1
|
Liang Y, Liang L, Shi R, Luo R, Yue Y, Yu J, Wang X, Lin J, Zhou T, Yang M, Zhong L, Wang Y, Shu Z. Genus Physalis L.: A review of resources and cultivation, chemical composition, pharmacological effects and applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117736. [PMID: 38242219 DOI: 10.1016/j.jep.2024.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Physalis L. (Solanaceae) is commonly used in the treatment of dermatitis, leprosy, bronchitis, pneumonia, hepatitis and rheumatism in China and other Asian countries. AIM OF THE REVIEW This article reviews the resources, cultivation, phytochemistry, pharmacological properties, and applications of Physalis L., and proposes further research strategies to enhance its therapeutic potential in treating various human diseases. MATERIALS AND METHODS We conducted a systematic search of electronic databases, including CNKI, SciFinder and PubMed, using the term "Physalis L." to collect information on the resources, phytochemistry, pharmacological activities, and applications of Physalis L. in China during the past ten years (2013.1-2023.1). RESULTS So far, a variety of chemical constituents have been isolated and identified from Physalis L. mainly including steroids, flavonoids, and so on. Various pharmacological activities were evaluated by studying different extracts of Physalis L., these activities include anti-inflammatory, antibacterial, antioxidant, antiviral, antineoplastic, and other aspects. CONCLUSION Physalis L. occupies an important position in the traditional medical system. It is cost-effective and is a significant plant with therapeutic applications in modern medicine. However, further in-depth studies are needed to determine the medical use of this plant resources and cultivation, chemical composition, pharmacological effects and applications.
Collapse
Affiliation(s)
- Yefang Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lanyuan Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongfeng Luo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yimin Yue
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiamin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mengru Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Luyang Zhong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zunpeng Shu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Liu Y, Wang X, Li C, Yu D, Tian B, Li W, Sun Z. Research progress on the chemical components and pharmacological effects of Physalis alkekengi L. var . franchetii (Mast.) Makino. Heliyon 2023; 9:e20030. [PMID: 38125457 PMCID: PMC10731008 DOI: 10.1016/j.heliyon.2023.e20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 12/23/2023] Open
Abstract
Physalis Calyx seu Fructus is the dry calyx or the calyx with fruit of the Solanaceae plant Physalis alkekengi L. var. franchetii (Mast.) Makino, with a long history of use in medicine and food. However, despite its many potential therapeutic and culinary applications, P. alkekengi is not being exploited for these applications on a large scale. This study analysed various research related to the different chemical components of P. alkekengi, including steroids, flavonoids, alkaloids, phenylpropanoids, sucrose esters, piperazines, volatile oils, polysaccharides, amino acids, and trace elements. In addition, research related to the pharmacological activities of P. alkekengi, including its anti-inflammatory, anti microbial, antioxidative, hypoglycaemic, analgesic, anti-tumour, and immunomodulatory effects were investigated. Research articles from 1974 to 2023 were obtained from websites such as Google Scholar, Baidu Scholar, and China National Knowledge Infrastructure, and journal databases such as Scopus and PubMed, with the keywords such as Physalis alkekengi, components, effects, and activities. This study aims to provide a comprehensive understanding of the progress of phytochemical and pharmacological research on the phytochemical and pharmacological aspects of P. alkekengi and a reference for the better exploitation of P. alkekengi in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yiru Liu
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Xu Wang
- College of Basic Medical, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chenxue Li
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Dahai Yu
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Bing Tian
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Wenlan Li
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Zhiwei Sun
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| |
Collapse
|
3
|
Wang P, Yang XM, Hu ZX, Li YN, Yang J, Hao XJ, Yuan CM, Yi P. UPLC-Q-Orbitrap-MS/MS-Guided Isolation of Bioactive Withanolides from the Fruits of Physalis angulata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16581-16592. [PMID: 37897427 DOI: 10.1021/acs.jafc.3c04311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Physalis angulata Linn. is an exotic Amazonian fruit that is commonly recognized as wild tomato, winter cherry, and gooseberry. While its fruit is known to contain many nutrients, such as minerals, fibers, and vitamins, few papers have investigated withanolide derivatives from its fruits. UPLC-Q-Orbitrap-MS/MS, which produces fragmentation spectra, was applied for the first time to guide the isolation of bioactive withanolide derivatives from P. angulata fruits. As a result, twenty-six withanolide derivatives, including two novel 1,10-secowithanolides (1 and 2) and a new derivative (3), were obtained. Compounds 1 and 2 are rare rearranged 1,10-secowithanolides with a tetracyclic 7/6/6/5 ring system. All structures were assigned through various spectroscopic data and quantum chemical calculations. Nine withanolide derivatives exhibited significant inhibitory effects on three tumor cell lines with IC50 values of 0.51-13.79 μM. Moreover, three new compounds (1-3) exhibited potential nitric oxide inhibitory effects in lipopolysaccharide-stimulated RAW264.7 cells (IC50: 7.51-61.8 μM). This investigation indicated that fruits of P. angulata could be applied to treat and prevent cancer and inflammatory-related diseases due to their potent active withanolide derivatives.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Xiao-Meng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Ya-Nan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| |
Collapse
|
4
|
Lobatto VL, García ME, Nicotra VE, Orozco CI, Casero CN. Antibacterial activity of withanolides and their structure-activity relationship. Steroids 2023; 199:109297. [PMID: 37598738 DOI: 10.1016/j.steroids.2023.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Two new withanolides, (17R,20S,22R)-4β-acetoxy-5β,6β-epoxy-19,27-dihydroxy-1-oxo-witha-2,24-dienolide (withalongolide A 4-acetate (5) and (17R,20S,22R)-5β,6β-epoxy-27-hydroxy-1,4-dioxo-witha-24-enolide (9), and seven known withanolides with normal structure (1-4, 6-8) were isolated from aerial parts of Cuatresia colombiana. Several semisynthetic derivatives were prepared from the natural metabolites withaferin A and jaborosalactone 38. The compounds were fully characterized by a combination of spectroscopic methods (1D and 2D NMR and MS). The compounds isolated from C. colombiana, sixteen withanolides previously isolated from different Solanaceae species with different skeletons and semisynthetic derivatives were evaluated for their antibacterial activity against a selected panel of Gram-positive and Gram-negative bacteria. According to the bioactivity against S. aureus and E. faecalis, the compounds evaluated were divided into three groups: compounds with high activity (MIC 0.063 mM), compounds with moderate activity (0.5 mM > MIC > 0.125 mM) and non-active compounds (MIC ≥1 mM); in addition, some structure-activity relationship keys could be inferred.
Collapse
Affiliation(s)
- Virginia L Lobatto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Depto. de Química Orgánica, Facultad de Ciencias Químicas, Edificio de Ciencias Químicas II, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Manuela E García
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Depto. de Química Orgánica, Facultad de Ciencias Químicas, Edificio de Ciencias Químicas II, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Viviana E Nicotra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Depto. de Química Orgánica, Facultad de Ciencias Químicas, Edificio de Ciencias Químicas II, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Clara I Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 45-03, edificio 425, Bogotá, Colombia
| | - Carina N Casero
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Depto. de Química Orgánica, Facultad de Ciencias Químicas, Edificio de Ciencias Químicas II, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina.
| |
Collapse
|
5
|
Liang L, Li C, Wang Y, Yue Y, Zhang H, Yang M, Cao X, Zhao M, Du J, Peng M, Chen Y, Li W, Xia T, Zhong R, Shu Z. Physalis alkekengi L. var. franchetii (Mast.) Makino: A review of the pharmacognosy, chemical constituents, pharmacological effects, quality control, and applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154328. [PMID: 35908519 DOI: 10.1016/j.phymed.2022.154328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Physalis alkekengi L. var. franchetii (Mast.) Makino (PAF) (Chinese name Jin-Deng-Long) from the Solanaceae family is a traditional Chinese medicine with various pharmacological effects, such as removing heat, detoxification, improving throat conditions, removing phlegm, and ameliorating diuresis. PURPOSE This paper reviews the existing literature and patents and puts forward some suggestions for future PAF research. METHODS Using the PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure databases, we performed comprehensive search of literature and patents published before April 2022 on PAF and its active ingredients. RESULTS We comprehensively reviewed the research progress of PAF from aspects of the traditional application, botany, chemical composition, pharmacological effects, and toxicology, and first discussed quality control and modern applications, which have not been explored in previous reviews. Thereafter, we reviewed the limitations of pharmacological mechanism and quality control studies and proposed appropriate solutions, which is of great practical significance to subsequent studies. CONCLUSION In this review, we present a comprehensive overview on PAF, and put forward new insights on studies regarding quality control, material basis, and mechanisms in classical prescription, providing theoretical guidance for the clinical application and development of Chinese medicine.
Collapse
Affiliation(s)
- Lanyuan Liang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuanqiu Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yimin Yue
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Han Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Mengru Yang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Peng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianyi Xia
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Renxing Zhong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zunpeng Shu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Jiamusi University, Jiamusi 154007, China; Guangdong Andao Medical Instrument Co, Ltd, Foshan 528399, China.
| |
Collapse
|
6
|
Wu JP, Li LY, Li JR, Yu M, Zhao J, Xu QM, Gu YC, Zhang T, Zou ZM. Silencing Tautomerization to Isolate Unstable Physalins from Physalis minima. JOURNAL OF NATURAL PRODUCTS 2022; 85:1522-1539. [PMID: 35608269 DOI: 10.1021/acs.jnatprod.2c00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The inherent structural instability of some physalins has hampered the isolation and identification of these compounds for approximately 50 years, and an effective method to overcome these challenges remains unavailable. In the present study, the unprecedented tautomerization mechanism of unstable physalins was elucidated by performing isotopic labeling experiments and DFT calculations, which led to the successful separation of tautomers and isolation of highly pure products for the first time. As a result, 15 new physalins, physaminins A-O (1-15), as well as 17 known analogues (16-32), were isolated from the whole plants of Physalis minima L. The chemical structures of the new compounds were established by performing a comprehensive analysis of spectroscopic data, and their absolute configurations were confirmed by using computational ECD calculations and/or single-crystal X-ray diffraction analyses. All obtained isolates were evaluated for their antiproliferative effects against four human cancer cell lines (A549, HepG2, MCF-7, and SCG-7901) and two noncancerous cell lines (RAW 264.7 and human normal hepatocytes L02), as well as their anti-inflammatory activities by measuring their abilities to inhibit NO production in LPS-stimulated murine RAW 264.7 cells in vitro. Compounds 1-5, 13, 16, 18, 19, 23, and 30 exerted significant antiproliferative effects on the four human cancer lines, with IC50 values ranging from 0.2(0) to 24.7(2) μM, and these compounds were not toxic to the two noncancerous cell lines at a concentration of 10 μM. Moreover, compounds 7, 10, 11, 12, 14, 17, 22, and 27 significantly inhibited NO production, with IC50 values ranging from 2.9(1) to 9.5(2) μM.
Collapse
Affiliation(s)
- Jiang-Ping Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Ling-Yu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jing-Rong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi38677, United States
| | - Qiong-Ming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, BerkshireRE42 6EY, U.K
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| |
Collapse
|
7
|
Añibarro-Ortega M, Pinela J, Alexopoulos A, Petropoulos SA, Ferreira ICFR, Barros L. The powerful Solanaceae: Food and nutraceutical applications in a sustainable world. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:131-172. [PMID: 35659351 DOI: 10.1016/bs.afnr.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Solanaceae family is considered one of the most important families among plant species because, on one hand encompasses many staple food crops of the human diet while, on the other hand, it includes species rich in powerful secondary metabolites that could be valorized in medicine or drug formulation as well as nutraceuticals and food supplements. The main genera are Solanum, Capsicum, Physalis, and Lycium which comprise several important cultivated crops (e.g., tomato, pepper, eggplant, tomatillo, and goji berry), as well as genera notable for species with several pharmaceutical properties (e.g., Datura, Nicotiana, Atropa, Mandragora, etc.). This chapter discusses the nutritional value of the most important Solanaceae species commonly used for their edible fruit, as well as those used in the development of functional foods, food supplements, and nutraceuticals due to their bioactive constituents. The toxic and poisonous effects are also discussed aiming to highlight possible detrimental consequences due to irrational use. Finally, considering the high amount of waste and by-products generated through the value chain of the main crops, the sustainable management practices implemented so far are presented with the aim to increase the added-value of these crops.
Collapse
Affiliation(s)
- Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| | - Alexios Alexopoulos
- Laboratory of Agronomy, Department of Agriculture, University of the Peloponnese, Kalamata, Messinia, Greece
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| |
Collapse
|
8
|
Yang J, Sun Y, Cao F, Yang B, Kuang H. Natural Products from Physalis alkekengi L. var. franchetii (Mast.) Makino: A Review on Their Structural Analysis, Quality Control, Pharmacology, and Pharmacokinetics. Molecules 2022; 27:molecules27030695. [PMID: 35163960 PMCID: PMC8840080 DOI: 10.3390/molecules27030695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
The calyxes and fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino (P. alkekengi), a medicinal and edible plant, are frequently used as heat-clearing and detoxifying agents in thousands of Chinese medicine prescriptions. For thousands of years in China, they have been widely used in clinical practice to treat throat disease, hepatitis, and bacillary dysentery. This systematic review summarizes their structural analysis, quality control, pharmacology, and pharmacokinetics. Furthermore, the possible development trends and perspectives for future research studies on this medicinal plant are discussed. Relevant information on the calyxes and fruits of P. alkekengi was collected from electronic databases, Chinese herbal classics, and Chinese Pharmacopoeia. Moreover, information was collected from ancient documents in China. The components isolated and identified in P. alkekengi include steroids, flavonoids, phenylpropanoids, alkaloids, nucleosides, terpenoids, megastigmane, aliphatic derivatives, organic acids, coumarins, and sucrose esters. Steroids, particularly physalins and flavonoids, are the major characteristic and bioactive ingredients in P. alkekengi. According to the literature, physalins are synthesized by the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways, and flavonoids are synthesized by the phenylpropanoid pathway. Since the chemical components and pharmacological effects of P. alkekengi are complex and varied, there are different standards for the evaluation of its quality and efficacy. In most cases, the analysis was performed using high-performance liquid chromatography coupled with ultraviolet detection. A pharmacological study showed that the crude extracts and isolated compounds from P. alkekengi had extensive in vitro and in vivo biological activities (e.g., anti-inflammatory, anti-tumor, immunosuppressive, antibacterial, anti-leishmanial, anti-asthmatic, anti-diabetic, anti-oxidative, anti-malarial, anti-Alzheimer's disease, and vasodilatory). Moreover, the relevant anti-inflammatory and anti-tumor mechanisms were elucidated. The reported activities indicate the great pharmacological potential of P. alkekengi. Similarly, studies on the pharmacokinetics of specific compounds will also contribute to the progress of clinical research in this setting.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Feng Cao
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
- Correspondence: ; Tel.: +86-0451-82197188
| |
Collapse
|
9
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
10
|
Wu J, Zhao J, Zhang T, Gu Y, Khan IA, Zou Z, Xu Q. Naturally occurring physalins from the genus Physalis: A review. PHYTOCHEMISTRY 2021; 191:112925. [PMID: 34487922 DOI: 10.1016/j.phytochem.2021.112925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/30/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Physalins, including physalins and neophysalins, are a class of highly oxygenated ergostane-type steroids. They are commonly known by the name of 16,24-cyclo-13,14-seco steroids, in which the disconnection of C-13 and C-14 produces an eight or nine-membered ring and the carbocyclization of C-16 and C-24 generates a new six-membered ring. Meanwhile, the oxidation of C-18 methyl to carboxyl group forms a 18,20-lactone, and the oxidation of C-14 and C-17 gets a heterocyclic oxygen acrossing rings C and D. Additionly, physalins frequently form an oxygen bridge to connect C-14 to C-27. Physalins are a kind of characteristic constituents from the species of the genus Physalis (Solanaceae), which are reported with a wide array of pharmacological activities, including anticancer, anti-inflammatory, immunoregulatory, antimicrobial, trypanocidal and leishmanicidal, antinociceptive, antidiabetic and some other activities. Herein,the research progress of physalins from the genus Physalis during the decade from 1970 to 2021 on phytochemistry, pharmacology, pharmacokinetics and application in China are systematically presented and discussed for the first time.
Collapse
Affiliation(s)
- Jiangping Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jianping Zhao
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS, 38677, USA
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, RE42 6EY, UK
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS, 38677, USA
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Qiongming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
11
|
Sun JM, He JX, Huang M, Hu HX, Xu LT, Fang KL, Wang XN, Shen T. Two new physalins from Physalis alkekengi L. var. franchetii (Mast.) Makino. Nat Prod Res 2021; 36:5206-5212. [PMID: 34180325 DOI: 10.1080/14786419.2021.1924713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two new physalins, 7α-hydroxy-5-deoxy-4-dehydrophysalin IX (1) and 5-deoxy-4-dehydrophysalin IX (2), together with six known compounds, luteolin (3), luteolin-7-O-glucoside (4), neoechinulin A (5), 3-(4-hydroxy-3-methoxyphenyl)-N-(4-methylphenyl)-2-propenamide (6), physalin D (7) and blumenol A (8) were isolated from Physalis alkekengi L. var. franchetii (Mast.) Makino. Their structures were elucidated by NMR spectroscopic analysis, HR-ESI-MS, X-ray crystallographic data analysis and comparison with the known compounds. Among them, compounds 5 and 6 were isolated from the genus Physalis for the first time. Compound 1 exhibited weak NAD(P)H: quinone reductase (QR) inducing activity.
Collapse
Affiliation(s)
- Jia-Min Sun
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ji-Xiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Min Huang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hui-Xin Hu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Lin-Tao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Kai-Li Fang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
12
|
Huang M, He JX, Hu HX, Zhang K, Wang XN, Zhao BB, Lou HX, Ren DM, Shen T. Withanolides from the genus Physalis: a review on their phytochemical and pharmacological aspects. J Pharm Pharmacol 2019; 72:649-669. [DOI: 10.1111/jphp.13209] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Withanolides are a group of modified C28 ergostane-type steroids with a C-22, C-26 δ-lactone side chain or a C-23, C-26 γ-lactone side chain. They enjoy a limited distribution in the plant kingdom and predominantly occur in several genera of Solanaceae. Of which, the genus Physalis is an important resource for this type of natural molecules. The present review aims to comprehensively illustrate the structural characteristics and classification of withanolides, and particularly focus on the progression on phytochemical and pharmacological aspects of withanolides from Physalis ranging from January 2015 to June 2019.
Key findings
Approximately 351 natural withanolides with novel and unique structures have so far been identified from genus Physalis, mainly isolated from the species of P. angulata and P. peruviana. Withanolides demonstrated diverse biological activity, such as anticancer, anti-inflammatory, antimicrobial, immunoregulatory, trypanocidal and leishmanicidal activity. Their observed pharmacological functions supported the uses of Physalis species in traditional or folk medicines.
Summary
Due to their unique structure skeleton and potent bioactivities, withanolides are regarded to be promising drug candidates, particularly for developing anticancer and anti-inflammatory agents. Further investigations for discovering novel withanolides of genus Physalis, exploiting their pharmacological values and evaluating their potency as therapeutic agents are significant work.
Collapse
Affiliation(s)
- Min Huang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Xiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Xin Hu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Kan Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bao-Bing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
13
|
Shu Z, Tang Y, Yang Y, Ding Z, Zhong R, Xia T, Li X, Zheng C, Wen Z, Li W, Wang Y. Two new 3-hexenol glycosides from the calyces of Physalis alkekengi var. franchetii. Nat Prod Res 2019; 35:1274-1280. [PMID: 31343265 DOI: 10.1080/14786419.2019.1645657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two new hexenol glycosides, (Z)-hex-3-en-1-ol O-β-d-xylcopyranosyl-(1-6)-β -d-glucopyranosyl-(1-2)-β-d-glucopyranoside (1) and (E)-hex-3-en-1-ol O-β-d-xylcopyranosyl-(1-6)-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside (2), were isolated from the 50% ethanol elution of macroporous resin of Physalis alkekengi var. franchetii. Their structures were established by detailed spectroscopic analysis, including extensive 2D-NMR data. This is the first time to report the (Z) and (E) 3-hexenol glycosides from Physalis alkekengi var. franchetii.
Collapse
Affiliation(s)
- Zunpeng Shu
- Research Centre for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yun Tang
- Key Laboratory of Jiangxi Province Natural Active Pharmaceutical Ingredients, College of Chemistry and Biology Engineering, Yichun University, Yichun, PR China
| | - Yanni Yang
- Research Centre for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zihe Ding
- Research Centre for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Renxing Zhong
- Research Centre for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Tianyi Xia
- Research Centre for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xinjia Li
- Research Centre for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Cuiying Zheng
- Research Centre for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zhixiong Wen
- Research Centre for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wei Li
- Key Laboratory of Jiangxi Province Natural Active Pharmaceutical Ingredients, College of Chemistry and Biology Engineering, Yichun University, Yichun, PR China
| | - Yi Wang
- Research Centre for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
14
|
Li AL, Chen BJ, Li GH, Zhou MX, Li YR, Ren DM, Lou HX, Wang XN, Shen T. Physalis alkekengi L. var. franchetii (Mast.) Makino: An ethnomedical, phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:260-274. [PMID: 28838654 DOI: 10.1016/j.jep.2017.08.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The calyxes and fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino (Physalis Calyx seu Fructus), have been widely used in traditional and indigenous Chinese medicines for the therapy of cough, excessive phlegm, pharyngitis, sore throat, dysuria, pemphigus, eczema, and jaundice with a long history. AIM OF THE REVIEW The present review aims to achieve a comprehensive and up-to-date investigation in ethnomedical uses, phytochemistry, pharmacology, and toxicity of P. alkekengi var. franchetii, particularly its calyxes and fruits. Through analysis of these findings, evidences supporting their applications in ethnomedicines are illustrated. Possible perspectives and opportunities for the future research are analyzed to highlight the gaps in our knowledge that deserves further investigation. MATERIAL AND METHODS Information on P. alkekengi var. franchetii was collected via electronic search of major scientific databases (e.g. Web of Science, SciFinder, Google Scholar, Pubmed, Elsevier, SpringerLink, Wiley online and China Knowledge Resource Integrated) for publications on this medicinal plant. Information was also obtained from local classic herbal literature on ethnopharmacology. RESULTS About 124 chemical ingredients have been characterized from different parts of this plant. Steroids (particularly physalins) and flavonoids are the major characteristic and bioactive constituents. The crude extracts and the isolated compounds have demonstrated various in vitro and in vivo pharmacological functions, such as anti-inflammation, inhibition of tumor cell proliferation, antimicrobial activity, diuretic effect, anti-diabetes, anti-asthma, immunomodulation, and anti-oxidation. CONCLUSIONS P. alkekengi var. franchetii is an important medicinal plant for the ethnomedical therapy of microbial infection, inflammation, and respiratory diseases (e.g. cough, excessive phlegm, pharyngitis). Phytochemical and pharmacological investigations of this plant definitely increased in the past half century. The chemical profiles, including ingredients and structures, have been adequately verified. Modern pharmacological studies supported its uses in the traditional and folk medicines, however, the molecular mechanisms of purified compounds remained unclear and were worth of further exploration. Therefore, the researchers should be paid more attention to a better utilization of this plant.
Collapse
Affiliation(s)
- Ai-Ling Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Bang-Jiao Chen
- Department of Pharmacy, The Third Hospital of Jinan, Jinan, PR China
| | - Guo-Hui Li
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, PR China
| | - Ming-Xing Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yan-Ru Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China.
| |
Collapse
|
15
|
Kranjc E, Albreht A, Vovk I, Glavnik V. High performance thin-layer chromatography–mass spectrometry enables reliable analysis of physalins in different plant parts of Physalis alkekengi L. J Chromatogr A 2017; 1526:137-150. [DOI: 10.1016/j.chroma.2017.09.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
|
16
|
Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.09.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Men R, Li N, Ding C, Tang Y, Xing Y, Ding W, Ma Z. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors. Pharmacogn Mag 2016; 12:S231-6. [PMID: 27279713 PMCID: PMC4883085 DOI: 10.4103/0973-1296.182153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/14/2015] [Indexed: 11/24/2022] Open
Abstract
Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM) We investigated the chemical constituents of EPM guided by biological activity method Isophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46 This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals
Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase.
Collapse
Affiliation(s)
- Ruizhi Men
- School of Traditional Chinese Materia Medica, Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
| | - Chihong Ding
- Institute of Marine Biology, Ocean College, Zhejiang University, Zijingang Campus, No. 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yingzhan Tang
- School of Traditional Chinese Materia Medica, Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
| | - Yachao Xing
- School of Traditional Chinese Materia Medica, Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
| | - Wanjing Ding
- Institute of Marine Biology, Ocean College, Zhejiang University, Zijingang Campus, No. 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Zhongjun Ma
- Institute of Marine Biology, Ocean College, Zhejiang University, Zijingang Campus, No. 866 Yuhangtang Road, Hangzhou 310058, PR China
| |
Collapse
|
18
|
Zhang WN, Tong WY. Chemical Constituents and Biological Activities of Plants from the GenusPhysalis. Chem Biodivers 2016; 13:48-65. [DOI: 10.1002/cbdv.201400435] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
|
19
|
Kasali FM, Kadima JN, Mpiana PT, Ngbolua KTN, Tshibangu DST. Assessment of antidiabetic activity and acute toxicity of leaf extracts from Physalis peruviana L. in guinea-pig. Asian Pac J Trop Biomed 2013. [DOI: 10.1016/s2221-1691(13)60166-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
20
|
Ooi KL, Muhammad TST, Sulaiman SF. Physalin F from Physalis minima L. triggers apoptosis-based cytotoxic mechanism in T-47D cells through the activation caspase-3- and c-myc-dependent pathways. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:382-388. [PMID: 24051023 DOI: 10.1016/j.jep.2013.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/24/2013] [Accepted: 09/07/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physalin F (a secosteroid derivative), is well recognized as a potent anticancer compound from Physalis minima L., a plant that is traditionally used to treat cancer. However, the exact molecular anticancer mechanism remains to be elucidated. AIM OF THE STUDY We have recently reported the apoptosis-based cytotoxic effect of the chloroform extract of this plant. Here, we investigated the cytotoxicity and possible cell death mechanism elicited by the active constituent, physalin F on human breast T-47D carcinoma. MATERIALS AND METHODS Cytotoxic-guided fractionation of the chloroform extract of Physalis minima has led to the isolation of physalin F. The cytotoxicity activity was assayed using MTS assay. The effect of the compound to induce apoptosis was determined by biochemical and morphological observations through DeadEnd Colorimetric and annexin V assays, respectively, and RT-PCR analysis of mRNA expression of the apoptotic-associated genes. RESULTS Cytotoxicity screening of physalin F displayed a remarkable dose-dependent inhibitory effect on T-47D cells with lower EC50 value (3.60 μg/ml) than the crude extract. mRNA expression analysis revealed the co-regulation of c-myc- and caspase-3-apoptotic genes in the treated cells with the peak expression at 9 and 12h of treatment, respectively. This apoptotic mechanism is reconfirmed by DNA fragmentation and phosphatidylserine externalization. CONCLUSION These findings indicate that physalin F may potentially act as a chemopreventive and/or chemotherapeutic agent by triggering apoptosis mechanism via the activation of caspase-3 and c-myc pathways in T-47D cells.
Collapse
Affiliation(s)
- Kheng Leong Ooi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | | | | |
Collapse
|
21
|
In vivo effects on the intestinal microflora of Physalis alkekengi var. francheti extracts. Fitoterapia 2013; 87:43-8. [DOI: 10.1016/j.fitote.2013.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/15/2013] [Accepted: 03/24/2013] [Indexed: 11/22/2022]
|