MAR episomal vectors do not integrate with the original cell DNA. As an on/off regulatory switch, a hypoxia-sensitive promoter (HRE) is localized upstream of dCas9. The miR-30d expression increases before and during the implantation and placental insufficiency conditions and is extinguished after hypoxia elimination. This hypothesis emphasizes that improving the adhesion, invasion, and angiogenesis in the uterine microenvironment during pregnancy will result in increased implantation success and reduced placental insufficiency, as a new insight in translational medicine.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Zeinaddini Meymand
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ansari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Hassan Niknejad,
| |
Collapse
|
11
|
Bao S, Chen Z, Qin D, Xu H, Deng X, Zhang R, Ma J, Lu Z, Jiang S, Zhang X. Single-cell profiling reveals mechanisms of uncontrolled inflammation and glycolysis in decidual stromal cell subtypes in recurrent miscarriage. Hum Reprod 2023; 38:57-74. [PMID: 36355621 DOI: 10.1093/humrep/deac240] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/08/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do distinct subpopulations of decidual stromal cells (DSCs) exist and if so, are given subpopulations enriched in recurrent miscarriage (RM)? SUMMARY ANSWER Three subpopulations of DSCs were identified from which inflammatory DSCs (iDSCs) and glycolytic DSCs (glyDSCs) are significantly enriched in RM, with implicated roles in driving decidual inflammation and immune dysregulation. WHAT IS KNOWN ALREADY DSCs play crucial roles in establishing and maintaining a successful pregnancy; dysfunction of DSCs has been considered as one of the key reasons for the development of RM. STUDY DESIGN, SIZE, DURATION We collected 15 early decidual samples from five healthy donors (HDs) and ten RM patients to perform single-cell RNA sequencing (scRNA-seq). A total of 43 RM patients and 37 HDs were enrolled in the validation cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS Non-immune cells and immune cells of decidual tissues were sorted by flow cytometry to perform scRNA-seq. We used tissue microarrays (TMA) to validate three distinct subpopulations of DSCs. The expression of inflammatory and glycolytic proteins by DSCs was validated by immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Different subsets of decidual NK (dNK) cells and macrophages were also validated by multicolor flow cytometry and mIHC. Cell ligand-receptor and spatial analyses between DSCs and immune cells were analyzed by mIHC. MAIN RESULTS AND THE ROLE OF CHANCE We classify the DSCs into three subtypes based on scRNA-seq data: myofibroblastic (myDSCs), inflammatory (iDSCs) and glycolytic (glyDSCs), with the latter two being significantly enriched in RM patients. The distribution patterns of DSC subtypes in the RM and HD groups were validated by mIHC. Single-cell analyses indicate that the differentiation of iDSCs and glyDSCs may be coupled with the degrees of hypoxia. Consequently, we propose a pathological model in which a vicious circle is formed and fueled by hypoxic stress, uncontrolled inflammation and aberrant glycolysis. Furthermore, our results show that the inflammatory SPP1+ macrophages and CD18+ dNK cells are preferentially increased in the decidua of RM patients. Cell ligand-receptor and mIHC spatial analyses uncovered close interactions between pathogenic DSCs and inflammatory SPP1+ macrophages and CD18+ NK cells in RM patients. LARGE SCALE DATA The raw single-cell sequence data reported in this paper were deposited at the National Omics Data Encyclopedia (www.biosino.org), under the accession number OEP002901. LIMITATIONS, REASONS FOR CAUTION The number of decidual samples for scRNA-seq was limited and in-depth functional studies on DSCs are warranted in future studies. WIDER IMPLICATIONS OF THE FINDINGS Identification of three DSC subpopulations opens new avenues for further investigation of their roles in RM patients. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Strategic Priority Research Program (No. XDB29030302), Frontier Science Key Research Project (QYZDB-SSW-SMC036), Chinese Academy of Sciences; National Key Research and Development Program of China (2021YFE0200600), National Natural Science Foundation of China (No. 31770960), Shanghai Municipal Science and Technology Major Project (No. 2019SHZDZX02, HS2021SHZX001), and Shanghai Committee of Science and Technology (17411967800). All authors report no conflict of interest.
Collapse
Affiliation(s)
- Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Xu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruixiu Zhang
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Zhouping Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
12
|
The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int J Mol Sci 2022; 24:ijms24010132. [PMID: 36613575 PMCID: PMC9820098 DOI: 10.3390/ijms24010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recurrent pregnancy losses (RPL) is a common reproductive disorder with various underlying etiologies. In recent years, rapid progress has been made in exploring the immunological mechanisms for RPL. A propensity toward Th2 over Th1 and regulatory T (Treg) over Th17 immune responses may be advantageous for reproductive success. In women with RPL and animals prone to abortion, an inordinate expression of cytokines associated with implantation and early embryo development is present in the endometrium or decidua secreted from immune and non-immune cells. Hence, an adverse cytokine milieu at the maternal-fetal interface assaults immunological tolerance, leading to fetal rejection. Similar to T cells, NK cells can be categorized based on the characteristics of cytokines they secrete. Decidual NK (dNK) cells of RPL patients exhibited an increased NK1/NK2 ratio (IFN-γ/IL-4 producing NK cell ratios), leading to pro-inflammatory cytokine milieu and increased NK cell cytotoxicity. Genetic polymorphism may be the underlying etiologies for Th1 and Th17 propensity since it alters cytokine production. In addition, various hormones participate in cytokine regulations, including progesterone and estrogen, controlling cytokine balance in favor of the Th2 type. Consequently, the intricate regulation of cytokines and hormones may prevent the RPL of immune etiologies. Local or systemic administration of cytokines or their antagonists might help maintain adequate cytokine milieu, favoring Th2 over Th1 response or Treg over Th17 immune response in women with RPL. Herein, we provided an updated comprehensive review regarding the immune-regulatory role of pro- and anti-inflammatory cytokines in RPL. Understanding the roles of cytokines involved in RPL might significantly advance the early diagnosis, monitoring, and treatment of RPL.
Collapse
|
13
|
Wang X, Miao S, Lu L, Yuan J, Pan S, Wu X. miR‑519d‑3p released by human blastocysts negatively regulates endometrial epithelial cell adhesion by targeting HIF1α. Int J Mol Med 2022; 50:123. [PMID: 35959792 PMCID: PMC9387561 DOI: 10.3892/ijmm.2022.5179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022] Open
Abstract
Successful embryo implantation requires a competent embryo, a receptive endometrium and synchronized communication between them. The selection of embryos with the highest implantation potential remains a challenge in the field of assisted reproductive technology. Moreover, little is known about the precise molecular mechanisms underlying embryo‑endometrium crosstalk. MicroRNAs (miRNAs/miRs) have been detected in the spent embryo culture medium (SCM); however, their functions at the preimplantation stage remain unclear. In the present study, human SCM samples were collected during in vitro fertilization/intracytoplasmic sperm injection‑embryo transfer and divided into implanted and not‑implanted groups according to the clinical pregnancy outcomes. Total RNA was extracted and six miRNAs (miR‑372‑3p, miR‑373‑3p, miR‑516b‑5p, miR‑517a‑3p, miR‑519d‑3p and miR‑520a‑3p) were selected for reverse transcription‑quantitative PCR (RT‑qPCR) analysis. The results revealed that miR‑372‑3p and miR‑519d‑3p were markedly increased in SCM from blastocysts that failed to implant compared with in blastocysts that implanted. The receiver operating characteristic curve analysis revealed that miR‑519d‑3p was superior to miR‑372‑3p in predicting pregnancy outcomes. In vitro miRNA uptake and cell adhesion assays were performed to determine whether miR‑519d‑3p could be taken up by endometrial epithelial cells and to examine the biological roles of miR‑519d‑3p after internalization. Potential targets of miR‑519d‑3p were verified using a dual‑luciferase reporter system. The results demonstrated that miR‑519d‑3p was taken up by human endometrial epithelial cells and that it may inhibit embryo adhesion by targeting HIF1α. Using RT‑qPCR, western blot analysis and flow cytometry assay, HIF1α was shown to inhibit the biosynthesis of fucosyltransferase 7 and sialyl‑Lewis X (sLex), a cell‑surface oligosaccharide that serves an important role in embryonic apposition and adhesion. In addition, a mouse model was established and the results suggested that miR‑519d‑3p overexpression hampered embryo implantation in vivo. Taken together, miRNAs in SCM may serve as novel biomarkers for embryo quality. Furthermore, miR‑519d‑3p was shown to mediate embryo‑endometrium crosstalk and to negatively regulate embryo implantation by targeting HIF1α/FUT7/sLex pathway.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Suibing Miao
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Linqi Lu
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jingchuan Yuan
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuhong Pan
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaohua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
14
|
Wei XW, Zhang YC, Wu F, Tian FJ, Lin Y. The role of extravillous trophoblasts and uterine NK cells in vascular remodeling during pregnancy. Front Immunol 2022; 13:951482. [PMID: 37408837 PMCID: PMC10319396 DOI: 10.3389/fimmu.2022.951482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 07/07/2023] Open
Abstract
Successful embryo implantation requires both a receptive endometrium and competent blastocysts. After implantation, the maternal decidua undergoes a series of changes, including uterine spiral artery (SA) remodeling to accommodate the fetus and provide nutrients and oxygen for the fetus to survive. Uterine spiral arteries transform from small-diameter, high-resistance arteries to large-diameter and low-resistance arteries during pregnancy. This transformation includes many changes, such as increased permeability and dilation of vessels, phenotypic switching and migration of vascular smooth muscle cells (VSMCs), transient loss of endothelial cells (ECs), endovascular invasion of extravillous trophoblasts (EVTs), and presence of intramural EVT, which are regulated by uterine NK (uNK) cells and EVTs. In this review, we mainly focus on the separate and combined roles of uNK cells and EVTs in uterine SA remodeling in establishing and maintaining pregnancy. New insight into related mechanisms will help us better understand the pathogenesis of pregnancy complications such as recurrent pregnancy loss (RPL) and preeclampsia (PE).
Collapse
Affiliation(s)
- Xiao-Wei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University of Medicine, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fu-Ju Tian
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Yan S, Dong J, Qian C, Chen S, Xu Q, Lei H, Wang X. The mTORC1 Signaling Support Cellular Metabolism to Dictate Decidual NK Cells Function in Early Pregnancy. Front Immunol 2022; 13:771732. [PMID: 35359988 PMCID: PMC8960317 DOI: 10.3389/fimmu.2022.771732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Cellular metabolism plays an important role in regulating both human and murine NK cell functions. However, it remains unclear whether cellular metabolic process impacts on the function of decidual NK cells (dNK), essential tissue-resident immune cells maintaining the homeostasis of maternal-fetal interface. Remarkably, we found that glycolysis blockage enhances dNK VEGF-A production but restrains its proliferation. Furthermore, levels of IFN-γ and TNF-α secreted by dNK get decreased when glycolysis or oxidative phosphorylation (OXPHOS) is inhibited. Additionally, glycolysis, OXPHOS, and fatty acid oxidation disruption has little effects on the secretion and the CD107a-dependent degranulation of dNK. Mechanistically, we discovered that the mammalian target of rapamycin complex 1 (mTORC1) signaling inhibition leads to decreased glycolysis and OXPHOS in dNK. These limited metabolic processes are associated with attenuated dNK functions, which include restricted production of cytokines including IFN-γ and TNF-α, diminished CD107a-dependent degranulation, and restrained dNK proliferation. Finally, we reported that the protein levels of several glycolysis-associated enzymes are altered and the mTORC1 activity is significantly lower in the decidua of women with recurrent pregnancy loss (RPL) compared with normal pregnancy, which might give new insights about the pathogenesis of RPL. Collectively, our data demonstrate that glucose metabolism and mTORC1 signaling support dNK functions in early pregnancy.
Collapse
Affiliation(s)
- Song Yan
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Dong
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Chenxi Qian
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shuqiang Chen
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Qian Xu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hui Lei
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
16
|
Liu Z, Liu X, Li F, Sun Y, Yu L, Zhang W, Zhu P, Ma D, Wang X, Lai S, Bao H. Overexpression of hypoxia-inducible factor 1α and excessive vascularization in the peri-implantation endometrium of infertile women with chronic endometritis. Front Endocrinol (Lausanne) 2022; 13:1001437. [PMID: 36531509 PMCID: PMC9751377 DOI: 10.3389/fendo.2022.1001437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Chronic endometritis (CE) contributes to impaired endometrial receptivity and is closely associated with poor in vitro fertilization (IVF) outcomes. However, the mechanisms underlying CE are unclear. Here, we investigated the role of the hypoxic microenvironment and endometrial vascularization in the peri-implantation endometrium of infertile women with CE. METHODS This retrospective study involved 15 fertile women and 77 infertile patients diagnosed with CE based on CD138+ ≥1/10 high-power fields (HPFs). The CE patients were divided into Group 1 (CD138+ 1-4/10 HPFs, 53 cases) and Group 2 (CD138+ ≥5/10 HPFs, 24 cases). The expression levels of hypoxia-inducible factor 1α (HIF1α), vascular endothelial growth factor A (VEGFA), and vascular endothelial growth factor receptor 2 (VEGFR2) in peri-implantation endometrium were assessed by qRT-PCR and western blot analyses. Spatial levels of HIF1α, VEGFA, and VEGFR2 in various endometrial compartments was determined using immunohistochemistry and H-score analysis. Microvascular density (MVD) was determined using CD34 staining and scored using Image J. Finally, we used qRT-PCR to assess changes in the expression of HIF1α, VEGFA, and VEGFR2 in CE patients after treatment with first-line antibiotics. RESULTS Relative to Group 1 and control group, during the implantation window, protein and mRNA levels of HIF1α, VEGFA, and VEGFR2 were markedly high in Group 2 (P<0.05). H-score analysis showed that HIF1α, VEGFA, and VEGFR2 in the luminal, glandular epithelium, and stromal compartments were markedly elevated in Group 2, comparing to control group and Group 1 (P<0.05). Moreover, markedly elevated MVD levels were observed in Group 2. Notably, the above indexes did not differ significantly in the control group versus Group 1. Treatment with antibiotics significantly suppressed the endometrial HIF1α and VEGFA levels in CE-cured patients. CONCLUSIONS Here, we for the first time report the upregulation of HIF1α, VEGFA, and VEGFR2, as well as excessive endometrial vascularization in the peri-implantation endometrium of CE patients. Our findings offer new insights into reduced endometrial receptivity in CE-associated infertility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shoucui Lai
- *Correspondence: Shoucui Lai, ; Hongchu Bao,
| | - Hongchu Bao
- *Correspondence: Shoucui Lai, ; Hongchu Bao,
| |
Collapse
|
17
|
Meister S, Kellner I, Beyer S, Corradini S, Schulz C, Rogenhofer N, Keilmann L, Kolben TM, Mahner S, Kessler M, Jeschke U, Kolben T. Epigenetic changes occur in placentas of spontaneous and recurrent miscarriages. J Reprod Immunol 2021; 149:103466. [PMID: 34929495 DOI: 10.1016/j.jri.2021.103466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/18/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND In contrast to genetic abnormalities which are well known to be responsible for around 50 % of human miscarriages, there is very few data about epigenetic alterations in spontaneous and recurrent miscarriages (SM, RM). The aim of this study was to analyze the histone modification marks H3K9ac and H3K4me3 in SM and RM. METHODS The abundance of histone modifications H3K4me3/H3K9ac was analyzed by western blot in frozen abortion material of SM and RM compared to a control group of legal pregnancy terminations. Further, to characterize placental tissue cells expressing H3K4me3/H3K9ac immunohistochemistry (IHC) and immunofluorescence was performed in 20 SM, 19 RM and 26 controls. RESULTS The western blot data showed a tendency to an overall reduction of H3K4me3/H3K9ac, in the placental tissue of particularly SM. Further we differentiated between syncytiotrophoblast, cytotrophoblast and decidual cells and found a significant decrease of H3K4me3 in SM in cytotrophoblast cells and syncytial stroma. In RM H3K4me3 was downregulated exclusively in the syncytiotrophoblast. H3K9ac was reduced in SM and RM in all evaluated compartments, except from the syncytiotrophoblast. CONCLUSION Our study showed an overall reduced histone modification of H3K4me3 and H3K9ac in the placental tissue of SM. Concerning RM, particularly the reduction of H3K9ac was detected in the placental tissue, indicating that RM group has distinct profile in epigenetic regulation. Whether these histone modifications are part of a possible pathophysiologic cascade during SM and RM or are merely indicating a defective placentation, cannot be concluded from this study.
Collapse
Affiliation(s)
- Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Isabel Kellner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Nina Rogenhofer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lucia Keilmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Theresa Maria Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Department of Gynecology and Obstetrics, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
18
|
Díaz-Hernández I, Alecsandru D, García-Velasco JA, Domínguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update 2021; 27:720-746. [PMID: 33528013 DOI: 10.1093/humupd/dmaa062] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recurrent miscarriage and pre-eclampsia are common reproductive disorders, but their causes are often unknown. Recent evidence has provided new insight into immune system influences in reproductive disorders. A subset of lymphocytes of the innate immune system known as uterine natural killer (uNK) cells are now recognized as fundamental to achieving embryo implantation and successful pregnancy, but were initially attributed a bad reputation. Indeed, immune therapies have been developed to treat the 'exaggerated' immune response from uNK cells. These treatments have been based on studies of peripheral blood natural killer (pbNK) cells. However, uNK cells and pbNK cells have different phenotypic and functional characteristics. The functions of uNK cells are closely related to their interactions with the extravillous trophoblast cells (EVTs) and spiral arteries, which underlie an essential role in regulating vascular function, controlling trophoblast invasion and promoting placental development. EVTs express MHC molecules of class I HLA-C/E/G/F, while uNK cells express, among other receptors, killer cell immunoglobulin-like receptors (KIRs) that bind to HLA-C or CD94/NKG2A inhibitory receptors, and then bind HLA-E. Associations of certain KIR/HLA-C combinations with recurrent miscarriage, pre-eclampsia, and foetal growth restriction and the interactions between uNK cells, trophoblasts and vascular cells have led to the hypothesis that uNK cells may play a role in embryo implantation. OBJECTIVE AND RATIONALE Our objective was to review the evolution of our understanding of uNK cells, their functions, and their increasingly relevant role in reproduction. SEARCH METHODS Relevant literature through June 2020 was retrieved using Google Scholar and PubMed. Search terms comprised uNK cells, human pregnancy, reproductive failure, maternal KIR and HLA-C, HLA-E/G/F in EVT cells, angiogenic cytokines, CD56+ NK cells, spiral artery, oestrogen and progesterone receptors, KIR haplotype and paternal HLA-C2. OUTCOMES This review provides key insights into the evolving conceptualization of uNK cells, from their not-so-promising beginnings to now, when they are considered allies in reproduction. We synthesized current knowledge about uNK cells, their involvement in reproduction and their main functions in placental vascular remodeling and trophoblast invasion. One of the issues that this review presents is the enormous complexity involved in studying the immune system in reproduction. The complexity in the immunology of the maternal-foetal interface lies in the great variety of participating molecules, the processes and interactions that occur at different levels (molecular, cellular, tissue, etc.) and the great diversity of genetic combinations that are translated into different types of responses. WIDER IMPLICATIONS Insights into uNK cells could offer an important breakthrough for ART outcomes, since each patient could be assessed based on the combination of HLA and its receptors in their uNK cells, evaluating the critical interactions at the materno-foetal interface. However, owing to the technical challenges in studying uNK cells in vivo, there is still much knowledge to gain, particularly regarding their exact origin and functions. New studies using novel molecular and genetic approaches can facilitate the identification of mechanisms by which uNK cells interact with other cells at the materno-foetal interface, perhaps translating this knowledge into clinical applicability.
Collapse
Affiliation(s)
| | - Diana Alecsandru
- Department of Immunology and Department of Reproductive Endocrinology and Infertility, Instituto Valenciano de Infertilidad-Madrid, Rey Juan Carlos University (IVI), Madrid 28023, Spain
| | - Juan Antonio García-Velasco
- Department of Immunology and Department of Reproductive Endocrinology and Infertility, Instituto Valenciano de Infertilidad-Madrid, Rey Juan Carlos University (IVI), Madrid 28023, Spain
| | | |
Collapse
|
19
|
Li D, Zheng L, Zhao D, Xu Y, Wang Y. The Role of Immune Cells in Recurrent Spontaneous Abortion. Reprod Sci 2021; 28:3303-3315. [PMID: 34101149 PMCID: PMC8186021 DOI: 10.1007/s43032-021-00599-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Recurrent spontaneous abortion affects approximately 1–2% of women of childbearing, and describes a condition in which women suffer from three or more continuous spontaneous miscarriages. However, the origin of recurrent spontaneous abortion (RSA) remains unknown, preventing effective treatment and placing stress upon patients. It has been acknowledged that successful pregnancy necessitates balanced immune responses. Therefore, immunological aberrancy may be considered a root cause of poor pregnancy outcomes. Considerable published studies have investigated the relationship between various immune cells and RSA. Here, we review current knowledge on this area, and discuss the five main categories of immune cells involved in RSA; these include innate lymphocytes (ILC), macrophages, decidual dendritic cells (DCs), and T cells. Furthermore, we sought to summarize the impact of the multiple interactions of various immune cells on the emergence of RSA. A good understanding of pregnancy-induced immunological alterations could reveal new therapeutic strategies for favorable pregnancy outcomes.
Collapse
Affiliation(s)
- Dan Li
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | | | - Ying Xu
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yeling Wang
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun, 130000, China.
| |
Collapse
|
20
|
Ma Z, Yang H, Peng L, Kuhn C, Chelariu-Raicu A, Mahner S, Jeschke U, von Schönfeldt V. Expression of the Carbohydrate Lewis Antigen, Sialyl Lewis A, Sialyl Lewis X, Lewis X, and Lewis Y in the Placental Villi of Patients With Unexplained Miscarriages. Front Immunol 2021; 12:679424. [PMID: 34135905 PMCID: PMC8202085 DOI: 10.3389/fimmu.2021.679424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lewis antigens such as Sialyl Lewis A (sLeA), Sialyl Lewis X (sLeX), Lewis X (LeX), and Lewis Y (LeY) are a class of carbohydrate molecules that are known to mediate adhesion between tumor cells and endothelium by interacting with its selectin ligands. However, their potential role in miscarriage remains enigmatic. This study aims to analyze the expression pattern of sLeA, sLeX, LeX, and LeY in the placental villi tissue of patients with a medical history of unexplained miscarriages. Methods Paraffin-embedded slides originating from placental tissue were collected from patients experiencing a miscarriage early in their pregnancy (6–13 weeks). Tissues collected from spontaneous (n = 20) and recurrent (n = 15) miscarriages were analyzed using immunohistochemical and immunofluorescent staining. Specimens obtained from legally terminated normal pregnancies were considered as control group (n = 18). Assessment of villous vessel density was performed in another cohort (n = 10 each group) of gestation ages-paired placenta tissue. Protein expression was evaluated with Immunoreactive Score (IRS). Statistical analysis was performed by using Graphpad Prism 8. Results Expression of sLeA, sLeX, LeX, and LeY in the syncytiotrophoblast was significantly upregulated in the control group compared with spontaneous and recurrent miscarriage groups. However, no prominent differences between spontaneous and recurrent miscarriage groups were identified. Potential key modulators ST3GAL6 and NEU1 were found to be significantly downregulated in the recurrent miscarriage group and upregulated in the spontaneous group, respectively. Interestingly, LeX and LeY expression was also detected in the endothelial cells of villous vessels in the control group but no significant expression in miscarriage groups. Furthermore, assessment of villous vessel density using CD31 found significantly diminished vessels in all size groups of villi (small villi <200 µm, P = 0.0371; middle villi between 200 and 400 µm, P = 0.0010 and large villi >400 µm, P = 0.0003). Immunofluorescent double staining also indicated the co-localization of LeX/Y and CD31. Conclusions The expression of four mentioned carbohydrate Lewis antigens and their potential modulators, ST3GAL6 and NEU1, in the placenta of patients with miscarriages was significantly different from the normal pregnancy. For the first time, their expression pattern in the placenta was illustrated, which might shed light on a novel understanding of Lewis antigens’ role in the pathogenesis of miscarriages.
Collapse
Affiliation(s)
- Zhi Ma
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Lin Peng
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, Augsburg, Germany
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany.,Department of Obstetrics and Gynaecology, University Hospital Augsburg, Augsburg, Germany
| | | |
Collapse
|
21
|
Role of Vascular Endothelial Growth Factor (VEGF) in Human Embryo Implantation: Clinical Implications. Biomolecules 2021; 11:biom11020253. [PMID: 33578823 PMCID: PMC7916576 DOI: 10.3390/biom11020253] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a well-known angiogenic factor that plays a critical role in various physiological and pathological processes. VEGF also contributes to the process of embryo implantation by enhancing embryo development, improving endometrial receptivity, and facilitating the interactions between the developing embryo and the endometrium. There is a correlation between the alteration of VEGF expression and reproductive failure, including recurrent implantation failure (RIF) and recurrent miscarriage (RM). In order to clarify the role of VEGF in embryo implantation, we reviewed recent literature concerning the expression and function of VEGF in the reproductive system around the time of embryo implantation and we provide a summary of the findings reported so far. We also explored the effects and the possible underlying mechanisms of action of VEGF in embryo implantation.
Collapse
|
22
|
Pan Y, Yan L, Chen Q, Wei C, Dai Y, Tong X, Zhu H, Lu M, Zhang Y, Jin X, Zhang T, Lin X, Zhou F, Zhang S. Dysfunction of Shh signaling activates autophagy to inhibit trophoblast motility in recurrent miscarriage. Exp Mol Med 2021; 53:52-66. [PMID: 33390589 PMCID: PMC8080798 DOI: 10.1038/s12276-020-00530-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 01/29/2023] Open
Abstract
In early pregnancy, the placenta anchors the conceptus and supports embryonic development and survival. This study aimed to investigate the underlying functions of Shh signaling in recurrent miscarriage (RM), a serious disorder of pregnancy. In the present study, Shh and Gli2 were mainly observed in cytotrophoblasts (CTBs), Ptch was mainly observed in syncytiotrophoblasts (STBs), and Smo and Gli3 were expressed in both CTBs and STBs. Shh signaling was significantly impaired in human placenta tissue from recurrent miscarriage patients compared to that of gestational age-matched normal controls. VEGF-A and CD31 protein levels were also significantly decreased in recurrent miscarriage patients. Furthermore, inhibition of Shh signaling impaired the motility of JAR cells by regulating the expression of Gli2 and Gli3. Intriguingly, inhibition of Shh signaling also triggered autophagy and autolysosome accumulation. Additionally, knockdown of BECN1 reversed Gant61-induced motility inhibition. In conclusion, our results showed that dysfunction of Shh signaling activated autophagy to inhibit trophoblast motility, which suggests the Shh pathway and autophagy as potential targets for RM therapy.
Collapse
Affiliation(s)
- Yibin Pan
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Lili Yan
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China ,Beilun District Hospital of Traditional Chinese Medicine, Ningbo City, Zhejiang China
| | - Qiaoqiao Chen
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Cheng Wei
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yongdong Dai
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Meifei Lu
- grid.13402.340000 0004 1759 700XDepartment of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanling Zhang
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaoying Jin
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Tai Zhang
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaona Lin
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Feng Zhou
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songying Zhang
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
23
|
Zhao Y, Chen X, Zhang T, Chan LKY, Liu Y, Chung JPW, Kwong J, Li TC. The use of multiplex staining to measure the density and clustering of four endometrial immune cells around the implantation period in women with recurrent miscarriage: comparison with fertile controls. J Mol Histol 2020; 51:593-603. [PMID: 32857228 DOI: 10.1007/s10735-020-09908-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/20/2020] [Indexed: 11/24/2022]
Abstract
Serval studies showed an increased uterine natural killer cell density in women with recurrent miscarriage. However, no study has previously investigated the density and clustering of major immune cells simultaneously in precisely timed endometrial specimen section of this group of women. This study aimed to investigate the profile of endometrial immune cells populations and clustering level simultaneously in women with recurrent miscarriage and compare the results to fertile controls. A total of 30 women with unexplained recurrent miscarriage and 30 fertile controls were included in this study. Endometrial biopsy was performed precisely 7 days after LH surge. The cells density was expressed as percentage of positive immune cell/total stromal cells and the clustering of different endometrial cells was measured by R language toolbox 'spatstat'. Multiplex immunohistochemical method was employed to stain a panel of human endometrium samples simultaneously with antibodies against CD3 for T cells, CD20 for B cells, CD68 for macrophages and CD56 for uterine natural killer cells. The median CD3+, CD68+ and CD56+ cell density in the miscarriage group were significantly higher than those of the fertile controls. In addition, the clustering between CD56+ uterine natural killer cells and CD68+ macrophages in the miscarriage group was significantly increased compared with fertile controls. In conclusion, the significant change in numbers of three out of four endometrial immune cell density and a significant increase in clustering between CD68+ and CD56+ cells suggest that several immune cells and their interactions may be important in the function of the endometrium; abnormal interactions may predispose to recurrent miscarriage.
Collapse
Affiliation(s)
- Yiwei Zhao
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Loucia K Y Chan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jacqueline Pui-Wah Chung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Joseph Kwong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Tin-Chiu Li
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
24
|
Tsai HW, Wang PH, Hsu PT, Chen SN, Lin LT, Li CJ, Tsui KH. Laser irradiation pretreatment improves endometrial preparation of frozen-thawed embryo transfer in recurrent implantation failure patients. Gynecol Endocrinol 2020; 36:734-738. [PMID: 31928249 DOI: 10.1080/09513590.2020.1712694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Recurrent implantation failure (RIF) remains a clinical dilemma. Helium-Neon (He-Ne) laser irradiation has recently become more popular under certain clinical conditions. Given the unique therapeutic effects, we were interested in determining whether pretreatment with He-Ne laser irradiation prior to frozen-thawed embryo transfer (FET) would improve the microcirculation and cause the release of growth factors and cytokines, thus improving endometrial receptivity and the clinical pregnancy rates. Patients chose for themselves whether to proceed with (n = 29) or without (n = 31) pretreatment with He-Ne laser irradiation prior to FET. The clinical pregnancy rate (37.9%) and implantation rate (20.3%) were higher in the laser-treatment group than in the control group (35.5% and 15.9%, respectively, p = .844 and .518, respectively). The live birth rate was higher in the laser-treatment group (27.6% vs. 25.8%, respectively, p = .876) and the miscarriage rate was lower in the laser-treatment group (18.2% and 27.3%, respectively, p = .611). No side effects or complications from laser irradiation were encountered in patients who received the laser treatment. We concluded that pretreatment with He-Ne laser prior to FET may be an alternative choice for RIF-affected women; however, additional well-designed prospective studies are necessary to determine the precise clinical value of this treatment.
Collapse
Affiliation(s)
- Hsiao-Wen Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Te Hsu
- Department of Physical Medicine & Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - San-Nung Chen
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
25
|
Evans J, Hutchison J, Salamonsen LA, Greening DW. Proteomic Insights into Endometrial Receptivity and Embryo‐Endometrial Epithelium Interaction for Implantation Reveal Critical Determinants of Fertility. Proteomics 2020; 20:e1900250. [DOI: 10.1002/pmic.201900250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Jemma Evans
- Hudson Institute of Medical ResearchMonash University Clayton Victoria 3168 Australia
- Department of Molecular and Translational ScienceMonash University Clayton Victoria 3168 Australia
| | - Jennifer Hutchison
- Hudson Institute of Medical ResearchMonash University Clayton Victoria 3168 Australia
- Department of Molecular and Translational ScienceMonash University Clayton Victoria 3168 Australia
| | - Lois A. Salamonsen
- Hudson Institute of Medical ResearchMonash University Clayton Victoria 3168 Australia
- Department of Molecular and Translational ScienceMonash University Clayton Victoria 3168 Australia
| | - David W. Greening
- Baker Heart and Diabetes InstituteMolecular Proteomics Melbourne Victoria 3004 Australia
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe University Bundoora Victoria 3086 Australia
| |
Collapse
|
26
|
Evans J, Walker KJ, Bilandzic M, Kinnear S, Salamonsen LA. A novel "embryo-endometrial" adhesion model can potentially predict "receptive" or "non-receptive" endometrium. J Assist Reprod Genet 2019; 37:5-16. [PMID: 31776756 DOI: 10.1007/s10815-019-01629-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/08/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To establish a model of human implantation that responds to hormonal stimuli and can differentiate between endometrium from fertile women and those with idiopathic infertility. DESIGN A trophoblast stem cell (trophectodermal) line (TSC; derived from human pre-implantation embryo) was used to form trophectodermal spheroids (TS). TS attachment to monolayers of endometrial epithelial cell lines or primary endometrial epithelial cells (pHEECs) was determined. SETTING Independent Medical Research Institute with close clinical linkages INTERVENTIONS: Spheroid attachment and outgrowth was determined with added hormones (estradiol 17β (E), E + medroxyprogesterone acetate (MPA) or E + MPA + human chorionic gonadotropin (hCG)). Spheroid attachment to E/MPA treated pHEEC prepared from fertile women or those with idiopathic infertility tested. MAIN OUTCOME MEASURE Firmly attached spheroids counted after co-culture for 6 h. Outgrowth was determined by quantitation of area covered by spheroid after firm adhesion. RESULTS Functional adhesion of TS to two endometrial epithelial cell lines, Ishikawa and ECC-1 cells, was hormonally responsive, with adhesion/outgrowth increased by E/MPA (ECC-1; p < 0.01, Ishikawa; p < 0.01) and E/MPA/hCG (ECC-1; p < 0.001, Ishikawa p < 0.01) versus E alone. The same pattern of hormone responsiveness was observed in pHEEC obtained from fertile women (E vs, E/MPA; p < 0.01, E vs. E/MPA/hCG; p < 0.001). TS adhered to 85% of pHEEC obtained from fertile women (11/13) and 11% of pHEEC obtained from women with unexplained infertility (2/18, p < 0.001). CONCLUSION This new model of "embryo" implantation largely discriminates between endometrial epithelial cells obtained from fertile vs. infertile women based on adhesion; this holds potential as an in vitro "diagnostic" tool of endometrial infertility.
Collapse
Affiliation(s)
- Jemma Evans
- The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia.
| | - Kathryn J Walker
- The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Maree Bilandzic
- The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Sophie Kinnear
- The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia
- Department of Medicine, Monash University, Clayton, VIC, 3800, Australia
| | - Lois A Salamonsen
- The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
27
|
Tian QX, Xia SH, Wu YH, Zhang JH, Wang LY, Zhu WP. Comprehensive analysis of the differential expression profile of microRNAs in missed abortion. Kaohsiung J Med Sci 2019; 36:114-121. [PMID: 31688986 DOI: 10.1002/kjm2.12144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/29/2019] [Indexed: 12/16/2022] Open
Abstract
To screen the key circulating microRNAs (miRNAs) involved in missed abortion (MA) and explore their role in MA process. We examined the miRNA profile from the serum of three MA patients and three early pregnancy induced abortion patients (controls) by next-generation sequencing. We analyzed the target genes of the differentially expressed (DE) miRNAs to analyze the function and pathway enrichment using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, respectively. We validated five candidate miRNAs by real time-qPCR. Integrated miRNA-mRNA-pathway network analysis was performed to show the interaction network of the candidate miRNAs and their target genes of interest with the involved pathways. It was observed that 227 miRNAs were differently expressed between the MA group and the early pregnancy control group, with 58 miRNAs downregulated and 169 miRNAs upregulated in the MA group. Real-time qPCR results revealed that expression of the five candidate miRNAs, namely hsa-miR-22-3p, hsa-miR-145-3p, hsa-miR-107, hsa-miR-361-3p, and hsa-miR-378c, was consistent with the miRNA data obtained by sequencing. Integrated miRNA-mRNA-pathway network analysis illustrated that target genes of the candidate miRNAs were mainly involved in the PI3K-Akt signaling pathway, HIF-1 signaling pathway, and VEGF signaling pathway, which would have potential significance in pregnancy and MA. We are the first to reveal the DE miRNAs involved in MA and illustrate their functional interaction network. These results might provide potential circulating biomarkers and new therapeutic targets for MA.
Collapse
Affiliation(s)
- Qiao-Xian Tian
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.,Department of Obstetrics and Gynecology, Fengcheng Hospital, Fengxian District, Shanghai, P.R. China
| | - Shu-Hua Xia
- Department of Obstetrics and Gynecology, Fengcheng Hospital, Fengxian District, Shanghai, P.R. China
| | - Ya-Hua Wu
- Department of Obstetrics and Gynecology, Fengcheng Hospital, Fengxian District, Shanghai, P.R. China
| | - Jian-Hong Zhang
- Department of Obstetrics and Gynecology, Fengcheng Hospital, Fengxian District, Shanghai, P.R. China
| | - Ling-Yun Wang
- Department of Obstetrics and Gynecology, Fengcheng Hospital, Fengxian District, Shanghai, P.R. China
| | - Wei-Pei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
28
|
Law TSM, Cheung WC, Wu F, Zhang R, Chung JPW, Wang CC, Chen X, Li TC. Endometrial Vascularization Characterized by Optical Coherence Tomography and Immunohistochemistry in Women Undergoing In Vitro Fertilization-Embryo Transfer Treatment. ACTA ACUST UNITED AC 2019; 55:medicina55040081. [PMID: 30934763 PMCID: PMC6524031 DOI: 10.3390/medicina55040081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Background and objective: Endometrial angiogenesis is a prerequisite for successful pregnancy. Optical coherence tomography (OCT) is a non-invasive physically optical imaging technique widely used in ophthalmology and cardiology. However, there is no study using OCT to evaluate endometrium. The aim of this study was to use OCT and traditionally histological methods to investigate endometrial vascularization in women undergoing in vitro fertilization-embryo transfer (IVF-ET) treatment and to determine the association with the pregnancy outcome. Methods: A total of 47 women were included in this study. OCT was used to assess endometrial vascularization by determining the high signal areas precisely on the seventh day after luteinizing hormone surge in non-conception natural cycles. Endometrial biopsies were obtained following OCT and immunohistochemistry was used to determine micro vessel and expression of vascular endothelial growth factor-A (VEGF-A) in the luminal epithelium, glandular epithelium and stroma, separately. Micro vessel counting was performed and the result was expressed as micro vessel density (MVD). A semi-quantitative H-score was used to determine the staining intensity of VEGF-A. Results: In women who successfully conceived after embryo transfer, the proportion of extensive high signal area in the uterine body detected by OCT (80%, 8/10), MVD (median number of micro vessels/mm2 of 10, range 4–17) and stromal expression of VEGF-A (median H-score of 189, range 72–395) were found to be significantly higher than those of women who did not conceive after embryo transfer in the subsequent IVF-ET treatment (OCT: 30%, 3/10; MVD: median number of micro vessels/mm2 of 7, range 4–10; VEGF-A: median H-score of 125, range 86–299, respectively). In addition, a significantly higher stromal expression of VEGF-A (median H-score of 196, range 84–395) and MVD (median number of micro vessels/mm2 of 9, range 5–16) was found in women with extensive high signal area in uterine body, compared to those with focal or no high signal area (stromal VEGF-A: median H-score of 135, range 92–302; MVD: number of micro vessels/mm2 of 6, range 4-11). Conclusions: Both immunohistochemistry and OCT demonstrated significant difference in vascularization of the peri-implantation endometrium between subjects who did and did not conceive after IVF-ET treatment. Our findings also suggest OCT appears to be a promising non-invasive or minimally invasive alternative to study endometrial vascularity in women with reproductive failure.
Collapse
Affiliation(s)
- Tracy Sze Man Law
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Wing Ching Cheung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Fangrong Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ruizhe Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Jacqueline Pui Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Chi Chiu Wang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong.
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Xiaoyan Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
29
|
Yu X, Gao C, Dai C, Yang F, Deng X. Endometrial injury increases expression of hypoxia-inducible factor and angiogenesis in the endometrium of women with recurrent implantation failure. Reprod Biomed Online 2018; 38:761-767. [PMID: 30885666 DOI: 10.1016/j.rbmo.2018.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022]
Abstract
RESEARCH QUESTION The aim of this study was to compare expression of hypoxia-inducible factor 1-alpha (HIF-1α), angiogenesis and apoptosis in endometrial tissue near the implantation window of women with recurrent implantation failure (RIF) and in fertile control women, and to describe possible mechanisms of endometrial injury. DESIGN A controlled clinical study was conducted. Endometrial tissue specimens were obtained from 20 women undergoing IVF who had had at least three previous failed treatment cycles; normal endometrial specimens were obtained from 10 fertile control women. RESULTS HIF-1α expression was down-regulated in the endometrium of women with RIF compared with that of control women. In addition, micro-vessel density (MVD) was much lower in the endometrium of women with RIF than in that of the control women. Apoptosis was significantly reduced in the endometrium of the RIF group compared with the control group. Endometrial injury increased HIF-1α expression and MVD in endometrial samples of the RIF group, but apoptosis was not significantly altered. CONCLUSIONS HIF-1α expression, MVD and endometrial apoptosis were reduced in the peri-implantation endometrium of women with RIF. This suggests that altered endometrial HIF-1α expression and angiogenesis may contribute to implantation failure.
Collapse
Affiliation(s)
- Xuan Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Cong Gao
- Department of Burns Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, China
| | - Caifeng Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaohui Deng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
30
|
Chen X, Mariee N, Jiang L, Liu Y, Wang CC, Li TC, Laird S. Measurement of uterine natural killer cell percentage in the periimplantation endometrium from fertile women and women with recurrent reproductive failure: establishment of a reference range. Am J Obstet Gynecol 2017; 217:680.e1-680.e6. [PMID: 28935491 DOI: 10.1016/j.ajog.2017.09.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Uterine natural killer cells are the major leukocytes present in the periimplantation endometrium. Previous studies have found controversial differences in uterine natural killer cell percentage in women with recurrent reproductive failure compared with fertile controls. OBJECTIVE We sought to compare the uterine natural killer cell percentage in women with recurrent reproductive failure and fertile controls. STUDY DESIGN This was a retrospective study carried out in university hospitals. A total of 215 women from 3 university centers participated in the study, including 97 women with recurrent miscarriage, 34 women with recurrent implantation failure, and 84 fertile controls. Endometrial biopsy samples were obtained precisely 7 days after luteinization hormone surge in a natural cycle. Endometrial sections were immunostained for CD56 and cell counting was performed by a standardized protocol. Results were expressed as percentage of positive uterine natural killer cell/total stromal cells. RESULTS The median uterine natural killer cell percentage in Chinese ovulatory fertile controls in natural cycles was 2.5% (range 0.9-5.3%). Using 5th and 95th percentile to define the lower and upper limits of uterine natural killer cell percentage, the reference range was 1.2-4.5%. Overall, the groups with recurrent reproductive failure had significantly higher uterine natural killer cell percentage than the controls (recurrent miscarriage: median 3.2%, range 0.6-8.8%; recurrent implantation failure: median 3.1%, range 0.8-8.3%). However, there was a subset of both groups (recurrent miscarriage: 16/97; recurrent implantation failure: 6/34) that had lower uterine natural killer cell percentage compared to fertile controls. CONCLUSION A reference range for uterine natural killer cell percentage in fertile women was established. Women with recurrent reproductive failure had uterine natural killer cell percentages both above and below the reference range.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Obstetrics and Gynecology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Najat Mariee
- Biomolecular Sciences Research Center, Sheffield Hallam University, Sheffield, United Kingdom
| | - Lingming Jiang
- Department of Obstetrics and Gynecology, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Yingyu Liu
- Department of Obstetrics and Gynecology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Chinese University of Hong Kong, Shatin, Hong Kong; Li Ka Shing Institute of Health Science, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tin Chiu Li
- Department of Obstetrics and Gynecology, Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Susan Laird
- Biomolecular Sciences Research Center, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
31
|
Chen X, Saravelos SH, Liu Y, Huang J, Wang CC, Li TC. Correlation between three-dimensional power Doppler and morphometric measurement of endometrial vascularity at the time of embryo implantation in women with unexplained recurrent miscarriage. J Mol Histol 2017; 48:235-242. [PMID: 28451773 DOI: 10.1007/s10735-017-9722-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Power Doppler in combination with three-dimensional (3D-PD) ultrasonography has been used as a noninvasive tool to evaluate the vascularity. However, it is unclear whether 3D-PD can accurately reflect endometrial vascularization and replace the invasive endometrial biopsy. This study aims to investigate the correlation between 3D-PD and micro vessel morphometric measurement of endometrial vascularity. Twenty-five women with unexplained recurrent miscarriage were recruited for 3D-PD and endometrial biopsy on precisely day LH + 7. Immunohistochemistry using vWF was employed to identify micro vessels in endometrial biopsy specimens followed by the use of morphometric technique to measure the mean vessel diameter and volume fractions. The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) assessed by 3D-PD were calculated for both the endometrial and sub-endometrial regions. There were no significant correlations between any of the ultrasonographic measurements (endometrial thickness, endometrial volume, endometrial VI/FI/VFI, sub-endometrial volume, sub-endometrial VI/FI/VFI) and morphometric features (number of micro vessel, mean diameter of micro vessel and volume fraction measurement of vessel). This study indicates that endometrial vascularity assessed by 3D-PD could not be used to reflect changes in micro vessels of the endometrium at the time of embryo implantation in women with unexplained recurrent miscarriage.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sotirios H Saravelos
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Obstetrics and Gynaecology, Imperial College London, London, UK
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jin Huang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Biomedical Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
32
|
Ding JL, Diao LH, Yin TL, Huang CY, Yin B, Chen C, Zhang Y, Li J, Cheng YX, Zeng Y, Yang J. Aberrant expressions of endometrial Id3 and CTLA-4 are associated with unexplained repeated implantation failure and recurrent miscarriage. Am J Reprod Immunol 2017; 78. [PMID: 28224680 DOI: 10.1111/aji.12632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/02/2017] [Indexed: 12/17/2022] Open
Abstract
Inhibitor of DNA-binding protein 3 (Id3) is required for tumor angiogenesis and regulatory T-cell generation. However, the involvement of Id3 in unexplained repeated implantation failure (RIF) and recurrent miscarriage (RM) remains poorly understood. Immunohistochemistry was used to identify Id3, CD34, CTLA-4, and FOXP3 in the endometrium taken from the women with RIF (n=16), RM (n=16) and matched controls (n=8). The images were acquired and analyzed by the Vectra® automated quantitative pathology imaging system. Percentage of Id3+ cells was significantly higher in the endometrium of women with RIF and RM compared with controls. The numbers of Id3+ and CD34+ vessels in the endometrium were positively correlated in control but not in RIF or RM. Percentages of CTLA-4+ cells, but not FOXP3+ cells, were significantly increased in the endometrium of RIF and RM women than those in controls. We found aberrant expressions of endometrial Id3 and CTLA-4 in peri-implantation endometrium of women with RIF and RM, suggesting the negative roles of these angiogenesis and immune tolerance markers involving in regulating endometrium receptivity.
Collapse
Affiliation(s)
- Jin-Li Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liang-Hui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Yu Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Biao Yin
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Cong Chen
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan-Xiang Cheng
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|