1
|
Darino M, Urban M, Kaur N, Machado Wood A, Grimwade-Mann M, Smith D, Beacham A, Hammond-Kosack K. Identification and functional characterisation of a locus for target site integration in Fusarium graminearum. Fungal Biol Biotechnol 2024; 11:2. [PMID: 38409036 PMCID: PMC10898126 DOI: 10.1186/s40694-024-00171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Fusarium Head Blight (FHB) is a destructive floral disease of different cereal crops. The Ascomycete fungus Fusarium graminearum (Fg) is one of the main causal agents of FHB in wheat and barley. The role(s) in virulence of Fg genes include genetic studies that involve the transformation of the fungus with different expression cassettes. We have observed in several studies where Fg genes functions were characterised that integration of expression cassettes occurred randomly. Random insertion of a cassette may disrupt gene expression and/or protein functions and hence the overall conclusion of the study. Target site integration (TSI) is an approach that consists of identifying a chromosomal region where the cassette can be inserted. The identification of a suitable locus for TSI in Fg would avert the potential risks of ectopic integration. RESULTS Here, we identified a highly conserved intergenic region on chromosome 1 suitable for TSI. We named this intergenic region TSI locus 1. We developed an efficient cloning vector system based on the Golden Gate method to clone different expression cassettes for use in combination with TSI locus 1. We present evidence that integrations in the TSI locus 1 affects neither fungal virulence nor fungal growth under different stress conditions. Integrations at the TSI locus 1 resulted in the expression of different gene fusions. In addition, the activities of Fg native promoters were not altered by integration into the TSI locus 1. We have developed a bespoke bioinformatic pipeline to analyse the existence of ectopic integrations, cassette truncations and tandem insertions of the cassette that may occurred during the transformation process. Finally, we established a protocol to study protein secretion in wheat coleoptiles using confocal microscopy and the TSI locus 1. CONCLUSION The TSI locus 1 can be used in Fg and potentially other cereal infecting Fusarium species for diverse studies including promoter activity analysis, protein secretion, protein localisation studies and gene complementation. The bespoke bioinformatic pipeline developed in this work together with PCR amplification of the insert could be an alternative to Southern blotting, the gold standard technique used to identify ectopic integrations, cassette truncations and tandem insertions in fungal transformation.
Collapse
Affiliation(s)
- Martin Darino
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Martin Urban
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Navneet Kaur
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Ana Machado Wood
- Jealott's Hill International Research Centre, Syngenta, Warfield, Bracknell, RG42 6EY, UK
| | - Mike Grimwade-Mann
- Human Milk Foundation, Daniel Hall Building, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Dan Smith
- Intelligent Data Ecosystems, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andrew Beacham
- Centre for Crop and Environment Sciences, Harper Adams University, Shropshire, TF10 8NB, UK
| | - Kim Hammond-Kosack
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
2
|
Lu S, Guo F, Wang Z, Shen X, Deng Y, Meng J, Jiang Z, Chen B. Genetic Dissection of T-DNA Insertional Mutants Reveals Uncoupling of Dikaryotic Filamentation and Virulence in Sugarcane Smut Fungus. PHYTOPATHOLOGY 2021; 111:2303-2308. [PMID: 33978448 DOI: 10.1094/phyto-03-21-0114-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The biotrophic basidiomycetous fungus Sporisorium scitamineum causing smut disease in sugarcane is characterized by a life cycle composed of a yeast-like nonpathogenic haploid basidiosporial stage outside the plant and filamentous pathogenic dikaryotic hyphae within the plant. Under field conditions, dikaryotic hyphae are formed after mating of two opposite mating-type strains. However, the mechanisms underlying genetic regulation of filamentation and its association with pathogenicity and development of teliospores are unclear. This study has focused on the characterization and genetic dissection of haploid filamentous mutants derived from T-DNA insertional mutagenesis. Our results support the existence of at least three genotypes among the six haploid filamentous mutants that differentially contribute to virulence and development of the whip and teliospore, providing a novel foundation for further investigation of the regulatory networks associated with pathogenicity and teliospore development in S. scitamineum.
Collapse
Affiliation(s)
- Shan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Feng Guo
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Xiaorui Shen
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Jiaorong Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004 China
- Ministry & Province co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Nanning, 530004 China
| |
Collapse
|
3
|
Kuo CC, Lin YC, Chen LH, Lin MY, Shih MC, Lee MH. CaNRT2.1 Is Required for Nitrate but Not Nitrite Uptake in Chili Pepper Pathogen Colletotrichum acutatum. Front Microbiol 2021; 11:613674. [PMID: 33469454 PMCID: PMC7813687 DOI: 10.3389/fmicb.2020.613674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Chili peppers are an important food additive used in spicy cuisines worldwide. However, the yield and quality of chilis are threatened by anthracnose disease caused by Colletotrichum acutatum. Despite the impact of C. acutatum on chili production, the genes involved in fungal development and pathogenicity in this species have not been well characterized. In this study, through T-DNA insertional mutagenesis, we identified a mutant strain termed B7, which is defective for the growth of C. acutatum on a minimal nutrient medium. Our bioinformatics analysis revealed that a large fragment DNA (19.8 kb) is deleted from the B7 genome, thus resulting in the deletion of three genes, including CaGpiP1 encoding a glycosylphosphatidyl-inisotol (GPI)-anchored protein, CaNRT2.1 encoding a membrane-bound nitrate/nitrite transporter, and CaRQH1 encoding a RecQ helicase protein. In addition, T-DNA is inserted upstream of the CaHP1 gene encoding a hypothetical protein. Functional characterization of CaGpiP1, CaNRT2.1, and CaHP1 by targeted gene disruption and bioassays indicated that CaNRT2.1 is responsible for the growth-defective phenotype of B7. Both B7 and CaNRT2.1 mutant strains cannot utilize nitrate as nitrogen sources, thus restraining the fungal growth on a minimal nutrient medium. In addition to CaNRT2.1, our results showed that CaGpiP1 is a cell wall-associated GPI-anchored protein. However, after investigating the functions of CaGpiP1 and CaHP1 in fungal pathogenicity, growth, development and stress tolerance, we were unable to uncover the roles of these two genes in C. acutatum. Collectively, in this study, our results identify the growth-defective strain B7 via T-DNA insertion and reveal the critical role of CaNRT2.1 in nitrate transportation for the fungal growth of C. acutatum.
Collapse
Affiliation(s)
- Chia-Chi Kuo
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Chu Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Yi Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academic Sinica, Taipei, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Hettiarachchige IK, Ludlow EJ, Ekanayake PN, Brohier ND, Sahab S, Sawbridge TI, Spangenberg GC, Guthridge KM. Generation of Epichloë Strains Expressing Fluorescent Proteins Suitable for Studying Host-Endophyte Interactions and Characterisation of a T-DNA Integration Event. Microorganisms 2019; 8:E54. [PMID: 31892173 PMCID: PMC7023320 DOI: 10.3390/microorganisms8010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
Methods for the identification and localisation of endophytic fungi are required to study the establishment, development, and progression of host-symbiont interactions, as visible reactions or disease symptoms are generally absent from host plants. Fluorescent proteins have proved valuable as reporter gene products, allowing non-invasive detection in living cells. This study reports the introduction of genes for two fluorescent proteins, green fluorescent protein (GFP) and red fluorescent protein, DsRed, into the genomes of two distinct perennial ryegrass (Lolium perenne L.)-associated Epichloë endophyte strains using A. tumefaciens-mediated transformation. Comprehensive characterisation of reporter gene-containing endophyte strains was performed using molecular genetic, phenotypic, and bioinformatic tools. A combination of long read and short read sequencing of a selected transformant identified a single complex T-DNA insert of 35,530 bp containing multiple T-DNAs linked together. This approach allowed for comprehensive characterisation of T-DNA integration to single-base resolution, while revealing the unanticipated nature of T-DNA integration in the transformant analysed. These reporter gene endophyte strains were able to establish and maintain stable symbiotum with the host. In addition, the same endophyte strain labelled with two different fluorescent proteins were able to cohabit the same plant. This knowledge can be used to provide the basis to develop strategies to gain new insights into the host-endophyte interaction through independent and simultaneous monitoring in planta throughout its life cycle in greater detail.
Collapse
Affiliation(s)
- Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Emma J. Ludlow
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Piyumi N. Ekanayake
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Natasha D. Brohier
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Sareena Sahab
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| |
Collapse
|
5
|
Rodríguez-Pires S, Espeso EA, Baró-Montel N, Torres R, Melgarejo P, De Cal A. Labeling of Monilinia fructicola with GFP and Its Validation for Studies on Host-Pathogen Interactions in Stone and Pome Fruit. Genes (Basel) 2019; 10:E1033. [PMID: 31835779 PMCID: PMC6947648 DOI: 10.3390/genes10121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
To compare in vivo the infection process of Monilinia fructicola on nectarines and apples using confocal microscopy it is necessary to transform a pathogenic strain with a construct expressing a fluorescent chromophore such as GFP. Thus, germinated conidia of the pathogen were transformed with Agrobacterium tumefaciens carrying the plasmid pPK2-hphgfp that allowed the expression of a fluorescent Hph-GFP chimera. The transformants were selected according to their resistance to hygromycin B, provided by the constitutive expression of the hph-gfp gene driven by the glyceraldehyde 3P dehydrogenase promoter of Aspergillus nidulans. The presence of T-DNA construct in the genomic DNA was confirmed by PCR using a range of specific primers. Subsequent PCR-mediated analyses proved integration of the transgene at a different genomic location in each transformant and the existence of structural reorganizations at these insertion points. The expression of Hph-GFP in three independent M. fructicola transformants was monitored by immunodetection and epifluorescence and confocal microscopy. The Atd9-M. fructicola transformant displayed no morphological defects and showed growth and pathogenic characteristics similar to the wild type. Microscopy analysis of the Atd9 transformant evidenced that nectarine infection by M. fructicola was at least three times faster than on apples.
Collapse
Affiliation(s)
- Silvia Rodríguez-Pires
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de La Coruña Km. 7, 28040 Madrid, Spain; (S.R.-P.); (P.M.)
| | - Eduardo Antonio Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Nuria Baró-Montel
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnologic Agroalimentari de Lleida, 25003 Lleida, Spain; (N.B.-M.); (R.T.)
| | - Rosario Torres
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnologic Agroalimentari de Lleida, 25003 Lleida, Spain; (N.B.-M.); (R.T.)
| | - Paloma Melgarejo
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de La Coruña Km. 7, 28040 Madrid, Spain; (S.R.-P.); (P.M.)
| | - Antonieta De Cal
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de La Coruña Km. 7, 28040 Madrid, Spain; (S.R.-P.); (P.M.)
| |
Collapse
|
6
|
Vu AL, Leesutthiphonchai W, Ah-Fong AMV, Judelson HS. Defining Transgene Insertion Sites and Off-Target Effects of Homology-Based Gene Silencing Informs the Application of Functional Genomics Tools in Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:915-927. [PMID: 30811313 DOI: 10.1094/mpmi-09-18-0265-ta] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora spp. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spread to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5' ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for 12 different gene targets indicated that neighbors within 500 nt were often cosilenced, regardless of whether hairpin or sense constructs were employed and the direction of transcription of the target. However, this cis spreading of silencing did not occur in all transformants obtained with the same plasmid. Genome-wide studies indicated that unlinked genes with partial complementarity with the silencing-inducing transgene were not usually down-regulated. We learned that hairpin or sense transgenes were not cosilenced with the target in all transformants, which informs how screens for silencing should be performed. We conclude that transformation and gene silencing can be reliable tools for functional genomics in Phytophthora spp. but must be used carefully, especially by testing for the spread of silencing to genes flanking the target.
Collapse
Affiliation(s)
- Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | | | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
7
|
Hooykaas PJJ, van Heusden GPH, Niu X, Reza Roushan M, Soltani J, Zhang X, van der Zaal BJ. Agrobacterium-Mediated Transformation of Yeast and Fungi. Curr Top Microbiol Immunol 2018; 418:349-374. [PMID: 29770864 DOI: 10.1007/82_2018_90] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two decades ago, it was discovered that the well-known plant vector Agrobacterium tumefaciens can also transform yeasts and fungi when these microorganisms are co-cultivated on a solid substrate in the presence of a phenolic inducer such as acetosyringone. It is important that the medium has a low pH (5-6) and that the temperature is kept at room temperature (20-25 °C) during co-cultivation. Nowadays, Agrobacterium-mediated transformation (AMT) is the method of choice for the transformation of many fungal species; as the method is simple, the transformation efficiencies are much higher than with other methods, and AMT leads to single-copy integration much more frequently than do other methods. Integration of T-DNA in fungi occurs by non-homologous end-joining (NHEJ), but also targeted integration of the T-DNA by homologous recombination (HR) is possible. In contrast to AMT of plants, which relies on the assistance of a number of translocated virulence (effector) proteins, none of these (VirE2, VirE3, VirD5, VirF) are necessary for AMT of yeast or fungi. This is in line with the idea that some of these proteins help to overcome plant defense. Importantly, it also showed that VirE2 is not necessary for the transport of the T-strand into the nucleus. The yeast Saccharomyces cerevisiae is a fast-growing organism with a relatively simple genome with reduced genetic redundancy. This yeast species has therefore been used to unravel basic molecular processes in eukaryotic cells as well as to elucidate the function of virulence factors of pathogenic microorganisms acting in plants or animals. Translocation of Agrobacterium virulence proteins into yeast was recently visualized in real time by confocal microscopy. In addition, the yeast 2-hybrid system, one of many tools that have been developed for use in this yeast, was used to identify plant and yeast proteins interacting with the translocated Agrobacterium virulence proteins. Dedicated mutant libraries, containing for each gene a mutant with a precise deletion, have been used to unravel the mode of action of some of the Agrobacterium virulence proteins. Yeast deletion mutant collections were also helpful in identifying host factors promoting or inhibiting AMT, including factors involved in T-DNA integration. Thus, the homologous recombination (HR) factor Rad52 was found to be essential for targeted integration of T-DNA by HR in yeast. Proteins mediating double-strand break (DSB) repair by end-joining (Ku70, Ku80, Lig4) turned out to be essential for non-homologous integration. Inactivation of any one of the genes encoding these end-joining factors in other yeasts and fungi was employed to reduce or totally eliminate non-homologous integration and promote efficient targeted integration at the homologous locus by HR. In plants, however, their inactivation did not prevent non-homologous integration, indicating that T-DNA is captured by different DNA repair pathways in plants and fungi.
Collapse
Affiliation(s)
- Paul J J Hooykaas
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - G Paul H van Heusden
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Xiaolei Niu
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - M Reza Roushan
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Jalal Soltani
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Xiaorong Zhang
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Bert J van der Zaal
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
8
|
Sun X, Zhao Y, Jia J, Xie J, Cheng J, Liu H, Jiang D, Fu Y. Uninterrupted Expression of CmSIT1 in a Sclerotial Parasite Coniothyrium minitans Leads to Reduced Growth and Enhanced Antifungal Ability. Front Microbiol 2017; 8:2208. [PMID: 29176968 PMCID: PMC5686095 DOI: 10.3389/fmicb.2017.02208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
Coniothyrium minitans is an important mycoparasite of Sclerotinia sclerotiorum. In addition, it also produces small amounts of antifungal substances. ZS-1TN1812, an abnormal mutant, was originally screened from a T-DNA insertional library. This mutant showed abnormal growth phenotype and could significantly inhibit the growth of S. sclerotiorum when dual-cultured on a PDA plate. When spraying the filtrate of ZS-1TN1812 on the leaves of rapeseed, S. sclerotiorum infection was significantly inhibited, suggesting that the antifungal substances produced by this mutant were effective on rapeseed leaves. The thermo-tolerant antifungal substances could specifically suppress the growth of S. sclerotiorum, but could not significantly suppress the growth of another fungus, Colletotrichum higginsianum. However, C. higginsianum was more sensitive to proteinous antibiotics than S. sclerotiorum. The T-DNA insertion in ZS-1TN1812 activated the expression of CmSIT1, a gene involved in siderophore-mediated iron transport. It was also determined that mutant ZS-1TN1812 produced hypha with high iron levels. In the wild-type strain ZS-1, CmSIT1 was expressed only when in contact with S. sclerotiorum, and consistent overexpression of CmSIT1 showed similar phenotypes as ZS-1TN1812. Therefore, activated expression of CmSIT1 leads to the enhanced antifungal ability, and CmSIT1 is a potential gene for improving the control ability of C. minitans.
Collapse
Affiliation(s)
- Xiping Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus. Genes (Basel) 2017; 8:genes8100241. [PMID: 28954400 PMCID: PMC5664091 DOI: 10.3390/genes8100241] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 11/17/2022] Open
Abstract
Magnaportheoryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M.oryzae-derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M.oryzae was examined by targeting three predicted pathogenicity genes, MoABC1,MoMAC1 and MoPMK1. Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M.oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.
Collapse
|
10
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
11
|
Yemelin A, Brauchler A, Jacob S, Laufer J, Heck L, Foster AJ, Antelo L, Andresen K, Thines E. Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici. PLoS One 2017; 12:e0183065. [PMID: 28829795 PMCID: PMC5568738 DOI: 10.1371/journal.pone.0183065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/28/2017] [Indexed: 01/20/2023] Open
Abstract
A forward genetics approach was applied in order to investigate the molecular basis of morphological transition in the wheat pathogenic fungus Zymoseptoria tritici. Z. tritici is a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of Z. tritici, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. We exploited a previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) to generate a mutant library by insertional mutagenesis including more than 10,000 random mutants. To identify genes involved in dimorphic switch, a plate-based screening system was established. With this approach eleven dimorphic switch deficient random mutants were recovered, ten of which exhibited a yeast-like mode of growth and one mutant predominantly growing filamentously, producing high amount of mycelium under different incubation conditions. Using genome walking approach previously established, the T-DNA integration sites were recovered and the disrupted genomic loci of corresponding mutants were identified and validated within reverse genetics approach. As prove of concept, two of the random mutants obtained were selected for further investigation using targeted gene inactivation. Both genes deduced were found to encode known factors, previously characterized in other fungi: Ssk1p being constituent of HOG pathway and Ade5,7p involved in de novo purine biosynthesis. The targeted mutant strains defective in these genes exhibit a drastically impaired virulence within infection assays on whole wheat plants. Moreover exploiting further physiological assays the predicted function for both gene products could be confirmed in concordance with conserved biological role of homologous proteins previously described in other fungal organisms.
Collapse
Affiliation(s)
- Alexander Yemelin
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Annamaria Brauchler
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Jacob
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Julian Laufer
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Larissa Heck
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Andrew J. Foster
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Luis Antelo
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Karsten Andresen
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Eckhard Thines
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Berthelot C, Perrin Y, Leyval C, Blaudez D. Melanization and ageing are not drawbacks for successful agro-transformation of dark septate endophytes. Fungal Biol 2017; 121:652-663. [DOI: 10.1016/j.funbio.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
|
13
|
Santhanam P, Boshoven JC, Salas O, Bowler K, Islam MT, Saber MK, van den Berg GCM, Bar‐Peled M, Thomma BPHJ. Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2017; 18:347-362. [PMID: 26996832 PMCID: PMC6638212 DOI: 10.1111/mpp.12401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 05/05/2023]
Abstract
The initial interaction of a pathogenic fungus with its host is complex and involves numerous metabolic pathways and regulatory proteins. Considerable attention has been devoted to proteins that play a crucial role in these interactions, with an emphasis on so-called effector molecules that are secreted by the invading microbe to establish the symbiosis. However, the contribution of other types of molecules, such as glycans, is less well appreciated. Here, we present a random genetic screen that enabled us to identify 58 novel candidate genes that are involved in the pathogenic potential of the fungal pathogen Verticillium dahliae, which causes vascular wilt diseases in over 200 dicotyledonous plant species, including economically important crops. One of the candidate genes that was identified concerns a putative biosynthetic gene involved in nucleotide sugar precursor formation, as it encodes a putative nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER). This enzyme has homology to bacterial enzymes involved in the biosynthesis of the nucleotide sugar deoxy-thymidine diphosphate (dTDP)-rhamnose, a precursor of L-rhamnose, which has been shown to be required for virulence in several human pathogenic bacteria. Rhamnose is known to be a minor cell wall glycan in fungi and has therefore not been suspected as a crucial molecule in fungal-host interactions. Nevertheless, our study shows that deletion of the VdNRS/ER gene from the V. dahliae genome results in complete loss of pathogenicity on tomato and Nicotiana benthamiana plants, whereas vegetative growth and sporulation are not affected. We demonstrate that VdNRS/ER is a functional enzyme in the biosynthesis of uridine diphosphate (UDP)-rhamnose, and further analysis has revealed that VdNRS/ER deletion strains are impaired in the colonization of tomato roots. Collectively, our results demonstrate that rhamnose, although only a minor cell wall component, is essential for the pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Parthasarathy Santhanam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Jordi C. Boshoven
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Omar Salas
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Kyle Bowler
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Md Tohidul Islam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Mojtaba Keykha Saber
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Grardy C. M. van den Berg
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Maor Bar‐Peled
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| |
Collapse
|
14
|
Orbegozo J, Solorzano D, Cuellar WJ, Bartolini I, Roman ML, Ghislain M, Kreuze J. Marker-free PLRV resistant potato mediated by Cre-loxP excision and RNAi. Transgenic Res 2016; 25:813-828. [PMID: 27544267 PMCID: PMC5104775 DOI: 10.1007/s11248-016-9976-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022]
Abstract
An inverted repeat construct corresponding to a segment of the potato leaf roll virus coat protein gene was created under control of a constitutive promoter and transferred into a transformation vector with a heat inducible Cre-loxP system to excise the nptII antibiotic resistance marker gene. Fifty-eight transgenic events were evaluated for resistance to PLRV by greenhouse inoculations, which lead to the identification of 7 highly resistant events, of which 4 were extremely resistant. This resistance was also highly effective against accumulation in subsequent tuber generations from inoculated plants, which has not been reported before. Northern blot analysis showed correlation of PLRV specific siRNA accumulation with the level of PLRV resistance. Heat mediated excision of the nptII antibiotic resistance gene in PLRV resistant events was highly efficient in one event with full excision in 71 % of treated explants. On the other hand 8 out of 10 analyzed events showed truncated T-DNA insertions lacking one of the two loxP sites as determined by PCR and confirmed by sequencing flanking regions in 2 events, suggesting cryptic LB sites in the non-coding region between the nptII gene and the flanking loxP site. Accordingly, it is proposed to modify the Cre-loxP vector by reducing the 1 kb size of the region between nptII, loxP, and the LB.
Collapse
Affiliation(s)
- Jeanette Orbegozo
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- West University Av. C/O Veterinary Service, El Paso, TX, 79968, USA
| | - Dennis Solorzano
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- Dirección de Salud (DISA) II, Ministerio de Salud, Lima 04, Peru
| | - Wilmer J Cuellar
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Ida Bartolini
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- Servicio Nacional de Sanidad Agraria (SENASA), Lima, Peru
| | | | - Marc Ghislain
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CIP, P.O. Box 25171, Nairobi, 00603, Kenya
| | - Jan Kreuze
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru.
| |
Collapse
|
15
|
Zhang J, Bayram Akcapinar G, Atanasova L, Rahimi MJ, Przylucka A, Yang D, Kubicek CP, Zhang R, Shen Q, Druzhinina IS. The neutral metallopeptidase NMP1 ofTrichoderma guizhouenseis required for mycotrophy and self-defence. Environ Microbiol 2015; 18:580-97. [DOI: 10.1111/1462-2920.12966] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Jian Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Gunseli Bayram Akcapinar
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Lea Atanasova
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Mohammad Javad Rahimi
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | | | - Dongqing Yang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Christian P. Kubicek
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Ruifu Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Irina S. Druzhinina
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| |
Collapse
|
16
|
Esher SK, Granek JA, Alspaugh JA. Rapid mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Fungal Genet Biol 2015; 82:9-21. [PMID: 26112692 DOI: 10.1016/j.fgb.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
Abstract
Random insertional mutagenesis screens are important tools in microbial genetics studies. Investigators in fungal systems have used the plant pathogen Agrobacterium tumefaciens to create tagged, random mutations for genetic screens in their fungal species of interest through a unique process of trans-kingdom cellular transconjugation. However, identifying the locations of insertion has traditionally required tedious PCR-based methods, limiting the effective throughput of this system. We have developed an efficient genomic sequencing and analysis method (AIM-Seq) to facilitate identification of randomly generated genomic insertions in microorganisms. AIM-Seq combines batch sampling, whole genome sequencing, and a novel bioinformatics pipeline, AIM-HII, to rapidly identify sites of genomic insertion. We have specifically applied this technique to Agrobacterium-mediated transconjugation in the human fungal pathogen Cryptococcus neoformans. With this approach, we have screened a library of C. neoformans cell wall mutants, selecting twenty-seven mutants of interest for analysis by AIM-Seq. We identified thirty-five putative genomic insertions in known and previously unknown regulators of cell wall processes in this pathogenic fungus. We confirmed the relevance of a subset of these by creating independent mutant strains and analyzing resulting cell wall phenotypes. Through our sequence-based analysis of these mutations, we observed "typical" insertions of the Agrobacterium transfer DNA as well as atypical insertion events, including large deletions and chromosomal rearrangements. Initially applied to C. neoformans, this mutant analysis tool can be applied to a wide range of experimental systems and methods of mutagenesis, facilitating future microbial genetic screens.
Collapse
Affiliation(s)
- Shannon K Esher
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joshua A Granek
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Bioinformatics and Biostatistics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for the Genomics of Microbial Systems, Duke University School of Medicine, Durham, NC 27710, USA.
| | - J Andrew Alspaugh
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Korn M, Schmidpeter J, Dahl M, Müller S, Voll LM, Koch C. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration. PLoS One 2015; 10:e0125960. [PMID: 25992547 PMCID: PMC4437780 DOI: 10.1371/journal.pone.0125960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
Abstract
We used insertional mutagenesis by Agrobacterium tumefaciens mediated transformation (ATMT) to isolate pathogenicity mutants of Colletotrichum higginsianum. From a collection of 7200 insertion mutants we isolated 75 mutants with reduced symptoms. 19 of these were affected in host penetration, while 17 were affected in later stages of infection, like switching to necrotrophic growth. For 16 mutants the location of T-DNA insertions could be identified by PCR. A potential plasma membrane H+-ATPase Pma2 was targeted in five independent insertion mutants. We genetically inactivated the Ku80 component of the non-homologous end-joining pathway in C. higginsianum to establish an efficient gene knockout protocol. Chpma2 deletion mutants generated by homologous recombination in the ΔChku80 background form fully melanized appressoria but entirely fail to penetrate the host tissue and are non-pathogenic. The ChPMA2 gene is induced upon appressoria formation and infection of A. thaliana. Pma2 activity is not important for vegetative growth of saprophytically growing mycelium, since the mutant shows no growth penalty under these conditions. Colletotrichum higginsianum codes for a closely related gene (ChPMA1), which is highly expressed under most growth conditions. ChPMA1 is more similar to the homologous yeast genes for plasma membrane pumps. We propose that expression of a specific proton pump early during infection may be common to many appressoria forming fungal pathogens as we found ChPMA2 orthologs in several plant pathogenic fungi.
Collapse
Affiliation(s)
- Martin Korn
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Johannes Schmidpeter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Marlis Dahl
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Susanne Müller
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Lars M. Voll
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Christian Koch
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
- * E-mail:
| |
Collapse
|
18
|
Gong X, Hurtado O, Wang B, Wu C, Yi M, Giraldo M, Valent B, Goodin M, Farman M. pFPL Vectors for High-Throughput Protein Localization in Fungi: Detecting Cytoplasmic Accumulation of Putative Effector Proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:107-121. [PMID: 25390188 DOI: 10.1094/mpmi-05-14-0144-ta] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As part of a large-scale project whose goal was to identify candidate effector proteins in Magnaporthe oryzae, we developed a suite of vectors that facilitate high-throughput protein localization experiments in fungi. These vectors utilize Gateway recombinational cloning to place a gene's promoter and coding sequences upstream and in frame with enhanced cyan fluorescent protein, green fluorescent protein (GFP), monomeric red fluorescence protein (mRFP), and yellow fluorescent protein or a nucleus-targeted mCHERRY variant. The respective Gateway cassettes were incorporated into Agrobacterium-based plasmids to allow efficient fungal transformation using hygromycin or geneticin resistance selection. mRFP proved to be more sensitive than the GFP spectral variants for monitoring proteins secreted in planta; and extensive testing showed that Gateway-derived fusion proteins produced localization patterns identical to their "directly fused" counterparts. Use of plasmid for fungal protein localization (pFPL) vectors with two different selectable markers provided a convenient way to label fungal cells with different fluorescent proteins. We demonstrate the utility of the pFPL vectors for identifying candidate effector proteins and we highlight a number of important factors that must be taken into consideration when screening for proteins that are translocated across the host plasma membrane.
Collapse
|
19
|
Identification of T-DNA Integration Sites: TAIL-PCR and Sequence Analysis. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10503-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Doré J, Marmeisse R, Combier JP, Gay G. A fungal conserved gene from the basidiomycete Hebeloma cylindrosporum is essential for efficient ectomycorrhiza formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1059-69. [PMID: 24918768 DOI: 10.1094/mpmi-03-14-0087-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We used Agrobacterium-mediated insertional mutagenesis to identify genes in the ectomycorrhizal fungus Hebeloma cylindrosporum that are essential for efficient mycorrhiza formation. One of the mutants presented a dramatically reduced ability to form ectomycorrhizas when grown in the presence of Pinus pinaster. It failed to form mycorrhizas in the presence of glucose at 0.5 g liter(-1), a condition favorable for mycorrhiza formation by the wild-type strain. However, it formed few mycorrhizas when glucose was replaced by fructose or when glucose concentration was increased to 1 g liter(-1). Scanning electron microscopy examination of these mycorrhizas revealed that this mutant was unable to differentiate true fungal sheath and Hartig net. Molecular analyses showed that the single-copy disrupting T-DNA was integrated 6,884 bp downstream from the start codon, of an open reading frame potentially encoding a 3,096-amino-acid-long protein. This gene, which we named HcMycE1, has orthologs in numerous fungi as well as different other eukaryotic microorganisms. RNAi inactivation of HcMycE1 in the wild-type strain also led to a mycorrhizal defect, demonstrating that the nonmycorrhizal phenotype of the mutant was due to mutagenic T-DNA integration in HcMycE1. In the wild-type strain colonizing P. pinaster roots, HcMycE1 was transiently upregulated before symbiotic structure differentiation. Together with the inability of the mutant to differentiate these structures, this suggests that HcMycE1 plays a crucial role upstream of the fungal sheath and Hartig net differentiation. This study provides the first characterization of a fungal mutant altered in mycorrhizal ability.
Collapse
|
21
|
Fu K, Fan L, Yu C, Li Y, Gao S, Li Y, Chen J. Adenine deaminase is encoded by Tad1 and participates in copper accumulation in Trichoderma reesei. Fungal Genet Biol 2014; 63:17-23. [DOI: 10.1016/j.fgb.2013.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 11/14/2013] [Accepted: 11/17/2013] [Indexed: 11/25/2022]
|
22
|
Ianiri G, Idnurm A, Wright SAI, Durán-Patrón R, Mannina L, Ferracane R, Ritieni A, Castoria R. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl Environ Microbiol 2013; 79:3101-15. [PMID: 23455346 PMCID: PMC3623128 DOI: 10.1128/aem.03851-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/25/2013] [Indexed: 11/20/2022] Open
Abstract
Patulin is a mycotoxin that contaminates pome fruits and derived products worldwide. Basidiomycete yeasts belonging to the subphylum Pucciniomycotina have been identified to have the ability to degrade this molecule efficiently and have been explored through different approaches to understand this degradation process. In this study, Sporobolomyces sp. strain IAM 13481 was found to be able to degrade patulin to form two different breakdown products, desoxypatulinic acid and (Z)-ascladiol. To gain insight into the genetic basis of tolerance and degradation of patulin, more than 3,000 transfer DNA (T-DNA) insertional mutants were generated in strain IAM 13481 and screened for the inability to degrade patulin using a bioassay based on the sensitivity of Escherichia coli to patulin. Thirteen mutants showing reduced growth in the presence of patulin were isolated and further characterized. Genes disrupted in patulin-sensitive mutants included homologs of Saccharomyces cerevisiae YCK2, PAC2, DAL5, and VPS8. The patulin-sensitive mutants also exhibited hypersensitivity to reactive oxygen species as well as genotoxic and cell wall-destabilizing agents, suggesting that the inactivated genes are essential for tolerating and overcoming the initial toxicity of patulin. These results support a model whereby patulin degradation occurs through a multistep process that includes an initial tolerance to patulin that utilizes processes common to other external stresses, followed by two separate pathways for degradation.
Collapse
Affiliation(s)
- G. Ianiri
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri—Kansas City, Kansas City, Missouri, USA
| | - A. Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri—Kansas City, Kansas City, Missouri, USA
| | - S. A. I. Wright
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
| | - R. Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - L. Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Universita' di Roma, Rome, Italy
- Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica Annalaura Segre, CNR, Monterotondo, Rome, Italy
| | - R. Ferracane
- Dipartimento di Scienza degli Alimenti, Università di Napoli Federico II, Parco Gussone, Portici, Italy
| | - A. Ritieni
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Naples, Italy
| | - R. Castoria
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
23
|
Xu L, Chen W. Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:431-41. [PMID: 23252459 DOI: 10.1094/mpmi-07-12-0177-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Agrobacterium-mediated transformation (AMT) was used to identify potential virulence factors in Sclerotinia sclerotiorum. Screening AMT transformants identified two mutants showing significantly reduced virulence. The mutants showed growth rate, sclerotial formation, and oxalate production similar to that of the wild type. The mutation was due to a single T-DNA insertion at 212 bp downstream of the Cu/Zn superoxide dismutase (SOD) gene (SsSOD1, SS1G_00699). Expression levels of SsSOD1 were significantly increased under oxidative stresses or during plant infection in the wild-type strain but could not be detected in the mutant. SsSOD1 functionally complemented the Cu/Zn SOD gene in a Δsod1 Saccharomyces cerevisiae mutant. The SOD mutant had increased sensitivity to heavy metal toxicity and oxidative stress in culture and reduced ability to detoxify superoxide in infected leaves. The mutant also had reduced expression levels of other known pathogenicity genes such as endo-polygalacturanases sspg1 and sspg3. The functions of SsSOD1 were further confirmed by SsSOD1-deletion mutation. Like the AMT insertion mutant, the SsSOD1-deletion mutant exhibited normal growth rate, sclerotial formation, oxalate production, increased sensitivity to metal and oxidative stress, and reduced virulence. These results suggest that SsSOD1, while not being required for saprophytic growth and completion of the life cycle, plays critical roles in detoxification of reactive oxygen species during host-pathogen interactions and is an important virulence factor of Sclerotinia sclerotiorum.
Collapse
Affiliation(s)
- Liangsheng Xu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
24
|
Ramos B, González-Melendi P, Sánchez-Vallet A, Sánchez-Rodríguez C, López G, Molina A. Functional genomics tools to decipher the pathogenicity mechanisms of the necrotrophic fungus Plectosphaerella cucumerina in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2013; 14:44-57. [PMID: 22937870 PMCID: PMC6638842 DOI: 10.1111/j.1364-3703.2012.00826.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The analysis of the interaction between Arabidopsis thaliana and adapted (PcBMM) and nonadapted (Pc2127) isolates of the necrotrophic fungus Plectosphaerella cucumerina has contributed to the identification of molecular mechanisms controlling plant resistance to necrotrophs. To characterize the pathogenicity bases of the virulence of necrotrophic fungi in Arabidopsis, we developed P. cucumerina functional genomics tools using Agrobacterium tumefaciens-mediated transformation. We generated PcBMM-GFP and Pc2127-GFP transformants constitutively expressing the green fluorescence protein (GFP), and a collection of random T-DNA insertional PcBMM transformants. Confocal microscopy analyses of the initial stages of PcBMM-GFP infection revealed that this pathogen, like other necrotrophic fungi, does not form an appressorium or penetrate into plant cells, but causes successive degradation of leaf cell layers. By comparing the colonization of Arabidopsis wild-type plants and hypersusceptible (agb1-1 and cyp79B2cyp79B3) and resistant (irx1-6) mutants by PcBMM-GFP or Pc2127-GFP, we found that the plant immune response was already mounted at 12-18 h post-inoculation, and that Arabidopsis resistance to these fungi correlated with the time course of spore germination and hyphal growth on the leaf surface. The virulence of a subset of the PcBMM T-DNA insertional transformants was determined in Arabidopsis wild-type plants and agb1-1 mutant, and several transformants were identified that showed altered virulence in these genotypes in comparison with that of untransformed PcBMM. The T-DNA flanking regions in these fungal mutants were successfully sequenced, further supporting the utility of these functional genomics tools in the molecular characterization of the pathogenicity of necrotrophic fungi.
Collapse
Affiliation(s)
- Brisa Ramos
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, Kwon SJ, Lee YH, Agrawal GK, Rakwal R, Kim ST, Kang KY. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 2013; 78:58-71. [DOI: 10.1016/j.jprot.2012.10.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/04/2012] [Accepted: 10/26/2012] [Indexed: 12/22/2022]
|
26
|
Kemski MM, Stevens B, Rappleye CA. Spectrum of T-DNA integrations for insertional mutagenesis of Histoplasma capsulatum. Fungal Biol 2012; 117:41-51. [PMID: 23332832 DOI: 10.1016/j.funbio.2012.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Agrobacterium-mediated transformation is being increasingly used for insertional mutagenesis of fungi. To better evaluate its effectiveness as a mutagen for the fungal pathogen Histoplasma capsulatum, we analyzed a collection of randomly selected T-DNA insertion mutants. Testing of different T-DNA element vectors engineered for transformation of fungi showed that pBHt2 provides the highest transformation efficiency and the lowest rate of vector backbone carryover. Sixty-eight individual T-DNA integrations were characterized by recovery of T-DNA ends and flanking genomic sequences. The right border (RB) end of the T-DNA is largely preserved whereas the left border (LB) end is frequently truncated. Analysis of T-DNA insertion sites confirms the lack of any integration hotspots in the Histoplasma genome. Relative to genes, T-DNA integrations show significant bias towards promoter regions at the expense of coding sequences. With consideration for potential promoter interruption and the demonstrated efficacy of intronic insertions, 61 % of mapped T-DNA insertions should impair gene expression or function. Mapping of T-DNA flanking sequences demonstrates 67 % of T-DNA integrations are integrations at a single chromosomal site and 31 % of T-DNA integrations are associated with large-scale chromosomal rearrangements. This characterization of T-DNA insertions in mutants selected without regard to phenotype supports application of Agrobacterium-mediated transformation as an insertional mutagen for genome-based screens and functional discovery of genes in Histoplasma.
Collapse
Affiliation(s)
- Megan M Kemski
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
27
|
Incidence of genome structure, DNA asymmetry, and cell physiology on T-DNA integration in chromosomes of the phytopathogenic fungus Leptosphaeria maculans. G3-GENES GENOMES GENETICS 2012; 2:891-904. [PMID: 22908038 PMCID: PMC3411245 DOI: 10.1534/g3.112.002048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 06/07/2012] [Indexed: 11/18/2022]
Abstract
The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens–mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway.
Collapse
|
28
|
Fernandez J, Wright JD, Hartline D, Quispe CF, Madayiputhiya N, Wilson RA. Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE-family pump regulate glucose metabolism during infection. PLoS Genet 2012; 8:e1002673. [PMID: 22570632 PMCID: PMC3342947 DOI: 10.1371/journal.pgen.1002673] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/12/2012] [Indexed: 12/14/2022] Open
Abstract
Understanding the genetic pathways that regulate how pathogenic fungi respond to their environment is paramount to developing effective mitigation strategies against disease. Carbon catabolite repression (CCR) is a global regulatory mechanism found in a wide range of microbial organisms that ensures the preferential utilization of glucose over less favourable carbon sources, but little is known about the components of CCR in filamentous fungi. Here we report three new mediators of CCR in the devastating rice blast fungus Magnaporthe oryzae: the sugar sensor Tps1, the Nmr1-3 inhibitor proteins, and the multidrug and toxin extrusion (MATE)-family pump, Mdt1. Using simple plate tests coupled with transcriptional analysis, we show that Tps1, in response to glucose-6-phosphate sensing, triggers CCR via the inactivation of Nmr1-3. In addition, by dissecting the CCR pathway using Agrobacterium tumefaciens-mediated mutagenesis, we also show that Mdt1 is an additional and previously unknown regulator of glucose metabolism. Mdt1 regulates glucose assimilation downstream of Tps1 and is necessary for nutrient utilization, sporulation, and pathogenicity. This is the first functional characterization of a MATE-family protein in filamentous fungi and the first description of a MATE protein in genetic regulation or plant pathogenicity. Perturbing CCR in Δtps1 and MDT1 disruption strains thus results in physiological defects that impact pathogenesis, possibly through the early expression of cell wall-degrading enzymes. Taken together, the importance of discovering three new regulators of carbon metabolism lies in understanding how M. oryzae and other pathogenic fungi respond to nutrient availability and control development during infection.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Janet D. Wright
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - David Hartline
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Cristian F. Quispe
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Nandakumar Madayiputhiya
- Proteomic and Metabolomic Core Facility, Redox Biology Center, Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
29
|
Giesbert S, Schumacher J, Kupas V, Espino J, Segmüller N, Haeuser-Hahn I, Schreier PH, Tudzynski P. Identification of pathogenesis-associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: a type 2A phosphoprotein phosphatase and an SPT3 transcription factor have significant impact on virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:481-495. [PMID: 22112214 DOI: 10.1094/mpmi-07-11-0199] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation (ATMT) was used to generate an insertional mutant library of the gray mold fungus Botrytis cinerea. From a total of 2,367 transformants, 68 mutants showing significant reduction in virulence on tomato and bean plants were analyzed in detail. As reported for other fungal ATMT libraries, integrations were mostly single copy, occurred preferentially in noncoding (regulatory) regions, and were frequently accompanied by small deletions of the target sequences and loss of parts of the border sequence. Two T-DNA integration events that were found to be linked to virulence were characterized in more detail: a catalytic subunit of a PP2A serine/threonine protein phosphatase (BcPP2Ac) and the SPT3 subunit of a Spt-Ada-Gcn5-acetyltransferase (SAGA-like) transcriptional regulator complex. Gene replacement and silencing approaches revealed that both Bcpp2Ac and SPT3 are crucial for virulence, growth, and differentiation as well as for resistance to H(2)O(2) in B. cinerea.
Collapse
Affiliation(s)
- S Giesbert
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität, Hindenburgplatz 55, D-48143 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Santhanam P. Random insertional mutagenesis in fungal genomes to identify virulence factors. Methods Mol Biol 2012; 835:509-17. [PMID: 22183674 DOI: 10.1007/978-1-61779-501-5_31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Agrobacterium tumefaciens-mediated transformation (ATMT) has become an important tool for functional genomics in fungi. ATMT-based approaches such as random insertional mutagenesis and targeted knockout are widely used for gene functional analysis in plant-pathogen interactions. Here, we describe a protocol for the identification of pathogenicity and virulence genes through random insertional mutagenesis using the fungal wilt pathogen Verticillium dahliae as an example for the protocol.
Collapse
|
31
|
Kunitake E, Tani S, Sumitani JI, Kawaguchi T. Agrobacterium tumefaciens-mediated transformation of Aspergillus aculeatus for insertional mutagenesis. AMB Express 2011; 1:46. [PMID: 22166586 PMCID: PMC3292464 DOI: 10.1186/2191-0855-1-46] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/14/2011] [Indexed: 11/10/2022] Open
Abstract
Agrobacterium tumefaciens-mediated transformation (AMT) was applied to Aspergillus aculeatus. Transformants carrying the T-DNA from a binary vector pBIG2RHPH2 were sufficiently mitotically stable to allow functional genomic analyses. The AMT technique was optimized by altering the concentration of acetosyringone, the ratio and concentration of A. tumefaciens and A. aculeatus cells, the duration of co-cultivation, and the status of A. aculeatus cells when using conidia, protoplasts, or germlings. On average, 30 transformants per 104 conidia or 217 transformants per 107 conidia were obtained under the optimized conditions when A. tumefaciens co-cultured with fungi using solid or liquid induction media (IM). Although the transformation frequency in liquid IM was 100-fold lower than that on solid IM, the AMT method using liquid IM is better suited for high-throughput insertional mutagenesis because the transformants can be isolated on fewer selection media plates by concentrating the transformed germlings. The production of two albino A. aculeatus mutants by AMT confirmed that the inserted T-DNA disrupted the polyketide synthase gene AapksP, which is involved in pigment production. Considering the efficiency of AMT and the correlation between the phenotypes and genotypes of the transformants, the established AMT technique offers a highly efficient means for characterizing the gene function in A. aculeatus.
Collapse
|
32
|
Auyong ASM, Ford R, Taylor PWJ. Genetic transformation of Colletotrichum truncatum associated with anthracnose disease of chili by random insertional mutagenesis. J Basic Microbiol 2011; 52:372-82. [PMID: 22052577 DOI: 10.1002/jobm.201100250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/05/2011] [Indexed: 11/06/2022]
Abstract
An Agrobacterium tumefaciens -mediated transformation (ATMT) system was successfully developed for Colletotrichum truncatum, the causal agent of chili anthracnose. A. tumefaciens carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (gfp) gene was used to transform the conidiospores of two C. truncatum pathotypes F8-3B and BRIP26974. Optimum transformation efficiency was obtained when equal volumes of A. tumefaciens strain AGL1 carrying either pJF1 or pPK2 binary vector was used to transform C. truncatum conidiospores at 10(6) /ml and co-cultivated at 24 °C for three days. Southern blot analysis indicated that 87.5% of the transformants contained randomly inserted, single copies of the T-DNA. Infection and colonisation of chili fruit at the mature red stage with F8-3B-GFP and BRIP26974-GFP confirmed the maintenance of virulence within these transformed pathotypes. In situ studies of infection and colonisation of the susceptible genotype fruit using fluorescent microscopy and transformed isolates of C. truncatum expressing GFP revealed that the pathogen was able to colonise healthy fruit tissue intercellularly in an endophytic manner without producing secondary biotrophic infection structures. The developed transformation system will be used to study the function of pathogenicity genes in C. truncatum using both forward and reverse genetics approaches.
Collapse
Affiliation(s)
- Adelene Shu Mei Auyong
- Centre for Plant Health/BioMarka, Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
33
|
Maruthachalam K, Klosterman SJ, Kang S, Hayes RJ, Subbarao KV. Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis. Mol Biotechnol 2011; 49:209-21. [PMID: 21424547 PMCID: PMC3183274 DOI: 10.1007/s12033-011-9392-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Verticillium dahliae is the causal agent of vascular wilt in many economically important crops worldwide. Identification of genes that control pathogenicity or virulence may suggest targets for alternative control methods for this fungus. In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was applied for insertional mutagenesis of V. dahliae conidia. Southern blot analysis indicated that T-DNAs were inserted randomly into the V. dahliae genome and that 69% of the transformants were the result of single copy T-DNA insertion. DNA sequences flanking T-DNA insertion were isolated through inverse PCR (iPCR), and these sequences were aligned to the genome sequence to identify the genomic position of insertion. V. dahliae mutants of particular interest selected based on culture phenotypes included those that had lost the ability to form microsclerotia and subsequently used for virulence assay. Based on the virulence assay of 181 transformants, we identified several mutant strains of V. dahliae that did not cause symptoms on lettuce plants. Among these mutants, T-DNA was inserted in genes encoding an endoglucanase 1 (VdEg-1), a hydroxyl-methyl glutaryl-CoA synthase (VdHMGS), a major facilitator superfamily 1 (VdMFS1), and a glycosylphosphatidylinositol (GPI) mannosyltransferase 3 (VdGPIM3). These results suggest that ATMT can effectively be used to identify genes associated with pathogenicity and other functions in V. dahliae.
Collapse
Affiliation(s)
- K. Maruthachalam
- Department of Plant Pathology, University of California-Davis, c/o U.S. Agricultural Research Station, 1636 E. Alisal St., Salinas, CA 93905 USA
| | | | - S. Kang
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 USA
| | | | - K. V. Subbarao
- Department of Plant Pathology, University of California-Davis, c/o U.S. Agricultural Research Station, 1636 E. Alisal St., Salinas, CA 93905 USA
| |
Collapse
|
34
|
Münch S, Ludwig N, Floss DS, Sugui JA, Koszucka AM, Voll LM, Sonnewald U, Deising HB. Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation. MOLECULAR PLANT PATHOLOGY 2011; 12:43-55. [PMID: 21118348 PMCID: PMC6640349 DOI: 10.1111/j.1364-3703.2010.00651.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola led to high rates of tandem integration of the whole Ti-plasmid, and was therefore considered to be unsuitable for the identification of pathogenicity and virulence genes by insertional mutagenesis in this pathogen. We used a modified ATMT protocol with acetosyringone present only during the co-cultivation of C. graminicola and A. tumefaciens. Analysis of 105 single-spore isolates randomly chosen from a collection of approximately 2000 transformants, indicated that almost 70% of the transformants had single T-DNA integrations. Of 500 independent transformants tested, 10 exhibited attenuated virulence in infection assays on whole plants. Microscopic analyses primarily revealed defects at different pre-penetration stages of infection-related morphogenesis. Three transformants were characterized in detail. The identification of the T-DNA integration sites was performed by amplification of genomic DNA ends after endonuclease digestion and polynucleotide tailing. In one transformant, the T-DNA had integrated into the 5'-flank of a gene with similarity to allantoicase genes of other Ascomycota. In the second and third transformants, the T-DNA had integrated into an open reading frame (ORF) and into the 5'-flank of an ORF. In both cases, the ORFs have unknown function.
Collapse
Affiliation(s)
- Steffen Münch
- Martin-Luther-University Halle-Wittenberg, Faculty of Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Betty-Heimann-Str. 3, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gao F, Zhou BJ, Li GY, Jia PS, Li H, Zhao YL, Zhao P, Xia GX, Guo HS. A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS One 2010; 5:e15319. [PMID: 21151869 PMCID: PMC2998422 DOI: 10.1371/journal.pone.0015319] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/04/2010] [Indexed: 01/26/2023] Open
Abstract
Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt disease in a wide range of crops, including cotton. The life cycle of V. dahliae includes three vegetative phases: parasitic, saprophytic and dormant. The dormant microsclerotia are the primary infectious propagules, which germinate when they are stimulated by root exudates. In this study, we report the first application of Agrobacterium tumefaciens-mediated transformation (ATMT) for construction of insertional mutants from a virulent defoliating isolate of V. dahliae (V592). Changes in morphology, especially a lack of melanized microsclerotia or pigmentation traits, were observed in mutants. Together with the established laboratory unimpaired root dip-inoculation approach, we found insertional mutants to be affected in their pathogenicities in cotton. One of the genes tagged in a pathogenicity mutant encoded a glutamic acid-rich protein (VdGARP1), which shared no significant similarity to any known annotated gene. The vdgarp1 mutant showed vigorous mycelium growth with a significant delay in melanized microsclerotial formation. The expression of VdGARP1 in the wild type V529 was organ-specific and differentially regulated by different stress agencies and conditions, in addition to being stimulated by cotton root extract in liquid culture medium. Under extreme infertile nutrient conditions, VdGARP1 was not necessary for melanized microsclerotial formation. Taken together, our data suggest that VdGARP1 plays an important role in sensing infertile nutrient conditions in infected cells to promote a transfer from saprophytic to dormant microsclerotia for long-term survival. Overall, our findings indicate that insertional mutagenesis by ATMT is a valuable tool for the genome-wide analysis of gene function and identification of pathogenicity genes in this important cotton pathogen.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- The Key Laboratory of Prevention and Control for Oasis Crop Disease, Shihezi University, Shihezi, Xinjiang, China
| | - Bang-Jun Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Ying Li
- The Key Laboratory of Prevention and Control for Oasis Crop Disease, Shihezi University, Shihezi, Xinjiang, China
| | - Pei-Song Jia
- The Key Laboratory of Prevention and Control for Oasis Crop Disease, Shihezi University, Shihezi, Xinjiang, China
| | - Hui Li
- The Key Laboratory of Prevention and Control for Oasis Crop Disease, Shihezi University, Shihezi, Xinjiang, China
| | - Yun-Long Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Pan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Xian Xia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Li Y, Liang S, Yan X, Wang H, Li D, Soanes DM, Talbot NJ, Wang Z, Wang Z. Characterization of MoLDB1 required for vegetative growth, infection-related morphogenesis, and pathogenicity in the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1260-74. [PMID: 20831406 DOI: 10.1094/mpmi-03-10-0052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An insertional mutagenesis screen in the rice blast fungus, Magnaporthe oryzae, identified a novel mutant, A2-12-3, which is defective in infection-related morphogenesis and pathogenicity. Analysis of the mutation confirmed an insertion into MoLDB1, which putatively encodes an 806-amino-acid protein with a predicted LIM binding domain. Targeted gene deletion mutants of MoLDB1 were unable to produce asexual or sexual spores and were significantly impaired in vegetative growth and fungal virulence. The Δmoldb1 mutants also showed reduced expression of genes coding hydrophobic proteins (e.g. MPG1 and MHP1), resulting in an easily wettable phenotype in vegetative culture. Moreover, the expression of four genes encoding LIM proteins predicted from the M. oryzae genome was significantly downregulated by deletion of MoLDB1. Analysis of an M. oryzae strain expressing a MoLbd1-green fluorescent protein gene fusion was consistent with the protein being nuclear localized. When considered together, MoLdb1 appears to be involved in regulation of cell wall proteins, including hydrophobins and LIM proteins, and is essential for conidiation, sexual development, appressorium formation, and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li Y, Yan X, Wang H, Liang S, Ma WB, Fang MY, Talbot NJ, Wang ZY. MoRic8 Is a novel component of G-protein signaling during plant infection by the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:317-331. [PMID: 20121453 DOI: 10.1094/mpmi-23-3-0317] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An insertional mutagenesis screen was used to investigate the biology of plant infection by the devastating rice blast pathogen, Magnaporthe oryzae. Here, we report the identification of a new mutant, LY-130, which is defective in multiple steps during infection-related morphogenesis and pathogenicity. Analysis of the mutation confirmed an insertion into gene MoRIC8, which encodes a 480-amino-acid protein that is a putative homologue of the Ric8 regulator of GTP-binding protein (G-protein) signaling, previously described in animals. Targeted gene deletion mutants of MoRIC8 were nonpathogenic and impaired in cellular differentiation associated with sporulation, sexual development, and plant infection. MoRic8 physically interacts with the Galpha subunit MagB in yeast two-hybrid assays and appears to act upstream of the cyclic AMP response pathway that is necessary for appressorium morphogenesis. Taken together, our results indicate that MoRic8 may act as a novel regulator of the G-protein signaling during infection-related development of rice blast fungus M. oryzae.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory For Rice Biology, Biotechnology Institute, Zhejian University, Huajiachi Campus, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tucker SL, Besi MI, Galhano R, Franceschetti M, Goetz S, Lenhert S, Osbourn A, Sesma A. Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus. THE PLANT CELL 2010; 22:953-72. [PMID: 20348434 PMCID: PMC2861474 DOI: 10.1105/tpc.109.066340] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 02/25/2010] [Accepted: 03/10/2010] [Indexed: 05/20/2023]
Abstract
Magnaporthe oryzae is the most important fungal pathogen of rice (Oryza sativa). Under laboratory conditions, it is able to colonize both aerial and underground plant organs using different mechanisms. Here, we characterize an infection-related development in M. oryzae produced on hydrophilic polystyrene (PHIL-PS) and on roots. We show that fungal spores develop preinvasive hyphae (pre-IH) from hyphopodia (root penetration structures) or germ tubes and that pre-IH also enter root cells. Changes in fungal cell wall structure accompanying pre-IH are seen on both artificial and root surfaces. Using characterized mutants, we show that the PMK1 (for pathogenicity mitogen-activated protein kinase 1) pathway is required for pre-IH development. Twenty mutants with altered pre-IH differentiation on PHIL-PS identified from an insertional library of 2885 M. oryzae T-DNA transformants were found to be defective in pathogenicity. The phenotypic analysis of these mutants revealed that appressorium, hyphopodium, and pre-IH formation are genetically linked fungal developmental processes. We further characterized one of these mutants, M1373, which lacked the M. oryzae ortholog of exportin-5/Msn5p (EXP5). Mutants lacking EXP5 were much less virulent on roots, suggesting an important involvement of proteins and/or RNAs transported by EXP5 during M. oryzae root infection.
Collapse
Affiliation(s)
- Sara L. Tucker
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Maria I. Besi
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Rita Galhano
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Marina Franceschetti
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Stephan Goetz
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Steven Lenhert
- Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen 76344, Germany
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ane Sesma
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
39
|
Youseff BH, Dougherty JA, Rappleye CA. Reverse genetics through random mutagenesis in Histoplasma capsulatum. BMC Microbiol 2009; 9:236. [PMID: 19919692 PMCID: PMC2781022 DOI: 10.1186/1471-2180-9-236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background The dimorphic fungal pathogen Histoplasma capsulatum causes respiratory and systemic disease in humans and other mammals. Progress in understanding the mechanisms underlying the biology and the pathogenesis of Histoplasma has been hindered by a shortage of methodologies for mutating a gene of interest. Results We describe a reverse genetics process that combines the random mutagenesis of Agrobacterium-mediated transformation with screening techniques to identify targeted gene disruptions in a collection of insertion mutants. Isolation of the desired mutant is accomplished by arraying individual clones from a pool and employing a PCR-addressing method. Application of this procedure facilitated the isolation of a cbp1 mutant in a North American type 2 strain, a Histoplasma strain recalcitrant to gene knock-outs through homologous recombination. Optimization of cryopreservation conditions allows pools of mutants to be banked for later analysis and recovery of targeted mutants. Conclusion This methodology improves our ability to isolate mutants in targeted genes, thereby facilitating the molecular genetic analysis of Histoplasma biology. The procedures described are widely applicable to many fungal systems and will be of particular interest to those for which homologous recombination techniques are inefficient or do not currently exist.
Collapse
Affiliation(s)
- Brian H Youseff
- Departments of Microbiology and Internal Medicine, The Center for Microbial Interface Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
40
|
Xi L, Moscou MJ, Meng Y, Xu W, Caldo RA, Shaver M, Nettleton D, Wise RP. Transcript-based cloning of RRP46, a regulator of rRNA processing and R gene-independent cell death in barley-powdery mildew interactions. THE PLANT CELL 2009; 21:3280-95. [PMID: 19861556 PMCID: PMC2782283 DOI: 10.1105/tpc.109.066167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Programmed cell death (PCD) plays a pivotal role in plant development and defense. To investigate the interaction between PCD and R gene-mediated defense, we used the 22K Barley1 GeneChip to compare and contrast time-course expression profiles of Blumeria graminis f. sp hordei (Bgh) challenged barley (Hordeum vulgare) cultivar C.I. 16151 (harboring the Mla6 powdery mildew resistance allele) and its fast neutron-derived Bgh-induced tip cell death1 mutant, bcd1. Mixed linear model analysis identified genes associated with the cell death phenotype as opposed to R gene-mediated resistance. One-hundred fifty genes were found at the threshold P value < 0.0001 and a false discovery rate <0.6%. Of these, 124 were constitutively overexpressed in the bcd1 mutant. Gene Ontology and rice (Oryza sativa) alignment-based annotation indicated that 68 of the 124 overexpressed genes encode ribosomal proteins. A deletion harboring six genes on chromosome 5H cosegregates with bcd1-specified cell death and is associated with misprocessing of rRNAs but segregates independent of R gene-mediated resistance. Barley stripe mosaic virus-induced gene silencing of one of the six deleted genes, RRP46 (rRNA-processing protein 46), phenocopied bcd1-mediated tip cell death. These findings suggest that RRP46, a critical component of the exosome core, mediates RNA processing and degradation involved in cell death initiation as a result of attempted penetration by Bgh during the barley-powdery mildew interaction but is independent of gene-for-gene resistance.
Collapse
Affiliation(s)
- Liu Xi
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Matthew J. Moscou
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
- Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa 50011-3260
| | - Yan Meng
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Weihui Xu
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Rico A. Caldo
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Miranda Shaver
- National Institutes of Health–National Science Foundation Bioinformatics and Computational Systems Biology Summer Institute, Ames, Iowa 50011-1020
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210
| | - Roger P. Wise
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
- Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa 50011-3260
- National Institutes of Health–National Science Foundation Bioinformatics and Computational Systems Biology Summer Institute, Ames, Iowa 50011-1020
- Corn Insects and Crop Genetics Research, U.S. Department of Agriculture–Agricultural Research Service, Iowa State University, Ames, Iowa 50011-1020
- Address correspondence to
| |
Collapse
|
41
|
Petti C, Wendt T, Meade C, Mullins E. Evidence of genotype dependency within Agrobacterium tumefaciens in relation to the integration of vector backbone sequence in transgenic Phytophthora infestans-tolerant potato. J Biosci Bioeng 2009; 107:301-6. [DOI: 10.1016/j.jbiosc.2008.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 11/06/2008] [Indexed: 11/29/2022]
|
42
|
Huser A, Takahara H, Schmalenbach W, O'Connell R. Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:143-156. [PMID: 19132867 DOI: 10.1094/mpmi-22-2-0143] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation (ATMT) was used for random insertional mutagenesis to identify pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum. A high-throughput primary infection assay on Arabidopsis thaliana seedlings allowed the rapid screening of 8,850 transformants. Forty mutants showing reproducible pathogenicity defects on Arabidopsis and Brassica plants were obtained, and their infection phenotypes were characterized microscopically. Six mutants were impaired in appressorial melanization, fifteen had reduced penetration ability, 14 induced host papillae or hypersensitive cell death, and five were affected in the transition from biotrophy to necrotrophy. Southern blot analysis showed 58% of the transformants had single-site T-DNA integrations. Right-border flanking sequences were recovered from 12 mutants by inverse polymerase chain reaction (PCR) or thermal asymmetric interlaced PCR and were used to isolate the tagged genes from a genomic library. The putative pathogenicity genes encoded homologs of a major facilitator superfamily phosphate transporter, importin-beta2, ornithine decarboxylase, beta-1,3(4)-glucanase, ATP-binding endoribonuclease, carbamoyl-phosphate synthetase, and the polyprotein precursor of N-acetylglutamate kinase and N-acetylglutamyl-phosphate reductase. Six further loci were homologous to proteins of unknown function. None of these genes were previously implicated in the pathogenicity of any Colletotrichum species. The results demonstrate that ATMT is an effective tool for gene discovery in this model pathogen.
Collapse
Affiliation(s)
- Aurélie Huser
- Max-Planck-Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Koln, Germany
| | | | | | | |
Collapse
|
43
|
Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signature-tagged insertional mutagenesis. EUKARYOTIC CELL 2009; 8:315-26. [PMID: 19151325 DOI: 10.1128/ec.00375-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A library of more than 4,500 signature-tagged insertion mutants of the human pathogenic fungus Cryptococcus neoformans was generated, and a subset was screened in a murine inhalation model to identify genes required for virulence. New genes that regulate aspects of C. neoformans virulence were also identified by screening the entire library for in vitro phenotypes related to the ability to cause disease, including melanin production, growth at high temperature, and growth under conditions of nutrient limitation. A screen of 10% of the strain collection in mice identified an avirulent mutant strain with an insertion in the ENA1 gene, which is predicted to encode a fungus-specific sodium or potassium P-type ATPase. The results of the deletion of the gene and complementation experiments confirmed its key role in mammalian virulence. ena1 mutant strains exhibited no change in sensitivity to high salt concentrations but were sensitive to alkaline pH conditions, providing evidence that the fungus may have to survive at elevated pH during infection of the mammalian host. The mutation of the well-characterized virulence factor calcineurin (CNA1) also rendered C. neoformans strains sensitive to elevated pH. ENA1 transcripts in wild-type and cna1 mutant strains were upregulated in response to high pH, and cna1 ena1 double mutant strains exhibited increased sensitivity to elevated pH, indicating that at least two pathways in the fungus mediate survival under alkaline conditions. Signature-tagged mutagenesis is an effective strategy for the discovery of new virulence genes in fungal pathogens of animals.
Collapse
|
44
|
Michielse CB, van Wijk R, Reijnen L, Cornelissen BJC, Rep M. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 2009; 10:R4. [PMID: 19134172 PMCID: PMC2687792 DOI: 10.1186/gb-2009-10-1-r4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/22/2008] [Accepted: 01/09/2009] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Fusarium oxysporum f. sp. lycopersici is the causal agent of vascular wilt disease in tomato. In order to gain more insight into the molecular processes in F. oxysporum necessary for pathogenesis and to uncover the genes involved, we used Agrobacterium-mediated insertional mutagenesis to generate 10,290 transformants and screened the transformants for loss or reduction of pathogenicity. RESULTS This led to the identification of 106 pathogenicity mutants. Southern analysis revealed that the average T-DNA insertion is 1.4 and that 66% of the mutants carry a single T-DNA. Using TAIL-PCR, chromosomal T-DNA flanking regions were isolated and 111 potential pathogenicity genes were identified. CONCLUSIONS Functional categorization of the potential pathogenicity genes indicates that certain cellular processes, such as amino acid and lipid metabolism, cell wall remodeling, protein translocation and protein degradation, seem to be important for full pathogenicity of F. oxysporum. Several known pathogenicity genes were identified, such as those encoding chitin synthase V, developmental regulator FlbA and phosphomannose isomerase. In addition, complementation and gene knock-out experiments confirmed that a glycosylphosphatidylinositol-anchored protein, thought to be involved in cell wall integrity, a transcriptional regulator, a protein with unknown function and peroxisome biogenesis are required for full pathogenicity of F. oxysporum.
Collapse
Affiliation(s)
- Caroline B Michielse
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Ringo van Wijk
- Current address: Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Linda Reijnen
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Ben JC Cornelissen
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Martijn Rep
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| |
Collapse
|
45
|
Meng Y, Moscou MJ, Wise RP. Blufensin1 negatively impacts basal defense in response to barley powdery mildew. PLANT PHYSIOLOGY 2009; 149:271-85. [PMID: 19005086 PMCID: PMC2613711 DOI: 10.1104/pp.108.129031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants have evolved complex regulatory mechanisms to control the defense response against microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSIN1 (BLN1), a small peptide belonging to a novel family of proteins in barley (Hordeum vulgare), is highly induced by attack from the obligate biotrophic fungus Blumeria graminis f. sp. hordei (Bgh), casual agent of powdery mildew disease. Computational interrogation of the Bln1 gene family determined that members reside solely in the BEP clade of the Poaceae family, specifically, barley, rice (Oryza sativa), and wheat (Triticum aestivum). Barley stripe mosaic virus-induced gene silencing of Bln1 enhanced plant resistance in compatible interactions, regardless of the presence or absence of functional Mla coiled-coil, nucleotide-binding site, Leu-rich repeat alleles, indicating that BLN1 can function in an R-gene-independent manner. Likewise, transient overexpression of Bln1 significantly increased accessibility toward virulent Bgh. Moreover, silencing in plants harboring the Mlo susceptibility factor decreased accessibility to Bgh, suggesting that BLN1 functions in parallel with or upstream of MLO to modulate penetration resistance. Collectively, these data suggest that the grass-specific Bln1 negatively impacts basal defense against Bgh.
Collapse
Affiliation(s)
- Yan Meng
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011-1020, USA
| | | | | |
Collapse
|
46
|
López-Berges MS, DI Pietro A, Daboussi MJ, Wahab HA, Vasnier C, Roncero MIG, Dufresne M, Hera C. Identification of virulence genes in Fusarium oxysporum f. sp. lycopersici by large-scale transposon tagging. MOLECULAR PLANT PATHOLOGY 2009; 10:95-107. [PMID: 19161356 PMCID: PMC6640436 DOI: 10.1111/j.1364-3703.2008.00512.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Forward genetic screens are efficient tools for the dissection of complex biological processes, such as fungal pathogenicity. A transposon tagging system was developed in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici by inserting the novel modified impala element imp160::gfp upstream of the Aspergillus nidulans niaD gene, followed by transactivation with a constitutively expressed transposase. A collection of 2072 Nia(+) revertants was obtained from reporter strain T12 and screened for alterations in virulence, using a rapid assay for invasive growth on apple slices. Seven strains exhibited reduced virulence on both apple slices and intact tomato plants. Five of these were true revertants showing the re-insertion of imp160::gfp within or upstream of predicted coding regions, whereas the other two showed either excision without re-insertion or no excision. Linkage between imp160::gfp insertion and virulence phenotype was determined in four transposon-tagged loci using targeted deletion in the wild-type strain. Knockout mutants in one of the genes, FOXG_00016, displayed significantly reduced virulence, and complementation of the original revertant with the wild-type FOXG_00016 allele fully restored virulence. FOXG_00016 has homology to the velvet gene family of A. nidulans. The high rate of untagged virulence mutations in the T12 reporter strain appears to be associated with increased genetic instability, possibly as a result of the transactivation of endogenous transposable elements by the constitutively expressed transposase.
Collapse
Affiliation(s)
- Manuel Sánchez López-Berges
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Edif C5, 14071 Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jeon J, Choi J, Park J, Lee YH. Functional genomics in the rice blast fungus to unravel the fungal pathogenicity. J Zhejiang Univ Sci B 2008; 9:747-52. [PMID: 18837101 DOI: 10.1631/jzus.b0860014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A rapidly growing number of successful genome sequencing projects in plant pathogenic fungi greatly increase the demands for tools and methodologies to study fungal pathogenicity at genomic scale. Magnaporthe oryzae is an economically important plant pathogenic fungus whose genome is fully sequenced. Recently we have reported the development and application of functional genomics platform technologies in M. oryzae. This model approach would have many practical ramifications in design and implementation of upcoming functional genomics studies of filamentous fungi aimed at understanding fungal pathogenicity.
Collapse
Affiliation(s)
- Junhyun Jeon
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| | | | | | | |
Collapse
|
48
|
Kemppainen M, Duplessis S, Martin F, Pardo AG. T-DNA insertion, plasmid rescue and integration analysis in the model mycorrhizal fungus Laccaria bicolor. Microb Biotechnol 2008; 1:258-69. [PMID: 21261845 PMCID: PMC3815887 DOI: 10.1111/j.1751-7915.2008.00029.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 01/24/2008] [Indexed: 12/04/2022] Open
Abstract
Ectomycorrhiza is a mutualistic symbiosis formed between fine roots of trees and the mycelium of soil fungi. This symbiosis plays a key role in forest ecosystems for the mineral nutrition of trees and the biology of the fungal communities associated. The characterization of genes involved in developmental and metabolic processes is important to understand the complex interactions that control the ectomycorrhizal symbiosis. Agrobacterium-mediated gene transfer (AMT) in fungi is currently opening a new era for fungal research. As whole genome sequences of several fungi are being released studies about T-DNA integration patterns are needed in order to understand the integration mechanisms involved and to evaluate the AMT as an insertional mutagenesis tool for different fungal species. The first genome sequence of a mycorrhizal fungus, the basidiomycete Laccaria bicolor, became public in July 2006. Release of Laccaria genome sequence and the availability of AMT makes this fungus an excellent model for functional genomic studies in ectomycorrhizal research. No data on the integration pattern in Laccaria genome were available, thus we optimized a plasmid rescue approach for this fungus. To this end the transformation vector (pHg/pBSk) was constructed allowing the rescue of the T-DNA right border (RB)-genomic DNA junctions in Escherichia coli. Fifty-one Agrobacterium-transformed fungal strains, picked up at random from a larger collection of T-DNA tagged strains (about 500), were analysed. Sixty-nine per cent were successfully rescued for the RB of which 87% were resolved for genomic integration sequences. Our results demonstrate that the plasmid rescue approach can be used for resolving T-DNA integration sites in Laccaria. The RB was well conserved during transformation of this fungus and the integration analysis showed no clear sequence homology between different genomic sites. Neither obvious sequence similarities were found between these sites and the T-DNA borders indicating non-homologous integration of the transgenes. Majority (75%) of the integrations were located in predicted genes. Agrobacterium-mediated gene transfer is a powerful tool that can be used for functional gene studies in Laccaria and will be helpful along with plasmid rescue in searching for relevant fungal genes involved in the symbiotic process.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Sáenz Peña 352, (B1876BXD) Bernal, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastien Duplessis
- UMR 1136 INRA‐Université Henri Poincaré Nancy 1, Interactions Arbres/Micro‐organismes, Centre INRA de‐Nancy, F‐54280 Champenoux, France
| | - Francis Martin
- UMR 1136 INRA‐Université Henri Poincaré Nancy 1, Interactions Arbres/Micro‐organismes, Centre INRA de‐Nancy, F‐54280 Champenoux, France
| | - Alejandro G. Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Sáenz Peña 352, (B1876BXD) Bernal, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
49
|
Betts MF, Tucker SL, Galadima N, Meng Y, Patel G, Li L, Donofrio N, Floyd A, Nolin S, Brown D, Mandel MA, Mitchell TK, Xu JR, Dean RA, Farman ML, Orbach MJ. Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genet Biol 2007; 44:1035-49. [PMID: 17600737 DOI: 10.1016/j.fgb.2007.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 05/01/2007] [Accepted: 05/10/2007] [Indexed: 11/24/2022]
Abstract
Towards the goal of disrupting all genes in the genome of Magnaporthe oryzae and identifying their function, a collection of >55,000 random insertion lines of M. oryzae strain 70-15 were generated. All strains were screened to identify genes involved in growth rate, conidiation, pigmentation, auxotrophy, and pathogenicity. Here, we provide a description of the high throughput transformation and analysis pipeline used to create our library. Transformed lines were generated either by CaCl(2)/PEG treatment of protoplasts with DNA or by Agrobacterium tumefaciens-mediated transformation (ATMT). We describe the optimization of both approaches and compare their efficiency. ATMT was found to be a more reproducible method, resulting in predominantly single copy insertions, and its efficiency was high with up to 0.3% of conidia being transformed. The phenotypic data is accessible via a public database called MGOS and all strains are publicly available. This represents the most comprehensive insertional mutagenesis analysis of a fungal pathogen.
Collapse
Affiliation(s)
- Melania F Betts
- Department of Plant Sciences, Division of Plant Pathology and Microbiology, University of Arizona, Tucson, AZ 85721-0036, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|