1
|
Munch-Andersen CB, Porcellato D, Devold TG, Østlie HM. The impact of fermentation length and dough composition on the stability of liquid sourdough starters. Int J Food Microbiol 2025; 426:110932. [PMID: 39395354 DOI: 10.1016/j.ijfoodmicro.2024.110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Sourdough breadmaking on an industrial scale requires robust, well-performing starters that bring attractive characteristics to the product. The active nature of liquid starters provides a faster fermentation process compared to their dehydrated counterparts. However, liquid sourdough starters require meticulous management in order to maintain stability and functionality during cold storage at 4 °C. This study investigated the stability of three liquid sourdough starters during storage and also the impact of prolonged fermentation, the addition of diastatic malted wheat flour, and a neutralising agent (CaCO3). The sourdough starters were evaluated for their microbial viability and metabolic activity at three individual time points during 16 weeks of cold storage. The microbial composition was analysed using culture-dependent and culture-independent methods, and metabolic changes were investigated using chromatographic methods. Two types of sourdough starter showed satisfying viability of lactic acid bacteria (> 7 log CFU/g) and metabolic stability throughout 16 weeks of cold storage. The introduction of malted wheat flour and CaCO3 caused a decline in viability to <7 log CFU/g within 8 weeks in the third sourdough starter type and additionally revealed an ongoing metabolic activity of this sourdough starter during cold storage. Prolonged fermentation influenced the free amino acid profile, whereas adjusting the sourdough starter formula resulted in a different fungal microbiota and increased levels of fermentable substrates (maltose), organic acids (lactic acid), and aromatic compounds (alcohol and aldehydes). These findings provide stakeholders and researchers in sourdough fermentation technology with new insights concerning the stability of cold-stored liquid sourdough starters.
Collapse
Affiliation(s)
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Tove Gulbrandsen Devold
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Hilde Marit Østlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
2
|
Böswald LF, Popper B, Matzek D, Neuhaus K, Wenderlein J. Characterization of the gastrointestinal microbiome of the Syrian hamster (Mesocricetus auratus) and comparison to data from mice. FEBS Open Bio 2024; 14:1701-1717. [PMID: 39097990 PMCID: PMC11452302 DOI: 10.1002/2211-5463.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Syrian hamsters (Mesocricetus auratus) have been increasingly used as rodent models in recent years, especially for SARS-CoV-2 since the pandemic. However, the physiology of this animal model is not yet well-understood, even less when considering the digestive tract. Generally, the gastrointestinal microbiome influences the immune system, drug metabolism, and vaccination efficacy. However, a detailed understanding of the gastrointestinal microbiome of hamsters is missing. Therefore, we analyzed 10 healthy 11-week-old RjHan:AURA hamsters fed a pelleted standard diet. Their gastrointestinal content was sampled (i.e., forestomach, glandular stomach, ileum, cecum, and colon) and analyzed using 16S rRNA gene amplicon sequencing. Results displayed a distinct difference in the bacterial community before and after the cecum, possibly due to the available nutrients and digestive functions. Next, we compared hamsters with the literature data of young-adult C57BL/6J mice, another important animal model. We sampled the same gastrointestinal regions and analyzed the differences in the microbiome between both rodents. Surprisingly, we found strong differences in their specific gastrointestinal bacterial communities. For instance, Lactobacillaceae were more abundant in hamsters' forestomach and ileum, while Muribaculaceae dominated in the mouse forestomach and ileum. Similarly, in mouse cecum and colon, Muribaculaceae were dominant, while in hamsters, Lachnospiraceae and Erysipelotrichaceae dominated the bacterial community. Molecular strains of Muribaculaceae in both rodent species displayed some species specificity. This comparison allows a better understanding of the suitability of the Syrian hamster as an animal model, especially regarding its comparability to other rodent models. Thereby, this work contributes to the characterization of the hamster model and allows better experimental planning.
Collapse
Affiliation(s)
- Linda F. Böswald
- Core Facility Animal Models, Biomedical Center, Medical FacultyLMU MunichPlanegg‐MartinsriedGermany
| | - Bastian Popper
- Core Facility Animal Models, Biomedical Center, Medical FacultyLMU MunichPlanegg‐MartinsriedGermany
| | - Dana Matzek
- Core Facility Animal Models, Biomedical Center, Medical FacultyLMU MunichPlanegg‐MartinsriedGermany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Jasmin Wenderlein
- Chair for Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and ZoonosesLMU MunichOberschleißheimGermany
- Department for Biological SafetyFederal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
3
|
Pokoo-Aikins A, McDonough CM, Mitchell TR, Hawkins JA, Adams LF, Read QD, Li X, Shanmugasundaram R, Rodewald E, Acharya P, Glenn AE, Gold SE. Mycotoxin contamination and the nutritional content of corn targeted for animal feed. Poult Sci 2024; 103:104303. [PMID: 39299014 PMCID: PMC11426393 DOI: 10.1016/j.psj.2024.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Mycotoxin contaminated corn poses a risk to poultry production. Although mycotoxin regulatory guidelines are based on the hazards of individual mycotoxin contamination, feed and feed ingredients may be contaminated with multiple mycotoxins. The objective of this study was to assess mycotoxin co-contamination and its impact on the nutrient content of corn grain. Corn samples (n = 328) originating from various regions in the Southeastern U.S. were quantitatively analyzed for fumonisin (FUM), deoxynivalenol (DON), aflatoxin (AFB1) and zearalenone (ZEA) by HPLC-MS/MS. Nutritional content was analyzed by near-infrared spectroscopy, and color data were collected. All 328 samples were found to be contaminated with at least 1 mycotoxin: 100% contained FUM (19-24,680 µg/kg), 69.82% contained DON (0-9,640 µg/kg), 17.07% contained AFB1 (0-939 µg/kg), and 43.60% had detectable levels of ZEA (0-8,093.5 µg/kg). Most of the samples were contaminated with 2 or more mycotoxins, with only 18.29% of the samples containing a single mycotoxin. 38.41% of the samples had 2 mycotoxins present, 36.59 % had 3 mycotoxins, and 4.88% of the samples had all 4 tested mycotoxins present. Samples contaminated with AFB1 had significantly lower fat (P = 0.007) and lightness (P = 0.007); samples contaminated with DON had significantly higher starch (P < 0.001) and lower protein (P < 0.001). Samples contaminated with FUM had significantly higher protein (P = 0.008) and moisture (P = 0.019) and lower starch (P < 0.001). ZEA contaminated samples had significantly lower starch (P = 0.034). A correlation was observed between mycotoxin contamination and altered nutrient content in corn. This study provides further evidence that co-contamination of mycotoxins is the norm in corn, and that mycotoxin contamination correlates with impacts on the nutrient profile of feed corn.
Collapse
Affiliation(s)
- Anthony Pokoo-Aikins
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA.
| | - Callie M McDonough
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Trevor R Mitchell
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Jaci A Hawkins
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Lincoln F Adams
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Quentin D Read
- Southeast Area, Agricultural Research Service, U.S. Department of Agriculture, Raleigh, NC, USA
| | - Xiang Li
- U.S. National Poultry Research Center, Egg and Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Revathi Shanmugasundaram
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - ElsiAnna Rodewald
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Pratima Acharya
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Anthony E Glenn
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Scott E Gold
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| |
Collapse
|
4
|
Aloui A, Ben Salah-Abbès J, Belgacem H, Dhif H, Zinedine A, Riba A, Meile JC, Durande N, Brabet C, Abbès S. AFM 1 exposure in male balb/c mice and intervention strategies against its immuno-physiological toxicity using clay mineral and lactic acid bacteria alone or in combination. Immunopharmacol Immunotoxicol 2024; 46:199-211. [PMID: 38151925 DOI: 10.1080/08923973.2023.2300299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
CONTEXT Aflatoxins are the most harmful mycotoxins that cause human and animal health concerns. Aflatoxin M1 (AFM1) is the primary hydroxylated metabolite of aflatoxin B1 and is linked to the development of hepatocellular carcinoma and immunotoxicity in humans and animals. Because of the important role of dairy products in human life, especially children, AFM1 is such a major concern to humans because of its frequent occurrence in dairy products at concentrations high enough to cause adverse effects to human and animal health. Reduced its bioavailability becomes a high priority in order to protect human and animal health. OBJECTIVES This study aimed to investigate, in vivo, the ability of lactic acid bacteria (lactobacillus rhamnosus GAF01, LR) and clay mineral (bentonite, BT) mixture to mitigate/reduce AFM1-induced immunotoxicity, hepatotoxicity, nephrotoxicity and oxidative stress in exposed Balb/c mice. MATERIALS AND METHODS The in vivo study was conducted using male Balb/c mice that treated, orally, by AFM1 alone or in combination with LR and/or BT, daily for 10 days as follows: group 1 control received 200 µl of PBS, group 2 treated with LR alone (2.108 CFU/mL), group 3 treated with BT alone (1 g/kg bw), group 4 treated with AFM1 alone (100 μg/kg), group 5 co-treated with LR + AFM1, group 6 co-treated with BT + AFM1, group 7 co-treated with BT + LR + AFM1. Forty-eight h after the end of the treatment, the mice were sacrificed and the blood, spleen, thymus, liver and kidney were collected. The blood was used for biochemical and immunological study. Spleen and thymus samples were used to thymocytes and splenocytes assessments. Liver and kidney samples were the target for evaluation of oxidative stress enzymes status and for histological assays. RESULTS The results showed that AFM1 caused toxicities in male Blab/c mice at different levels. Treatment with AFM1 resulted in severe stress of liver and kidney organs indicated by a significant change in the biochemical and immunological parameters, histopathology as well as a disorder in the profile of oxidative stress enzymes levels. Also, it was demonstrated that AFM1 caused toxicities in thymus and spleen organs. The co-treatment with LR and/or BT significantly improved the hepatic and renal tissues, regulated antioxidant enzyme activities, spleen and thymus viability and biochemical and immunological parameters. LR and BT alone showed to be safe during the treatment. CONCLUSION In summary, the LR and/or BT was able to reduce the biochemical, histopathological and immunological damages induced by AFM1 and indeed it could be exploited as one of the biological strategies for food and feedstuffs detoxification.
Collapse
Affiliation(s)
- Amina Aloui
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
- Montpellier University, QUALISUD, UMR 95, Montpellier cedex 5, France
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Haifa Dhif
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Abdellah Zinedine
- BIOMARE Laboratory, Applied Microbiology and Biotechnology, Chouaib Doukkali University, El Jadida, Morocco
| | - Amar Riba
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Jean Christophe Meile
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Noel Durande
- Qualisud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Catherine Brabet
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| |
Collapse
|
5
|
Pigłowski M, Niewczas-Dobrowolska M. Hazards reported on food of plant origin in the Rapid Alert System for Foodand Feed (RASFF) from 1997 to 2021 and their occurrence, prevention and reduction. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:91-104. [PMID: 38166161 DOI: 10.1080/19440049.2023.2299679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
Between 1997 and 2021 notifications for foods of plant origin covered 44.6% of all notifications in the EU Rapid Alert System for Food and Feed (RASFF). A two-way joining cluster analysis for notifications on plants reported in the RASFF in 1997-2021 was carried out. The following variables were considered: hazard, product category and country of origin in relation to year of notification. In the period studied mainly mycotoxins, pesticide residues and pathogenic micro-organisms were reported. The most frequently notified product categories were nuts and seeds, fruit and vegetables and herbs and spices. The submitted products originated from Asian, African and South-American countries. The study findings were followed by a literature analysis outlining the occurrence and prevention and reduction possibilities of the mentioned hazards, which can be used in these countries. Attention was drawn to the need to carry out controls at EU border inspection posts, monitor and update hazard limits and improve the rapid exchange of information and response to detected hazards.
Collapse
Affiliation(s)
- Marcin Pigłowski
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, Gdynia, Poland
| | - Magdalena Niewczas-Dobrowolska
- Department of Quality Management, Institute of Quality Sciences and Product Management, College of Management and Quality Sciences, Kraków University of Economics, Kraków, Poland
| |
Collapse
|
6
|
Almeida NA, Freire L, Carnielli-Queiroz L, Bragotto APA, Silva NCC, Rocha LO. Essential oils: An eco-friendly alternative for controlling toxigenic fungi in cereal grains. Compr Rev Food Sci Food Saf 2024; 23:e13251. [PMID: 38284600 DOI: 10.1111/1541-4337.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 01/30/2024]
Abstract
Fungi are widely disseminated in the environment and are major food contaminants, colonizing plant tissues throughout the production chain, from preharvest to postharvest, causing diseases. As a result, grain development and seed germination are affected, reducing grain quality and nutritional value. Some fungal species can also produce mycotoxins, toxic secondary metabolites for vertebrate animals. Natural compounds, such as essential oils, have been used to control fungal diseases in cereal grains due to their antimicrobial activity that may inhibit fungal growth. These compounds have been associated with reduced mycotoxin contamination, primarily related to reducing toxin production by toxigenic fungi. However, little is known about the mechanisms of action of these compounds against mycotoxigenic fungi. In this review, we address important information on the mechanisms of action of essential oils and their antifungal and antimycotoxigenic properties, recent technological strategies for food industry applications, and the potential toxicity of essential oils.
Collapse
Affiliation(s)
- Naara A Almeida
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luísa Freire
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lorena Carnielli-Queiroz
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória-Espírito Santo, Brazil
| | - Adriana P A Bragotto
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Nathália C C Silva
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Liliana O Rocha
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
7
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
8
|
Hirozawa MT, Ono MA, de Souza Suguiura IM, Garcia S, Bordini JG, Amador IR, Hirooka EY, Ono EYS. Limosilactobacillus reuteri as sustainable biological control agent against toxigenic Fusarium verticillioides. Braz J Microbiol 2023; 54:2219-2226. [PMID: 37531006 PMCID: PMC10484862 DOI: 10.1007/s42770-023-01081-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023] Open
Abstract
Corn contamination with Fusarium verticillioides (Sacc.) Nirenberg is a worldwide problem that affects yield and grain quality resulting in severe economic losses and implications for food safety. Control of F. verticillioides is a challenge, but lactic acid bacteria (LAB) has high potential as a biological control agent. In this study, the antifungal effect of Limosilactobacillus reuteri (formerly Lactobacillus reuteri) LR-92 against F. verticillioides 97L was investigated. Cell-free supernatant (CFS) from L. reuteri showed concentration-dependent fungicidal and fungistatic activity against F. verticillioides 97L. The antifungal compounds from CFS showed heat stability and pH dependence, and antifungal activity was not affected by treatment with proteolytic enzymes. High-performance liquid chromatography analysis indicated that L. reuteri LR-92 produces lactic and acetic acids. After liquid-liquid extraction, electrospray ionization mass spectrometry analysis of the active ethyl acetate fraction containing antifungal compounds revealed the production of 3-phenyllactic acid, cyclo-(L-Pro-L-Leu), cyclo-(L-Pro-L-Phe), and cyclo-(L-Phe-trans-4-OH-L-Pro). L. reuteri LR-92 has potential as a biocontrol agent for F. verticillioides and contributes to food safety.
Collapse
Affiliation(s)
- Melissa Tiemi Hirozawa
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Mario Augusto Ono
- State University of Londrina, Department of Pathological Sciences, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | | | - Sandra Garcia
- State University of Londrina, Department of Food Science and Technology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Jaqueline Gozzi Bordini
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Ismael Rodrigues Amador
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Elisa Yoko Hirooka
- State University of Londrina, Department of Food Science and Technology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Elisabete Yurie Sataque Ono
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
9
|
Chen L, Wang Y, Li X, MacAdam JW, Zhang Y. Interaction between plants and epiphytic lactic acid bacteria that affect plant silage fermentation. Front Microbiol 2023; 14:1164904. [PMID: 37362945 PMCID: PMC10290204 DOI: 10.3389/fmicb.2023.1164904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Lactic acid bacteria (LAB) have the ability to ferment water-soluble carbohydrates, resulting in the production of significant amounts of lactic acid. When utilized as additives in silage fermentation and feed, they have been shown to enhance the quality of these products. Epiphytic LAB of plants play a major role in the fermentation of silage plants. Plant species in turn affect the community structure of epiphytic LAB. In recent years, an increasing number of studies have suggested that epiphytic LAB are more effective than exogenous LAB when applied to silage. Inoculating silage plants with epiphytic LAB has attracted extensive attention because of the potential to improve the fermentation quality of silages. This review discusses the interaction of epiphytic LAB with plants during silage fermentation and compares the effects of exogenous and epiphytic LAB on plant fermentation. Overall, this review provides insight into the potential benefits of using epiphytic LAB as an inoculant and proposes a theoretical basis for improving silage quality.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yili Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xi Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jennifer W. MacAdam
- College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Yunhua Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. and their main mycotoxins. Int J Food Microbiol 2023; 387:110054. [PMID: 36525768 DOI: 10.1016/j.ijfoodmicro.2022.110054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/10/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
The occurrence of fungi and mycotoxins in foods is a serious global problem. Most of the regulated mycotoxins in food are produced by Fusarium spp. This work aimed to assess the antifungal activity of selected lactic acid bacteria (LAB) strains against the main toxigenic Fusarium spp. isolated from cereals. Various machine learning (ML) algorithms such as neural networks (NN), random forest (RF), extreme gradient boosted trees (XGBoost), and multiple linear regression (MLR), were applied to develop models able to predict the percentage of fungal growth inhibition caused by the LAB strains tested. In addition, the ability of the assayed LAB strains to reduce/inhibit the production of the main mycotoxins associated with these fungi was studied by UPLC-MS/MS. All assays were performed at 20, 25, and 30 °C in dual culture (LAB plus fungus) on MRS agar-cereal-based media. All factors and their interactions very significantly influenced the percentage of growth inhibition compared to controls. The efficacy of LAB strains was higher at 20 °C followed by 30 °C and 25 °C. Overall, the order of susceptibility of the fungi to LAB was F. oxysporum > F. poae = F. culmorum ≥ F. sporotrichioides > F. langsethiae > F. graminearum > F. subglutinans > F. verticillioides. In general, the most effective LAB was Leuconostoc mesenteroides ssp. mesenteroides (T3Y6b), and the least effective were Latilactobacillus sakei ssp. carnosus (T3MM1 and T3Y2). XGBoost and RF were the algorithms that produced the most accurate predicting models of fungal growth inhibition. Mycotoxin levels were usually lower when fungal growth decreased. In the cultures of F. langsethiae treated with LAB, T-2 and HT-2 toxins were not detected except in the treatments with Pediococcus pentosaceus (M9MM5b, S11sMM1, and S1M4). These three strains of P. pentosaceus, L. mesenteroides ssp. mesenteroides (T3Y6b) and L. mesenteroides ssp. dextranicum (T2MM3) inhibited fumonisin production in cultures of F. proliferatum and F. verticillioides. In F. culmorum cultures, zearalenone production was inhibited by all LAB strains, except L. sakei ssp. carnosus (T3MM1) and Companilactobacillus farciminis (T3Y6c), whereas deoxynivalenol and 3-acetyldeoxynivalenol were only detected in cultures of L. sakei ssp. carnosus (T3MM1). The results show that an appropriate selection and use of LAB strains can be one of the most impacting tools in the control of toxigenic Fusarium spp. and their mycotoxins in food and therefore one of the most promising strategies in terms of efficiency, positive impact on the environment, food safety, food security, and international economy.
Collapse
|
11
|
Calasso M, Marzano M, Caponio GR, Celano G, Fosso B, Calabrese FM, De Palma D, Vacca M, Notario E, Pesole G, De Angelis M, De Leo F. Shelf-life extension of leavened bakery products by using bio-protective cultures and type-III sourdough. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
Jaffar NS, Jawan R, Chong KP. The potential of lactic acid bacteria in mediating the control of plant diseases and plant growth stimulation in crop production - A mini review. FRONTIERS IN PLANT SCIENCE 2023; 13:1047945. [PMID: 36714743 PMCID: PMC9880282 DOI: 10.3389/fpls.2022.1047945] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
The microbial diseases cause significant damage in agriculture, resulting in major yield and quality losses. To control microbiological damage and promote plant growth, a number of chemical control agents such as pesticides, herbicides, and insecticides are available. However, the rising prevalence of chemical control agents has led to unintended consequences for agricultural quality, environmental devastation, and human health. Chemical agents are not naturally broken down by microbes and can be found in the soil and environment long after natural decomposition has occurred. As an alternative to chemical agents, biocontrol agents are employed to manage phytopathogens. Interest in lactic acid bacteria (LAB) research as another class of potentially useful bacteria against phytopathogens has increased in recent years. Due to the high level of biosafety, they possess and the processes they employ to stimulate plant growth, LAB is increasingly being recognized as a viable option. This paper will review the available information on the antagonistic and plant-promoting capabilities of LAB and its mechanisms of action as well as its limitation as BCA. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to chemical usage in sustaining crop productivity.
Collapse
Affiliation(s)
- Nur Sulastri Jaffar
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
- Horticulture Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Selangor, Malaysia
| | - Roslina Jawan
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Khim Phin Chong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
13
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
14
|
Amylolytic lactic acid bacteria as starter cultures for malt quality improvement. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Marzano M, Calasso M, Caponio GR, Celano G, Fosso B, De Palma D, Vacca M, Notario E, Pesole G, De Leo F, De Angelis M. Extension of the shelf-life of fresh pasta using modified atmosphere packaging and bioprotective cultures. Front Microbiol 2022; 13:1003437. [PMID: 36406432 PMCID: PMC9666361 DOI: 10.3389/fmicb.2022.1003437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial stability of fresh pasta depends on heat treatment, storage temperature, proper preservatives, and atmosphere packaging. This study aimed at improving the microbial quality, safety, and shelf life of fresh pasta using modified atmosphere composition and packaging with or without the addition of bioprotective cultures (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium spp., and Bacillus coagulans) into semolina. Three fresh pasta variants were made using (i) the traditional protocol (control), MAP (20:80 CO2:N2), and barrier packaging, (ii) the experimental MAP (40:60 CO2:N2) and barrier packaging, and (iii) the experimental MAP, barrier packaging, and bioprotective cultures. Their effects on physicochemical properties (i.e., content on macro elements, water activity, headspace O2, CO2 concentrations, and mycotoxins), microbiological patterns, protein, and volatile organic compounds (VOC) were investigated at the beginning and the end of the actual or extended shelf-life through traditional and multi-omics approaches. We showed that the gas composition and properties of the packaging material tested in the experimental MAP system, with or without bioprotective cultures, positively affect features of fresh pasta avoiding changes in their main chemical properties, allowing for a storage longer than 120 days under refrigerated conditions. These results support that, although bioprotective cultures were not all able to grow in tested conditions, they can control the spoilage and the associated food-borne microbiota in fresh pasta during storage by their antimicrobials and/or fermentation products synergically. The VOC profiling, based on gas-chromatography mass-spectrometry (GC-MS), highlighted significant differences affected by the different manufacturing and packaging of samples. Therefore, the use of the proposed MAP system and the addition of bioprotective cultures can be considered an industrial helpful strategy to reduce the quality loss during refrigerated storage and to increase the shelf life of fresh pasta for additional 30 days by allowing the economic and environmental benefits spurring innovation in existing production models.
Collapse
Affiliation(s)
- Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Maria Calasso
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giusy Rita Caponio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | | - Mirco Vacca
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy,Mirco Vacca,
| | - Elisabetta Notario
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Francesca De Leo
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,*Correspondence: Francesca De Leo,
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
16
|
Steiner N, Clauss M, Martin LF, Imper C, Meloro C, Duque‐Correa MJ. No news from old drawings? Stomach anatomy in muroid rodents in relation to body size and ecology. J Morphol 2022; 283:1200-1209. [PMID: 35830587 PMCID: PMC9543737 DOI: 10.1002/jmor.21496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
Muroid rodents mostly have a complex stomach: one part is lined with a cornified (nonglandular) epithelium, referred to as a "forestomach", whereas the rest is lined with glandular epithelium. Numerous functions for the forestomach have been proposed. We collated a catalog of anatomical depictions of the stomach of 174 muroid species from which the respective nonglandular and glandular areas could be digitally measured, yielding a "stomach ratio" (nonglandular:glandular area) as a scale-independent variable. Stomach ratios ranged from 0.13 to 20.15, and the coefficient of intraspecific variation if more than one picture was available for a species averaged at 29.7% (±21.5). We tested relationships of the ratio with body mass and various anatomical and ecological variables, including diet. There was a consistent phylogenetic signal, suggesting that closely related species share a similar anatomy. Apart from classifying stomachs into hemiglandular and discoglandular, no anatomical or ecological measure showed a consistent relationship to the stomach ratio. In particular, irrespective of statistical method or the source of dietary information, dietary proxies did not significantly correlate with the stomach ratio, except for a trend towards significance for invertivory (insectivory). Yet, even this relationship was not convincing: whereas highly insectivorous species had high but no low stomach ratios, herbivorous species had both low and high stomach ratios. Thus, the statistical effect is not due to a systematic increase in the relative forestomach size with invertivory. The most plausible hypotheses so far associate the muroid forestomach and its microbiome with a generic protective role against microbial or fungal toxins and diseases, without evident correlates of a peculiar need for this function under specific ecological conditions. Yet, this function remains to be confirmed. While providing a catalog of published depictions and hypotheses, this study highlights that the function of the muroid rodent forestomach remains enigmatic to date.
Collapse
Affiliation(s)
- Natalie Steiner
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Louise F. Martin
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Corina Imper
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and PalaeoecologyLiverpool John Moores UniversityLiverpoolUK
| | - Maria J. Duque‐Correa
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
17
|
Salman M, Javed MR, Ali H, Mustafa G, Tariq A, Sahar T, Naheed S, Gill I, Abid M, Tawab A. Bioprotection of Zea mays L. from aflatoxigenic Aspergillus flavus by Loigolactobacillus coryniformis BCH-4. PLoS One 2022; 17:e0271269. [PMID: 35917314 PMCID: PMC9345345 DOI: 10.1371/journal.pone.0271269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal infection causes deterioration, discoloration, and loss of nutritional values of food products. The use of lactic acid bacteria has diverse applications in agriculture to combat pathogens and to improve the nutritional values of cereal grains. The current research evaluated the potential of Loigolactobacillus coryniformis BCH-4 against aflatoxins producing toxigenic Aspergillus flavus strain. The cell free supernatant (CFS) of Loig. coryniformis was used for the protection of Zea mays L. treated with A. flavus. No fungal growth was observed even after seven days. The FT-IR spectrum of untreated (T1: without any treatment) and treated maize grains (T2: MRS broth + A. flavus; T3: CFS + A. flavus) showed variations in peak intensities of functional group regions of lipids, proteins, and carbohydrates. Total phenolics, flavonoid contents, and antioxidant activity of T3 were significantly improved in comparison with T1 and T2. Aflatoxins were not found in T3 while observed in T2 (AFB1 and AFB2 = 487 and 16 ng/g each). HPLC analysis of CFS showed the presence of chlorogenic acid, p-coumaric acid, 4-hydroxybenzoic acid, caffeic acid, sinapic acid, salicylic acid, and benzoic acid. The presence of these acids in the CFS of Loig. coryniformis cumulatively increased the antioxidant contents and activity of T3 treated maize grains. Besides, CFS of Loig. coryniformis was passed through various treatments (heat, neutral pH, proteolytic enzymes and catalase), to observe its stability. It suggested that the inhibitory potential of CFS against A. flavus was due to the presence of organic acids, proteinaceous compounds and hydrogen peroxide. Conclusively, Loig. coryniformis BCH-4 could be used as a good bioprotecting agent for Zea mays L. by improving its nutritional and antioxidant contents.
Collapse
Affiliation(s)
- Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
- * E-mail: (MS); (AT)
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hazrat Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Anam Tariq
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Tanzila Sahar
- Department of Biochemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Shazia Naheed
- Department of Chemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Iqra Gill
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Abid
- Department of Statistics, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Abdul Tawab
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- * E-mail: (MS); (AT)
| |
Collapse
|
18
|
Byrne MB, Thapa G, Doohan FIM, Burke JI. Lactic Acid Bacteria as Potential Biocontrol Agents for Fusarium Head Blight Disease of Spring Barley. Front Microbiol 2022; 13:912632. [PMID: 35935224 PMCID: PMC9355582 DOI: 10.3389/fmicb.2022.912632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease encountered by spring-grown barley. Traditionally, synthetic chemicals have been used to control this disease on small grain cereals. A move toward biological control agents as part of sustainable agriculture is pertinent due to the evolutionary mechanisms employed by fungal diseases to circumvent current protection strategies. This study evaluated the effect of six lactic acid bacteria isolates on the development of FHB under in vitro and glasshouse conditions. The relative expression of Fusarium marker genes and transcription factors under Fusarium infection was examined. Dual-culture assays observed inhibition zones of up to 10 and 17% of total plate area for L. amylovorus FST 2.11 and L. brevis R2Δ, respectively. Detached leaf assays validated the antifungal activity and showed the potential of all test isolates to significantly inhibit sporulation of Fusarium culmorum and Fusarium graminearum strains. Spray inoculation of lactic acid bacteria to barley spikelets prior to Fusarium spore application significantly reduced disease severity for five candidates (P < 0.05) under glasshouse conditions. Mycotoxin analysis revealed the ability of L. amylovorus DSM20552 to significantly reduce deoxynivalenol content in spikelets (P < 0.05). A preliminary gene expression study showed the positive influence of lactic acid bacteria on the expression of important defense-related marker genes and transcription factors upon FHB. These results indicate the potential of lactic acid bacteria to be included as part of an integrated pest management strategy for the management of FHB disease. This strategy will reduce FHB severity and deoxynivalenol (DON) contamination of spring barley, leading to high acceptance in the grain market.
Collapse
Affiliation(s)
- Micheal B. Byrne
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ganesh Thapa
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - FIona M. Doohan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - James I. Burke
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Raman J, Kim JS, Choi KR, Eun H, Yang D, Ko YJ, Kim SJ. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. Int J Mol Sci 2022; 23:7784. [PMID: 35887142 PMCID: PMC9322495 DOI: 10.3390/ijms23147784] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are significant groups of probiotic organisms in fermented food and are generally considered safe. LAB regulate soil organic matter and the biochemical cycle, detoxify hazardous chemicals, and enhance plant health. They are found in decomposing plants, traditional fermented milk products, and normal human gastrointestinal and vaginal flora. Exploring LAB identified in unknown niches may lead to isolating unique species. However, their classification is quite complex, and they are adapted to high sugar concentrations and acidic environments. LAB strains are considered promising candidates for sustainable agriculture, and they promote soil health and fertility. Therefore, they have received much attention regarding sustainable agriculture. LAB metabolites promote plant growth and stimulate shoot and root growth. As fertilizers, LAB can promote biodegradation, accelerate the soil organic content, and produce organic acid and bacteriocin metabolites. However, LAB show an antagonistic effect against phytopathogens, inhibiting fungal and bacterial populations in the rhizosphere and phyllosphere. Several studies have proposed the LAB bioremediation efficiency and detoxification of heavy metals and mycotoxins. However, LAB genetic manipulation and metabolic engineered tools provide efficient cell factories tailor-made to produce beneficial industrial and agro-products. This review discusses lactic acid bacteria advantages and limitations in sustainable agricultural development.
Collapse
Affiliation(s)
- Jegadeesh Raman
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| | - Jeong-Seon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (K.R.C.); (H.E.); (D.Y.)
| | - Hyunmin Eun
- Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (K.R.C.); (H.E.); (D.Y.)
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (K.R.C.); (H.E.); (D.Y.)
| | - Young-Joon Ko
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| |
Collapse
|
20
|
Yepez X, Illera AE, Baykara H, Keener K. Recent Advances and Potential Applications of Atmospheric Pressure Cold Plasma Technology for Sustainable Food Processing. Foods 2022; 11:foods11131833. [PMID: 35804648 PMCID: PMC9265751 DOI: 10.3390/foods11131833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In a circular economy, products, waste, and resources are kept in the system as long as possible. This review aims to highlight the importance of cold plasma technology as an alternative solution to some challenges in the food chain, such as the extensive energy demand and the hazardous chemicals used. Atmospheric cold plasma can provide a rich source of reactive gas species such as radicals, excited neutrals, ions, free electrons, and UV light that can be efficiently used for sterilization and decontamination, degrading toxins, and pesticides. Atmospheric cold plasma can also improve the utilization of materials in agriculture and food processing, as well as convert waste into resources. The use of atmospheric cold plasma technology is not without challenges. The wide range of reactive gas species leads to many questions about their safety, active life, and environmental impact. Additionally, the associated regulatory approval process requires significant data demonstrating its efficacy. Cold plasma generation requires a specific reliable system, process control monitoring, scalability, and worker safety protections.
Collapse
Affiliation(s)
- Ximena Yepez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador;
- Correspondence:
| | - Alba E. Illera
- Faculty of Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain;
| | - Haci Baykara
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador;
- Escuela Superior Politécnica del Litoral, ESPOL, Center of Nanotechnology Research and Development (CIDNA), Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Kevin Keener
- College of Engineering and Physical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
21
|
Liu A, Xu R, Zhang S, Wang Y, Hu B, Ao X, Li Q, Li J, Hu K, Yang Y, Liu S. Antifungal Mechanisms and Application of Lactic Acid Bacteria in Bakery Products: A Review. Front Microbiol 2022; 13:924398. [PMID: 35783382 PMCID: PMC9244174 DOI: 10.3389/fmicb.2022.924398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bakery products are nutritious, but they are susceptible to fungal contamination, which leads to a decline in quality and safety. Chemical preservatives are often used to extend the shelf-life of bakery products, but long-term consumption of these preservatives may increase the risk of chronic diseases. Consumers increasingly demand food with fewer chemical preservatives. The application of lactic acid bacteria (LAB) as a novel biological preservative not only prolongs the shelf-life of bakery products but also improves the baking properties of bakery products. This review summarizes different types and action mechanisms of antifungal compounds produced by LAB, factors affecting the production of antifungal compounds, and the effects of antifungal LAB on bakery products, providing a reference for future applications of antifungal LAB in bakery products.
Collapse
|
22
|
Smaoui S, Agriopoulou S, D'Amore T, Tavares L, Mousavi Khaneghah A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11125-11152. [PMID: 35708071 DOI: 10.1080/10408398.2022.2087594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, Kalamata, Greece
| | - Teresa D'Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Foggia, Italy
| | - Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
23
|
Moro CB, Lemos JG, Gasperini AM, Stefanello A, Garcia MV, Copetti MV. Efficacy of weak acid preservatives on spoilage fungi of bakery products. Int J Food Microbiol 2022; 374:109723. [DOI: 10.1016/j.ijfoodmicro.2022.109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
|
24
|
Niu A, Wu H, Ma F, Tan S, Wang G, Qiu W. The antifungal activity of cinnamaldehyde in vapor phase against Aspergillus niger isolated from spoiled paddy. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Gnonlonfoun E, Fotin G, Risler A, Elfassy A, Schwebel S, Schmitt M, Borges F, Mangavel C, Revol-Junelles AM, Fick M, Framboisier X, Rondags E. Inhibition of the Growth of Fusarium tricinctum and Reduction of Its Enniatin Production by Erwinia gerundensis Isolated from Barley Kernels. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2041970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Eusèbe Gnonlonfoun
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Gabriela Fotin
- Institut Français des Boissons, de la Brasserie et de la Malterie (IFBM), Vandoeuvre-lès-Nancy, France
| | - Arnaud Risler
- Laboratoire Lorrain de Chimie Moléculaire (L2CM), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Annelore Elfassy
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sophie Schwebel
- Institut Français des Boissons, de la Brasserie et de la Malterie (IFBM), Vandoeuvre-lès-Nancy, France
| | - Marc Schmitt
- Institut Français des Boissons, de la Brasserie et de la Malterie (IFBM), Vandoeuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Michel Fick
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Xavier Framboisier
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Emmanuel Rondags
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
26
|
Janić Hajnal E, Babič J, Pezo L, Banjac V, Čolović R, Kos J, Krulj J, Pavšič-Vrtač K, Jakovac-Strajn B. Effects of extrusion process on Fusarium and Alternaria mycotoxins in whole grain triticale flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Antifungal Preservation of Food by Lactic Acid Bacteria. Foods 2022; 11:foods11030395. [PMID: 35159544 PMCID: PMC8834354 DOI: 10.3390/foods11030395] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Fungal growth and consequent mycotoxin release in food and feed threatens human health, which might even, in acute cases, lead to death. Control and prevention of foodborne poisoning is a major task of public health that will be faced in the 21st century. Nowadays, consumers increasingly demand healthier and more natural food with minimal use of chemical preservatives, whose negative effects on human health are well known. Biopreservation is among the safest and most reliable methods for inhibiting fungi in food. Lactic acid bacteria (LAB) are of great interest as biological additives in food owing to their Generally Recognized as Safe (GRAS) classification and probiotic properties. LAB produce bioactive compounds such as reuterin, cyclic peptides, fatty acids, etc., with antifungal properties. This review highlights the great potential of LAB as biopreservatives by summarizing various reported antifungal activities/metabolites of LAB against fungal growth into foods. In the end, it provides profound insight into the possibilities and different factors to be considered in the application of LAB in different foods as well as enhancing their efficiency in biodetoxification and biopreservative activities.
Collapse
|
28
|
Characterization of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum Metabolites and Evaluation of Their Antimicrobial Activity against Food Pathogens. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactic acid bacteria (LAB) play an important role as natural food preservatives. However, the characterization of the variety of their metabolites is limited. The objective of this study was to determine the production of specific metabolites of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum by an optimized liquid chromatography with an ultraviolet/diode detection (HPLC-UV/DAD) method and to investigate their potential antimicrobial activity against specific food pathogens. Based on the results of this study, the main metabolites detected in Levilactobacillus brevis were 103.4 μg mL−1 DL-p-Hydroxyphenyllactic acid (OH-PLA) and 2.59 μg mL−1 vanillic acid, while 216.2 μg mL−1 OH-PLA, 19.0 μg mL−1 salicylic acid, 3.7 μg mL−1 vanillic acid, 6.9 μg mL−1 ferulic acid, 4.2 μg mL−1 benzoic acid and 1.4 μg mL−1 4-Hydrocinnamic acid were identified in the Lactiplantibacillus plantarum strain and 147.6 μg mL−1 OH-PLA and 4.9 μg mL−1 ferulic acid were identified in Lacticaseibacillus rhamnosus. This study provides alternative approaches for the molecules involved in the antimicrobial activity of food microorganism fermentation. These molecules may be used as antimicrobial ingredients in the food industry instead of conventional chemical preservatives.
Collapse
|
29
|
Kępińska-Pacelik J, Biel W. Alimentary Risk of Mycotoxins for Humans and Animals. Toxins (Basel) 2021; 13:822. [PMID: 34822606 PMCID: PMC8622594 DOI: 10.3390/toxins13110822] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 01/20/2023] Open
Abstract
Mycotoxins can be found in many foods consumed by humans and animals. These substances are secondary metabolites of some fungi species and are resistant to technological processes (cooking, frying, baking, distillation, fermentation). They most often contaminate products of animal (beef, pork, poultry, lamb, fish, game meat, milk) and plant origin (cereals, processed cereals, vegetables, nuts). It is estimated that about 25% of the world's harvest may be contaminated with mycotoxins. These substances damage crops and may cause mycotoxicosis. Many mycotoxins can be present in food, together with mold fungi, increasing the exposure of humans and animals to them. In this review we characterized the health risks caused by mycotoxins found in food, pet food and feed. The most important groups of mycotoxins are presented in terms of their toxicity and occurrence.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|
30
|
Chen H, Yan X, Du G, Guo Q, Shi Y, Chang J, Wang X, Yuan Y, Yue T. Recent developments in antifungal lactic acid bacteria: Application, screening methods, separation, purification of antifungal compounds and antifungal mechanisms. Crit Rev Food Sci Nutr 2021; 63:2544-2558. [PMID: 34523362 DOI: 10.1080/10408398.2021.1977610] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fungal contamination of food, which causes large economic losses and public health problems, is a global concern. Chemical methods are typically used in the food industry to inhibit the growth of spoilage fungus, but there are several drawbacks of chemical methods. Thus, the development of consumer-friendly and ecologically sustainable biological preservation technology has become a hot spot in food research. As a natural biological control agent, lactic acid bacteria (LAB) is a good choice in food preservation due to its antifungal properties. In order to screen and identify new antifungal LAB and antifungal compounds, this review compares three screening methods (overlay method, agar diffusion method, and microplate inhibition method) of antifungal LAB and summarizes the separation and purification techniques of antifungal compounds. A discussion of the effects of LAB, media, temperature, pH, and incubation period on the antifungal activity of LAB to highlight the antifungal properties of LAB for future studies then follows. Additionally, the antifungal mechanism of LAB is elucidated from three aspects: 1) LAB cells, 2) antifungal compounds, and 3) co-cultivation. Finally, research regarding antifungal LAB in food preservation (fruits, vegetables, grain cereals, bakery products, and dairy products) is summarized, which demonstrates the potential application value of LAB in food.
Collapse
Affiliation(s)
- Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Yiheng Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Jiale Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China.,College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
31
|
Effects of high-pressure carbon dioxide on microbial quality and germination of cereal grains and beans. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Khatami K, Atasoy M, Ludtke M, Baresel C, Eyice Ö, Cetecioglu Z. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. CHEMOSPHERE 2021; 275:129981. [PMID: 33662716 DOI: 10.1016/j.chemosphere.2021.129981] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Bio-based production of materials from waste streams is a pivotal aspect in a circular economy. This study aimed to investigate the influence of inoculum (three different sludge taken from anaerobic digestors), pH (5 & 10) and retention time on production of total volatile fatty acids (VFAs), VFA composition as well as the microbial community during anaerobic digestion of food waste. The highest VFA production was ∼22000 ± 1036 mg COD/L and 12927 ± 1029 mg COD/L on day 15 using the inoculum acclimated to food waste at pH 10 and pH 5, respectively. Acetic acid was the dominant VFA in the batch reactors with initial alkaline conditions, whereas both propionic and acetic acids were the dominant products in the acidic condition. Firmicutes, Chloroflexi and Bacteroidetes had the highest relative abundance in the reactors. VFA generation was positively correlated to the relative abundance of Firmicutes.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE100 44, Sweden.
| | - Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE100 44, Sweden.
| | - Maximilian Ludtke
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE100 44, Sweden; IVL Swedish Environmental Research Institute, Stockholm, Sweden.
| | | | - Özge Eyice
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, UK.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE100 44, Sweden.
| |
Collapse
|
33
|
Davies CR, Wohlgemuth F, Young T, Violet J, Dickinson M, Sanders JW, Vallieres C, Avery SV. Evolving challenges and strategies for fungal control in the food supply chain. FUNGAL BIOL REV 2021; 36:15-26. [PMID: 34084209 PMCID: PMC8127832 DOI: 10.1016/j.fbr.2021.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Fungi that spoil foods or infect crops can have major socioeconomic impacts, posing threats to food security. The strategies needed to manage these fungi are evolving, given the growing incidence of fungicide resistance, tightening regulations of chemicals use and market trends imposing new food-preservation challenges. For example, alternative methods for crop protection such as RNA-based fungicides, biocontrol, or stimulation of natural plant defences may lessen concerns like environmental toxicity of chemical fungicides. There is renewed focus on natural product preservatives and fungicides, which can bypass regulations for 'clean label' food products. These require investment to find effective, safe activities within complex mixtures such as plant extracts. Alternatively, physical measures may be one key for fungal control, such as polymer materials which passively resist attachment and colonization by fungi. Reducing or replacing traditional chlorine treatments (e.g. of post-harvest produce) is desirable to limit formation of disinfection by-products. In addition, the current growth in lower sugar food products can alter metabolic routing of carbon utilization in spoilage yeasts, with implications for efficacy of food preservatives acting via metabolism. The use of preservative or fungicide combinations, while involving more than one chemical, can reduce total chemicals usage where these act synergistically. Such approaches might also help target different subpopulations within heteroresistant fungal populations. These approaches are discussed in the context of current challenges for food preservation, focussing on pre-harvest fungal control, fresh produce and stored food preservation. Several strategies show growing potential for mitigating or reversing the risks posed by fungi in the food supply chain.
Collapse
Affiliation(s)
- Catheryn R. Davies
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Franziska Wohlgemuth
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Taran Young
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Joseph Violet
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Jan-Willem Sanders
- Unilever Foods Innovation Centre, Bronland 14, 6708 WH Wageningen, the Netherlands
| | - Cindy Vallieres
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
34
|
El oirdi S, Lakhlifi T, Bahar AA, Yatim M, Rachid Z, Belhaj A. Isolation and identification of
Lactobacillus plantarum 4F
, a strain with high antifungal activity, fungicidal effect, and biopreservation properties of food. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Samia El oirdi
- Laboratory of Microbial Ecology, Cellular Interaction and Environment Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| | - Tarik Lakhlifi
- Laboratory of Microbial Ecology, Cellular Interaction and Environment Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| | - Ali Adem Bahar
- Molecular Biotechnology and Epigenetic Laboratory Advanced Technologies and Research CenterKutahya Dumlupinar University Kutahya Turkey
| | - Meriem Yatim
- Laboratory of Plant Biotechnology and Molecular Biology Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| | - Zouhair Rachid
- Laboratory of Plant Biotechnology and Molecular Biology Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| | - Abdelhaq Belhaj
- Laboratory of Microbial Ecology, Cellular Interaction and Environment Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| |
Collapse
|
35
|
De Simone N, Capozzi V, de Chiara MLV, Amodio ML, Brahimi S, Colelli G, Drider D, Spano G, Russo P. Screening of Lactic Acid Bacteria for the Bio-Control of Botrytis cinerea and the Potential of Lactiplantibacillus plantarum for Eco-Friendly Preservation of Fresh-Cut Kiwifruit. Microorganisms 2021; 9:microorganisms9040773. [PMID: 33917211 PMCID: PMC8068009 DOI: 10.3390/microorganisms9040773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 01/12/2023] Open
Abstract
Botrytis cinerea, responsible for grey mold, represents the first biological cause of fruit and vegetable spoilage phenomena in post-harvest. Kiwifruit is a climacteric fruit particularly prone to this mold infestation during storage. Lactic acid bacteria (LAB) are food-grade bacteria that can synthesize several metabolites with antimicrobial activity and are, therefore, suggested as promising and eco-friendly resources for the bio-control of molds on fruits and vegetables. In this work, we propose the screening of a collection of 300 LAB previously isolated from traditional sourdoughs for their ability to counteract in vitro the growth of Botrytis cinerea CECT 20973. Only 2% of tested LAB strains belonging to Lactiplantibacillus plantarum species, exerted a strong antagonism against B. cinerea. The cell-free supernatants were partially characterized and results clearly indicated that high levels of lactic acid contributed to the antagonistic activity. PAN01 and UFG 121 cell-free supernatants were investigated as potential bio-control agents in a preliminary in vivo assay using freshly cut kiwifruits as a food model. The application of cell-free supernatants allowed to delay the growth of B. cinerea on artificially contaminated kiwifruits until two weeks. The antagonistic activity was greatly affected by the storage temperature (25 °C and 4 °C) selected for the processed fruits, suggesting the importance to include microbial-based solution in a broader framework of hurdle technologies.
Collapse
Affiliation(s)
- Nicola De Simone
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Maria Lucia Valeria de Chiara
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Maria Luisa Amodio
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Samira Brahimi
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Natural Sciences and Life, University of Oran 1 Ahmed Ben Bella, Bp1524 El M’ Naouer, Oran 31000, Algeria;
| | - Giancarlo Colelli
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France;
| | - Giuseppe Spano
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Pasquale Russo
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
- Correspondence:
| |
Collapse
|
36
|
Adebiyi JA, Njobeh PB, Adebo OA, Kayitesi E. Metabolite profile of Bambara groundnut ( Vigna subterranea) and dawadawa (an African fermented condiment) investigation using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). Heliyon 2021; 7:e06666. [PMID: 33889778 PMCID: PMC8050003 DOI: 10.1016/j.heliyon.2021.e06666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 11/24/2022] Open
Abstract
Metabolite profile provides an overview and avenue for the detection of a vast number of metabolites in food sample at a particular time. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of such techniques that can be utilized for profiling known and unknown compounds in a food sample. In this study, the metabolite profiles of Bambara groundnut and dawadawa (unhulled and dehulled) were investigated using GC-HRTOF-MS. The presence of varying groups of metabolites, including aldehydes, sterols, ketones, alcohols, nitrogen-containing compounds, furans, pyridines, acids, vitamins, fatty acids, sulphur-related compounds, esters, terpenes and terpenoids were reported. Bambara groundnut fermented into derived dawadawa products induced either an increase or decrease as well as the formation of some metabolites. The major compounds (with their peak area percentages) identified in Bambara groundnut were furfuryl ether (9.31%), bis (2-(dimethylamino)ethyl) ether (7.95%), 2-monopalmitin (7.88%), hexadecanoic acid, methyl ester (6.98%), 9,12-octadecadienoic acid (Z,Z) and 2-hydroxy-1-(hydroxymethyl)ethyl ester (5.82%). For dehulled dawadawa, the significant compounds were palmitic acid, ethyl ester (17.7%), lauric acid, ethyl ester (10.2%), carbonic acid, 2-dimethylaminoethyl 2-methoxyethyl ester (7.3%), 9,12-octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester (5.13%) and maltol (4%), while for undehulled dawadawa, it was indoline, 2-(hydroxydiphenylmethyl) (26.1%), benzoic acid, 4-amino-4-hydroximino-2,2,6,6-tetramethyl-1-piperidinyl ester (8.2%), 2-undecen-4-ol (4.7%), 2-methylbutyl propanoate (4.7%) and ë-tocopherol (4.3%). These observed metabolites reported herein provides an overview of the metabolites in these investigated foods, some of which could be related to nutrition, bioactivity as well as sensory properties. It is important to emphasize that based on some of the metabolites detected, it could be suggested that Bambara groundnut and derived dawadawa might serve as functional foods that are beneficial to health.
Collapse
Affiliation(s)
- Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein Campus, Gauteng, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein Campus, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein Campus, Gauteng, South Africa
| | - Eugenie Kayitesi
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| |
Collapse
|
37
|
Kępińska-Pacelik J, Biel W. Microbiological Hazards in Dry Dog Chews and Feeds. Animals (Basel) 2021; 11:631. [PMID: 33673475 PMCID: PMC7997464 DOI: 10.3390/ani11030631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Nowadays, dogs are usually equally treated with other family members. Due to the growing caregivers' awareness, the pet foods industry is changing dynamically. Pet foods are manufactured with a myriad of ingredients. Few authors of scientific papers deal with the topic of foods products' safety for pet animals, assessed from the perspective of their caregivers. Despite the many methods of producing foods of the highest quality, there are still cases of contamination of pet foods and treats. In the case of dried chews for dogs, bacteria of the genus Salmonella are the most common risk. In the case of both dry and wet foods, in addition to many species of bacteria, we often deal with mold fungi and their metabolites, mycotoxins. This article presents selected microbiological risks in dog foods and treats, and analyzes the Rapid Alert System for Food and Feed (RASFF) system (2017-2020) for pathogenic microorganisms in dried dog chews, treats and foods. In this period, pet food-related notifications were registered, which were categorized into different types. Analyzing the RASFF notifications over the period, it has been shown that there are still cases of bacterial contamination of dog foods and treats, while in terms of the overall mycotoxin content, these products may appear safe.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|
38
|
Combination of Extrusion and Fermentation with Lactobacillus plantarum and L. uvarum Strains for Improving the Safety Characteristics of Wheat Bran. Toxins (Basel) 2021; 13:toxins13020163. [PMID: 33669853 PMCID: PMC7923204 DOI: 10.3390/toxins13020163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Processed wheat bran (W) is of great importance for food and feed. Consequently, the biosafety of W should be evaluated and improved with valorisation strategies. This study tested a design combining extrusion (at temperature of 115 and 130 °C; screw speeds of 16, 20, and 25 rpm) and fermentation with Lactobacillus plantarum and L. uvarum strains for the valorisation of W to provide safer food and feed stock. The influence of different treatments on biogenic amine formation, mycotoxin content, and free amino acids, as well as acidity, microbiological parameters, and sugar concentration, were analysed. This research showed that a combination of extrusion and fermentation with selected strains can change several aspects of W characteristics. There was a significant effect of applied treatments on acidity and the microbiological parameters of W, as well as biogenic amines content. The lowest total mycotoxin concentration (29.8 µg/kg) was found in extruded (130 °C; 25 rpm) and fermented with L. uvarum sample. Finally, the combination of the abovementioned treatments can be confirmed as a prospective innovative pre-treatment for W, capable of potentially enhancing their safety characteristics and composition.
Collapse
|
39
|
Wokorach G, Landschoot S, Audenaert K, Echodu R, Haesaert G. Genetic Characterization of Fungal Biodiversity in Storage Grains: Towards Enhancing Food Safety in Northern Uganda. Microorganisms 2021; 9:microorganisms9020383. [PMID: 33672825 PMCID: PMC7917641 DOI: 10.3390/microorganisms9020383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Worldwide fungal contamination leads to both quantitative and qualitative grain losses during crop growth and/or storage. A greater proportion of grains contamination with toxins often occurs in sub-Saharan Africa, where control measures are limited. We determined fungal diversity and their toxin production ability in household grains meant for human consumption to highlight the risk of mycotoxin exposure among people from northern Uganda. The study underlines the high diversity of fungi that group into 15 genera; many of which are plant pathogens with toxigenic potential. Fusarium verticillioides was the most common fungal species isolated from household grains. The study also indicates that northern Uganda is favored by a high proportion of toxigenic isolates of F. verticillioides, F. andiyazi, and F. proliferatum, which are characterized by a high fumonisins production capability. The fumonisins production ability was not dependent on the species, grain types, and haplotype group to which the isolates belong. The contamination of most household grains with fungi capable of producing a high amount of toxin shows that most people are exposed to an elevated amount of mycotoxins, which shows the frequent problems with mycotoxins that have been reported in most parts of sub-Saharan Africa.
Collapse
Affiliation(s)
- Godfrey Wokorach
- Department of Plants and Crops, Campus Schoonmeersen Building C, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium; (S.L.); (K.A.); (G.H.)
- Multifunctional Research Laboratory, Gulu University, P.O. Box 166, Gulu, Uganda;
- Correspondence:
| | - Sofie Landschoot
- Department of Plants and Crops, Campus Schoonmeersen Building C, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium; (S.L.); (K.A.); (G.H.)
| | - Kris Audenaert
- Department of Plants and Crops, Campus Schoonmeersen Building C, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium; (S.L.); (K.A.); (G.H.)
| | - Richard Echodu
- Multifunctional Research Laboratory, Gulu University, P.O. Box 166, Gulu, Uganda;
- Department of Biology, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Geert Haesaert
- Department of Plants and Crops, Campus Schoonmeersen Building C, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium; (S.L.); (K.A.); (G.H.)
| |
Collapse
|
40
|
|
41
|
Thery T, Lynch KM, Zannini E, Arendt EK. Isolation, characterisation and application of a new antifungal protein from broccoli seeds – New food preservative with great potential. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Salman M, Tariq A, Ijaz A, Naheed S, Hashem A, Abd_Allah EF, Soliman MH, Javed MR. In Vitro Antimicrobial and Antioxidant Activities of Lactobacillus coryniformis BCH-4 Bioactive Compounds and Determination of their Bioprotective Effects on Nutritional Components of Maize ( Zea mays L.). Molecules 2020; 25:E4685. [PMID: 33066377 PMCID: PMC7587371 DOI: 10.3390/molecules25204685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) can synthesize antimicrobial compounds (AMCs) with nutritional and bioprotective properties in crops and food products. In the current study, AMCs of Lactobacillus coryniformis BCH-4 were evaluated to control fungal spoilage in maize grains. On maize grains treated with 75%-100% (v/v) concentrated AMCs, no fungal growth was observed even after 72 h of Aspergillus flavus inoculation. Proximate analysis of treatments A1 (raw grains), A2 (A. flavus inoculated grains) and A3 (A. flavus + AMCs inoculated grains) revealed that moisture was significantly (p ≤ 0.05) high in A2 than A3 and A1. Meanwhile, protein, fat, fiber and ash contents were significantly decreased in A2 compared to A1 and A3. Moreover, β-carotene contents were not statistically different between A1 and A3, while in A2 it was significantly decreased. HPLC analysis revealed the presence of 2-oxopropanoic acid, 2-hydroxypropane-1,2,3-tricarboxylic acid, 2-hydroxybutanedioic acid, 2-hydroxypropanoic acid, propanedioic acid and butanedioic acid, which also showed antifungal activity against Aspergillus flavus. FTIR spectroscopy revealed the presence of hydroxyl, carbonyl and ester-groups along with organic and fatty acids, thereby indicating their participation in inhibitory action. Furthermore, the AMCs were found to be a good alternative to chemical preservatives, thereby not only preserving the nutritive qualities but increasing the shelf life as well.
Collapse
Affiliation(s)
- Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (M.S.); (A.T.)
| | - Anam Tariq
- Department of Biochemistry, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (M.S.); (A.T.)
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan;
| | - Anam Ijaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan;
| | - Shazia Naheed
- Department of Chemistry, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan;
| |
Collapse
|
43
|
Kongtragoul P, Junka N. Top‐spray fluidization coating of paddy rice with zinc oxide nanoparticles to reduce infection from Aspergillussp. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Pornprapa Kongtragoul
- Management Technology for Plant Production Department of Agricultural Technology King Mongkut's Institute of Technology Ladkrabang Chumphon Thailand
| | - Nittaya Junka
- Division of Crop Production Technology Faculty of Science and Technology Nakhon Pathom Rajabhat University Nakhon Pathom Thailand
| |
Collapse
|
44
|
Schettino R, Pontonio E, Gobbetti M, Rizzello CG. Extension of the Shelf-Life of Fresh Pasta Using Chickpea Flour Fermented with Selected Lactic Acid Bacteria. Microorganisms 2020; 8:E1322. [PMID: 32872647 PMCID: PMC7564801 DOI: 10.3390/microorganisms8091322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Fresh pasta is subjected to rapid spoilage, mainly due to the metabolic activity of bacteria, yeasts, and especially molds, which negatively affect the sensorial characteristics and the safety of the product. In this work, chickpea flour was fermented with selected lactic acid bacteria, characterized in terms of the antifungal activity, and used to fortify fresh semolina pasta. Pasta was characterized and subjected to a long period of storage after being artificially inoculated with Penicillium roqueforti. Conventional fresh semolina pasta, produced with or without calcium propionate addition, was used as a reference. The water/salt-soluble extract from chickpea sourdough exhibited antifungal activity towards a large spectrum of molds. Its purification led to the identification of ten potentially active peptides. Besides the high content of dietary fibers (4.37%) and proteins (11.20%), nutritional improvements, such as the decrease of the antinutritional factors concentration and the starch hydrolysis index (25% lower than the control) and the increase of the protein digestibility (36% higher than the control), were achieved in fresh pasta fortified with the chickpea sourdough. Inhibition of the indicator mold growth during a 40-day storage period was more effective than in pasta added to calcium propionate.
Collapse
Affiliation(s)
- Rosa Schettino
- Department of Soil, Plant and Food Sciences, University of Bari, 70125 Bari, Italy; (R.S.); (E.P.)
| | - Erica Pontonio
- Department of Soil, Plant and Food Sciences, University of Bari, 70125 Bari, Italy; (R.S.); (E.P.)
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Sciences, University of Bari, 70125 Bari, Italy; (R.S.); (E.P.)
| |
Collapse
|
45
|
Liang N, Dacko A, Tan AK, Xiang S, Curtis JM, Gänzle MG. Structure-function relationships of antifungal monohydroxy unsaturated fatty acids (HUFA) of plant and bacterial origin. Food Res Int 2020; 134:109237. [PMID: 32517955 DOI: 10.1016/j.foodres.2020.109237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022]
Abstract
This study investigated the relationships between the structures of hydroxy unsaturated fatty acids (HUFA) and their antifungal activities. Structurally diverse HUFA, including four monohydroxy-18:1 isomers, two monohydroxy 18:2 isomers and two monohydroxy 18:2 isomers were extracted from seeds of plants (Coriaria nepalensis, Thymus vulgaris, Mallotus philippensis and Dimorphotheca sinuata) for which information was available on PlantFAdb database, and from culture supernatants of lactobacilli. They were purified by high-speed counter current chromatography (HSCCC) and identified by LC-MS/MS. The minimum inhibitory concentrations of HUFA were tested against a panel of five yeasts and five mycelial fungi. The membrane phase changes under HUFA treatment and the content of ergosterol were both measured to differentiate HUFA-sensitive and HUFA-resistant fungi. HUFA with a hydroxyl group near the center of the 18-carbon fatty acid chains were found to contribute strongly to HUFA antifungal activity. Antifungal HUFA targeted filamentous fungi but not yeasts. HUFA didn't alter the overall membrane fluidity of sensitive fungi, but the most HUFA-sensitive fungi had a lower average ergosterol content compared to the resistant yeasts. This indicates the possible interaction of HUFA with fungal membrane with low sterol content, which partially support the previous proposed mode of action. Findings here provide insight on further development of HUFA application in food products.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Andrea Dacko
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Alexander K Tan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Sheng Xiang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.
| |
Collapse
|
46
|
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J. Antifungal Effect of Triglycerol Monolaurate Synthesized by Lipozyme 435-Mediated Esterification. J Microbiol Biotechnol 2020; 30:561-570. [PMID: 31986567 PMCID: PMC9728257 DOI: 10.4014/jmb.1910.10043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study was designed to synthesize triglycerol monolaurate (TGML) with Lipozyme 435 as the catalyst, and explore its effects on the growth of Aspergillus parasiticus (A. parasiticus) and Aspergillus flavus (A. flavus) and the secretion of aflatoxin b1. The highest content of TGML (49.76%) was obtained at a molar ratio of triglycerol to lauric acid of 1.08, a reaction temperature of 84.93°C, a reaction time of 6 h and an enzyme dosage of 1.32%. After purification by molecular distillation combined with the washes with ethyl acetate and water, the purity of TGML reached 98.3%. Through characterization by electrospray-ionization mass spectrometry, infrared spectrum and nuclear magnetic resonance, the structure of TGML was identified as a linear triglycerol combined with lauroyl at the end. Finally, the inhibitory effects of TGML on the growths of A. parasiticus and A. flavus and the secretion of aflatoxin b1 were evaluated by measuring the colony diameter, the inhibition rate of mycelial growth and the content of mycotoxin in the media. The results indicated that TGML had a stronger inhibitory effects on colony growth and mycelial development of both toxic molds compared to sodium benzoate and potassium sorbate, and the secretions of toxins from A. parasiticus and A. flavus were completely suppressed when adding TGML at 10 and 5 mM, respectively. Based on the above results, TGML may be used as a substitute for traditional antifungal agents in the food industry.
Collapse
Affiliation(s)
- Song Zhang
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Jian Xiong
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Zhengxiang Ning
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Denghui Zhang
- Innovation Center of Bioactive Molecule Development and Application, South China Institute of Collaborative Innovation, Xuefu Road, Dongguan 221116, P.R. China
| | - Jiguo Yang
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China,Corresponding author Phone: +86-13560396620 Fax: +86-0769-38822110 E-mail:
| |
Collapse
|
47
|
Microbial radiosensitization using combined treatments of essential oils and irradiation- part B: Comparison between gamma-ray and X-ray at different dose rates. Microb Pathog 2020; 143:104118. [PMID: 32147410 DOI: 10.1016/j.micpath.2020.104118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 11/23/2022]
Abstract
Stored rice and rice products are prone to contamination by pathogenic fungi and bacteria such as Aspergillus niger, Bacillus cereus, and Paenibacillus amylolyticus. Treatment with antimicrobial essential oils (EOs) and irradiation are options to control spoilage organisms. Microbial samples with or without fumigation with an oregano/thyme EO mixture were irradiated at 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 kGy for calculation of a D10 value. The relative sensitivity was calculated as the ratio of D10 values for the irradiation plus oregano and thyme EO combination and irradiation alone treatments. In all cases, irradiation plus fumigation with the oregano and thyme EO mixture showed increased efficacy compared with irradiation alone. The relative sensitivity of γ-ray irradiation against A. niger was 1.22, 1.33, and 1.24 for radiation dose rates of 10.445, 4.558, and 0.085 kGy/h, respectively, however against B. cereus it was 1.28, 1.45, and 1.49, and against P. amylolyticus it was 1.35, 1.33, and 1.38, for respective γ-ray irradiation dose rates. The relative sensitivity of X-ray irradiation against A. niger, B. cereus, and P. amylolyticus was 1.63, 1.21, and 1.31, respectively, at the X-ray dose rate of 0.76 kGy/h. The results showed that the relative sensitivity of γ-ray irradiation was higher against the two bacteria than the fungus, whereas X-ray showed higher sensitivity against the fungus than the two bacteria. There was no consistent positive or negative relationship between dose rate and relative sensitivity. The results demonstrated the potential of an oregano and thyme EOs mixture as an antimicrobial agent and its efficacy to increase the radiosensitization of A. niger, B. cereus, and P. amylolyticus during γ-ray or X-ray irradiation treatments.
Collapse
|
48
|
Yazid SNE, Jinap S, Ismail SI, Magan N, Samsudin NIP. Phytopathogenic organisms and mycotoxigenic fungi: Why do we control one and neglect the other? A biological control perspective in Malaysia. Compr Rev Food Sci Food Saf 2020; 19:643-669. [DOI: 10.1111/1541-4337.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Siti Nur Ezzati Yazid
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
| | - Selamat Jinap
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| | - Siti Izera Ismail
- Laboratory of Climate‐Smart Food Crop ProductionInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Plant ProtectionFaculty of AgricultureUniversiti Putra Malaysia Serdang Malaysia
| | - Naresh Magan
- Applied Mycology GroupCranfield Soil and AgriFood InstituteCranfield University Cranfield UK
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
49
|
Pigłowski M. Comparative analysis of notifications regarding mycotoxins in the Rapid Alert System for Food and Feed (RASFF). QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- M. Pigłowski
- Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland
| |
Collapse
|
50
|
Adebiyi JA, Kayitesi E, Adebo OA, Changwa R, Njobeh PB. Food fermentation and mycotoxin detoxification: An African perspective. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106731] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|