1
|
Zhao X, Zheng L, Shi Q, Lin Y, Zeng Z, Song C, Jin S, Xiao L. Comparative pharmacognosy and secondary metabolite analysis of Balanophorae herbs from different sources. Hereditas 2024; 161:19. [PMID: 38907290 PMCID: PMC11191205 DOI: 10.1186/s41065-024-00323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
The Balanophorae are not only traditional Chinese herbal medicines but also functional foods with diverse sources. This study aimed to distinguish pharmacognostic characteristics and secondary metabolites among different species of Balanophorae. Eight species of Balanophorae herbs were harvested, including 21 batches with 209 samples. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze secondary metabolites of Balanophorae from 21 sources. Targeted metabolomic analysis was performed to compare differences among the groups. Rhopalocnemis phalloide and B. indica can be identified by their pharmacognostic characteristics. Then, 41 secondary metabolites were identified or characterized in the mixed extracts of the 209 samples, mainly phenolic acids, flavonoids, and their derivatives. The distribution of these secondary metabolites revealed apparent differences among different species. In addition, targeted metabolomic analysis suggested that the secondary metabolite profiles of seven species of Balanophorae showed noticeable differences, and differences were also observed among different growing regions. Finally, five important metabolic markers were screened to successfully distinguish B. laxiflora, B. harlandii, and B. polyandra, including three phenolic acids and two flavonoids. This is the first study to systematically compare both the morphology and secondary metabolites among different sources of Balanophorae, which could provide effective information for identifying diverse species.
Collapse
Affiliation(s)
- Xueyan Zhao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Lihui Zheng
- Hubei Institute for Drug Control, Hubei Engineering Research Center for Drug Quality Control, NMPA Key Laboratory of Quality Control of Chinese Medicine, Wuhan, Hubei, 430075, China
| | - Qingxin Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Yuqi Lin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Chengwu Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China
| | - Shuna Jin
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, HuangJiaHu West Road 16, Wuhan, Hubei, 430065, China.
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China.
| | - Ling Xiao
- Hubei Institute for Drug Control, Hubei Engineering Research Center for Drug Quality Control, NMPA Key Laboratory of Quality Control of Chinese Medicine, Wuhan, Hubei, 430075, China.
| |
Collapse
|
2
|
Zhong W, Chen J, He Y, Xiao L, Yuan C. The polysaccharides from Balanophora polyandra enhanced neuronal autophagy to ameliorate brain function decline in natural aging mice through the PI3K/AKT/mTOR signaling pathway. Neuroreport 2024; 35:509-517. [PMID: 38597274 DOI: 10.1097/wnr.0000000000002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The decline of aging brain neurons is the main cause of various neurodegenerative disease. This study aimed to examine the impact of Balanophora polyandra polysaccharides (BPP) against aging related neuronal deterioration. C57BL/6 mice were fed with regular feed for 27 months to establish a natural aging mouse model. From 3 months of age, mice in the drug-treated group were respectively fed with feed containing 0.05 or 0.18% BPP until 27 months of age. The effects of BPP treatment on the pathological changes of neurons in mice brain were evaluated, as well as autophagy-related and signaling pathway proteins. BPP treatment had a notable positive impact on the pathological injury of cortical and hippocampal neurons, alleviated neuronal degeneration, and enhanced the staining of Nissl bodies in natural aging mice. Furthermore, BPP upregulated autophagy-related proteins LC3 II/I, Parkin, and PINK1 in the cortex and hippocampus of aging mice, and significantly decreased the expression of p62, PI3K, p-protein Kinase B (AKT), and p-mTOR. Immunofluorescence results showed a reduction in the brightness of LC3, which mainly coexpressed with NeuN in natural aging mice brain, and increased LC3-positive neurons were observed after BPP treatment. Collectively, BPP treatment enhanced neuronal autophagy to improve brain functional degradation through the PI3K/AKT/mTOR signaling in natural aging mice. These finding suggested that BPP has potential to mitigate or delay the neurodegeneration associated with aging and further investigation was needed to validate its efficacy in elderly populations.
Collapse
Affiliation(s)
- Wenyan Zhong
- College of Basic Medical Sciences
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, YiChang, China
| | | | - Yumin He
- College of Basic Medical Sciences
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, YiChang, China
| | - Li Xiao
- College of Basic Medical Sciences
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, YiChang, China
| | - Chengfu Yuan
- College of Basic Medical Sciences
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, YiChang, China
| |
Collapse
|
3
|
Xia Z, Chen YZ, Xu CB, Zhu CG, Lei XQ, Guo QL, Shi JG. Diverse neolignans and lignans from an aqueous extract of the Angelica sinensis root head. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:919-940. [PMID: 36748290 DOI: 10.1080/10286020.2023.2173181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Neolignans and lignans with diverse new chemical structures, including eleven pairs of separated chiral enantiomers [(+)-/(-)-1-(+)-/(-)-5, (+)-/(-)-8, (+)-/(-)-10, and (+)-/(-)-12-(+)-/(-)-15], two achiral compounds (6 and 9), and an unseparated racemate [(±)-11], together with a new natural product (7) and 21 known derivatives, were isolated from an aqueous extract of the Angelica sinensis root head (guitou). Among the chiral isolates, (+)-/(-)-13 and (+)-/(-)-15 were scalemic pairs with enantiomeric ratios of around 3:1 and 1.5:1, respectively, while others were enantiomeric equivalent pairs. This indicates that the diverse neolignans in A. sinensis are biosynthesized via different pathways with varying degrees of stereo-controlled manners.
Collapse
Affiliation(s)
- Zhao Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - You-Zhe Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Bo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Qiang Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qing-Lan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Le TT, Ha MT, Cao TQ, Kim JA, Choi JS, Min BS. 1,5-Anhydro-d-glucitol derivative and galloylated flavonoids isolated from the leaves of Acer ginnala Maxim. as dual inhibitors of PTP1B and α-glucosidase enzymes: In vitro and in silico studies. PHYTOCHEMISTRY 2023:113769. [PMID: 37343738 DOI: 10.1016/j.phytochem.2023.113769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Four undescribed compounds (two 1,5-anhydro-d-glucitol derivatives and two galloyl derivatives) and fourteen known compounds were isolated and structurally identified from leaves of Acer ginnala Maxim. (Amur maple). Structures and absolute configurations of the four undescribed compounds were determined using extensive analysis of NMR spectroscopic, HRESI-MS, modified Mosher ester method, and comparison with spectroscopic data of known compounds. Bioactivity evaluation revealed that the isolated 1,5-anhydro-d-glucitol derivative, galloylated flavonol rhamnosides, and galloylated flavanols had inhibitory effects on both protein tyrosine phosphatase-1B (PTP1B, IC50 values ranging of 3.46-12.65 μM) and α-glucosidase (IC50 values ranging of 0.88-6.06 μM) in comparison with a positive control for PTP1B (ursolic acid, IC50 = 5.10 μM) or α-glucosidase (acarbose, IC50 = 141.62 μM). A combination of enzyme kinetic analysis and molecular docking provided additional evidence in favor of their inhibitory activities and mechanism. These data demonstrate that A. ginnala Maxim. together with its constituents are promising sources of potent candidates for developing novel anti-diabetic medications.
Collapse
Affiliation(s)
- Thi Thanh Le
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea.
| | - Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Thao Quyen Cao
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea.
| |
Collapse
|
5
|
Chen X, Cao YG, Ren YJ, Liu YL, Fan XL, He C, Li XD, Ma XY, Zheng XK, Feng WS. Ionones and lignans from the fresh roots of Rehmannia glutinosa. PHYTOCHEMISTRY 2022; 203:113423. [PMID: 36055423 DOI: 10.1016/j.phytochem.2022.113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Nine undescribed compounds, together with 21 known components, were isolated from the fresh roots of Rehmannia glutinosa. Their structures were elucidated based on spectroscopic data analysis, and the absolute configurations of undescribed compounds were determined by comparison of their calculated and experimental electronic circular dichroic (ECD) spectra and interpretation of their optical rotation data. The α-glucosidase inhibitory effects of the isolated compounds were investigated and all of them exhibited slightly inhibitory activities.
Collapse
Affiliation(s)
- Xu Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China
| | - Ying-Jie Ren
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China
| | - Yan-Ling Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China
| | - Xi-Ling Fan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China
| | - Chen He
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China
| | - Xiang-da Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China
| | - Xin-Yi Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China.
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Wyllie JA, McKay MV, Barrow AS, Soares da Costa TP. Biosynthesis of uridine diphosphate N-Acetylglucosamine: An underexploited pathway in the search for novel antibiotics? IUBMB Life 2022; 74:1232-1252. [PMID: 35880704 PMCID: PMC10087520 DOI: 10.1002/iub.2664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Although the prevalence of antibiotic resistance is increasing at an alarming rate, there are a dwindling number of effective antibiotics available. Thus, the development of novel antibacterial agents should be of utmost importance. Peptidoglycan biosynthesis has been and is still an attractive source for antibiotic targets; however, there are several components that remain underexploited. In this review, we examine the enzymes involved in the biosynthesis of one such component, UDP-N-acetylglucosamine, an essential building block and precursor of bacterial peptidoglycan. Furthermore, given the presence of a similar biosynthesis pathway in eukaryotes, we discuss the current knowledge on the differences and similarities between the bacterial and eukaryotic enzymes. Finally, this review also summarises the recent advances made in the development of inhibitors targeting the bacterial enzymes.
Collapse
Affiliation(s)
- Jessica A Wyllie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Mirrin V McKay
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Xu X, Tao R, Li K, Wang W. An UHPLC/LC-MS illustrated the dynamic profiling of balanophorin B, gallic acid, and 4-hydroxycinnamic acid in rat as 3 molecular entities from Balanophora simaoensis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1190:123103. [PMID: 35021136 DOI: 10.1016/j.jchromb.2022.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023]
Abstract
An UHPLC/LC-MS was founded to detect balanophorin B (B), gallic acid (GA), 4-hydroxycinnamic acid (HC), and their in vivo profiling in rats, after oral administration of the ethanol extract of Balanophora simaoensis S. Y. Chang et Tam. The in vivo dynamic existence of 3 molecular entities in rats and the multistep biotransformation of GA were elucidated by their sensitive mass spectrometry response after efficient UHPLC and/or HPLC separation, through analyzing the bio-samples of rat plasma, bile, liver, kidneys, and excreta. The method was validated with satisfactory calibration curves having correlation coefficients r from 0.996 to 0.999 for concentration scaled from 0.100 nM to 0.100 μM, internal standard normalized matrix factors ranged from 0.923 to 0.993, sextuplicate recoveries valued from 95.0% to 103.6%, as well as accuracy and precision varied from 95.6% to 103.7%. The content of B, GA, and HC in the whole herb was of 4.66, 63.5, and 10.4 μmol/kg in dry weight, respectively. The Cmax for B, GA, and HC in rat systemic circulation was of 76.0 nM, 2.30 μM, and 51.0 μM, with tmax at 3, 2, and 2 h, respectively. B and GA stayed in rat liver over 4 hs to present a material base for the pharmacology and pharmacodynamics of the whole herb. The biotransformation of GA indicated a complicated scheme in rats. As a final metabolite from GA with total biotransformation conversion over 20%, 4-hydroxybenzaldehyde resourced from two steps of dehydroxylation and one step of reduction of GA, but not concerned with HC.
Collapse
Affiliation(s)
- Xiangting Xu
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chenggong, Kunming, Yunnan 650500, PR China
| | - Rujun Tao
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chenggong, Kunming, Yunnan 650500, PR China; Department of Pharmacy, Xuanwei Second Municipal People's Hospital, Xuanwei, Yunnan 655400, PR China
| | - Kexian Li
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chenggong, Kunming, Yunnan 650500, PR China
| | - Wei Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chenggong, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
8
|
Nina N, Theoduloz C, Giménez A, Schmeda-Hirschmann G. Phenolics from the Bolivian highlands food plant Ombrophytum subterraneum (Aspl.) B. Hansen (Balanophoraceae): Antioxidant and α-glucosidase inhibitory activity. Food Res Int 2020; 137:109382. [PMID: 33233084 DOI: 10.1016/j.foodres.2020.109382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/23/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
The Balanophoraceae Ombrophytum subterraneum is an endemic highland food plant occurring in Bolivia, northern Argentina and Chile. The upper part of this parasitic plant is eaten fresh. The aim of this work was to characterize the compounds occurring in the edible part and to assess any differences between the inflorescence and tuber. Ethanol extracts of the different plant parts were analyzed for antioxidant activity by the ORAC, TEAC, FRAP, CUPRAC and DPPH methods as well as for the effect on enzymes related to metabolic syndrome (α-amylase, α-glucosidase and pancreatic lipase). The main constituents were isolated by a combination of gel permeation in Sephadex LH-20 and countercurrent chromatography (CCC). Five compounds were isolated and fully identified by spectroscopic and spectrometric means. The new 3',5,5',7-tetrahydroxyflavanone 7-O-β-D-1 → 6 diglucoside was isolated for the first time. HPLC-ESI-MS/MS analysis allowed the identification of 19 compounds, including flavanones, flavanols, flavonols, dehydroflavonols and lignans, mainly as glycosides. A strong inhibition towards α-glucosidase was observed for the edible parts (IC50: 1.46 µg/mL) as well as for the tuber and inflorescence (IC50: 1.56 µg/mL and 0.87 µg/mL, respectively). A significant correlation was established between the total phenolic and the antioxidant capacity of the extracts as well as with the content of the new flavanone diglucoside. This is the first comprehensive report on the naturally occurring antioxidants and enzyme inhibitors from this native highland food resource.
Collapse
Affiliation(s)
- Nélida Nina
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, 3460000 Talca, Chile
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, 3460000 Talca, Chile
| | - Alberto Giménez
- Instituto de Investigaciones Fármaco-Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, 3460000 Talca, Chile.
| |
Collapse
|
9
|
Sun X, Zhang L, Cao Y, Li J, Atanasov AG, Huang L. Anti-neuraminidase activity of chemical constituents of Balanophora involucrata. Biomed Chromatogr 2020; 34:e4949. [PMID: 32678491 DOI: 10.1002/bmc.4949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Balanophora involucrata J. D. Hooker has been known to possess potential anti-inflammatory and antibacterial activities; however, its antiviral activity has not been evaluated so far. In order to find new neuraminidase inhibitors (NAIs), the neuraminidase (NA) inhibition activity of different B. involucrata extracts was evaluated. In this study, an in vitro NA inhibition assay was performed to identify which extract of B. involucrata exhibits (maximal) inhibitory activity against NA. Ultra high performance liquid chromatography/quadrupole time-of-flight-tandem mass spectroscopy (MS/MS) and molecular docking techniques were used to identify the specific compounds responsible for the anti-influenza activity of the extract, and to explore the potential natural NAIs. The ethyl acetate extract of B. involucrata exhibited significant inhibitory activity against NA with 50% inhibitory concentration (IC50 ) value of 159.5 μg/mL. Twenty compounds were identified according to the MS/MS spectra; among them two compounds (quercitrin and phloridzin) showed obvious inhibitory activity against NA, with IC50 of 311.76 and 347.32 μmol/L, respectively. This study suggested that B. involucrata can be a potential natural source of NAIs and may be useful in the fight against ferocious influenza viruses.
Collapse
Affiliation(s)
- Xiao Sun
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Zhang
- College of Science, Sichuan Agriculture University, Ya'an, China
| | - Yu Cao
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jinhua Li
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Atanas G Atanasov
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Linfang Huang
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Sun T, Zhang H, Dong Z, Liu Z, Zheng M. Ultrasonic-promoted enzymatic preparation, identification and multi-active studies of nature-identical phenolic acid glycerol derivatives. RSC Adv 2020; 10:11139-11147. [PMID: 35495308 PMCID: PMC9050460 DOI: 10.1039/c9ra09830e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
Phenolic acid glycerols (PAGs) are a group of rare phytochemicals found from potato periderm, which show great potential in the food, cosmetic and pharmaceutical industries. In this study, seven PAGs were enzymatically synthesized via transesterification of ethyl phenates (EPs) with glycerol by ultrasonic promotion. The conversions of 88.1–98.5% could be obtained in 1–9 h. Compared with the conventional stirring methods, the catalytic efficiency was significantly increased 11.0–44.0 folds by ultrasound assistance. The lipid peroxidation inhibition activity increased 8.1-fold and 14.4-fold compared to the parent phenolic acids (PAs). Furthermore, caffeoyl glycerol and feruloyl glycerol exhibited excellent antimicrobial activity against Escherichia coli compared to the corresponding PAs with minimum inhibitory concentration (MIC) decreasing 4–16-fold. The PAGs can also absorb a much wider and higher amount of the harmful UV-B rays than the corresponding PAs. The present strategy for facile synthesis of multifunctional PAGs paves the way for the development and application of natural phytochemicals and novel ingredients. A group of rare nature-identical phenolic acid glycerol derivatives was enzymatically prepared and identified, and showed much better antioxidant and antimicrobial activities than the corresponding phenolic acids.![]()
Collapse
Affiliation(s)
- Teng Sun
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Oilseeds Processing
- Ministry of Agriculture
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory
| | - Haiping Zhang
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Oilseeds Processing
- Ministry of Agriculture
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory
| | - Zhe Dong
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Oilseeds Processing
- Ministry of Agriculture
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory
| | - Zengshe Liu
- Bio-Oils Research Unit
- United States Department of Agriculture
- Agricultural Research Service
- National Center for Agricultural Utilization Research
- Peoria
| | - Mingming Zheng
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Oilseeds Processing
- Ministry of Agriculture
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory
| |
Collapse
|
11
|
Zhou J, Du SY, Fang ZY, Zeng Z. New butenolides with anti-inflammatory activity from Balanophora fungosa. Nat Prod Res 2019; 35:1825-1829. [PMID: 31359786 DOI: 10.1080/14786419.2019.1645663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two new butenolides, balanolides A (1) and B (1), were isolated from the aerial parts of the parasitic plant Balanophora fungosa. Their structures were established by comprehensive spectroscopic analysis and quantum chemical ECD calculation. The new butenolides were evaluated for their inhibitory effects against nitric oxide (NO) production in LPS-induced RAW 264.7 macrophage cells. Compounds 1 and 2 displayed moderate anti-inflammatory activity with IC50values of 11.8 and 12.9 μM, respectively.
Collapse
Affiliation(s)
- Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Si-Yu Du
- Key laboratory of Natural Pharmaceutical Chemistry, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhong-Ying Fang
- Key laboratory of Natural Pharmaceutical Chemistry, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi Zeng
- Reproductive Medicine Center, The Sixth affiliated hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Huu Tai B, Xuan Nhiem N, Hai Yen P, Hong Quang T, Thi Cuc N, Thi Trang D, Van Doan V, Thuy Hang DT, Van Minh C, Van Kiem P. Three new muurolane-type sesquiterpene glycosides from the whole plants of Balanophora fungosa subsp. indica. Nat Prod Res 2019; 34:2964-2970. [DOI: 10.1080/14786419.2019.1602831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Pham Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Thi Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Do Thi Trang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Vu Van Doan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Dan Thi Thuy Hang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
13
|
Fang L, He TT, Wang X, Zhou J. Isolation and Purification of Galloyl, Caffeoyl, and Hexahydroxydiphenoyl Esters of Glucoses from Balanophora simaoensis by High-Speed Countercurrent Chromatography and Their Antioxidant Activities In Vitro. Molecules 2018; 23:molecules23082027. [PMID: 30110905 PMCID: PMC6222705 DOI: 10.3390/molecules23082027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022] Open
Abstract
High-speed counter-current chromatography was used to separate and purify galloyl, caffeoyl, and hexahydroxydiphenoyl esters of glucoses from the aerial parts of the parasitic plant Balanophora simaoensis for the first time using n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v) as the optimum solvent system. Accordingly, 1-O-(E)-caffeoyl-3-O-galloyl-β-d-glucopyranose (I, 12.5 mg), 1-O-(E)-caffeoyl-3-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-β-d-glucopyranose (II, 27.2 mg), and 1-O-(E)-caffeoyl-4,6-(S)-hexahydroxydiphenoyl-β-d-glucopyranose (III, 52.8 mg) with 98.0%, 98.5%, and 98.7% purities, respectively, were purified from 210 mg crude extract of B. simaoensis in a one-step separation. The structures of the glucose esters were identified by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectra (NMR). Their antioxidant activities were evaluated by measuring their inhibition activity on liver microsomal lipid peroxidation induced by the Fe2+-Cys system in vitro. Compounds I⁻III showed significant antioxidant activities with IC50 values ranging from 2.51 to 6.68 μm, respectively.
Collapse
Affiliation(s)
- Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Tian-Tian He
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Xiao Wang
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|