1
|
Herrera-Bravo J, Belén LH, Reyes ME, Silva V, Fuentealba S, Paz C, Loren P, Salazar LA, Sharifi-Rad J, Calina D. Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8259-8284. [PMID: 38847831 DOI: 10.1007/s00210-024-03196-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 10/30/2024]
Abstract
Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (Thymus vulgaris) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol's anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol's impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol's broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.
Collapse
Affiliation(s)
- Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Victor Silva
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de La Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Soledad Fuentealba
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Department of Basic Sciences, Faculty of Medicine, Center CEBIM, Universidad de La Frontera, Temuco, Chile
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| |
Collapse
|
2
|
Zhang L, Zhang W, Wang Y, Cai P, Li C, Shi Y, Athari SS, Li A. Allergo-immunopathology mechanism of thymol-inhibiting airway remodeling in asthmatic mice by regulating TGF-β/Smad3 pathway. Allergol Immunopathol (Madr) 2024; 52:51-58. [PMID: 39278851 DOI: 10.15586/aei.v52i5.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 09/18/2024]
Abstract
Allergic asthma is an important public health problem and is a complicated respiratory sickness that is characterized by bronchial inflammation, bronchoconstriction, and breathlessness. Asthma is orchestrated by type 2 immune response and remodeling is one of the important outputted problem in chronic asthma. Thymol is a naturally occurring monocyclic phenolic, it has a series of biological properties, and its immunomodulatory and anti-remodeling effects on allergic asthma were evaluated. The OVA-LPS-induced asthmatic mice were treated with thymol. Methacholine challenge test, eosinophil count, and levels of IL-4, IL-5, IL-13, and IL-33 in bronchoalveolar lavage fluid, total and OVA-specific IgE levels in serum, remodeling factors, gene expression of TGF-β, Smad2, Smad3, and lung histopathology were done. Treatment with thymol could control AHR, eosinophil percentage levels of Th2 cytokines and Igs, remodeling factors, expression of TGF-β, Smad2 and Smad3 genes, inflammation, goblet cell hyperplasia, and mucus production in asthmatic mice. Thymol can control asthma pathogens and related remodeling and fibrosis bio-factors and can be a potential treatment of asthma.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Wenna Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Yanan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Pei Cai
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Chaoran Li
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Yan Shi
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ailing Li
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China;
| |
Collapse
|
3
|
Abdelgawad FE, Abd El-Rahman GI, Behairy A, Abd-Elhakim YM, Saber TM, Metwally MMM, El-Fatah SSA, Samaha MM, Saber T, Aglan MA. Thymol's modulation of cellular macromolecules, oxidative stress, DNA damage, and NF-kB/caspase-3 signaling in the liver of imidacloprid-exposed rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104492. [PMID: 38838874 DOI: 10.1016/j.etap.2024.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
We evaluated whether thymol (THY) (30 mg/kg b.wt) could relieve the adverse effects of the neonicotinoid insecticide imidacloprid (IMD) (22.5 mg/kg b.wt) on the liver in a 56-day oral experiment and the probable underlying mechanisms. THY significantly suppressed the IMD-associated increase in hepatic enzyme leakage. Besides, the IMD-induced dyslipidemia was considerably corrected by THY. Moreover, THY significantly repressed the IMD-induced hepatic oxidative stress, lipid peroxidation, DNA damage, and inflammation. Of note, the Feulgen, mercuric bromophenol blue, and PAS-stained hepatic tissue sections analysis declared that treatment with THY largely rescued the IMD-induced depletion of the DNA, total proteins, and polysaccharides. Moreover, THY treatment did not affect the NF-kB p65 immunoexpression but markedly downregulated the Caspase-3 in the hepatocytes of the THY+IMD-treated group than the IMD-treated group. Conclusively, THY could efficiently protect against IMD-induced hepatotoxicity, probably through protecting cellular macromolecules and antioxidant, antiapoptotic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Fathy Elsayed Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Ghada I Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical pathology, Faculty of Veterinary Medicine, King Salman international University, Ras sidr Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mariam M Samaha
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Abdelrahman Aglan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Zhao C, Sun L, Zhang Y, Shu X, Hu Y, Chen D, Zhang Z, Xia S, Yang H, Bao X, Li J, Xu Y. Thymol improves ischemic brain injury by inhibiting microglia-mediated neuroinflammation. Brain Res Bull 2024; 215:111029. [PMID: 39009094 DOI: 10.1016/j.brainresbull.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Microglia-mediated inflammation is a critical factor in the progression of ischemic stroke. Consequently, mitigating excessive microglial activation represents a potential therapeutic strategy for ischemic injury. Thymol, a monophenol derived from plant essential oils, exhibits diverse beneficial biological activities, including anti-inflammatory and antioxidant properties, with demonstrated protective effects in various disease models. However, its specific effects on ischemic stroke and microglial inflammation remain unexplored. METHODS Rodent transient middle cerebral artery occlusion (tMCAO) model was established to simulate ischemic stroke. TTC staining, modified neurological function score (mNSS), and behavioral tests were used to assess the severity of neurological damage. Then immunofluorescence staining and cytoskeleton analysis were used to determine activation of microglia. Lipopolysaccharide (LPS) was utilized to induce the inflammatory response of primary microglia in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to exam the expression of inflammatory cytokines. And western blot was used to investigate the mechanism of the anti-inflammatory effect of thymol. RESULTS In this study, we found that thymol treatment could ameliorate post-stroke neurological impairment and reduce infarct volume by mitigating microglial activation and pro-inflammatory response (IL-1β, IL-6, and TNF-α). Mechanically, thymol could inhibit the phosphorylation of phosphatidylinositol-3-kinase (PI3K), sink serine/threonine kinase (Akt), and mammalian target of rapamycin (mTOR), thereby suppressing the activation of nuclear factor-κB (NF-κB). CONCLUSIONS Our study demonstrated that thymol could reduce the microglial inflammation by targeting PI3K/Akt/mTOR/NF-κB signaling pathway, ultimately alleviating ischemic brain injury. These findings suggest that thymol is a promising candidate as a neuroprotective agent against ischemic stroke.
Collapse
Affiliation(s)
- Chenchen Zhao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuxin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Duo Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
5
|
Lieke T, Stejskal V, Behrens S, Steinberg CEW, Meinelt T. Fulvic acid modulates mucosal immunity in fish skin: Sustainable aquaculture solution or environmental risk factor? JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133737. [PMID: 38359764 DOI: 10.1016/j.jhazmat.2024.133737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
This is the first study determining the effects of bath exposure to fulvic acid, a humic substance, on the skin mucosal immunity of rainbow trout (Oncorhynchus mykiss). Humic substances have recently been gaining attention for their increasing concentrations in aquatic ecosystems and their use as supplements in sustainable aquaculture. This study demonstrated that water exposure to fulvic acid at concentrations of 5 mg C/L and 50 mg C/L increased lysozyme and alkaline phosphatase activities in the mucus by approximately 2-fold and 2.5 to 3.2-fold, respectively. Furthermore, exposure to 50 mg C/L resulted in a 77.0% increase in mucosal immunoglobulin concentrations compared to the other groups. Importantly, all mucus samples demonstrated significant antibacterial activity against Yersinia ruckeri, with control mucus reducing bacterial growth by 44.5% and exposure to fulvic acid increasing this effect to 26.3%. Although these modulations show promise for application in aquaculture, alterations of the beneficial microbiota from long-term exposure in natural waters can be expected. Monitoring the rising concentrations of humic substances in natural water bodies is therefore urgently needed. Overall, this study represents the first investigation revealing the ability of humic substances to modulate skin mucosal immunity and the capacity to combat microorganisms.
Collapse
Affiliation(s)
- Thora Lieke
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic.
| | - Vlastimil Stejskal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| | - Sascha Behrens
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Christian E W Steinberg
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Thomas Meinelt
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
6
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Eskandarpour E, Ahadi A, Jazani AM, Azgomi RND, Molatefi R. Thymus vulgaris ameliorates cough in children with asthma exacerbation: a randomized, triple-blind, placebo-controlled clinical trial. Allergol Immunopathol (Madr) 2024; 52:9-15. [PMID: 38186189 DOI: 10.15586/aei.v52i1.964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Asthma is one of the most common chronic respiratory diseases with inflammatory involvement and has a high burden worldwide. This study aimed to determine the effect of Thymus vulgaris (TV) on cough in children between 5 and 12 years old with mild to moderate asthma exacerbation. METHODS In this randomized, triple-blind clinical trial, 60 children between the ages of 5 and 12 with asthma exacerbations were randomly divided into two groups. The intervention group (n = 30) was given TV powder at a dose of 20 mg/kg every 8 hours, prepared as syrup, along with routine medical treatment for a week, and the control group (n = 30) received only routine medical treatment with placebo syrup. At the end of the week, clinical and laboratory symptoms, and spirometry data were re-recorded for both groups. Finally, the recorded factors were compared and statistically analyzed. RESULTS The results showed that after the intervention, activity-induced cough reduced, and difference was statistically significant between the two groups (p = 0.042), but the reduction in wheezing and breathlessness had no statistically significant difference. Spirometry data showed a significant difference in forced expiratory volume in 1 second (FEV1) between the two groups after intervention (p = 0.048), but this difference was not significant in FEV1/FVC (forced vital capacity), peak expiratory flow (PEF), and forced expiratory flow at 25-75% of the vital capacity (FEF25-75%). CONCLUSION The results show that TV syrup may be useful as an adjuvant treatment in children with asthma exacerbations.
Collapse
Affiliation(s)
- Elnaz Eskandarpour
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences
| | - Adel Ahadi
- Pediatric Department of BO-Ali Hospital, Ardabil University of medical sciences, Ardebil, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pediatric Department of BO-Ali Hospital, Ardabil University of medical sciences, Ardebil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran;
| |
Collapse
|
8
|
Park JM, Park JW, Lee J, Kim SH, Seo DY, Ahn KS, Han SB, Lee JW. Aromadendrin inhibits PMA-induced cytokine formation/NF-κB activation in A549 cells and ovalbumin-induced bronchial inflammation in mice. Heliyon 2023; 9:e22932. [PMID: 38125474 PMCID: PMC10730751 DOI: 10.1016/j.heliyon.2023.e22932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Hyperproduction of immune cell-derived inflammatory molecules and recruitment of immune cells promote the development of allergic asthma (AA). Aromadendrin (ARO) has various biological properties including anti-inflammatory effects. In this study, we evaluated the ameliorative effects of ARO on the development of AA in vitro and in vivo. Phorbol 12-myristate 13-acetate (PMA, 100 nM) was used to induce inflammation in A549 airway epithelial cells. The cohesion of A549 and eosinophil EOL-1 cells was studied. Ovalbumin (30 or 60 μg)/Alum (3 mg) mixture was adapted for AA induction in mice. ARO (5 or 10 mg/kg, p. o.) was administered to mice to investigate its ameliorative effect on AA development. Enzyme-linked immunosorbent assay, western blotting, and hematoxylin and eosin/periodic acid Schiff staining were performed to study the ameliorative effect of ARO on bronchial inflammation. In PMA-stimulated A549 cells, the upregulation of cytokines (interleukin [IL]-1β/IL-6/tumor necrosis factor alpha [TNF-α]/monocyte chemoattractant protein [MCP]-1]) and nuclear factor kappa B (NF-κB) activation was effectively reduced by ARO pretreatment. ARO suppressed the adhesion of A549 cells and eosinophils. In ovalbumin-induced AA mice, the levels of cells, such as eosinophils, Th2 cytokines, MCP-1 in bronchoalveolar lavage fluid, IgE in serum, and inducible nitric oxide synthase/cyclooxygenase-2 expression in the lung tissue were upregulated, which were all suppressed by ARO. In addition, the increase in cell inflow and mucus formation in the lungs of AA mice was reversed by ARO as per histological analysis. ARO also modulated NF-κB activation in the lungs of AA mice. Overall, the anti-inflammatory properties of ARO in vitro/in vivo studies of AA were notable. Thus, ARO has a modulatory effect on bronchial inflammation and may be a potential adjuvant for AA treatment.
Collapse
Affiliation(s)
- Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Won Park
- Practical Research Division, Honam National Institute of Biological Resources (HNIBR), 99, Gohadoan-gil, Mokpo-si, Jeollanam-do, 58762, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seung-Ho Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| |
Collapse
|
9
|
Kim ME, Lee JS. Immune Diseases Associated with Aging: Molecular Mechanisms and Treatment Strategies. Int J Mol Sci 2023; 24:15584. [PMID: 37958564 PMCID: PMC10647753 DOI: 10.3390/ijms242115584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Aging is associated with a decline in immune function, thereby causing an increased susceptibility to various diseases. Herein, we review immune diseases associated with aging, focusing on tumors, atherosclerosis, and immunodeficiency disorders. The molecular mechanisms underlying these conditions are discussed, highlighting telomere shortening, tissue inflammation, and altered signaling pathways, e.g., the mammalian target of the rapamycin (mTOR) pathway, as key contributors to immune dysfunction. The role of the senescence-associated secretory phenotype in driving chronic tissue inflammation and disruption has been examined. Our review underscores the significance of targeting tissue inflammation and immunomodulation for treating immune disorders. In addition, anti-inflammatory medications, including corticosteroids and nonsteroidal anti-inflammatory drugs, and novel approaches, e.g., probiotics and polyphenols, are discussed. Immunotherapy, particularly immune checkpoint inhibitor therapy and adoptive T-cell therapy, has been explored for its potential to enhance immune responses in older populations. A comprehensive analysis of immune disorders associated with aging and underlying molecular mechanisms provides insights into potential treatment strategies to alleviate the burden of these conditions in the aging population. The interplay among immune dysfunction, chronic tissue inflammation, and innovative therapeutic approaches highlights the importance of elucidating these complex processes to develop effective interventions to improve the quality of life in older adults.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Department of Biological Science, Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
10
|
Abd-Elhakim YM, Saber TM, Metwally MMM, Abd-Allah NA, Mohamed RMSM, Ahmed GA. Thymol abates the detrimental impacts of imidacloprid on rat brains by lessening oxidative damage and apoptotic and inflammatory reactions. Chem Biol Interact 2023; 383:110690. [PMID: 37648049 DOI: 10.1016/j.cbi.2023.110690] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Imidacloprid (IMID) is one of the most widely used neonicotinoid insecticides globally and, consequently, a probable widespread environmental contaminant. The potential neurotoxic effects of IMID have been previously reported. This study aimed to investigate the possible beneficial effect of thymol (TML) in relieving IMID-induced harmful effects on the brain of male Sprague-Dawley rats. For this aim, four groups (10 rats/group) were orally administered corn oil, TML (30 mg/kg b.wt), IMID (22.5 mg/kg b.wt), or TML + IMID for 56 days. The brain tissues were biochemically, histopathologically, and immunohistochemically evaluated. The results displayed that TML significantly restored the IMID-induced depletion of the total antioxidant capacity of the brain tissues. At the same time, the IMID-associated increased levels of lipid peroxidation in terms of malondialdehyde content were markedly suppressed in the TML + IMID group. Also, TML oral dosing markedly reduced the release of inflammatory elements, including nitric oxide and myeloperoxidase, resulting from IMID exposure. Furthermore, the IMID-induced decrease in gamma-aminobutyric acid but the increase in acetylcholinesterase was considerably reversed by TML oral dosing. Additionally, TML oral administration significantly counteracted the IMID-induced brainepatic DNA damage, as revealed by the comet assay. Besides, a significant downregulatibrainepatic Caspase-3 was evident in the TML + IMID group compared to the IMID group. However, TML oral dosing has not significantly altered the IMID-induced nuclear factor (NF-κB p65) increase. Therefore, TML could be a protective agent against IMID-induced detrimental impacts on brain tissue, possibly through its antioxidant, antiapoptotic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Noura A Abd-Allah
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rasha M S M Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gehan A Ahmed
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Han X, He X, Zhan X, Yao L, Sun Z, Gao X, Wang S, Wang Z. Disturbed microbiota-metabolites-immune interaction network is associated with olfactory dysfunction in patients with chronic rhinosinusitis. Front Immunol 2023; 14:1159112. [PMID: 37292198 PMCID: PMC10245275 DOI: 10.3389/fimmu.2023.1159112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose Olfactory dysfunction (OD) is a debilitating symptom frequently reported by patients with chronic rhinosinusitis (CRS) and it is associated with a dysregulated sinonasal inflammation. However, little information is available about the effect of the inflammation-related nasal microbiota and related metabolites on the olfactory function in these patients. Therefore, the current study aimed to investigate the nasal microbiota-metabolites-immune interactions and their role in the pathogenesis of OD in CRS patients. Methods 23 and 19 CRS patients with and without OD, respectively, were enrolled in the present study. The "Sniffin' Sticks" was used to measure the olfactory function, while the metagenomic shotgun sequencing and the untargeted metabolite profiling were performed to assess the differences in terms of the nasal microbiome and metabolome between the two groups. The levels of nasal mucus inflammatory mediators were investigated by a multiplex flow Cytometric Bead Array (CBA). Results A decreased diversity in the nasal microbiome from the OD group compared to the NOD group was evidenced. The metagenomic analysis revealed a significant enrichment of Acinetobacter johnsonii in the OD group, while Mycoplasma arginini, Aeromonas dhakensis, and Salmonella enterica were significantly less represented (LDA value > 3, p < 0.05). The nasal metabolome profiles were significantly different between the OD and NOD groups (P < 0.05). The purine metabolism was the most significantly enriched metabolic subpathway in OD patients compared with NOD patients (P < 0.001). The expressions of IL-5, IL-8, MIP-1α, MCP-1, and TNF were statistically and significantly increased in the OD group (P < 0.05). All these data, including the dysregulation of the nasal microbiota, differential metabolites, and elevated inflammatory mediators in OD patients demonstrated a clear interaction relationship. Conclusion The disturbed nasal microbiota-metabolite-immune interaction networks may be implicated in the pathogenesis of OD in CRS patients and the underlying pathophysiological mechanisms need to be further investigated in future studies.
Collapse
Affiliation(s)
- Xingyu Han
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Xuejia He
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology-Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Linyin Yao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhifu Sun
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xing Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhenlin Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Sun T, Li H, Zhang Y, Xiong G, Liang Y, Lu F, Zheng R, Zou Q, Hao J. Inhibitory Effects of 3-Cyclopropylmethoxy-4-(difluoromethoxy) Benzoic Acid on TGF-β1-Induced Epithelial-Mesenchymal Transformation of In Vitro and Bleomycin-Induced Pulmonary Fibrosis In Vivo. Int J Mol Sci 2023; 24:ijms24076172. [PMID: 37047142 PMCID: PMC10094315 DOI: 10.3390/ijms24076172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by lung inflammation and excessive deposition of extracellular matrix components. Transforming growth factor-β1 (TGF-β1) induced epithelial-mesenchymal transformation of type 2 lung epithelial cells leads to excessive extracellular matrix deposition, which plays an important role in fibrosis. Our objective was to evaluate the effects of 3-cyclopropylmethoxy-4-(difluoromethoxy) benzoic acid (DGM) on pulmonary fibrosis and aimed to determine whether EMT plays a key role in the pathogenesis of pulmonary fibrosis and whether EMT can be used as a therapeutic target for DGM therapy to reduce IPF. Firstly, stimulation of in vitro cultured A549 cells to construct EMTs with TGF-β1. DGM treatment inhibited the expression of proteins such as α-SMA, vimentin, and collagen Ⅰ and increased the expression of E-cadherin. Accordingly, Smad2/3 phosphorylation levels were significantly reduced by DGM treatment. Secondly, models of tracheal instillation of bleomycin and DGM were used to treat rats to demonstrate their therapeutic effects, such as improving lung function, reducing lung inflammation and fibrosis, reducing collagen deposition, and reducing the expression of E-cadherin. In conclusion, DGM attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in rats.
Collapse
Affiliation(s)
- Tianxiao Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Haihua Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guixin Xiong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuerun Liang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Fang Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rong Zheng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qi Zou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
13
|
Hussein RM, Arafa ESA, Raheem SA, Mohamed WR. Thymol protects against bleomycin-induced pulmonary fibrosis via abrogation of oxidative stress, inflammation, and modulation of miR-29a/TGF-β and PI3K/Akt signaling in mice. Life Sci 2023; 314:121256. [PMID: 36549352 DOI: 10.1016/j.lfs.2022.121256] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis is a terminal lung ailment that shares several pathological and genetic mechanisms with severe COVID-19. Thymol (THY) is a dietary compound found in thyme species that showed therapeutic effects against various diseases. However, the effect of THY against bleomycin (BLM)-induced lung fibrosis was not previously investigated. The current study investigated the ability of THY to modulate oxidative stress, inflammation, miR-29a/TGF-β expression, and PI3K/phospho-Akt signaling in lung fibrosis. Mice were divided into Normal, THY (100 mg/kg, p.o.), BLM (15 mg/kg, i.p.), BLM + THY (50 mg/kg, p.o.), and BLM + THY (100 mg/kg, p.o.) groups and treated for four weeks. The obtained results showed that BLM + THY (50 mg/kg) and BLM + THY (100 mg/kg) reduced fibrotic markers; α-SMA and fibronectin, inflammatory mediators; TNF-α, IL-1β, IL-6, and NF-kB and oxidative stress biomarkers; MDA, GSH, and SOD, relative to BLM group. Lung histopathological examination by H&E and Masson's trichrome stains confirmed the obtained results. Remarkably, expression levels of TGF-β, PI3K, and phospho-Akt were decreased while miR-29a expression was elevated. In conclusion, THY effectively prevented BLM-induced pulmonary fibrosis by exerting significant anti-oxidant and anti-inflammatory effects. Our novel findings that THY upregulated lung miR-29a expression while decreased TGF-β and PI3K/Akt signaling are worthy of further investigation as a possible molecular mechanism for THY's anti-fibrotic actions.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, 61710 Al-Karak, Jordan; Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Sayed Abdel Raheem
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
14
|
Bai D, Sun Y, Li Q, Li H, Liang Y, Xu X, Hao J. Leonurine attenuates OVA-induced asthma via p38 MAPK/NF-κB signaling pathway. Int Immunopharmacol 2023; 114:109483. [PMID: 36463697 DOI: 10.1016/j.intimp.2022.109483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022]
Abstract
Leonurine (Leo) is a natural alkaloid extracted from Herba leonuri, which has many biological activities. However, whether leonurine has a protective effect on asthma remains unknown. The purpose of this study was to investigate the protective effect of leonurine on asthma. We evaluated its therapeutic effect and related signal transduction in LPS-induced RAW264.7 cells and OVA-induced asthmatic mice. In addition, we used network pharmacology, molecular docking and molecular dynamics simulation to verify the experimental results. In LPS-induced RAW 264.7 cells, leonurine significantly reduced the production of TNF-α and IL-6, andinhibited the activation of p38 MAPK/NF-κB signaling pathway. In OVA-induced asthmatic mice, leonurine decreased the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF), particularly neutrophils and eosinophils. Leonurine also reduced the contents of IL-4, IL-5, IL-13 in the BALF and OVA-IgE in the serum. Leonurine remarkly improved OVA-induced inflammatory cell infiltration and significantly inhibited mucus overproduction. In addition, leonurine inhibited the activation of p38 MAPK/NF-κB signaling pathway in the lung tissues of asthmatic mice. Network pharmacology suggested that p38 MAPKα was a potential target of leonurine in the treatment of asthma. Molecular docking and molecular dynamics simulations indicated that leonurine could stably bind to p38 MAPKα protein. In summary, leonurine attenuated asthma by regulating p38 MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Donghui Bai
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yujie Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qiong Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Haihua Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuerun Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiejie Hao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| |
Collapse
|
15
|
Exploring the processing-related components from asparagi radix via diversified spectrum-effect relationship. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Gabbai-Armelin PR, Sales LS, Ferrisse TM, De Oliveira AB, De Oliveira JR, Giro EMA, Brighenti FL. A systematic review and meta-analysis of the effect of thymol as an anti-inflammatory and wound healing agent: A review of thymol effect on inflammation and wound healing: A review of thymol effect on inflammation and wound healing. Phytother Res 2022; 36:3415-3443. [PMID: 35848908 DOI: 10.1002/ptr.7541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/29/2022] [Accepted: 06/12/2022] [Indexed: 12/09/2022]
Abstract
Thymol (THY) exhibits antibacterial and antioxidant properties. Recent studies have also shown that THY presents anti-inflammatory and healing properties. This review focused on in vitro and in vivo investigations related to THY utilization, as an anti-inflammatory and/or wound healing agent. PubMed, WebOfScience, and Scopus were examined. Independent reviewers conducted all diagram steps. PRISMA was followed for data extraction. RoB 2 and SYRCLE were utilized to assess the risk of bias for in vitro and animal studies. Meta-analysis was performed for in vitro and in vivo articles that investigated THY as an anti-inflammatory agent. Thirty-six and 15 articles were included in the qualitative analysis and meta-analysis, respectively. Studies showed high risk of bias related to sampling, allocation procedures, randomization, and blinding. Even so, for in vitro studies, significant result was observed for IL-2. For in vivo studies, significant results were found for IL-1, IL-17, TNF-α, AST, MPO, and CRP, with higher levels noticed in control groups. THY presents significant properties as anti-inflammatory, ameliorating affections of the digestive system, cardiovascular problems, respiratory system and dermal damages, and burns. Researches are needed to clarify THY dose-response relationship and its mechanism of action, especially in the application of THY as a healing agent.
Collapse
Affiliation(s)
| | - Luciana S Sales
- School of Dentistry, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | | | - Elisa M A Giro
- School of Dentistry, São Paulo State University (UNESP), São Paulo, Brazil
| | | |
Collapse
|
17
|
Ahmed OM, Galaly SR, Mostafa MAMA, Eed EM, Ali TM, Fahmy AM, Zaky MY. Thyme Oil and Thymol Counter Doxorubicin-Induced Hepatotoxicity via Modulation of Inflammation, Apoptosis, and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6702773. [PMID: 35178158 PMCID: PMC8844103 DOI: 10.1155/2022/6702773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/26/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an effective anticancer agent with a wide spectrum of activities. However, it has many adverse effects on various organs especially on the liver. Thymol, one of the major components of thyme oil, has biological properties that include anti-inflammatory and antioxidant activities. Thus, this study was designed to examine thyme oil and thymol for their ability to prevent doxorubicin-induced hepatotoxicity in Wistar rats. Hepatotoxicity was induced by an intraperitoneal injection of doxorubicin, at a dose of 2 mg/kg bw/week, for seven weeks. Doxorubicin-injected rats were supplemented with thyme oil and thymol at doses 250 and 100 mg/kg bw, respectively, four times/week by oral gavage for the same period. Treatment of rats with thyme oil and thymol reversed the high serum activities of AST, ALT, and ALP and total bilirubin, AFP, and CA19.9 levels, caused by doxorubicin. Thyme oil and thymol also reduced the high levels of TNF-α and the decreased levels of both albumin and IL-4. These agents ameliorated doxorubicin-induced elevation in hepatic lipid peroxidation and associated reduction in GSH content and GST and GPx activities. Further, the supplementation with thyme oil and thymol significantly augmented mRNA expression of the level of antiapoptotic protein Bcl-2 and significantly downregulated nuclear and cytoplasmic levels of the hepatic apoptotic mediator p53. Thus, thyme oil and thymol successfully counteracted doxorubicin-induced experimental hepatotoxicity via their anti-inflammatory, antioxidant, and antiapoptotic properties.
Collapse
Affiliation(s)
- Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sanaa R. Galaly
- Cell Biology and Histology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mennah-Allah M. A. Mostafa
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Emad M. Eed
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alzhraa M. Fahmy
- Tropical Medicine and Infectious Diseases Department, Beni-Suef University Faculty of Medicine, Beni-Suef, Egypt
| | - Mohamed Y. Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
- Department of Medical Oncology Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
18
|
Bai D, Sun T, Lu F, Shen Y, Zhang Y, Zhang B, Yu G, Li H, Hao J. Eupatilin Suppresses OVA-Induced Asthma by Inhibiting NF-κB and MAPK and Activating Nrf2 Signaling Pathways in Mice. Int J Mol Sci 2022; 23:ijms23031582. [PMID: 35163503 PMCID: PMC8836136 DOI: 10.3390/ijms23031582] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
To investigate the effect of eupatilin in asthma treatment, we evaluated its therapeutic effect and related signal transduction in OVA-induced asthmatic mice and LPS-stimulated RAW264.7 cells. The BALF was tested for changes in lung inflammatory cells. Th2 cytokines in the BALF and OVA-IgE in the serum were measured by ELISA. H&E and PAS staining were used to evaluate histopathological changes in mouse lungs. The key proteins NF-κB, MAPK, and Nrf2 in lung tissues were quantitatively analyzed by Western blotting. Finally, we evaluated the effect of eupatilin on cytokines and related protein expression in LPS-stimulated RAW 264.7 cells in vitro. In OVA-induced asthmatic mice, eupatilin reduced the numbers of inflammatory cells, especially neutrophils and eosinophils. Eupatilin also decreased the levels of IL-5, IL-13 in the BALF and OVA-IgE in the serum. Furthermore, eupatilin inhibited the activation of NF-κB and MAPK pathways and increased the expression of Nrf2 in OVA-induced asthmatic mice. In vitro, eupatilin significantly reduced LPS-stimulated NO, IL-6, and ROS production. Additionally, the NF-κB, MAPK, and Nrf2 protein expression in LPS-stimulated RAW264.7 cells was consistent with that in OVA-induced asthmatic lung tissues. In summary, eupatilin attenuated OVA-induced asthma by regulating NF-κB, MAPK, and Nrf2 signaling pathways. These results suggest the utility of eupatilin as an anti-inflammatory drug for asthma treatment.
Collapse
Affiliation(s)
- Donghui Bai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Tianxiao Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Fang Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Yancheng Shen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Yan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Bo Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Haihua Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
- Correspondence: (H.L.); (J.H.); Tel./Fax: +86-532-8203-1913 (J.H.)
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: (H.L.); (J.H.); Tel./Fax: +86-532-8203-1913 (J.H.)
| |
Collapse
|
19
|
Ghorani V, Beigoli S, Khazdair MR, Boskabady MH. The effect of Zataria multiflora on respiratory allergic and immunologic disorders, experimental and clinical evidence: A comprehensive review. Phytother Res 2022; 36:1135-1155. [PMID: 35080049 DOI: 10.1002/ptr.7382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/09/2022]
Abstract
Zataria multiflora (Z. multiflora) is used in traditional and modern medicine for therapeutic objectives especially in respiratory disorders. Therefore, updated experimental and clinical studies on the effects of Z. multiflora on respiratory, allergic, and immunologic disorders are reviewed. Various electronic search engines including PubMed, Science Direct, Scopus, and Google Scholar were searched using appropriate keywords until the end of November 2021. Books, thesis-hard copies of some articles were also included. The effects of Z. multiflora on respiratory disorders including asthma, chronic obstructive pulmonary disease (COPD), lung infection, and lung cancer were shown. Extracts of Z. multiflora showed the relaxant effect with various mechanisms. The preventive effects of Z. multiflora were also demonstrated by mechanisms such as antioxidant, immunomodulatory, and antiinflammatory properties in the experimental animal models of different respiratory diseases. Carvacrol and thymol are probably responsible for the therapeutic effect of plant among 56 constituents of Z. multiflora. In addition, bronchodilatory and preventive effects of the plant and its constituents on asthma, COPD, lung disorders due to noxious agents and allergic and immunologic disorders were shown in the clinical studies. Therefore Z. multiflora and its constituents may be considered as a preventive and/or relieving therapy in various respiratory diseases.
Collapse
Affiliation(s)
- Vahideh Ghorani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Du H, Pang H, Gao Y, Zhou Y, Li SJ. Deficiency of voltage-gated proton channel Hv1 aggravates ovalbumin-induced allergic lung asthma in mice. Int Immunopharmacol 2021; 96:107640. [PMID: 33866247 DOI: 10.1016/j.intimp.2021.107640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic airway inflammation that caused by many factors. The voltage-gated proton channel Hv1 has been proposed to extrude excessive protons produced by NADPH oxidase (NOX) from cytosol to maintain its activity during respiratory bursts. Here, we showed that loss of Hv1 aggravates ovalbumin (OVA)-induced allergic lung asthma in mice. The numbers of total cells, eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) of Hv1-deficiency (KO) mice are obviously increased after OVA challenge compared with that of wild-type (WT) mice. Histopathological staining reveals that Hv1-deficiency aggravates OVA-induced inflammatory cell infiltration and goblet cell hyperplasia in lung tissues. The expression of IL-4, IL-5 and IL-13 are markedly increased in lung tissues of OVA-challenged KO mice compared with that of WT mice. Furthermore, the expression levels of NOX2, NOX4 and DUOX1 are dramatically increased, while the expression levels of SOD2 and catalase are significantly reduced in lung tissues of OVA-challenged KO mice compared with that of WT mice. The production of ROS in lung tissues of KO mice is significantly higher than that of WT mice after OVA challenge. Our data suggest that Hv1-deficiency might aggravate the development of allergic asthma through increasing ROS production.
Collapse
Affiliation(s)
- Hongyan Du
- Department of Biophysics, School of Physical Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Huimin Pang
- Department of Biophysics, School of Physical Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Yongfa Zhou
- Department of Biophysics, School of Physical Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shu Jie Li
- Department of Biophysics, School of Physical Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; Qilu Institute of Technology, Shandong 250200, P. R. China.
| |
Collapse
|
21
|
Firmino JP, Galindo-Villegas J, Reyes-López FE, Gisbert E. Phytogenic Bioactive Compounds Shape Fish Mucosal Immunity. Front Immunol 2021; 12:695973. [PMID: 34220858 PMCID: PMC8252966 DOI: 10.3389/fimmu.2021.695973] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaculture growth will unavoidably involve the implementation of innovative and sustainable production strategies, being functional feeds among the most promising ones. A wide spectrum of phytogenics, particularly those containing terpenes and organosulfur compounds, are increasingly studied in aquafeeds, due to their growth promoting, antimicrobial, immunostimulant, antioxidant, anti-inflammatory and sedative properties. This trend relies on the importance of the mucosal barrier in the fish defense. Establishing the phytogenics' mode of action in mucosal tissues is of importance for further use and safe administration. Although the impact of phytogenics upon fish mucosal immunity has been extensively approached, most of the studies fail in addressing the mechanisms underlying their pharmacological effects. Unstandardized testing as an extended practice also questions the reproducibility and safety of such studies, limiting the use of phytogenics at commercial scale. The information presented herein provides insight on the fish mucosal immune responses to phytogenics, suggesting their mode of action, and ultimately encouraging the practice of reliable and reproducible research for novel feed additives for aquafeeds. For proper screening, characterization and optimization of their mode of action, we encourage the evaluation of purified compounds using in vitro systems before moving forward to in vivo trials. The formulation of additives with combinations of compounds previously characterized is recommended to avoid bacterial resistance. To improve the delivery of phytogenics and overcome limitations associated to compounds volatility and susceptibility to degradation, the use of encapsulation is advisable. Besides, newer approaches and dedicated methodologies are needed to elucidate the phytogenics pharmacokinetics and mode of action in depth.
Collapse
Affiliation(s)
- Joana P. Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
- R&D Technical Department, TECNOVIT – FARMFAES, S.L., Alforja, Spain
| | | | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
22
|
Mousa AM, Almatroudi A, Alwashmi AS, Abdulmonem WA, Aljohani ASM, Alhumaydhi FA, Alsahli MA, Alrumaihi F, Allemailem KS, Abdellatif AAH, Khan A, Khan MA, Alshabrmi FM, Alruwetei A, Aljasir M, Aba Alkhayl FF, Rahmani AH, Rugaie OA, Alnuqaydan AM, Alsagaby SA, Aldakheel FM, Almatroodi SA. Thyme oil alleviates Ova-induced bronchial asthma through modulating Th2 cytokines, IgE, TSLP and ROS. Biomed Pharmacother 2021; 140:111726. [PMID: 34111725 DOI: 10.1016/j.biopha.2021.111726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/30/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Bronchial asthma (BA) is a heterogeneous allergic respiratory disease with diverse inflammatory symptoms, pathology, and responses to treatment. Thyme is a natural product which is consisted of multiple phenolic compounds of therapeutic significance for treatment of cough and bronchitis. This study evaluated the efficacy of thyme oil against ovalbumin (OVA)-induced BA in an experimental rabbit model. Forty male rabbits were divided into four equal groups [control group (G1), OVA (G2), thyme oil (G3), and OVA plus thyme oil (G4)]. Animals were treated for 30 days, and clinical, histopathological (HP), histochemical (HC), immunohistochemical (IHC), morphometric, biochemical and flow cytometry methods were performed, followed by statistical analysis. All used methods revealed normal structure of the lung tissues in rabbits of G1 and G3. In contrast, the clinical examination of G2 rabbits revealed an obvious increase in the respiratory rate, sneezing and wheezing, whereas the HP, HC and IHC techniques exhibited substantial inflammatory changes in the peribronchio-vascular lung tissues with thinning, degeneration, apoptosis (using the TUNEL assay), necrosis, and shedding of the airway epithelium. Furthermore, the morphometric results confirmed significant increases in the numbers of inflammatory cells, goblet cells, eosinophils and apoptotic cells from (12, 0, 2, 2 cells) to (34,10, 16, 18 cells) respectively, as well as the area percentage of collagen fiber deposition and immunoexpression of eotaxin-1/10 high power fields. Additionally, the biochemical results revealed significant increases in the serum levels of TSLP, IL-4, IL-5, IL-9, IL-13, IgE and eotaxin-1 cytokines from (140, 40, 15, 38, 120, 100, 48) pg./ml to (360, 270, 130, 85, 365, 398, 110) pg./ml respectively, while analysis of ROS by flow cytometry revealed remarkable oxidative stress effects in G2 rabbits. On the other hand, treatment of rabbits with thyme oil in G4 substantially alleviated all OVA-induced alterations. Overall, our findings indicate for the first time that thyme oil can ameliorate OVA-induced BA via its immunomodulatory, anti-inflammatory, antiapoptotic, and antioxidant effects on the lung tissues of rabbits.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt.
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Ameen S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Waleed Al Abdulmonem
- Department of pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia.
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agricultural and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Abdulmohsen Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Mohammad Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia.
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| |
Collapse
|
23
|
Liu JX, Zhang Y, Yuan HY, Liang J. The treatment of asthma using the Chinese Materia Medica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113558. [PMID: 33186702 DOI: 10.1016/j.jep.2020.113558] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a costly global health problem that negatively influences the quality of life of patients. The Chinese Materia Medica (CMM) contains remedies that have been used for the treatment of asthma for millennia. This article strives to systematically summarize the current research progress so that more comprehensive examinations of various databases related to CMM anti-asthma drugs, can be performed, so as to sequentially provide effective basic data for development and application of anti-asthma drugs based on the CMM. MATERIALS AND METHODS The research data published over the past 20 years for asthma treatment based on traditional CMM remedies were retrieved and collected from libraries and online databases (PubMed, ScienceDirect, Elsevier, Spring Link, Web of Science, PubChem Compound, Wan Fang, CNKI, Baidu, and Google Scholar). Information was also added from classic CMM, literature, conference papers on classic herbal formulae, and dissertations (PhD or Masters) based on traditional Chinese medicine. RESULTS This review systematically summarizes the experimental studies on the treatment of asthma with CMM, covering the effective chemical components, typical asthma models, important mechanisms and traditional anti-asthma CMM formulae. The therapy value of the CMM for anti-asthma is clarified, and the original data and theoretical research foundation are provided for the development of new anti-asthmatic data and research for the CMM. CONCLUSIONS Substantial progress against asthma has been made through relevant experimental research based on the CMM. These advances improved the theoretical basis of anti-asthma drugs for CMM and provided a theoretical basis for the application of a asthma treatment that is unique. By compiling these data, it is expected that the CMM will now contain a clearer mechanism of action and a greater amount of practical data that can be used for future anti-asthma drug research.
Collapse
Affiliation(s)
- Jun-Xi Liu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China; Department of Pharmacy, Heilongjiang Nursing College, 209 Academy Road, Harbin, 150086, PR China
| | - Yang Zhang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hong-Yu Yuan
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
24
|
Rehman NU, Ansari MN, Haile T, Karim A, Abujheisha KY, Ahamad SR, Imam F. Possible Tracheal Relaxant and Antimicrobial Effects of the Essential Oil of Ethiopian Thyme Species ( Thymus serrulatus Hochst. ex Benth.): A Multiple Mechanistic Approach. Front Pharmacol 2021; 12:615228. [PMID: 33883992 PMCID: PMC8053776 DOI: 10.3389/fphar.2021.615228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
The genus Thymus is traditionally used for the treatment of hyperactive airways complaints. The purpose of the current study is to investigate the potential tracheal relaxant effect and possible mechanism(s) of the essential oil of Thymus serrulatus (TS Oil) in isolated guinea pig tracheal tissues. The essential oil was obtained from the fresh erial parts of Thymus serrulatus, and its phyto-components were identified by GC-MS analysis. Guinea pig tracheal preparations were used for testing the tracheal relaxant effect of TS Oil with the determination of the mechanism(s) involved in this relaxation. GC-MS findings reveal that terpenes, fragrance constituents, saponins, and higher fatty acids are present in TS Oil. In isolated guinea pig trachea, TS Oil inhibited carbachol (CCh, 1 µM) and K+ (80 mM)-induced contractions in a pattern similar to that of dicyclomine. TS Oil, at 0.3 mg/ml, shifted parallel CCh-curves towards the right, followed by a non-parallel shift at higher concentration (1 mg/ml), thus suppressing maximum response in the same manner as produced by dicyclomine. Pretreatment of tissues with TS Oil (1 and 3 mg/ml) also produced a rightward shift of Ca++ concentration-response curves (CRCs) in the same manner as caused by verapamil. Further, TS Oil at low concentrations (0.3 and 1 mg/ml) shifted isoprenaline-induced inhibitory CRCs towards the left and increased cAMP levels in isolated tracheal homogenates similar to papaverine, a phosphodiesterase (PDE) inhibitor. In the antimicrobial assay performed by the agar well diffusion method, TS Oil was found most active against Candida albicans and Staphylococcus aureus where the zone of inhibition measured was 28 mm. Additionally, there was little difference between standard strains of gram-positive and gram-negative bacteria. However, methicillin-resistant S. aureus (MRSA) showed a small zone of inhibition as compared to standard strains (22 mm). From these results, it can be concluded that the essential oil of T. serrulatus has the potential to produce antimicrobial effects while causing tracheal relaxation mediated possibly by anticholinergic effects, Ca++ channel blockade, and PDE inhibition whereas additional mechanism(s) cannot be ruled out.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Tesfay Haile
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Aman Karim
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Khalil Y Abujheisha
- Faculty of Natural and Health Science, Al Zaytoonh University of Science and Technology, Salfeet, Palestine
| | - Syed Rizwan Ahamad
- Central Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Ansari MN, Rehman NU, Karim A, Imam F, Hamad AM. Protective Effect of Thymus serrulatus Essential Oil on Cadmium-Induced Nephrotoxicity in Rats, through Suppression of Oxidative Stress and Downregulation of NF-κB, iNOS, and Smad2 mRNA Expression. Molecules 2021; 26:molecules26051252. [PMID: 33652584 PMCID: PMC7956168 DOI: 10.3390/molecules26051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of the research was to examine the protective effect of essential oil from Thymus serrulatus Hochst. ex Benth. (TSA oil) against cadmium (Cd)-induced renal toxicity. The experimental protocol was designed using 30 healthy adult Wistar albino rats allocated into five groups containing six animals in each group. Group 1 was treated as normal control and groups 2, 3, 4, and 5 were treated with cadmium chloride (CdCl2, 3 mg/kg, IP) for 7 days. Group 3 was also treated with silymarin (100 mg/kg, PO) as a standard group, while groups 4 and 5 were administered with TSA oil at doses of 100 and 200 mg/kg PO, respectively. The nephrotoxicity was measured with various parameters such as kidney function markers, oxidative stress markers (glutathione (GSH) and malondialdehyde (MDA)), and messenger ribonucleic acid (mRNA) expression levels of inflammatory factors. The histological studies were also evaluated in the experimental protocol. The CdCl2-treated groups showed a significant increase in the levels of serum kidney function markers along with MDA levels in kidney homogenate. However, renal GSH level was found to be reduced significantly. It was found that CdCl2 significantly upregulated the nuclear factor levels of kappaB (NF-κB p65), inducible nitric oxide synthase (iNOS), and small mothers against decapentaplegic (Smad2) as compared to the normal control group. On the other hand, TSA oil significantly improved the increased levels of serum kidney function markers, non-enzymatic antioxidants, and lipid peroxidation. In addition, TSA oil significantly downregulated the increased expression of NF-κB p65, iNOS, and Smad2 in Cd-intoxicated rats. Moreover, the histological changes in the tissue samples of the kidney of Cd-treated groups were significantly ameliorated in the silymarin- and TSA-oil-treated groups. The present study reveals that TSA oil ameliorates Cd-induced renal injury, and it is also proposed that the observed nephroprotective effect could be due to the antioxidant potential of TSA oil and healing due to its anti-inflammatory action.
Collapse
Affiliation(s)
- Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (M.N.A.); (N.U.R.); Tel.: +966-11-5886037 (M.N.A.); +966-11-5886035 (N.U.R.)
| | - Najeeb Ur Rehman
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (M.N.A.); (N.U.R.); Tel.: +966-11-5886037 (M.N.A.); +966-11-5886035 (N.U.R.)
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Abubaker M. Hamad
- Department of Basic Sciences, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Histopathology and Cytopathology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani 21111, Sudan
| |
Collapse
|
26
|
Escobar A, Pérez M, Romanelli G, Blustein G. Thymol bioactivity: A review focusing on practical applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
27
|
Videla EA, Giayetto O, Fernández ME, Chacana PA, Marín RH, Nazar FN. Immediate and transgenerational effects of thymol supplementation, inactivated Salmonella and chronic heat stress on representative immune variables of Japanese quail. Sci Rep 2020; 10:18152. [PMID: 33097768 PMCID: PMC7584634 DOI: 10.1038/s41598-020-74547-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Environmental challenges are integrated in the inmunoneuroendocrine interplay, impacting the immune system of the challenged individuals, and potentially implying transgenerational effects on their offspring. This study addressed whether dietary supplementation with thymol can modulate the immune response of adult Japanese quail when simultaneously exposed to an inoculum of inactivated Salmonella Enteritidis and a chronic heat stress (CHS). We also evaluated whether the experienced situations by adults can affect the immune response of their undisturbed offspring. In the parental generation, supplemented quail exposed to CHS had a higher inflammatory response and similar values of the heterophil/lymphocyte (H/L) ratio than those that were not supplemented. In their offspring, those chicks whose parents were exposed to CHS showed higher inflammatory response and lower antibody production. Regarding the H/L ratio, chicks whose parents were supplemented showed lower H/L ratio values. Dietary supplementation with thymol partially and positively modulated the inflammatory response and avoided H/L ratio alteration in the parental generation exposed to high environmental temperatures, suggesting these adults were better at dealing with the challenge. The lower H/L ratio values in the offspring suggests that chicks are more capable to deal with potential stressful situations associated with conventional breeding conditions.
Collapse
Affiliation(s)
- E A Videla
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), X5000JJC, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), X5000JJC, Córdoba, Argentina.,School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - O Giayetto
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), X5000JJC, Córdoba, Argentina
| | - M E Fernández
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), X5000JJC, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), X5000JJC, Córdoba, Argentina
| | - P A Chacana
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria (INTA), C1033AAE, Buenos Aires, Argentina
| | - R H Marín
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), X5000JJC, Córdoba, Argentina. .,Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), X5000JJC, Córdoba, Argentina.
| | - F N Nazar
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), X5000JJC, Córdoba, Argentina. .,Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), X5000JJC, Córdoba, Argentina. .,Department of Animal Production, NEIKER-Basque Institute for Agricultural Research and Development, Vitoria-Gasteiz, Spain.
| |
Collapse
|
28
|
Wu D, Li S, Liu X, Xu J, Jiang A, Zhang Y, Liu Z, Wang J, Zhou E, Wei Z, Yang Z, Guo C. Alpinetin prevents inflammatory responses in OVA-induced allergic asthma through modulating PI3K/AKT/NF-κB and HO-1 signaling pathways in mice. Int Immunopharmacol 2020; 89:107073. [PMID: 33039967 DOI: 10.1016/j.intimp.2020.107073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Allergic asthma is the most common type of asthma which characterized by inflammatory responses of the airways. Alpinetin, a flavonoid compound derived from the ginger family of medicinal herbs, possesses various biological properties including anti-inflammatory, anti-oxidant and other medical effects. In this study, we aimed to evaluate the effects of alpinetin on OVA-induced allergic asthma, and further to examine its molecular mechanisms underlying these processes in vivo and in vitro. Mice were sensitized and challenged with OVA to build allergic asthma model in vivo. Bronchoalveolar lavage fluid (BALF) was collected for inflammatory cells analysis and lung tissues were examined for histopathological examination. The levels of IL-5, IL-13, IL-4, IgE, TNF-α, IL-6 and IL-1β were determined by the respective ELISA kits. The PI3K/AKT/NF-κB and HO-1 signaling pathways were examined by western blot analysis. The results showed that alpinetin significantly ameliorated OVA-induced pathologic changes of lungs, such as decreasing massive inflammatory cell infiltration and mucus hypersecretion, and reduced the number of inflammatory cells in BALF. Alpinetin also decreased the OVA-induced levels of IL-4, IL-5, IL-13 and IgE. Furthermore, alpinetin inhibited OVA-induced phosphorylation of p65, IκB, PI3K and AKT, and the activity of HO-1 in vivo. More importantly, these anti-inflammatory effects and molecular mechanisms of alpinetin has also been confirmed in LPS-stimulated RAW 264.7 macrophages in vitro. In conclusion, above results indicate that alpinetin exhibites a potent anti-inflammatory activity in allergic asthma through modulating PI3K/AKT/NF-κB and HO-1 signaling pathways, which would be used as a promising therapy agent for allergic asthma.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Shuangqiu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Aimin Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Yong Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Ziyi Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China; College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| | - Changmin Guo
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China.
| |
Collapse
|
29
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
30
|
Csikós E, Csekő K, Ashraf AR, Kemény Á, Kereskai L, Kocsis B, Böszörményi A, Helyes Z, Horváth G. Effects of Thymus vulgaris L., Cinnamomum verum J.Presl and Cymbopogon nardus (L.) Rendle Essential Oils in the Endotoxin-induced Acute Airway Inflammation Mouse Model. Molecules 2020; 25:molecules25153553. [PMID: 32759721 PMCID: PMC7436258 DOI: 10.3390/molecules25153553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
Thyme (TO), cinnamon (CO), and Ceylon type lemongrass (LO) essential oils (EOs) are commonly used for inhalation. However, their effects and mechanisms on inflammatory processes are not well-documented, and the number of in vivo data that would be important to determine their potential benefits or risks is low. Therefore, we analyzed the chemical composition and investigated the activity of TO, CO, and LO on airway functions and inflammatory parameters in an acute pneumonitis mouse model. The components of commercially available EOs were measured by gas chromatography-mass spectrometry. Airway inflammation was induced by intratracheal endotoxin administration in mice. EOs were inhaled during the experiments. Airway function and hyperresponsiveness were determined by unrestrained whole-body plethysmography on conscious animals. Myeloperoxidase (MPO) activity was measured by spectrophotometry from lung tissue homogenates, from which semiquantitative histopathological scores were assessed. The main components of TO, CO, and LO were thymol, cinnamaldehyde, and citronellal, respectively. We provide here the first evidence that TO and CO reduce inflammatory airway hyperresponsiveness and certain cellular inflammatory parameters, so they can potentially be considered as adjuvant treatments in respiratory inflammatory conditions. In contrast, Ceylon type LO inhalation might have an irritant effect (e.g., increased airway hyperresponsiveness and MPO activity) on the inflamed airways, and therefore should be avoided.
Collapse
Affiliation(s)
- Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (A.R.A.)
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.C.); (Á.K.); (Z.H.)
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Amir Reza Ashraf
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (A.R.A.)
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.C.); (Á.K.); (Z.H.)
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - Andrea Böszörményi
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Budapest, Hungary;
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.C.); (Á.K.); (Z.H.)
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- PharmInVivo Ltd., H-7629 Pécs, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (A.R.A.)
- Correspondence: ; Tel.: +36-72-503650-28823
| |
Collapse
|
31
|
Kaltschmidt BP, Ennen I, Greiner JFW, Dietsch R, Patel A, Kaltschmidt B, Kaltschmidt C, Hütten A. Preparation of Terpenoid-Invasomes with Selective Activity against S. aureus and Characterization by Cryo Transmission Electron Microscopy. Biomedicines 2020; 8:biomedicines8050105. [PMID: 32369920 PMCID: PMC7277086 DOI: 10.3390/biomedicines8050105] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
Terpenoids are natural plant-derived products that are applied to treat a broad range of human diseases, such as airway infections and inflammation. However, pharmaceutical applications of terpenoids against bacterial infection remain challenging due to their poor water solubility. Here, we produce invasomes encapsulating thymol, menthol, camphor and 1,8-cineol, characterize them via cryo transmission electron microscopy and assess their bactericidal properties. While control- and cineol-invasomes are similarly distributed between unilamellar and bilamellar vesicles, a shift towards unilamellar invasomes is observable after encapsulation of thymol, menthol or camphor. Thymol- and camphor-invasomes show a size reduction, whereas menthol-invasomes are enlarged and cineol-invasomes remain unchanged compared to control. While thymol-invasomes lead to the strongest growth inhibition of S. aureus, camphor- or cineol-invasomes mediate cell death and S. aureus growth is not affected by menthol-invasomes. Flow cytometric analysis validate that invasomes comprising thymol are highly bactericidal to S. aureus. Notably, treatment with thymol-invasomes does not affect survival of Gram-negative E. coli. In summary, we successfully produce terpenoid-invasomes and demonstrate that particularly thymol-invasomes show a strong selective activity against Gram-positive bacteria. Our findings provide a promising approach to increase the bioavailability of terpenoid-based drugs and may be directly applicable for treating severe bacterial infections such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Bernhard P. Kaltschmidt
- Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.P.K.); (I.E.)
| | - Inga Ennen
- Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.P.K.); (I.E.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.); (C.K.)
| | - Robin Dietsch
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany; (R.D.); (A.P.)
| | - Anant Patel
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany; (R.D.); (A.P.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.); (C.K.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.); (C.K.)
| | - Andreas Hütten
- Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.P.K.); (I.E.)
- Correspondence: ; Tel.: +49-521-106-5418
| |
Collapse
|
32
|
Vilela DAD, Silva BAO, Brito MC, Menezes PMN, Bomfim HF, Duarte-Filho LAMDS, Silva TRDS, Ribeiro LADA, Lucchese AM, Silva FS. Lippia alnifolia essential oil induces relaxation on Guinea-pig trachea by multiple pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112162. [PMID: 31419501 DOI: 10.1016/j.jep.2019.112162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/22/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lippia alnifolia Mart. & Schauer, known as "alecrim-do-mato", "alecrim-de-vaqueiro" and "pedrécio", is used in folk medicine as antiseptic and to treat diseases that affect respiratory system, like bronchitis and asthma. AIM OF THE STUDY The aim of this work was to investigate the spasmolytic activity and relaxant mechanism of the Lippia alnifolia essential oil (EOLA) on isolated guinea-pig trachea and to correlate with its use in folk medicine. MATERIALS AND METHODS Leaves from L. alnifolia were collected in Pico das Almas, Chapada Diamantina, situated in the city of Rio de Contas, Bahia, Brazil. EOLA was extracted by hydrodistillation, analyzed by GC/FID and GC/MS and the volatile constituents were identified. Spasmolytic activity was assayed in isolated guinea-pig trachea pre-contracted with carbachol 1 μM or histamine 10 μM. Relaxant mechanism of EOLA was determined comparing concentration-response curves in the presence or absence of different blockers. RESULTS Chemical analysis revealed the presence of carvone (60 ± 0.8%) as major constituent. EOLA (1-243 μg/mL) relaxed isolated guinea-pig trachea pre-contracted with carbachol 1 μM [EC50 = 53.36 (44.75-63.51) μg/mL] or histamine 10 μM [EC50 = 5.42 (4.42-6.65) μg/mL]. The pre-incubation of 4-aminopyridine in histamine-induced contractions did not alter significantly the relaxant effect of EOLA. However, the presence of cesium chloride, glibenclamide, tetraethylammonium, propranolol, indomethacin, dexamethasone, hexamethonium, atropine, L-NAME, methylene blue or ODQ reduced EOLA relaxant effect. EOLA 18 μg/mL pre-incubation in calcium-free medium reduced histamine-evoked contractions, but did not alter histamine contractions in the presence of nifedipine. CONCLUSIONS Lippia alnifolia essential oil has spasmolytic activity on isolated guinea-pig trachea and its mechanism of action possibly involves the activation of multiple signal transduction pathways, which culminate in potassium channels activation and cytosolic calcium reduction.
Collapse
Affiliation(s)
| | | | - Mariana Coelho Brito
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | | | - Horácio Freitas Bomfim
- Laboratório de Química de Produtos Naturais e Bioativos, Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana (UEFS), Brazil.
| | | | | | - Luciano Augusto de Araújo Ribeiro
- Pós-graduação em Biociências, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil; Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | - Angélica Maria Lucchese
- Laboratório de Química de Produtos Naturais e Bioativos, Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana (UEFS), Brazil.
| | - Fabrício Souza Silva
- Pós-graduação em Biociências, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil; Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| |
Collapse
|
33
|
Hu M, Liu Y, Wang L, Wang J, Li L, Wu C. Purification, Characterization of Two Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine and Their Anti-Inflammatory Effects on Mucus Secretion of Airway Epithelium. Int J Mol Sci 2019; 20:ijms20143553. [PMID: 31330806 PMCID: PMC6678706 DOI: 10.3390/ijms20143553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Pinelliae Rhizoma Praeparatum cum Alumine (PRPCA) is an important traditional processed herbal medicine mainly used for treating phlegm in China for more than 2000 years. In our previous studies, extraction optimization, characterization, and bioactivities of total polysaccharides from PRPCA were investigated. In this study, further purification of these polysaccharides was performed. Two polysaccharides named neutral fraction of total polysaccharides-II (TPN-II) and acidic fraction of total polysaccharides-II (TPA-II) were obtained by gradient ion-exchange chromatography followed by gel-permeation chromatography. Results of scanning electron microscopy (SEM) analysis in the present study showed that TPN-II had a tight structure with a rough and uneven surface, while TPA-II had a relative homogeneous surface and a loose structure. Further studies indicated that TPN-II was a homosaccharide mainly composed by glucose with a molecular weight of 8.0 kDa. TPA-II was mainly composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in a molar ratio of 2.1, 2.3, 1.7, 10.6, 2.6, 14.2, and 2.5, with a molecular weight of 1250 kDa. The nuclear magnetic resonance (NMR) results indicated that α and β form glycoside bonds existed in TPN-II and TPA-II, and TPN-II was composed of α-glucopyranose. In addition, both purified polysaccharides have significant anti-inflammatory effects on mucus secretion of human airway epithelial NCI-H292 cells without cytotoxicity. Compared with TPN-II, TPA-II exhibited more significant anti-inflammatory effects on lipopolysaccharide (LPS)-induced airway inflammation by regulating levels of interleukin-4 (IL-4) and interferon-γ (IFN-γ) and inhibiting mucus secretion. The results suggest that polysaccharides from PRPCA could be explored as therapeutic agents in treating inflammation and over secretion of mucus in asthma.
Collapse
Affiliation(s)
- Meibian Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yujie Liu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiaolong Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
34
|
Sim LY, Abd Rani NZ, Husain K. Lamiaceae: An Insight on Their Anti-Allergic Potential and Its Mechanisms of Action. Front Pharmacol 2019; 10:677. [PMID: 31275149 PMCID: PMC6594199 DOI: 10.3389/fphar.2019.00677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
The prevalence of allergic diseases such as asthma, allergic rhinitis, food allergy and atopic dermatitis has increased dramatically in recent decades. Conventional therapies for allergy can induce undesirable effects and hence patients tend to seek alternative therapies like natural compounds. Considering the fact above, there is an urgency to discover potential medicinal plants as future candidates in the development of novel anti-allergic therapeutic agents. The Lamiaceae family, or mint family, is a diverse plant family which encompasses more than 7,000 species and with a cosmopolitan distribution. A number of species from this family has been widely employed as ethnomedicine against allergic inflammatory skin diseases and allergic asthma in traditional practices. Phytochemical analysis of the Lamiaceae family has reported the presence of flavonoids, flavones, flavanones, flavonoid glycosides, monoterpenes, diterpenes, triterpenoids, essential oil and fatty acids. Numerous investigations have highlighted the anti-allergic activities of Lamiaceae species with their active principles and crude extracts. Henceforth, this review has the ultimate aim of compiling the up-to-date (2018) findings of published scientific information about the anti-allergic activities of Lamiaceae species. In addition, the botanical features, medicinal uses, chemical constituents and toxicological studies of Lamiaceae species were also documented. The method employed for data collection in this review was mainly the exploration of the PubMed, Ovid and Scopus databases. Additional research studies were obtained from the reference lists of retrieved articles. This comprehensive summarization serves as a useful resource for a better understanding of Lamiaceae species. The anti-allergic mechanisms related to Lamiaceae species are also reviewed extensively which aids in future exploration of the anti-allergic potential of Lamiaceae species.
Collapse
Affiliation(s)
- Lee Yen Sim
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Zahirah Abd Rani
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Ferreira JVN, Lago JHG, Caseli L. Thymol in cellular membrane models formed by negative charged lipids causes aggregation at the air-water interface. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Luo J, Zhang L, Zhang X, Long Y, Zou F, Yan C, Zou W. Protective effects and active ingredients of Salvia miltiorrhiza Bunge extracts on airway responsiveness, inflammation and remodeling in mice with ovalbumin-induced allergic asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:168-177. [PMID: 30599896 DOI: 10.1016/j.phymed.2018.09.170] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/24/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Salvia miltiorrhiza Bunge (S. miltiorrhiza), a traditional Chinese medicine, has demonstrated antioxidant, anti-inflammatory, and antibacterial activities. However, its effects against asthma that shows chronic inflammation and oxidative damage remain unknown. PURPOSE To assess the effects of S. miltiorrhiza extracts on airway responsiveness, inflammation, and remodeling in ovalbumin (OVA)-induced asthmatic mice. METHODS Mice with ovalbumin (OVA)-induced allergic asthma were treated with S. miltiorrhiza extracts, and airway resistance (RL) to methacholine, inflammatory cell infiltration, Th1/Th2 cytokine levels, and airway remodeling were assessed. TGF-β1-induced BEAS-2B and MRC-5 cells were used to evaluate the effects of five S. miltiorrhiza compounds on epithelial-mesenchymal transition and fibrosis. RESULTS OVA-challenge resulted in remarkably increased RL, inflammatory cell infiltration, Th1/Th2 cytokine levels in BALF, goblet cell hyperplasia, collagen deposition, and airway wall thickening. Daily treatment with S. miltiorrhiza ethanolic (EE, 246 mg/kg) or water (WE, 156 mg/kg) extract significantly reduced OVA-induced airway inflammatory cell infiltration, Th1/Th2 cytokine amounts, and goblet cells hyperplasia. However, only WE remarkably decreased RL, collagen deposition, and airway wall thickening. Moreover, Chromatography showed that salvianic acid A and caffeic acid levels were much higher in WE than EE, while rosmarinic acid was slightly lower; salvianolic acid B and tanshinone IIA levels were much higher in EE than WE. Interestingly, caffeic acid and rosmarinic acid were more potent in reducing E-cadherin and vimentin levels in TGF-β1-induced BEAS-2B cells, and α-SMA and COL1A1 amounts in TGF-β1-induced MRC-5 cells. CONCLUSIONS Both S. miltiorrhiza WE and EE alleviate airway inflammation in mice with OVA-sensitized allergic asthma. S. miltiorrhiza WE is more potent in reducing responsiveness and airway remodeling.
Collapse
Affiliation(s)
- Junming Luo
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Li Zhang
- Hunan Provincal Maternal and Child Health Hospital, No.53 Xiangchun Road, Changsha 410008, People's Republic of China
| | - Xinyi Zhang
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Yingying Long
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Fang Zou
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China
| | - Chunsong Yan
- The Second Affiliated Hospital of Nanchang University, No. 1 Minde Avenue, Donghu Dist., Nanchang 330006, People's Republic of China..
| | - Wei Zou
- Hunan Provincal Maternal and Child Health Hospital, No.53 Xiangchun Road, Changsha 410008, People's Republic of China.
| |
Collapse
|
37
|
Kilic K, Sakat MS, Yildirim S, Kandemir FM, Gozeler MS, Dortbudak MB, Kucukler S. The amendatory effect of hesperidin and thymol in allergic rhinitis: an ovalbumin-induced rat model. Eur Arch Otorhinolaryngol 2018; 276:407-415. [DOI: 10.1007/s00405-018-5222-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023]
|
38
|
Mahmoodi M, Ayoobi F, Aghaei A, Rahmani M, Taghipour Z, Hosseini A, Jafarzadeh A, Sankian M. Beneficial effects of Thymus vulgaris extract in experimental autoimmune encephalomyelitis: Clinical, histological and cytokine alterations. Biomed Pharmacother 2018; 109:2100-2108. [PMID: 30551467 DOI: 10.1016/j.biopha.2018.08.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/26/2022] Open
Abstract
The imbalance between pro and anti-inflammatory cytokines plays an important role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Thymus vulgaris (thyme) as a traditional medicinal plant has been reported to exert antimicrobial, antioxidant, and anti-inflammatory effects. Therefore, this study evaluated the modulatory effects of Thymus vulgaris on the clinical symptoms, histopathological scores, and the production of some anti-inflammatory (TGF-β, IL-4, and IL-10) and pro-inflammatory (IFN-γ, IL-6 and IL-17) cytokines in EAE model. EAE was induced by MOG35-55 peptide and mice were treated intra-peritoneally (i.p) with phosphate buffered saline (PBS) in the control group or thyme extract (50 or 100 mg/kg of body weight, every other day) in thyme-treated EAE groups, from day 0 to +21 of post MOG immunization. Mice were sacrificed at day 22, and splenocytes were isolated and re-stimulated in vitro with MOG in order to measure the cytokine production and proliferation of re-stimulated cells by enzyme linked immunosorbent assay (ELISA) method and WST-1 reagent, respectively. The clinical symptoms and histopathological scores of the CNS were lower in thyme-treated than EAE control group. Furthermore, the production of IFN-γ and IL-6 by splenocytes was lower in thyme-treated EAE than in the control group. The production of IL-10 and TGF-β increased in mice treated with thyme extract compared to the control group. In this study, we showed for the first time that the immunomodulatory effects of Thymus vulgaris in EAE model. Thus, the possible therapeutic potential of thyme for treatment of MS could be considered in future research.
Collapse
Affiliation(s)
- Merat Mahmoodi
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ayoobi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azita Aghaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rahmani
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Taghipour
- Department of Anatomy, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdollah Jafarzadeh
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mojtaba Sankian
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
40
|
The Anti-Inflammatory Effects of Fermented Herbal Roots of Asparagus cochinchinensis in an Ovalbumin-Induced Asthma Model. J Clin Med 2018; 7:jcm7100377. [PMID: 30360392 PMCID: PMC6210729 DOI: 10.3390/jcm7100377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 10/17/2018] [Indexed: 01/22/2023] Open
Abstract
Introduction: Roots of Asparagus cochinchinensis, which have pharmacologically active ingredients, have received great attention because they show good therapeutic effects for various inflammatory diseases without specific toxicity. This study investigated the anti-asthmatic effects of a butanol extract of Asparagus cochinchinensis roots that had been fermented with Weissella cibaria (BAW) and its possible underlying cholinergic regulation. Methods: Alterations of the anti-asthmatic markers and the molecular response factors were measured in an ovalbumin (OVA)-induced asthma model after treatment with BAW. Results: Treatment with BAW decreased the intracellular reactive oxygen species (ROS) production in lipopolysaccharides (LPS) activated RAW264.7 cells. The results of the animal experiments revealed lower infiltration of inflammatory cells and bronchial thickness, and a significant reduction in the number of macrophages and eosinophils, concentration of OVA-specific IgE, and expression of Th2 cytokines in the OVA + BAW treated group. In addition, a significant recovery of goblet cell hyperplasia, MMP-9 expression, and the VEGF signaling pathway was observed upon airway remodeling in the OVA + BAW treated group. Furthermore, these responses of BAW were linked to recovery of acetylcholine esterase (AChE) activity and muscarinic acetylcholine receptor (mAChR) M3 downstream signaling pathway in epithelial cells, smooth muscle cells, and afferent sensory nerves of OVA + BAW-treated mice. Conclusion: Overall, these findings are the first to provide evidence that the therapeutic effects of BAW can prevent airway inflammation and remodeling through the recovery of cholinergic regulation in structural cells and inflammatory cells of the chronic asthma model.
Collapse
|
41
|
Dose dependence and durability of the therapeutic effects of Asparagus cochinchinensis fermented extract in an ovalbumin-challenged asthma model. Lab Anim Res 2018; 34:101-110. [PMID: 30310406 PMCID: PMC6170224 DOI: 10.5625/lar.2018.34.3.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
The butanol extract of Asparagus cochinchinensis roots fermented with Weissella cibaria (BAfW) significantly suppressed the inflammatory response induced by lipopolysaccharide (LPS) treatment in RAW264.7 cells. To investigate the dose dependence and durability of BAfW on the anti-asthma effects, alterations in key parameters were measured in ovalbumin (OVA)-challenged Balb/c mice treated with the different doses of BAfW at three different time points. The number of immune cells, OVA-specific IgE level, thickness of respiratory epithelium and mucus score decreased significantly in a dose-dependent manner in response to treatment with 125 to 500 mg/kg BAfW (P<0.05), although the highest level was detected in the 500 mg/kg treated group. Moreover, the decrease in these parameters was maintained from 24 to 48 h in the 500 mg/kg of BAfW treated group. At 72 h, the effects of BAfW on the number of immune cells, OVA-specific IgE level and thickness of respiratory epithelium partially disappeared. Overall, this study provides the first evidence that the anti-asthma effect of BAfW may reach the maximum level in OVA-challenged Balb/c mice treated with 500 mg/kg and that these effects can last for 48 h.
Collapse
|
42
|
Mohammadi A, Mahjoub S, Ghafarzadegan K, Nouri HR. Immunomodulatory effects of Thymol through modulation of redox status and trace element content in experimental model of asthma. Biomed Pharmacother 2018; 105:856-861. [PMID: 30021378 DOI: 10.1016/j.biopha.2018.05.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022] Open
Abstract
Oxidative stress plays a key role in the immunopathogenesis of asthma. The objective of this study was to investigate the thymol effects on oxidative parameters along with trace elements in asthma experimental model. The Balb/c mice were sensitized by intraperitoneal injection of ovalbumin and thymol (8, 16 and 32 mg/kg) and dexamethasone (DEX) (2 mg/kg) were orally administered to sensitized mice. Oxidative stress parameters including protein carbonyl content, malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and total antioxidant capacity (TAC) besides trace element levels were evaluated. The protein carbonyl content, MDA and 8-OHdG in treated mice with 32 mg/kg of thymol significantly decreased compared to asthmatic mice (P < 0.01). Also, TAC significantly increased (P < 0.001) as well as zinc and selenium levels while copper level decreased. 16 mg/kg of thymol reduced the protein carbonyl content, MDA and 8-OHdG compared to asthmatic mice (P < 0.05). In addition, thymol improved the most prominent inflammation characteristics of asthma. The obtained results suggest that thymol has a protective effect against oxidative stress and it was also able to partially restore the defective trace element levels in asthma. Based on our observations, thymol may be used for alternative / complementary therapy in asthma.
Collapse
Affiliation(s)
- Akbar Mohammadi
- Student Research Committee, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Soleiman Mahjoub
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran; Department of Clinical Biochemistry, School of Medicine, Babol University of MedicalSciences, Babol, I.R. Iran.
| | - Kamran Ghafarzadegan
- Research Center of Moayed Pathobiology Laboratory and Department of Razavi Hospital, Mashhad, I.R. Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran.
| |
Collapse
|
43
|
Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MDM, Segura-Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi-Rad J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res 2018; 32:1688-1706. [DOI: 10.1002/ptr.6109] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Student Research Committee; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Abhay Prakash Mishra
- Faculty of Pharmaceutical Chemistry; H. N. B. Garhwal University; Srinagar Garhwal 246174 India
| | - Ila Shukla
- Pharmacognosy and Ethnopharmacology Division; CSIR-National Botanical Research Institute; Lucknow 226001 India
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology; Zabol University of Medical Sciences; Zabol 61663-335 Iran
| | - María del Mar Contreras
- Departamento de Ingeniería Química, Ambiental y de los Materiales; Universidad de Jaén; Jaén Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n Granada 18071 Spain
- Research and Development Functional Food Centre (CIDAF); Bioregión Building, Health Science Technological Park; Avenida del Conocimiento s /n Granada Spain
| | - Hannane Fathi
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Nafiseh Nasri Nasrabadi
- Pharmaceutical Sciences Research Centre, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex; The University of Winnipeg; 599 Portage Avenue Winnipeg MB R3B 2G3 Canada
| |
Collapse
|
44
|
Yao L, Hou G, Wang L, Zuo XS, Liu Z. Protective effects of thymol on LPS-induced acute lung injury in mice. Microb Pathog 2018; 116:8-12. [DOI: 10.1016/j.micpath.2017.12.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023]
|
45
|
Wan L, Meng D, Wang H, Wan S, Jiang S, Huang S, Wei L, Yu P. Preventive and Therapeutic Effects of Thymol in a Lipopolysaccharide-Induced Acute Lung Injury Mice Model. Inflammation 2018; 41:183-192. [PMID: 29019091 DOI: 10.1007/s10753-017-0676-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome which causes a high mortality rate worldwide. In traditional medicine, lots of aromatic plants-such as some Thymus species-are used for treatment of various lung diseases including pertussis, bronchitis, and asthma. Thymol, one of the primary active constituent derived from Thymus vulgaris (thyme), has been reported to exhibit potent anti-microbial, anti-oxidant, and anti-inflammatory activities in vivo and in vitro. The present study aims to investigate the protective effects of thymol in lipopolysaccharide (LPS)-induced lung injury mice model. In LPS-challenged mice, treatment with thymol (100 mg/kg) before or after LPS challenge significantly improved pathological changes in lung tissues. Thymol also inhibited the LPS-induced inflammatory cells influx, TNF-α and IL-6 releases, and protein concentration in bronchoalveolar lavage fluid (BALF). Additionally, thymol markedly inhibited LPS-induced elevation of MDA and MPO levels, as well as reduction of SOD activity. Further study demonstrated that thymol effectively inhibited the NF-κB activation in the lung. Taken together, these results suggested that thymol might be useful in the therapy of acute lung injury.
Collapse
Affiliation(s)
- Limei Wan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Dongmei Meng
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - Shunjun Jiang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shanshan Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
46
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
47
|
Sung JE, Lee HA, Kim JE, Yun WB, An BS, Yang SY, Kim DS, Lee CY, Lee HS, Bae CJ, Hwang DY. Saponin-enriched extract of Asparagus cochinchinensis alleviates airway inflammation and remodeling in ovalbumin-induced asthma model. Int J Mol Med 2017; 40:1365-1376. [PMID: 28949387 PMCID: PMC5627880 DOI: 10.3892/ijmm.2017.3147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/04/2017] [Indexed: 01/14/2023] Open
Abstract
Asthma is a chronic inflammatory disease characterized by T-lymphocyte and eosinophil infiltration, mucus overproduction and airway hyper-responsiveness. The present study examined the therapeutic effects and action mechanism of a saponin-enriched extract of Asparagus cochinchinensis (SEAC) on airway inflammation and remodeling in an ovalbumin (OVA)-induced asthma model. To accomplish this, alterations of the nitric oxide (NO) level, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels, as well as variations in immune cell numbers, immunoglobulin E (IgE) concentration, histopathological structure and inflammatory cytokine levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells or an OVA-induced mouse model of asthma treated with SEAC. The concentration of NO and mRNA levels of COX-2 and iNOS were significantly decreased in the SEAC + LPS-treated RAW264.7 cells compared with the vehicle + LPS-treated RAW264.7 cells. Additionally, in the OVA-induced asthma model, the number of immune cells in the bronchoalveolar lavage fluid, the concentration of OVA-specific IgE, the infiltration of inflammatory cells, the bronchial thickness and the levels of the inflammatory mediators interleukin-4 (IL-4), IL-13 and COX-2 were significantly lower in the OVA + SEAC-treated group compared with the OVA + vehicle-treated group. In addition, a significant reduction in goblet cell hyperplasia, peribronchiolar collagen layer thickness and VEGF expression for airway remodeling was detected in the OVA + SEAC-treated group compared with the OVA + vehicle-treated group. These findings indicate that SEAC is a suppressor of airway inflammation and remodeling, and may therefore be useful as an anti-inflammatory drug for the treatment of asthma.
Collapse
Affiliation(s)
- Ji-Eun Sung
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Hyun-Ah Lee
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji-Eun Kim
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Woo-Bin Yun
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Seung-Yun Yang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Dong-Seob Kim
- Department of Food Science and Technlogy, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | | | - Hee-Seob Lee
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Joon Bae
- Biologics Division, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
48
|
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol 2017; 8:380. [PMID: 28694777 PMCID: PMC5483461 DOI: 10.3389/fphar.2017.00380] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hasan Al Taee
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
49
|
Zhang W, Lu X, Wang W, Ding Z, Fu Y, Zhou X, Zhang N, Cao Y. Inhibitory Effects of Emodin, Thymol, and Astragalin on Leptospira interrogans-Induced Inflammatory Response in the Uterine and Endometrium Epithelial Cells of Mice. Inflammation 2017; 40:666-675. [PMID: 28210912 DOI: 10.1007/s10753-017-0513-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leptospirosis is a systemic infection that causes, among others, acute kidney injury, acute liver disease, muscle pain, vasculitis, bleeding disorders, and reproductive loss. In an effort to reduce uterine inflammatory responses induced by Leptospira, we evaluated the anti-inflammation effects of emodin, thymol, and astragalin in a mouse model. Our results showed that treatment with emodin, thymol, and astragalin alleviated uterine inflammation induced by leptospira infection via suppression of pro-inflammatory cytokine expression and prevented tissue damage. Furthermore, we used primary endometrium epithelial cells to show that treatment with these chemicals inhibited the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 using enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. Western blot results showed that these chemicals suppressed the phosphorylation of p38, p65, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. These results indicate that treatment with emodin, thymol, and astragalin suppressed inflammatory response by regulating NF-κB and mitogen-activated protein kinase signaling pathways in leptospira-infected uterine and endometrium epithelial cells of mice.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Wei Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Zhuang Ding
- Department of Infectious Disease, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiaofei Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China. .,Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
50
|
Lee AR, Chun JM, Lee AY, Kim HS, Gu GJ, Kwon BI. Reduced allergic lung inflammation by root extracts from two species of Peucedanum through inhibition of Th2 cell activation. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:75-83. [PMID: 27965051 DOI: 10.1016/j.jep.2016.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/16/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL EVIDENCE Peucedani Radix (PR), the root of Peucedanum praeruptorum Dunn (PPD) or Peucedanum decursivum (Miq.) Maxim. (PDM), has long been used in Korea to eliminate sputum, relieve cough, and reduce bronchus contraction. Furthermore, these therapeutic strategies are recognized as general and effective methods in western medicine as well as traditional Korean medicine. AIM OF THE STUDY To determine and compare the anti-inflammatory effects of PPD extracts (PPDE) and PDM extracts (PDME) on allergic lung inflammation, using in vivo OVA-induced airway inflammation in mice and in vitro primary cell culture systems. MATERIALS AND METHODS Eight-week-old female C57BL/6 mice were placed into four groups (n=4 per group): saline control, OVA-induced allergic lung inflammation with vehicle, or PPDE (200mg/kg) or PDME (200mg/kg) treatment. PR extracts (PRE) were administered from 1 week before 1st OVA sensitization to the day before sacrifice. Mice were sacrificed 18h after last OVA intra-nasal challenge followed by histological and biochemical analyses. RESULTS Inflammatory phenotypes were alleviated with oral administration of PRE. PRE treatment decreased mucus production in airway epithelium, inflammatory cell number, eosinophilia, type 2 cytokines, and histamine in bronchoalveolar lavage fluid (BALF). Mice with PRE administration showed diminished activated CD4 T cell (CD4+CD25+ cell) and GATA-3 level in the lung. In addition, PRE treatment reduced Th2 cell activation in vitro, using Th2 polarization system. CONCLUSION Our findings indicate that the anti-inflammatory effects of PRE arise from reduced Th2 cell activation and validate the clinical use of PR in traditional Korean medicine.
Collapse
Affiliation(s)
- A-Reum Lee
- K-herb Research Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - Jin Mi Chun
- K-herb Research Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - A Yeong Lee
- K-herb Research Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - Hyo Seon Kim
- K-herb Research Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - Gyo Jeong Gu
- K-herb Research Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - Bo-In Kwon
- K-herb Research Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea.
| |
Collapse
|