1
|
Owade JO, Bergholz TM, Mitchell J. A review of conditions influencing fate of Shiga toxin-producing Escherichia coli O157:H7 in leafy greens. Compr Rev Food Sci Food Saf 2024; 23:e70013. [PMID: 39230391 DOI: 10.1111/1541-4337.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
The accuracy of predictive microbial models used in quantitative microbial risk assessment (QMRA) relies on the relevancy of conditions influencing growth or inactivation. The continued use of log-linear models in studies remains widespread, despite evidence that they fail to accurately account for biphasic kinetics or include parameters to account for the effect of environmental conditions within the model equation. Although many experimental studies detail conditions of interest, studies that do not do so lead to uncertainty in QMRA modeling because the applicability of the predictive microbial models to the conditions in the risk scenarios is questionable or must be extrapolated. The current study systematically reviewed 65 articles that provided quantitative data and documented the conditions influencing the inactivation or growth of Shiga toxin-producing Escherichia coli (STEC) O157:H7 in leafy greens. The conditions were identified and categorized as environmental, biological, chemical, and/or processing. Our study found that temperature (n = 37 studies) and sanitizing and washing procedures (n = 12 studies) were the most studied conditions in the farm-to-table continuum of leafy greens. In addition, relative humidity was also established to affect growth and inactivation in more than one stage in the continuum. This study proposes the evaluation of the interactive effects of multiple conditions in processing and storage stages from controlled experiments as they relate to the fate of STEC O157:H7 in leafy greens for future quantitative analysis.
Collapse
Affiliation(s)
- Joshua Ombaka Owade
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Teresa M Bergholz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Owade JO, Bergholz TM, Mitchell J. A meta-analysis of factors influencing the inactivation of Shiga toxin-producing Escherichia coli O157:H7 in leafy greens. Compr Rev Food Sci Food Saf 2024; 23:e70012. [PMID: 39230390 DOI: 10.1111/1541-4337.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Recent advancements in modeling suggest that microbial inactivation in leafy greens follows a nonlinear pattern, rather than the simple first-order kinetics. In this study, we evaluated 17 inactivation models commonly used to describe microbial decline and established the conditions that govern microbial survival on leafy greens. Through a systematic review of 65 articles, we extracted 530 datasets to model the fate of Shiga toxin-producing Escherichia coli O157:H7 on leafy greens. Various factor analysis methods were employed to evaluate the impact of identified conditions on survival metrics. A two-parameter model (jm2) provided the best fit to most of both natural and antimicrobial-induced persistence datasets, whereas the one-parameter exponential model provided the best fit to less than 20% of the datasets. The jm2 model (adjusted R2 = .89) also outperformed the exponential model (adjusted R2 = .58) in fitting the pooled microbial survival data. In the context of survival metrics, the model averaging approach generated higher values than the exponential model for >4 log reduction times (LRTs), suggesting that the exponential model may be overpredicting inactivation at later time points. The random forest technique revealed that temperature and inoculum size were common factors determining inactivation in both natural and antimicrobial-induced die-offs.. The findings show the limitations of relying on the first-order survival metric of 1 LRT and considering nonlinear inactivation in produce safety decision-making.
Collapse
Affiliation(s)
- Joshua Ombaka Owade
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Teresa M Bergholz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
In-package cold plasma treatment for microbial inactivation in plastic-pouch packaged steamed rice cakes. Int J Food Microbiol 2023; 389:110108. [PMID: 36736172 DOI: 10.1016/j.ijfoodmicro.2023.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
In-package atmospheric cold plasma (ICP) treatment was investigated as a method to inactivate microorganisms in Korean steamed rice cakes (SRCs) packaged in plastic pouches. The effect against Escherichia coli O157:H7 increased with increasing ICP treatment power and time and using nylon-containing pouches. Moreover, E. coli O157:H7 growth was effectively inhibited at 4 and 25 °C when SRCs were in a pouch filled with an O2-CO2 (70 % and 30 %) gas. Under optimal treatment power (30 W), treatment time (4 min), and headspace-to-SRC volume ratio (7:1) conditions, ICP effectively inactivated E. coli O157:H7, Bacillus cereus spores, Penicillium chrysogenum, and indigenous aerobic bacteria, as well as yeast and molds in SRCs packaged with air in the nylon/low density polyethylene pouch by 2.2 ± 0.2 log CFU/g, 1.4 ± 0.2 log spores/g, 2.2 ± 0.3 log spores/g, 1.1 ± 0.2 log CFU/g, and 1.0 ± 0.1 log CFU/g, respectively. Furthermore, post-treatment storage was effective in preventing the growth of E. coli O157:H7 in SRCs at 4 °C and 25 °C when the pouch was filled with N2-CO2 (50 % and 50 %) or O2-CO2 (70 % and 30 %). Collectively, these findings indicate that ICP treatment effectively decontaminates SRCs and represents a potential non-thermal microbial decontamination technology for SRCs in pouch packaging.
Collapse
|
4
|
Application of chlorine dioxide-based hurdle technology to improve microbial food safety–A review. Int J Food Microbiol 2022; 379:109848. [DOI: 10.1016/j.ijfoodmicro.2022.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
|
5
|
Deblais L, Miller SA, Rajashekara G. Impact of Plant Pathogen Infection on Salmonella enterica subsp. enterica Serotype Typhimurium Persistence in Tomato Plants. J Food Prot 2021; 84:563-571. [PMID: 33180909 DOI: 10.4315/jfp-20-291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT We investigated whether the co-occurrence of phytopathogens (Clavibacter michiganensis subsp. michiganensis [Cmm] and Xanthomonas gardneri [Xg]) frequently encountered in tomato production and Salmonella enterica subsp. enterica serotype Typhimurium (strain JSG626) affects the persistence of these pathogens in tomato plant tissues during the early stages of plant growth. Cmm increased the recovery of Salmonella Typhimurium (up to 1.8 log CFU per plant at 21 days postinoculation [DPI]) from coinoculated tomato plants compared with plants inoculated with Salmonella Typhimurium alone (P < 0.05). Xg had no effect on Salmonella Typhimurium persistence in the plants. Increased persistence of Salmonella Typhimurium was also observed when it was inoculated 7 days after Cmm inoculation of the same plant (P < 0.05). In contrast, Salmonella Typhimurium reduced the population of both Cmm and Xg (up to 1.5 log CFU per plant at 21 DPI; P < 0.05) in coinoculated plants compared with plants inoculated with Cmm or Xg alone. The Xg population increased (1.16 log CFU per plant at 21 DPI; P < 0.05) when Salmonella Typhimurium was inoculated 7 days after Xg inoculation compared with plants inoculated with Xg alone. Our findings indicate that the type of phytopathogen present in the phyllosphere and inoculation time influence the persistence of Salmonella Typhimurium JSG626 and its interactions with phytopathogens cocolonized in tomato plants. Salmonella reduced the phytopathogen load in plant tissues, and Cmm enhanced the recovery of Salmonella from the coinoculated plant tissues. However, further investigations are needed to understand the mechanisms behind these interactions. HIGHLIGHTS
Collapse
Affiliation(s)
- Loïc Deblais
- Department of Veterinary Preventive Medicine, Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.,Department of Plant Pathology, Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.,(ORCID: https://orcid.org/0000-0002-6290-3956 [L.D.])
| | - Sally A Miller
- Department of Plant Pathology, Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | - Gireesh Rajashekara
- Department of Veterinary Preventive Medicine, Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| |
Collapse
|
6
|
Malka SK, Park MH. Fresh Produce Safety and Quality: Chlorine Dioxide's Role. FRONTIERS IN PLANT SCIENCE 2021; 12:775629. [PMID: 35087550 PMCID: PMC8787301 DOI: 10.3389/fpls.2021.775629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 05/03/2023]
Abstract
Maintaining microbial safety and quality of fresh fruits and vegetables are a global concern. Harmful microbes can contaminate fresh produce at any stage from farm to fork. Microbial contamination can affect the quality and shelf-life of fresh produce, and the consumption of contaminated food can cause foodborne illnesses. Additionally, there has been an increased emphasis on the freshness and appearance of fresh produce by modern consumers. Hence, disinfection methods that not only reduce microbial load but also preserve the quality of fresh produce are required. Chlorine dioxide (ClO2) has emerged as a better alternative to chlorine-based disinfectants. In this review, we discuss the efficacy of gaseous and aqueous ClO2 in inhibiting microbial growth immediately after treatment (short-term effect) versus regulating microbial growth during storage of fresh produce (long-term effect). We further elaborate upon the effects of ClO2 application on retaining or enhancing the quality of fresh produce and discuss the current understanding of the mode of action of ClO2 against microbes affecting fresh produce.
Collapse
|
7
|
Giannoglou M, Stergiou P, Dimitrakellis P, Gogolides E, Stoforos NG, Katsaros G. Effect of Cold Atmospheric Plasma processing on quality and shelf-life of ready-to-eat rocket leafy salad. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102502] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Quantitative transfer and sanitizer inactivation of Salmonella during simulated commercial dicing and conveying of tomatoes. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Resistance of Escherichia coli O157:H7 ATCC 35150 to ohmic heating as influenced by growth temperature and sodium chloride concentration in salsa. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Kim SS, Park SH, Kim SH, Kang DH. Synergistic effect of ohmic heating and UV-C irradiation for inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in buffered peptone water and tomato juice. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Deblais L, Vrisman C, Kathayat D, Helmy YA, Miller SA, Rajashekara G. Imidazole and Methoxybenzylamine Growth Inhibitors Reduce Salmonella Persistence in Tomato Plant Tissues. J Food Prot 2019; 82:997-1006. [PMID: 31121102 DOI: 10.4315/0362-028x.jfp-18-555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS Small molecules (SMs) 1, 3, 4, and 5 are novel growth inhibitors of Salmonella enterica. These SMs are not toxic to tomato plant tissues including fruits. Combining biocontrol agents and SMs enhanced the control of Salmonella in infected plants. These SMs may be safe bactericides against Salmonella and phytopathogens in produce.
Collapse
Affiliation(s)
- Loïc Deblais
- 1 Food Animal Health Research Program, Department of Veterinary Preventive Medicine.,2 Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | - Claudio Vrisman
- 2 Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | - Dipak Kathayat
- 1 Food Animal Health Research Program, Department of Veterinary Preventive Medicine
| | - Yosra A Helmy
- 1 Food Animal Health Research Program, Department of Veterinary Preventive Medicine
| | - Sally A Miller
- 2 Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | - Gireesh Rajashekara
- 1 Food Animal Health Research Program, Department of Veterinary Preventive Medicine
| |
Collapse
|
12
|
Song YS, Stewart D, Reineke K, Wang L, Ma C, Lu Y, Shazer A, Deng K, Tortorello ML. Effects of Package Atmosphere and Storage Conditions on Minimizing Risk of Escherichia coli O157:H7 in Packaged Fresh Baby Spinach. J Food Prot 2019; 82:844-853. [PMID: 31013167 DOI: 10.4315/0362-028x.jfp-18-337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Packaged fresh spinach has been associated with outbreaks of illness caused by Escherichia coli O157:H7. The purpose of this study was to assess the behavior of E. coli O157:H7 in packaged baby spinach in response to storage conditions of temperature and package atmosphere and including effects of inoculation level, spinach leaf damage (cut leaves), internalized or leaf surface contamination, exposure to hypochlorite sanitizer, and package size. Behavior of E. coli O157:H7 inoculated at 2 and 4 log CFU/g on spinach packaged in polymer bags composed of a two-layer laminate (polypropylene and polyethylene) and stored under atmospheres of 20% O2-3% CO2 and 0% O2-15% CO2 (aerobic and anaerobic, respectively) was assessed at 5, 7, 12, and 15°C for up to 14 days. Growth kinetics were calculated using DMFit software. Temperature decreases progressively diminished growth or survival of the pathogen, and an aerobic package atmosphere resulted in longer lag times (4 to 6 days) and lower population levels (0.2 to 1.4 log CFU/g) compared with the anaerobic atmosphere at 15°C. Internalized contamination, leaf cuts, or exposure to 100 ppm of hypochlorite did not result in changes in pathogen behavior compared with controls; however, a growth minimization trend consisting of longer lag times and lower population levels was repeatedly observed in the aerobic compared with the anaerobic package atmospheres. In contrast, growth of indigenous mesophiles and Enterobacteriaceae was unaffected by package atmosphere. Spinach stored at 5 to 7°C in two sizes (5 and 16 oz) of polyethylene terephthalate clamshell packages with ambient air atmospheres was more likely to progress to lower-oxygen conditions in 16-oz compared with 5-oz packages after 7 days of storage (P < 0.05). Practices to maintain aerobic conditions within the package, as well as storage of the package at low temperature, are ways to limit growth of E. coli O157:H7 in packaged spinach.
Collapse
Affiliation(s)
- Yoon Seok Song
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Diana Stewart
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Karl Reineke
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Liao Wang
- 2 Illinois Institute of Technology, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| | - Chong Ma
- 2 Illinois Institute of Technology, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| | - Yin Lu
- 2 Illinois Institute of Technology, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| | - Arlette Shazer
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Kaiping Deng
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Mary Lou Tortorello
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| |
Collapse
|
13
|
Ban GH, Kang DH. Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on cherry tomatoes and oranges by superheated steam. Food Res Int 2018; 112:38-47. [DOI: 10.1016/j.foodres.2018.05.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022]
|
14
|
Tadepalli S, Bridges DF, Driver R, Wu VCH. Effectiveness of different antimicrobial washes combined with freezing against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated on blueberries. Food Microbiol 2018; 74:34-39. [PMID: 29706335 DOI: 10.1016/j.fm.2018.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/18/2018] [Accepted: 02/25/2018] [Indexed: 10/17/2022]
Abstract
To ensure the safety of produce, including blueberries, elimination of potential pathogens is critical. This study evaluated the efficacy of antimicrobial washes when coupled with frozen storage against Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes on wild blueberries. Inoculated blueberries were sprayed with antimicrobial solutions at different concentrations for various contact times (chlorine dioxide -2.5, 5, 10, and 15 ppm for 10 s, 1, 5, and 10 min; chlorine -100, 150, and 200 ppm for 10s, 1, 5, and 10 min; lactic acid 1 and 2% for 5, 10 and 20 min) and following treatment, stored at -12 °C for 1 week. Compared to antimicrobial washing alone, the additional freezing significantly reduced pathogens (P < 0.05). Concentrations of all three antimicrobials combined with freezing reduced L. monocytogenes to undetectable levels (detection limit < 1 log CFU/g). The greatest reduction of E. coli O157:H7 (4.4 log CFU/g) and Salmonella (5.4 log CFU/g) was achieved by 2% lactic acid or 200 ppm Cl2 followed with frozen storage. These antimicrobials maintained the visual quality of blueberries and did not leave detectable residues. In conclusion, antimicrobial washes, when combined with frozen storage, effectively reduce the risk of pathogen contamination on blueberries.
Collapse
Affiliation(s)
- Shravani Tadepalli
- Pathogenic Microbiology Laboratory, University of Maine, Orono, ME 04469-5735, USA
| | - David F Bridges
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA
| | - Randilyn Driver
- Pathogenic Microbiology Laboratory, University of Maine, Orono, ME 04469-5735, USA
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| |
Collapse
|
15
|
Ye Y, Zhang M, Jiao R, Ling N, Zhang X, Tong L, Zeng H, Zhang J, Wu Q. Inactivation of Cronobacter malonaticus cells and inhibition of its biofilm formation exposed to hydrogen peroxide stress. J Dairy Sci 2017; 101:66-74. [PMID: 29102134 DOI: 10.3168/jds.2017-13463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022]
Abstract
Presence of Cronobacter malonaticus in powdered infant formula (PIF) poses a high risk to infant and public health. Cronobacter malonaticus has been widely distributed in food and food processing environments, and the true origin of C. malonaticus in PIF is poorly understood. Control and prevention of C. malonaticus is necessary for achieving microbial safety of PIF. However, little information about decontamination of C. malonaticus is available. In this study, effects of hydrogen peroxide on inactivation and morphological changes of C. malonaticus cells were determined. Furthermore, inhibitory effects of H2O2 on biofilm formation in C. malonaticus were also performed. Results indicated that H2O2 could completely inactivate C. malonaticus in sterile water with 0.06% H2O2 for 25 min, 0.08% H2O2 for 15 min, and 0.10% for 10 min, respectively, whereas the survival rates of C. malonaticus in tryptic soy broth medium significantly increased with the same treatment time and concentration of H2O2. In addition, morphological changes of C. malonaticus cells, including cell shrinkage, disruption of cells, cell intercession, and leakage of intercellular material in sterile water after H2O2 treatment, were more predominant than those in tryptic soy broth. Finally, significant reduction in biofilm formation by H2O2 was found using crystal violet staining, scanning electron microscopy, and confocal laser scanning microscopy detection compared with control samples. This is the first report to determine the effects of H2O2 on C. malonaticus cells and biofilm formation. The findings provided valuable information for practical application of H2O2 for decontamination of C. malonaticus in dairy processing.
Collapse
Affiliation(s)
- Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Maofeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liaowang Tong
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haiyang Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
16
|
Combination treatment of ohmic heating with various essential oil components for inactivation of food-borne pathogens in buffered peptone water and salsa. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Hyun J, Lee S. Effect of modified atmosphere packaging on preserving various types of fresh produce. J Food Saf 2017. [DOI: 10.1111/jfs.12376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeong‐Eun Hyun
- Department of Food and NutritionChung‐Ang UniversityAnseong‐si, Gyeonggi‐do Republic of Korea
| | - Sun‐Young Lee
- Department of Food and NutritionChung‐Ang UniversityAnseong‐si, Gyeonggi‐do Republic of Korea
| |
Collapse
|
18
|
Praeger U, Herppich WB, Hassenberg K. Aqueous chlorine dioxide treatment of horticultural produce: Effects on microbial safety and produce quality–A review. Crit Rev Food Sci Nutr 2017; 58:318-333. [DOI: 10.1080/10408398.2016.1169157] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ulrike Praeger
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Horticultural Engineering, Potsdam, Germany
| | - Werner B. Herppich
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Horticultural Engineering, Potsdam, Germany
| | - Karin Hassenberg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Horticultural Engineering, Potsdam, Germany
| |
Collapse
|
19
|
Gao H, Fang X, Li Y, Chen H, Zhao QF, Jin TZ. Effect of alternatives to chlorine washing for sanitizing fresh coriander. Journal of Food Science and Technology 2017; 54:260-266. [PMID: 28242924 DOI: 10.1007/s13197-016-2458-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/06/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022]
Abstract
Fresh coriander leaves are highly perishable in nature and their sensory quality and nutritional value decreases without proper processing or preservation. In the present study, three aqueous solutions of sodium hypochlorite (SH, 100 mg/L), chlorine dioxide (CD, 10 mg/L), and sodium butyl p-hydroxybenzoate (SBPH, 12 mg/L), and tap water, were used to treat fresh coriander for 15 min. The treated samples were packed in PVC boxes with ambient air under packaged under passive modified atmosphere packaging conditions and stored at 4 °C for 10 days. Effects of washing treatments on color, total chlorophyll contents, ascorbic acid contents, total contents of phenolic compounds, and total aerobic bacterial counts (APC) were investigated. CD treatment has the least detrimental effects on color, total chlorophyll contents and ascorbic acid contents of fresh coriander, followed by SH treatment. In addition, CD treatment showed a greater reduction in APC and maintained the microbial load at lower levels than other treatments during the 10-day storage period.
Collapse
Affiliation(s)
- Haiyan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Science, Hangzhou, 310021 Zhejiang P.R. China.,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, 310021 P.R. China.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou, 310021 P.R. China
| | - Xiangjun Fang
- Food Science Institute, Zhejiang Academy of Agricultural Science, Hangzhou, 310021 Zhejiang P.R. China.,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, 310021 P.R. China.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou, 310021 P.R. China
| | - Yunlong Li
- Food Science Institute, Zhejiang Academy of Agricultural Science, Hangzhou, 310021 Zhejiang P.R. China.,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, 310021 P.R. China
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Science, Hangzhou, 310021 Zhejiang P.R. China.,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, 310021 P.R. China.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou, 310021 P.R. China
| | - Qi Fa Zhao
- Zhejiang Zhongfa Agricultural Science and Technology Development Co., Ltd., Hangzhou, P.R. China
| | - Tony Z Jin
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038 USA
| |
Collapse
|
20
|
|
21
|
Fang X, Chen H, Gao H, Yang H, Li Y, Mao P, Jin TZ. Effect of modified atmosphere packaging on microbial growth, quality and enzymatic defence of sanitiser washed fresh coriander. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiangjun Fang
- Food Science Institute Zhejiang Academy of Agricultural Science Hangzhou Zhejiang 310021 China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou 310021 China
| | - Hangjun Chen
- Food Science Institute Zhejiang Academy of Agricultural Science Hangzhou Zhejiang 310021 China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou 310021 China
| | - Haiyan Gao
- Food Science Institute Zhejiang Academy of Agricultural Science Hangzhou Zhejiang 310021 China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou 310021 China
| | - Hailong Yang
- College of Life and Environmental Science Wenzhou University Wenzhou 325035 China
| | - Yunlong Li
- Zhejiang Fomdas Foods Co., Ltd., Shaoxing 312500 China
| | | | - Tony Z. Jin
- Eastern Regional Research Center U.S. Department of Agriculture Agricultural Research Service 600 E. Mermaid Lane Wyndmoor PA 19038 USA
| |
Collapse
|
22
|
de Medeiros Barbosa I, da Costa Medeiros JA, de Oliveira KÁR, Gomes-Neto NJ, Tavares JF, Magnani M, de Souza EL. Efficacy of the combined application of oregano and rosemary essential oils for the control of Escherichia coli, Listeria monocytogenes and Salmonella Enteritidis in leafy vegetables. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Effect of abusive storage temperatures on growth and survival of Escherichia coli O157:H7 on leafy salad vegetables in Egypt. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Oliveira M, Abadias M, Colás-Medà P, Usall J, Viñas I. Biopreservative methods to control the growth of foodborne pathogens on fresh-cut lettuce. Int J Food Microbiol 2015; 214:4-11. [PMID: 26210531 DOI: 10.1016/j.ijfoodmicro.2015.07.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/18/2022]
Abstract
Fruits and vegetables can become contaminated by foodborne pathogens such as Escherichia coli O157:H7, Salmonella and Listeria monocytogenes, and it has been demonstrated that current industrial sanitizing treatments do not eliminate the pathogens when present. Chemical control is widely used, but biological control appears to be a better solution, mainly using the native microbiota present on fresh produce. The first objective of this study was to isolate native microbiota from whole and fresh-cut produce and to determine whether these bacteria were antagonistic toward foodborne pathogens. A total of 112 putative antagonist isolates were screened for their ability to inhibit the growth of Salmonella enterica on lettuce disks. Five different genera reduced S. enterica growth more than 1-log unit at 20°C at the end of 3 days. When tested against L. monocytogenes 230/3, only Pseudomonas sp. strain M309 (M309) was able to reduce pathogen counts by more than 1-log unit. Therefore, M309 strain was selected to be tested on lettuce disks at 10°C against S. enterica, E. coli O157:H7 and L. monocytogenes. M309 strain was only able to reduce S. enterica and E. coli O157:H7 populations. The second objective was to test different biopreservative methods including M309 strain, Pseudomonas graminis CPA-7 (CPA-7), bacteriophages (Listex P100 and Salmonelex) and nisin at conditions simulating commercial applications against Salmonella and L. monocytogenes on fresh-cut lettuce. The addition of the biopreservative agents did not result in a significant reduction of Salmonella population. However, CPA-7 strain together with nisin reduced L. monocytogenes numbers after 6 days of storage at 10°C. The cocktail of Salmonella and L. monocytogenes was not markedly inactivated by their respective bacteriophage solutions. This study highlighted the potential of biocontrol, but the combination with other technologies may be required to improve their application on fresh-cut lettuce.
Collapse
Affiliation(s)
- M Oliveira
- Food Technology Department, University of Lleida, XaRTA-Postharvest, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - M Abadias
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - P Colás-Medà
- Food Technology Department, University of Lleida, XaRTA-Postharvest, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - J Usall
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain
| | - I Viñas
- Food Technology Department, University of Lleida, XaRTA-Postharvest, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| |
Collapse
|
25
|
Oliveira M, Abadias M, Usall J, Torres R, Teixidó N, Viñas I. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables – A review. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.07.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Reduction of Salmonella enterica on the surface of eggshells by sequential treatment with aqueous chlorine dioxide and drying. Int J Food Microbiol 2015; 210:84-7. [PMID: 26114591 DOI: 10.1016/j.ijfoodmicro.2015.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 11/21/2022]
Abstract
The synergistic effects of sequential treatments with chlorine dioxide (ClO2) and drying in killing Salmonella enterica on the surface of chicken eggshells were investigated. Initial experiments were focused on comparing lethalities of sodium hypochlorite (NaOCl) and ClO2. Eggs surface-inoculated with S. enterica in chicken feces as a carrier were immersed in water, NaOCl (50 or 200 μg/mL), or ClO2 (50 or 200 μg/mL) for 1 or 5 min. For 1-min treatments, lethal activities of sanitizers were not significantly different (P>0.05). However, after treatment with ClO2 for 5 min, reductions of S. enterica were significantly greater (P≤0.05) than reductions after treatment with water or NaOCl. The effect of treatment of eggs with ClO2 or NaOCl, followed by drying at 43% relative humidity and 25 °C for 24 and 48 h, were determined. Populations of S. enterica decreased during drying, regardless of the type of sanitizer treatment. ClO2 treatment, compared to water or NaOCl treatments, resulted in additional reductions of ca. >1.3 log CFU/egg during drying. This indicates that sequential treatments with ClO2 and drying induced synergistic lethal effects against S. enterica on the surface of eggshells. These observations will be useful when selecting a sanitizer to control S. enterica on the surface of eggshells and designing an effective egg sanitization system exploiting the synergistic lethal effects of sanitizer and drying.
Collapse
|
27
|
São José JFBD, Vanetti MCD. Application of ultrasound and chemical sanitizers to watercress, parsley and strawberry: Microbiological and physicochemical quality. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.04.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Antimicrobial effect of chlorine dioxide gas against foodborne pathogens under differing conditions of relative humidity. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.09.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Millan-Sango D, McElhatton A, Valdramidis VP. Determination of the efficacy of ultrasound in combination with essential oil of oregano for the decontamination of Escherichia coli on inoculated lettuce leaves. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiol 2014; 38:137-42. [DOI: 10.1016/j.fm.2013.08.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/12/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022]
|
31
|
Miya S, Takahashi H, Hashimoto M, Nakazawa M, Kuda T, Koiso H, Kimura B. Development of a controlling method for Escherichia coli O157:H7 and Salmonella spp. in fresh market beef by using polylysine and modified atmosphere packaging. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Tian JQ, Bae YM, Lee SY. Survival of foodborne pathogens at different relative humidities and temperatures and the effect of sanitizers on apples with different surface conditions. Food Microbiol 2013; 35:21-6. [DOI: 10.1016/j.fm.2013.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 11/17/2022]
|
33
|
Kim EG, Ryu JH, Kim H. Effect of Chlorine Dioxide Treatment and Storage in a Modified Atmosphere on the Inactivation of Cronobacter
spp. on Radish Seeds. J Food Saf 2013. [DOI: 10.1111/jfs.12037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eun-Gyeong Kim
- Department of Food and Nutrition; Wonkwang University; Iksan Jeonbuk 570-749 Korea
| | - Jee-Hoon Ryu
- Graduate School of Life Sciences and Biotechnology; Korea University; Seoul 136-791 Korea
| | - Hoikyung Kim
- Department of Food and Nutrition; Wonkwang University; Iksan Jeonbuk 570-749 Korea
| |
Collapse
|
34
|
Posada-Izquierdo GD, Pérez-Rodríguez F, López-Gálvez F, Allende A, Selma MV, Gil MI, Zurera G. Modelling growth of Escherichia coli O157:H7 in fresh-cut lettuce submitted to commercial process conditions: chlorine washing and modified atmosphere packaging. Food Microbiol 2013; 33:131-8. [PMID: 23200644 DOI: 10.1016/j.fm.2012.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/11/2012] [Accepted: 08/29/2012] [Indexed: 12/13/2022]
Abstract
Fresh-cut iceberg lettuce inoculated with Escherichia coli O157:H7 was submitted to chlorine washing (150 mg/mL) and modified atmosphere packaging on laboratory scale. Populations of E. coli O157:H7 were assessed in fresh-cut lettuce stored at 4, 8, 13 and 16 °C using 6-8 replicates in each analysis point in order to capture experimental variability. The pathogen was able to grow at temperatures ≥8 °C, although at low temperatures, growth data presented a high variability between replicates. Indeed, at 8 °C after 15 days, some replicates did not show growth while other replicates did present an increase. A growth primary model was fitted to the raw growth data to estimate lag time and maximum growth rate. The prediction and confidence bands for the fitted growth models were estimated based on Monte-Carlo method. The estimated maximum growth rates (log cfu/day) corresponded to 0.14 (95% CI: 0.06-0.31), 0.55 (95% CI: 0.17-1.20) and 1.43 (95% CI: 0.82-2.15) for 8, 13 and 16 °C, respectively. A square-root secondary model was satisfactorily derived from the estimated growth rates (R(2) > 0.80; Bf = 0.97; Af = 1.46). Predictive models and data obtained in this study are intended to improve quantitative risk assessment studies for E. coli O157:H7 in leafy green products.
Collapse
Affiliation(s)
- Guiomar D Posada-Izquierdo
- Department of Food Science and Technology, University of Cordoba, International Campus of Excellence in the AgriFood Sector ceiA3, Campus Rabanales, Edificio Darwin - C1, 14014 Córdoba, Spain.
| | | | | | | | | | | | | |
Collapse
|
35
|
Hong YJ, Bae YM, Moon B, Lee SY. Inhibitory effect of cinnamon powder on pathogen growth in laboratory media and oriental-style rice cakes (sulgidduk). J Food Prot 2013; 76:133-8. [PMID: 23317869 DOI: 10.4315/0362-028x.jfp-12-241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There has been an increasing interest in the use of natural plant materials as alternative food preservatives. We examined the antimicrobial effects of natural plant materials used as additives against foodborne pathogens in laboratory media and Sulgidduk, oriental-style rice cakes. Cinnamon, mugwort, and garlic powder solutions (3%) were tested for their antimicrobial activities against pathogens in laboratory media. Sulgidduk prepared with different amounts of cinnamon powder (1, 3, and 6%) was inoculated with a Staphylococcus aureus or Bacillus cereus cocktail. The samples were air or vacuum packaged and stored at 22 ± 1°C for 72 h, and microbial growth was determined. Cinnamon powder showed more inhibitory properties against pathogens such as Salmonella enterica serovar Typhimurium, Escherichia coli O157:H7, Listeria monocytogenes, S. aureus, and B. cereus than did mugwort or garlic powder. The populations of S. aureus and B. cereus in Sulgidduk containing cinnamon powder were significantly lower than in the control during storage time. Different packaging methods did not result in a significant difference in pathogen growth. In a sensory evaluation, Sulgidduk containing 1 and 3% cinnamon powder did not significantly differ from the control sample in any of the attributes tested other than flavor. These results indicate that natural plant materials such as cinnamon powder could be used as food additives to improve the microbiological stability of rice cakes.
Collapse
Affiliation(s)
- Yu-Jin Hong
- Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi-do, 456-756, South Korea
| | | | | | | |
Collapse
|
36
|
Gündüz GT, Niemira BA, Gönül SA, Karapinar M. Antimicrobial activity of oregano oil on iceberg lettuce with different attachment conditions. J Food Sci 2012; 77:M412-5. [PMID: 22757714 DOI: 10.1111/j.1750-3841.2012.02759.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED In this study, the antimicrobial activity of oregano oil was investigated under different attachment conditions of Salmonella spp. to iceberg lettuce. Inoculated lettuce was either not dried or dried for 30 min, 60 min, or 120 min, under either static air or moving air. Washing iceberg lettuce with 500 ppm oregano oil for 1, 5, and 10 min reduced the population of Salmonella spp. by (respectively) 1.3, 1.65, and 2.28 log cfu/g following the most challenging inoculation conditions, an inoculum drying period of 2 h under moving air. Across all inoculation conditions, increasing the treatment time significantly increased the reductions in the populations of Salmonella spp. (P < 0.05). Browning and softening of the lettuce leaf surface was observed after 10 min of treatment with oregano oil. For each treatment time, attachment times and drying under static compared with moving air did not significantly affect the antimicrobial efficacy of the various oregano oil treatments (P > 0.05). The results obtained in this study suggest that oregano oil can effectively reduce populations of Salmonella attached to lettuce leaf surfaces. PRACTICAL APPLICATION The use of essential oils as an antimicrobial treatment can help to ensure the safety of leafy green products. As used in this study, oregano oil effectively reduced Salmonella spp., even after the pathogen had dried onto the lettuce leaves. Treatments that incorporate oregano oil therefore hold promise as a biocide treatment for process and packaged lettuce.
Collapse
|
37
|
Fate of Listeria monocytogenes and Escherichia coli O157:H7 in the presence of natural background microbiota on conventional and organic lettuce. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Smigic N, Rajkovic A, Arneborg N, Siegumfeldt H, Devlieghere F, Nielsen DS. Analysis of Intracellular pH in Escherichia coli O157:H7 to Determine the Effect of Chlorine Dioxide Decontamination. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-011-9295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
López-Gálvez F, Posada-Izquierdo GD, Selma MV, Pérez-Rodríguez F, Gobet J, Gil MI, Allende A. Electrochemical disinfection: an efficient treatment to inactivate Escherichia coli O157:H7 in process wash water containing organic matter. Food Microbiol 2012; 30:146-56. [PMID: 22265295 DOI: 10.1016/j.fm.2011.09.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
Abstract
The efficacy of an electrochemical treatment in water disinfection, using boron-doped diamond electrodes, was studied and its suitability for the fresh-cut produce industry analyzed. Tap water (TW), and tap water supplemented with NaCl (NaClW) containing different levels of organic matter (Chemical Oxygen Demand (COD) around 60, 300, 550 ± 50 and 750 ± 50 mg/L) obtained from lettuce, were inoculated with a cocktail of Escherichia coli O157:H7 at 10⁵ cfu/mL. Changes in levels of E. coli O157:H7, free, combined and total chlorine, pH, oxidation-reduction potential, COD and temperature were monitored during the treatments. In NaClW, free chlorine was produced more rapidly than in TW and, as a consequence, reductions of 5 log units of E. coli O157:H7 were achieved faster (0.17, 4, 15 and 24 min for water with 60, 300, 500 and 750 mg/L of COD, respectively) than in TW alone (0.9, 25, 60 min and 90 min for water with 60, 300, 600 and 800 mg/L of COD, respectively). Nonetheless, the equipment showed potential for water disinfection and organic matter reduction even without adding NaCl. Additionally, different mathematical models were assessed to account for microbial inactivation curves obtained from the electrochemical treatments.
Collapse
Affiliation(s)
- Francisco López-Gálvez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Espinardo, Murcia, E-30100, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Bae YM, Kim BR, Lee SY, Cha M, Park KH, Chung MS, Ryu K. Growth and predictive model of Bacillus cereus on blanched spinach with or without seasoning at various temperatures. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0064-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Neal JA, Marquez-Gonzalez M, Cabrera-Diaz E, Lucia LM, O'Bryan CA, Crandall PG, Ricke SC, Castillo A. Comparison of multiple chemical sanitizers for reducing Salmonella and Escherichia coli O157:H7 on spinach (Spinacia oleracea) leaves. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.04.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Yossa N, Patel J, Millner P, Lo YM. Essential oils reduce Escherichia coli O157:H7 and Salmonella on spinach leaves. J Food Prot 2012; 75:488-96. [PMID: 22410222 DOI: 10.4315/0362-028x.jfp-11-344] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The efficacy of cinnamaldehyde and Sporan for reducing Escherichia coli O157:H7 and Salmonella on spinach leaves was investigated. Spinach leaves were inoculated with a five-strain cocktail of Salmonella or E. coli O157:H7, air dried for ca. 30 min, and then immersed in a treatment solution containing 5 ppm of free chlorine, cinnamaldehyde, or Sporan (800 and 1,000 ppm) alone or in combination with 200 ppm of acetic acid (20%) for 1 min or with water (control). After spin drying, treated leaves were analyzed periodically during 14 days of storage at 4°C for Salmonella, E. coli O157:H7, total coliforms, mesophilic and psychrotrophic bacteria, and yeasts and molds. Treatment effects on color and texture of leaves also were determined. Sporan alone (1,000S), Sporan plus acetic acid (1,000SV), and cinnamaldehyde-Tween (800T) reduced E. coli O157:H7 by more than 3 log CFU/g (P < 0.05), and 1,000SV treatment reduced Salmonella by 2.5 log CFU/g on day 0. E. coli O157:H7 and Salmonella populations on treated spinach leaves declined during storage at 4°C. The 1,000SV treatment was superior to chlorine and other treatments for reducing E. coli O157:H7 during storage. Saprophytic microbiota on spinach leaves increased during storage at 4°C but remained lower on leaves treated with Sporan (800S) and Sporan plus acetic acid (1,000SV) than on control leaves. The color and texture of Sporan-treated leaves were not significantly different from those of the control leaves after 14 days. Sporan plus acetic acid (1,000SV) reduced E. coli O157:H7 and Salmonella on baby spinach leaves without adverse effects on leaf color and texture.
Collapse
Affiliation(s)
- Nadine Yossa
- Department of Nutrition and Food Science, University of Maryland, 3102 Marie Mount Hall, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
43
|
Fink RC, Black EP, Hou Z, Sugawara M, Sadowsky MJ, Diez-Gonzalez F. Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. Appl Environ Microbiol 2012; 78:1752-64. [PMID: 22247152 PMCID: PMC3298177 DOI: 10.1128/aem.07454-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/05/2012] [Indexed: 01/08/2023] Open
Abstract
An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.
Collapse
Affiliation(s)
| | - Elaine P. Black
- Department of Food Science and Nutrition
- Biotechnology Institute
| | - Zhe Hou
- Department of Food Science and Nutrition
- Biotechnology Institute
| | - Masayuki Sugawara
- Biotechnology Institute
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - Michael J. Sadowsky
- Biotechnology Institute
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | | |
Collapse
|
44
|
Tomás-Callejas A, López-Gálvez F, Sbodio A, Artés F, Artés-Hernández F, Suslow TV. Chlorine dioxide and chlorine effectiveness to prevent Escherichia coli O157:H7 and Salmonella cross-contamination on fresh-cut Red Chard. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Tian JQ, Bae YM, Choi NY, Kang DH, Heu S, Lee SY. Survival and growth of foodborne pathogens in minimally processed vegetables at 4 and 15 °C. J Food Sci 2012; 77:M48-50. [PMID: 22260117 DOI: 10.1111/j.1750-3841.2011.02457.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED We conducted this study to investigate the survival and growth of pathogens on fresh vegetables stored at 4 and 15 °C. Vegetables (romaine lettuce, iceberg lettuce, perilla leaves, and sprouts) were inoculated with 4 pathogens (Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli O157:H7) and stored at 2 different temperatures for different periods of time (3, 6, 9, 12, and 15 d at 4 °C and 1, 2, 3, 5, and 7 d at 15 °C). Populations of the 4 pathogens tended to increase on all vegetables stored at 15 °C for 7 d. Populations of E. coli O157:H7 and S. Typhimurium increased significantly, by approximately 2 log₁₀ CFU/g, on loose and head lettuce stored at 15 °C for 1 d. No significant differences were observed in the growth of different pathogens on vegetables stored at 4 °C for 15 d. E. coli O157:H7 did not survive on sprouts stored at 15 or 4 °C. The survival and growth of food pathogens on fresh vegetables were very different depending on the pathogen type and storage temperature. PRACTICAL APPLICATION Survivals and growth of pathogens on various vegetables at 4 and 15 °C were observed in this study. Survivals and growth of pathogens on vegetables were different depending on the pathogen type and storage temperature. Therefore, vegetables should be stored under refrigerated conditions (below 4 °C) prior to consumption. This recommendation may vary depending on the type of vegetable.
Collapse
Affiliation(s)
- Jun-Qi Tian
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Tomás-Callejas A, López-Velasco G, Camacho AB, Artés F, Artés-Hernández F, Suslow TV. Survival and distribution of Escherichia coli on diverse fresh-cut baby leafy greens under preharvest through postharvest conditions. Int J Food Microbiol 2011; 151:216-22. [PMID: 21924789 DOI: 10.1016/j.ijfoodmicro.2011.08.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/09/2011] [Accepted: 08/27/2011] [Indexed: 11/24/2022]
Abstract
Escherichia coli O157:H7 has been associated in multiple outbreaks linked to the consumption of whole produce and fresh-cut leafy vegetables. However, plant-based foods had not been traditionally recognized as a host for enteric pathogens until the elevated incidence of produce-related outbreaks became apparent. The survival dynamics of two cocktails of generic E. coli (environmental water, plant and soil isolates) and E. coli O157:H7 within the phyllosphere of Mizuna, Red Chard and Tatsoi during their production, harvest, minimal processing, packaging and storage over two greenhouse production cycles were studied. Genotyping of applied generic E. coli strains to evaluate their comparative survival and relative abundance in the phyllosphere by REP-PCR is also reported. The Mizuna, Red Chard and Tatsoi shoots were grown under standard greenhouse conditions and fertility management. Both E. coli cocktails were spray-inoculated separately and determined to result in an initial mean population density of log 4.2 CFU/cm². Leaves were harvested as mini-greens approximating commercial maturity, minimally processed in a model washing system treated with 3 mg/L of ClO₂ and stored for 7 days at 5 °C. Rapid decline of generic E. coli and E. coli O157:H7 populations was observed for all plant types regardless of the leaf age at the time of inoculation and the irrigation type across both seasonal growth cycle trials. The decline rate of the surviving populations for the fall season was slower than for the summer season. The minimal processing with 3 mg/L of ClO₂ was not sufficient to fully disinfect the inoculated leaves prior to packaging and refrigerated storage. Viable populations of E. coli and E. coli O157:H7 were confirmed throughout storage, including the final time point at the end of acceptable visual leaf quality. In this study, the ability of low populations of E. coli to survive during production and postharvest operations in selected mini-greens has been demonstrated. However, further field-based trials are needed to expand understanding of the post-contamination fate of enteric bacterial pathogens on leafy vegetables. In summary, this research work provides baseline data upon which to develop food safety preventive control guidance during the production and minimal processing of these crops.
Collapse
Affiliation(s)
- Alejandro Tomás-Callejas
- Postharvest and Refrigeration Group, Department of Food Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, Cartagena, Murcia 30203, Spain
| | | | | | | | | | | |
Collapse
|
47
|
McKellar RC, Delaquis P. Development of a dynamic growth-death model for Escherichia coli O157:H7 in minimally processed leafy green vegetables. Int J Food Microbiol 2011; 151:7-14. [PMID: 21872959 DOI: 10.1016/j.ijfoodmicro.2011.07.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 06/27/2011] [Accepted: 07/23/2011] [Indexed: 11/24/2022]
Abstract
Escherichia coli O157:H7, an occasional contaminant of fresh produce, can present a serious health risk in minimally processed leafy green vegetables. A good predictive model is needed for Quantitative Risk Assessment (QRA) purposes, which adequately describes the growth or die-off of this pathogen under variable temperature conditions experienced during processing, storage and shipping. Literature data on behaviour of this pathogen on fresh-cut lettuce and spinach was taken from published graphs by digitization, published tables or from personal communications. A three-phase growth function was fitted to the data from 13 studies, and a square root model for growth rate (μ) as a function of temperature was derived: μ=(0.023*(Temperature-1.20))(2). Variability in the published data was incorporated into the growth model by the use of weighted regression and the 95% prediction limits. A log-linear die-off function was fitted to the data from 13 studies, and the resulting rate constants were fitted to a shifted lognormal distribution (Mean: 0.013; Standard Deviation, 0.010; Shift, 0.001). The combined growth-death model successfully predicted pathogen behaviour under both isothermal and non-isothermal conditions when compared to new published data. By incorporating variability, the resulting model is an improvement over existing ones, and is suitable for QRA applications.
Collapse
Affiliation(s)
- Robin C McKellar
- AAFC Research Associate, Central Experimental Farm, 960 Carling Ave., Ottawa, Ontario, Canada K1N0C6.
| | | |
Collapse
|
48
|
Huang Y, Chen H. Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157:H7 on baby spinach. Food Control 2011. [DOI: 10.1016/j.foodcont.2011.01.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Brown AL, Brooks JC, Karunasena E, Echeverry A, Laury A, Brashears MM. Inhibition of Escherichia coli O157:H7 and Clostridium sporogenes in spinach packaged in modified atmospheres after treatment combined with chlorine and lactic acid bacteria. J Food Sci 2011; 76:M427-32. [PMID: 21729076 DOI: 10.1111/j.1750-3841.2011.02260.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
UNLABELLED Implementation of modified atmospheric packaging (MAP) into retail produce is a less commonly practiced method due to differences among commodities and the potential growth of anaerobes. Pathogens including Escherichia coli O157:H7 have been responsible for spinach outbreaks across the United States. In this study, hurdles, including those currently used with produce safety, such as MAP and chlorine, were combined with lactic acid bacteria (LAB) to inhibit pathogens. Spinach was coinoculated with E. coli O157:H7 and Clostridium sporogenes, a surrogate for C. botulinum, and treated with water or a hurdle that included water, chlorine, and LAB. Spinach from treatments were packaged in air (traditional), oxygen (80% O₂, 20% CO₂), or nitrogen (80% N₂, 20% CO₂) and stored in a retail display case for 9 d at 4 to 7 °C. The hurdle inhibited E. coli O157:H7 and C. sporogenes compared to controls with reductions of 1.43 and 1.10 log (P < 0.05), respectively. The nitrogen atmosphere was outperformed by air and oxygen in the reduction of E. coli O157:H7 (P < 0.05) with a decrease of 0.26 and 0.15 logs. There were no significant differences among the 3 atmospheres on C. sporogenes survival. Relative to these hurdles, we also chose to evaluate the potential benefits of LAB in pathogen control. The survival of LAB in interventions demonstrates implementation of LAB into produce could control pathogens, without damaging produce or altering organoleptic properties. PRACTICAL APPLICATION The goal of our work was to identify methods that could reduce food-borne pathogens in packaged spinach products. Using current industry techniques in combination with unique methods, such as the use of beneficial bacteria, our research identified whether harmful microorganisms could be eliminated. Our data demonstrate that specific packaging conditions with beneficial bacteria can help eliminate or reduce the survival of E. coli O157:H7 and C. sporogenes (a model for C. botulinum) in produce.
Collapse
Affiliation(s)
- Alison L Brown
- Dept. Animal and Food Sciences, Texas Tech Univ., PO Box 42141, Lubbock, TX 79409, USA
| | | | | | | | | | | |
Collapse
|
50
|
Danyluk MD, Schaffner DW. Quantitative assessment of the microbial risk of leafy greens from farm to consumption: preliminary framework, data, and risk estimates. J Food Prot 2011; 74:700-8. [PMID: 21549039 DOI: 10.4315/0362-028x.jfp-10-373] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This project was undertaken to relate what is known about the behavior of Escherichia coli O157:H7 under laboratory conditions and integrate this information to what is known regarding the 2006 E. coli O157:H7 spinach outbreak in the context of a quantitative microbial risk assessment. The risk model explicitly assumes that all contamination arises from exposure in the field. Extracted data, models, and user inputs were entered into an Excel spreadsheet, and the modeling software @RISK was used to perform Monte Carlo simulations. The model predicts that cut leafy greens that are temperature abused will support the growth of E. coli O157:H7, and populations of the organism may increase by as much a 1 log CFU/day under optimal temperature conditions. When the risk model used a starting level of -1 log CFU/g, with 0.1% of incoming servings contaminated, the predicted numbers of cells per serving were within the range of best available estimates of pathogen levels during the outbreak. The model predicts that levels in the field of -1 log CFU/g and 0.1% prevalence could have resulted in an outbreak approximately the size of the 2006 E. coli O157:H7 outbreak. This quantitative microbial risk assessment model represents a preliminary framework that identifies available data and provides initial risk estimates for pathogenic E. coli in leafy greens. Data gaps include retail storage times, correlations between storage time and temperature, determining the importance of E. coli O157:H7 in leafy greens lag time models, and validation of the importance of cross-contamination during the washing process.
Collapse
Affiliation(s)
- Michelle D Danyluk
- Citrus Research and Education Center, Department of Food Science and Human Nutrition, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, USA
| | | |
Collapse
|