1
|
Osek J, Wieczorek K. Why does Listeria monocytogenes survive in food and food-production environments? J Vet Res 2023; 67:537-544. [PMID: 38130454 PMCID: PMC10730553 DOI: 10.2478/jvetres-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Listeria monocytogenes is one of the most dangerous food-borne pathogens and is responsible for human listeriosis, a severe disease with a high mortality rate, especially among the elderly, pregnant women and newborns. Therefore, this bacterium has an important impact on food safety and public health. It is able to survive and even grow in a temperature range from -0.4°C to 45°C, a broad pH range from 4.6 to 9.5 and at a relatively low water activity (aW < 0.90), and tolerates salt content up to 20%. It is also resistant to ultraviolet light, biocides and heavy metals and forms biofilm structures on a variety of surfaces in food-production environments. These features make it difficult to remove and allow it to persist for a long time, increasing the risk of contamination of food-production facilities and ultimately of food. In the present review, the key mechanisms of the pathogen's survival and stress adaptation have been presented. This information may grant better understanding of bacterial adaptation to food environmental conditions.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
2
|
Soro AB, Ekhlas D, Marmion M, Scannell AGM, Whyte P, Bolton DJ, Burgess CM, Tiwari BK. Investigation of differences in susceptibility of Campylobacter jejuni strains to UV light-emitting diode (UV-LED) technology. Sci Rep 2023; 13:9459. [PMID: 37301882 PMCID: PMC10257703 DOI: 10.1038/s41598-023-35315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Campylobacter jejuni remains a high priority in public health worldwide. Ultraviolet light emitting-diode technology (UV-LED) is currently being explored to reduce Campylobacter levels in foods. However, challenges such as differences in species and strain susceptibilities, effects of repeated UV-treatments on the bacterial genome and the potential to promote antimicrobial cross-protection or induce biofilm formation have arisen. We investigated the susceptibility of eight C. jejuni clinical and farm isolates to UV-LED exposure. UV light at 280 nm induced different inactivation kinetics among strains, of which three showed reductions greater than 1.62 log CFU/mL, while one strain was particularly resistant to UV light with a maximum reduction of 0.39 log CFU/mL. However, inactivation was reduced by 0.46-1.03 log CFU/mL in these three strains and increased to 1.20 log CFU/mL in the resistant isolate after two repeated-UV cycles. Genomic changes related to UV light exposure were analysed using WGS. C. jejuni strains with altered phenotypic responses following UV exposure were also found to have changes in biofilm formation and susceptibility to ethanol and surface cleaners.
Collapse
Affiliation(s)
- Arturo B Soro
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8, Ireland
- Infectious Diseases in Humans, Service Foodborne Pathogens, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Maitiú Marmion
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, D04 V1W8, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Declan J Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
| | | | - Brijesh K Tiwari
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland.
- Teagasc Food Research Centre, Ashtown, Dublin, D15 DY05, Ireland.
| |
Collapse
|
3
|
Chen Y, Zhang Q, Wang D, Shu YG, Shi H. Memory Effect on the Survival of Deinococcus radiodurans after Exposure in Near Space. Microbiol Spectr 2023; 11:e0347422. [PMID: 36749041 PMCID: PMC10100890 DOI: 10.1128/spectrum.03474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Near space (20 to 100 km in altitude) is an extreme environment with high radiation and extreme cold, making it difficult for organisms to survive. However, many studies had shown that there were still microbes living in this extremely harsh environment. It was particularly important to study which factors affected the survival of microorganisms living in near space after exposure to irradiation, as this was related to many studies, such as studies of radioresistance mechanisms, panspermia hypothesis, long-distance microbial transfer, and developing extraterrestrial habitats. Survival after radiation was probably influenced by the growth condition before radiation, which is called the memory effect. In this research, we used different growth conditions to affect the growth of Deinococcus radiodurans and lyophilized bacteria in exponential phase to maintain the physiological state at this stage. Then high-altitude scientific balloon exposure experiments were carried out by using the Chinese Academy of Sciences Balloon-Borne Astrobiology Platform (CAS-BAP) at Dachaidan, Qinghai, China (37°44'N, 95°21'E). The aim was to investigate which factors influence survival after near-space exposure. The results suggested that there was a memory effect on the survival of D. radiodurans after exposure. If the differences in growth rate were caused by differences in nutrition, the survival rate and growth rate were positively correlated. Moreover, the addition of paraquat and Mn2+ during the growth phase can also increase survival. This finding may help to deepen the understanding of the mechanics of radiation protection and provide relevant evidence for many studies, such as of long-distance transfer of microorganisms in near space. IMPORTANCE Earth's near space is an extreme environment with high radiation and extreme cold. Which factors affect the survival of microbes in near space is related to many studies, such as studies of radioresistance mechanisms, panspermia hypothesis, long-distance microbial transfer, and developing extraterrestrial habitats. We performed several exposure experiments with Deinococcus radiodurans in near space to investigate which factors influence the survival rate after near-space exposure; that is, there was a relationship between survival after radiation and the growth condition before radiation. The results suggested that there was a memory effect on the survival of D. radiodurans after exposure. This finding may help to deepen the understanding of the mechanism of radiation protection and provide relevant evidence for many studies, such as of long-distance transfer of microorganisms in near space.
Collapse
Affiliation(s)
- Yining Chen
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Deyu Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao-Gen Shu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
4
|
Performance of UV-LED and UV-C treatments for the inactivation of Escherichia coli ATCC 25922 in food model solutions: Influence of optical and physical sample characteristics. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
Kim HJ, Yoon HW, Lee MA, Kim YH, Lee CJ. Impact of UV-C Irradiation on Bacterial Disinfection in a Drinking Water Purification System. J Microbiol Biotechnol 2023; 33:106-113. [PMID: 36474325 PMCID: PMC9895992 DOI: 10.4014/jmb.2211.11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The supply of microbiological risk-free water is essential to keep food safety and public hygiene. And removal, inactivation, and destruction of microorganisms in drinking water are key for ensuring safety in the food industry. Ultraviolet-C (UV-C) irradiation is an attractive method for efficient disinfection of water without generating toxicity and adversely affecting human health. In this study, the disinfection efficiencies of UV-C irradiation on Shigella flexneri (Gram negative) and Listeria monocytogenes (Gram positive) at various concentrations in drinking water were evaluated using a water purifier. Their morphological and physiological characteristics after UV-C irradiation were observed using fluorescence microscopy and flow cytometry combined with live/dead staining. UV-C irradiation (254 nm wavelength, irradiation dose: 40 mJ/cm2) at a water flow velocity of 3.4 L/min showed disinfection ability on both bacteria up to 108 CFU/4 L. And flow cytometric analysis showed different physiological shift between S. flexneri and L. monocytogenes after UV-C irradiation, but no significant shift of morphology in both bacteria. In addition, each bacterium revealed different characteristics with time-course observation after UV-C irradiation: L. monocytogenes dramatically changed its physiological feature and seemed to reach maximum damage at 4 h and then recovered, whereas S. flexneri seemed to gradually die over time. This study revealed that UV-C irradiation of water purifiers is effective in disinfecting microbial contaminants in drinking water and provides basic information on bacterial features/responses after UV-C irradiation.
Collapse
Affiliation(s)
- Hyun-Joong Kim
- Department of Food Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Hee-Won Yoon
- Department of Food Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Min-A Lee
- Department of Food Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Young-Hoon Kim
- Department of Food Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Chang Joo Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea,Corresponding author Phone: +82-63-850-6825 Fax: +82-63-850-7308 E-mail address:
| |
Collapse
|
6
|
Okladnikova VO, Ochirov OS, Grigor’eva MN, Stelmakh SA. Polymer-polymer composition of polyvinyl alcohol and polyhexamethylene guanidine hydrochloride for antimicrobial surface protection. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2023. [DOI: 10.21285/2227-2925-2022-12-4-627-632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since 2020, surface disinfection has become particularly relevant thus requiring improved approaches to its implementation. Conventional disinfectants comprising concentrated solutions or soluble tablets fail to fully comply with the need for antimicrobial protection of surfaces, calling for their repetitive application. This leads to considerable expenses, with the price of disinfectants rising by 30–50% over the past two years. In this article, agents characterised by prolonged action due to film-forming antimicrobial components having good adhesion to various surfaces are developed in order to reduce the cost of the disinfection procedure and increase its efficiency. In addition, such systems can be used as additives to water paint coatings for minor maintenance of medical and preventive institutions. These materials can significantly reduce the growth rate of the harmful bacteria population, as well as provide long-term protection against it. In order to implement this approach, the polymer-polymer composition based on polyvinyl alcohol and polyhexamethylene guanidine hydrochloride was developed. It should be noted that guanidine-containing polymers are characterised by high antimicrobial activity and low human toxicity, being also widely used as active agents in disinfectants. An excellent film-forming polymer exhibiting good adhesive properties, polyvinyl alcohol is non-toxic and chemically inert. Thus, the use of such additives can significantly reduce the extension of harmful bacteria, especially in crowded public areas.
Collapse
|
7
|
Song C, Wen R, Zhou J, Zeng X, Kou Z, Li Y, Yun F, Wu R. UV C Light from a Light-Emitting Diode at 275 Nanometers Shortens Wound Healing Time in Bacterium- and Fungus-Infected Skin in Mice. Microbiol Spectr 2022; 10:e0342422. [PMID: 36453911 PMCID: PMC9769979 DOI: 10.1128/spectrum.03424-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Due to the changes in pathogenic species and the absence of research on topical skin antibiotics, the therapy of skin and soft tissue infections (SSTIs) is facing more and more severe challenges. It is particularly urgent to look for alternative therapies without induction of drug resistance. UV C (UVC) light within the range of 200 to 280 nm is one of the most common techniques used to kill and/or inactivate pathogenic microorganisms. However, the traditional most commonly used wavelength of 254 nm irradiated from a low-pressure mercury lamp is hazardous to human health, being both carcinogenic and damaging to eye tissues, which limits its applications in vivo. This research aimed to investigate the antimicrobial properties and influence of 275-nm UVC light from a light-emitting diode (UVC-LED light) on wound healing time. Five bacteria, three fungi, and scalded-mouse models combined with SSTIs were used to evaluate the antimicrobial effect in vitro and in vivo. 275-nm UVC-LED light inactivated both bacteria and fungi with a very short irradiation time in vitro and induced neither DNA damage nor epidermal lesions in the mice's skin. Furthermore, in mouse models of SSTIs induced by either methicillin-resistant Staphylococcus aureus (MRSA) or Candida albicans, the 275-nm UVC-LED light showed significant antimicrobial effects and shortened the wound healing time compared with that in the no-irradiation group. UVC-LED light at 275 nm has the potential to be a new form of physical therapy for SSTIs. IMPORTANCE As a common clinical problem, the therapy of SSTIs is facing growing challenges due to an increase in the number of drug-resistant bacteria and fungi. UV C (UVC) light sterilization has been widely used in all aspects of daily life, but there are very few reports about in vivo therapy using UVC light. It is well known that prolonged exposure to UVC light increases the possibility of skin cancer. In addition, it is also very harmful for eyes. UV irradiation with 254-nm UVC light can cause corneal damage, like thinning of the corneal epithelial layer, superficial punctate keratitis, corneal erosion, etc. In this study, we focused on looking for a more accessible light source and safer UVC wavelength, and 275-nm UVC LED light was chosen. We investigated its applicability for SSTIs therapy with relative skin safety and expected that it could be used as a new physical therapy method for SSTIs.
Collapse
Affiliation(s)
- Chenghua Song
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ruichao Wen
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaxuan Zhou
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zi Kou
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Li
- Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Feng Yun
- Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Balamurugan S, Zaidi M, Arvaj L, Pendyala B, Gabriel M, Farber JM, Sasges M, Patras A. Modeling the UV-C Inactivation Kinetics and Determination of Fluence Required for Incremental Inactivation of Cronobacter spp. J Food Prot 2022; 85:1625-1634. [PMID: 36075045 DOI: 10.4315/jfp-22-165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT A study was undertaken to model the UV-C inactivation kinetics and determine the fluences required for the incremental inactivation of several strains of Cronobacter spp. suspended in clear phosphate-buffered saline (PBS). In total, 13 strains of Cronobacter spp. were individually suspended in PBS and treated with UV-C doses of 0, 2, 4, 6, 8, and 10 mJ cm-2 with a collimated beam device emitting UV-C at 253.7 nm. The log reduction from each treatment was identified using the plate count method and plotted against the UV-C dose and then curve fitted using several mathematical models. The UV-C dose required for incremental inactivation of each isolate was determined using both linear and nonlinear regression. For the 13 strains tested, a UV-C dose of 10 mJ cm-2 inactivated between 3.66 ± 0.101 and 5.04 ± 0.465 log CFU mL-1. The survival behavior of all strains was best fitted to the Weibull+tail model, with correlation coefficients between 97.17 and 99.71%, and was used to determine the fluences required for incremental inactivation. The UV-C fluences needed to inactivate 1 log (D10-value) of Cronobacter spp. in buffer were between 3.53 and 5.50 mJ cm-2, whereas a fluence greater than 6.57 mJ cm-2 was required to achieve a 4-log inactivation. A clear understanding of the UV-C dose-response of several strains of Cronobacter spp. lays the foundation to design effective UV-based disinfection systems. HIGHLIGHTS
Collapse
Affiliation(s)
- Sampathkumar Balamurugan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Mubashira Zaidi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Laura Arvaj
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Brahmaiah Pendyala
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee 37209, USA
| | | | - Jeffrey M Farber
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.,JM Farber Global Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | - Ankit Patras
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee 37209, USA
| |
Collapse
|
9
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
10
|
Astráin-Redín L, Moya J, Alejandre M, Beitia E, Raso J, Calvo B, Cebrián G, Álvarez I. Improving the microbial inactivation uniformity of pulsed electric field ohmic heating treatments of solid products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Anast JM, Schmitz-Esser S. Certain Listeria monocytogenes plasmids contribute to increased UVC ultraviolet light stress. FEMS Microbiol Lett 2021; 368:6367057. [PMID: 34498664 PMCID: PMC8457643 DOI: 10.1093/femsle/fnab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Listeria monocytogenes is the causative agent of the highly fatal foodborne disease listeriosis and can persist in food production environments. Recent research highlights the involvement of L. monocytogenes plasmids in different stress response mechanisms, which contribute to its survival in food production facilities. Ultraviolet (UV) light in the UVC spectrum (200–280 nm) is used in food production to control microbial contamination. Although plasmid-encoded UV resistance mechanisms have been described in other bacteria, no research indicates that L. monocytogenes plasmids contribute to the UV stress response. The plasmids of L. monocytogenes strains 6179, 4KSM and R479a are genetically distinct and were utilized to study the roles of plasmids in the UV response. Wild-type and plasmid-cured variant cells were grown to logarithmic or late-stationary phase, plated on agar plates and exposed to UVC for 60 or 90 s, and colony-forming units (CFUs) were determined. CFUs of 6179 and 4KSM, bearing pLM6179 and p4KSM, respectively, were significantly (P-value < 0.05) higher than those of the plasmid-cured strains in both logarithmic and stationary phases. No difference in survival was observed for the R479a strain. Our data show for the first time that certain L. monocytogenes plasmids contribute to the survival of UVC light stress.
Collapse
Affiliation(s)
- Justin M Anast
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Ricci A, Alinovi M, Martelli F, Bernini V, Garofalo A, Perna G, Neviani E, Mucchetti G. Heat Resistance of Listeria monocytogenes in Dairy Matrices Involved in Mozzarella di Bufala Campana PDO Cheese. Front Microbiol 2021; 11:581934. [PMID: 33488535 PMCID: PMC7815519 DOI: 10.3389/fmicb.2020.581934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The presence of Listeria monocytogenes in Mozzarella di Bufala Campana Protected Designation of Origin cheeses may depend on curd stretching conditions and post contaminations before packaging. To avoid cross-contamination, thermal treatment of water, brines and covering liquid may become necessary. The present study aimed to improve knowledge about L. monocytogenes thermal resistance focusing on the influence of some cheese making operations, namely curd stretching and heat treatment of fluids in contact with cheese after molding, in order to improve the safety of the cheese, optimize efficacy and sustainability of the processes. Moreover, the role that cheese curd stretching plays in L. monocytogenes inactivation was discussed. The 12 tested strains showed a very heterogeneous heat resistance that ranged from 7 to less than 1 Log10 Cfu/mL reduction after 8 min at 60°C. D-values (decimal reduction times) and z-values (thermal resistance constant) calculated for the most heat resistant strain among 60 and 70°C were highly affected by the matrix and, in particular, heat resistance noticeably increased in drained cheese curd. As cheese curd stretching is not an isothermal process, to simulate the overall lethal effect of an industrial process a secondary model was built. The lethal effect of the process was estimated around 4 Log10 reductions. The data provided may be useful for fresh pasta filata cheese producers in determining appropriate processing durations and temperatures for producing safe cheeses.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | | | - Alessandro Garofalo
- Research and Development, Consorzio Tutela Mozzarella di Bufala Campana DOP, Caserta, Italy
| | - Giampiero Perna
- Research and Development, Consorzio Tutela Mozzarella di Bufala Campana DOP, Caserta, Italy
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|
13
|
Decontamination of dried whole black peppercorns using ultraviolet-c irradiation. Food Microbiol 2020; 88:103401. [DOI: 10.1016/j.fm.2019.103401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
|
14
|
Reichel J, Kehrenberg C, Krischek C. UV-C Irradiation of Rolled Fillets of Ham Inoculated with Yersinia enterocolitica and Brochothrix thermosphacta. Foods 2020; 9:foods9050552. [PMID: 32369996 PMCID: PMC7278610 DOI: 10.3390/foods9050552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 01/27/2023] Open
Abstract
Bacteria on ready-to-eat meat may cause diseases and lead to faster deterioration of the product. In this study, ready-to-eat sliced ham samples were inoculated with Yersinia enterocolitica or Brochothrix thermosphacta and treated with ultraviolet (UV) light. The initial effect of a UV-C irradiation was investigated with doses of 408, 2040, 4080, and 6120 mJ/cm2 and the effect after 0, 7, and 14 days of refrigerated storage with doses of 408 and 4080 mJ/cm2. Furthermore, inoculated ham samples were stored under light and dark conditions after the UV-C treatment to investigate the effect of photoreactivation. To assess the ham quality the parameters color and antioxidant capacity were analyzed during storage. UV-C light reduced Yersinia enterocolitica and Brochothrix thermosphacta counts by up to 1.11 log10 and 0.79 log10 colony forming units/g, respectively, during storage. No photoreactivation of the bacteria was observed. Furthermore, significantly lower a* and higher b* values after 7 and 14 days of storage and a significantly higher antioxidant capacity on day 0 after treatment with 4080 mJ/cm2 were detected. However, there were no other significant differences between treated and untreated samples. Hence, a UV-C treatment can reduce microbial surface contamination of ready-to-eat sliced ham without causing considerable quality changes.
Collapse
Affiliation(s)
- Julia Reichel
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University Giessen, Frankfurter Str. 92, 35392 Giessen, Germany;
| | - Carsten Krischek
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-856-7617
| |
Collapse
|
15
|
Fenoglio D, Ferrario M, García Carrillo M, Schenk M, Guerrero S. Characterization of microbial inactivation in clear and turbid juices processed by short-wave ultraviolet light. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Daniela Fenoglio
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias; Universidad de Buenos Aires; Buenos Aires Argentina
- Alimentos y Procesos Químicos (ITAPROQ); Instituto de Tecnología de, CONICET - Universidad de Buenos Aires; Buenos Aires Argentina
| | - Mariana Ferrario
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias; Universidad de Buenos Aires; Buenos Aires Argentina
- Alimentos y Procesos Químicos (ITAPROQ); Instituto de Tecnología de, CONICET - Universidad de Buenos Aires; Buenos Aires Argentina
| | - Mercedes García Carrillo
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Marcela Schenk
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias; Universidad de Buenos Aires; Buenos Aires Argentina
- Alimentos y Procesos Químicos (ITAPROQ); Instituto de Tecnología de, CONICET - Universidad de Buenos Aires; Buenos Aires Argentina
| | - Sandra Guerrero
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias; Universidad de Buenos Aires; Buenos Aires Argentina
- Alimentos y Procesos Químicos (ITAPROQ); Instituto de Tecnología de, CONICET - Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
16
|
Prior physicochemical stress exposures and subsequent UV-C resistance of E. coli O157:H7 in coconut liquid endosperm. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Kang S, Meng Y, Cheng X, Tu J, Guo D, Xu Y, Liang S, Xia X, Shi C. Effects of 405-nm LED Treatment on the Resistance of Listeria monocytogenes to Subsequent Environmental Stresses. Front Microbiol 2019; 10:1907. [PMID: 31474971 PMCID: PMC6706791 DOI: 10.3389/fmicb.2019.01907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes can persist under a wide range of stress conditions, contributing to its ubiquitous distribution and unique pathogenic traits. Light from light-emitting diodes (LEDs) has recently been shown to inactivate various pathogens. Thus, the aim of the present study was to evaluate the effects of light treatment using a 405-nm LED on the subsequent resistance of L. monocytogenes to environmental stresses, including oxidative stress, ultraviolet (UV) irradiation, low temperature, osmotic pressure, simulated gastric fluid (SGF), and bile salts. Following 405-nm LED illumination at 4°C for 150 min, the survival of L. monocytogenes was examined after exposure to oxidative stress (0.04% H2O2), UV irradiation (253.7 nm), low temperature (4°C), osmotic pressure (10, 15, or 20% NaCl), SGF (pH 2.5), or bile salts (2%). The mechanisms responsible for changes in stress tolerance were identified by assessing the transcriptional responses and membrane integrity of L. monocytogenes. The 405-nm LED treatment reduced the resistance of L. monocytogenes to all the stresses tested. Reverse transcription quantitative real-time polymerase chain reaction analysis indicated that the transcription of multiple genes associated with stress resistance, including betL, gbuA, oppA, fri, bsh, and arcA, was reduced by 405-nm LED. Confocal laser scanning microscopy revealed that 405-nm LED treatment disrupted the integrity of the L. monocytogenes cell membrane compared with untreated bacteria. Therefore, 405-nm LED illumination appears to reduce the resistance of L. monocytogenes to various stress conditions. These findings suggest that 405-nm LED treatment could be used to effectively prevent and/or control with L. monocytogenes contamination along the entire food-processing chain, from production to consumption.
Collapse
Affiliation(s)
- Shenmin Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yujie Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaomeng Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Junhong Tu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
La Cava ELM, Sgroppo SC. Combined Effect of UV-C Light and Mild Heat on Microbial Quality and Antioxidant Capacity of Grapefruit Juice by Flow Continuous Reactor. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-2239-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Gabriel AA, Ancog MML. Effects of suboptimal growth conditions on the subsequent UV-C resistance of Listeria monocytogenes in coconut liquid endosperm and apple juice. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Osaili TM, Al-Nabulsi AA, Aljaafreh TF, Olaimat AN. Use of gamma radiation to inactivate stressed Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes in tahini halva. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Bucur FI, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AI. Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Front Microbiol 2018; 9:2700. [PMID: 30555426 PMCID: PMC6282059 DOI: 10.3389/fmicb.2018.02700] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a human food-borne facultative intracellular pathogen that is resistant to a wide range of stress conditions. As a consequence, L. monocytogenes is extremely difficult to control along the entire food chain from production to storage and consumption. Frequent and recent outbreaks of L. monocytogenes infections illustrate that current measures of decontamination and preservation are suboptimal to control L. monocytogenes in food. In order to develop efficient measures to prevent contamination during processing and control growth during storage of food it is crucial to understand the mechanisms utilized by L. monocytogenes to tolerate the stress conditions in food matrices and food processing environments. Food-related stress conditions encountered by L. monocytogenes along the food chain are acidity, oxidative and osmotic stress, low or high temperatures, presence of bacteriocins and other preserving additives, and stresses as a consequence of applying alternative decontamination and preservation technologies such high hydrostatic pressure, pulsed and continuous UV light, pulsed electric fields (PEF). This review is aimed at providing a summary of the current knowledge on the response of L. monocytogenes toward these stresses and the mechanisms of stress resistance employed by this important food-borne bacterium. Circumstances when L. monocytogenes cells become more sensitive or more resistant are mentioned and existence of a cross-resistance when multiple stresses are present is pointed out.
Collapse
Affiliation(s)
- Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | | | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| |
Collapse
|
22
|
Linares-Morales JR, Gutiérrez-Méndez N, Rivera-Chavira BE, Pérez-Vega SB, Nevárez-Moorillón GV. Biocontrol Processes in Fruits and Fresh Produce, the Use of Lactic Acid Bacteria as a Sustainable Option. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
23
|
Kang JW, Kim SS, Kang DH. Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria. Food Res Int 2018; 109:325-333. [PMID: 29803456 DOI: 10.1016/j.foodres.2018.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/02/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
The object of this study was to elucidate the bactericidal mechanism of a 222 nm Krypton Chlorine (KrCl) excilamp compared with that of a 254 nm Low Pressure mercury (LP Hg) lamp. The KrCl excilamp had higher bactericidal capacity against Gram-positive pathogenic bacteria (Staphylococcus aureus and L. monocytogenes) and Gram-negative pathogenic bacteria (S. Typhimurium and E. coli O157:H7) than did the LP Hg lamp when cell suspensions in PBS were irradiated with each type of UV lamp. It was found out that the KrCl excilamp induced cell membrane damage as a form of depolarization. From the study of respiratory chain dehydrogenase activity and the lipid peroxidation assay, it was revealed that cell membrane damage was attributed to inactivation of enzymes related to generation of membrane potential and occurrence of lipid peroxidation. Direct absorption of UV radiation which led to photoreaction through formation of an excited state was one of the causes inducing cell damage. Additionally, generation of ROS and thus occurrence of secondary damage can be another cause. The LP Hg lamp only induced damage to DNA but not to other components such as lipids or proteins. This difference was derived from differences of UV radiation absorption by cellular materials.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea
| | - Sang-Soon Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
24
|
Fan X, Huang R, Chen H. Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Gabriel AA, Vera DD, Lazo OMY, Azarcon VB, De Ocampo CG, Marasigan JC, Sandel GT. Ultraviolet-C inactivation of Escherichia coli O157:H7, Listeria monocytogenes , Pseudomonas aeruginosa , and Salmonella enterica in liquid egg white. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Hilton S, de Moraes J, Moraru C. Effect of sublethal temperatures on pulsed light inactivation of bacteria. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Utility of UV-C radiation as anti-Salmonella decontamination treatment for desiccated coconut flakes. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Müller A, Orlowska M, Knörr M, Stahl MR, Greiner R, Koutchma T. Actinometric and biodosimetric evaluation of UV-C dose delivery in annular, Taylor–Coutte and coiled tube continuous systems. FOOD SCI TECHNOL INT 2016; 23:222-234. [DOI: 10.1177/1082013216679010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the evaluation of the performance of two thin-film UV-C reactors (annular and Taylor–Couette) and a coiled tube system is presented using actinometry and biodosimetry methods. The iodide/iodate actinometry method was found suitable for comparison of the efficiency of UV-C dose delivery of the UV-C continuous flow systems. Inactivation kinetics of Escherichia coli ATCC 8739 in quarter-strength Ringer’s solution (absorption coefficient α254 nm ∼ 0 cm−1) at various flow conditions at Reynolds numbers in the range of 26 to 3000 showed a good correlation between the different reactor types. In high UV-C absorbing liquids, the inactivation efficiency increases due to the improved radial mixing. The inactivation performance of the Taylor–Couette system correlates to the annular reactor when no rotation force is applied. The residence time distributions showed the narrowest distribution with the coiled tube system at comparable flow rates. The results indicate that, despite the laminar flow conditions, the performance of the Taylor–Couette unit becomes equal to the turbulent flow conditions of the coiled tube reactor by rotation of the inner cylinder.
Collapse
Affiliation(s)
- Alexandra Müller
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Marta Orlowska
- Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Michael Knörr
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Mario R Stahl
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | | |
Collapse
|
29
|
Osaili TM, Al-Nabulsi AA, Abubakar SA, Alaboudi AR, Al-Holy MA. Feasibility of Using Gamma Irradiation for Inactivation of Starvation-, Heat-, and Cold-Stressed Salmonella in Tahini. J Food Prot 2016; 79:963-9. [PMID: 27296600 DOI: 10.4315/0362-028x.jfp-15-495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Salmonella continues to be the leading cause of acute gastroenteritis and recently has been involved in infections related to edible seeds and their products, including tahini. This study investigated the (i) effectiveness of using gamma irradiation to inactivate starvation- and heat- or cold-stressed Salmonella in tahini, (ii) effect of storage on the sensitivity of stressed Salmonella to irradiation, and (iii) effect of irradiation on the chemical and physical characteristics of tahini. Tahini samples were inoculated with a cocktail of unstressed or stressed (starvation and heat or cold stress) Salmonella isolates and then exposed after storage at 21°C for 0, 7, and 30 days to gamma irradiation for up to 2.0 kGy. Additionally, the effect of irradiation on the color, peroxide, p-anisidine, and acid values of tahini were assessed. The initial level of unstressed and starvation- and heat-stressed Salmonella in tahini decreased by ca. 4.6 log CFU/g after exposure to 2.0 kGy, while cold-stressed cultures decreased by 4.5 log after exposure to 0.6 kGy. Irradiation doses of 1.0 kGy after 7 days of storage or 0.75 kGy after 30 days of storage decreased the populations of the unstressed and starvation- and heatstressed Salmonella by ca. 3.4 or 2.6 log, respectively. The D10-value of the unstressed Salmonella was 0.43 kGy. Starvation and heat stresses showed no significant effect (P > 0.05) on the calculated D10-value, whereas cold stress significantly (P < 0.05) decreased the D10-value to 0.14 kGy. Preirradiation storage for 7 and 30 days significantly decreased the D10-value to 0.31 and 0.28 kGy, respectively. An irradiation dose of 2.0 kGy did not significantly affect the color, peroxide, p-anisidine, and acid values of tahini when compared with nonirradiated samples. Therefore, this study lays the foundation for using irradiation as an effective means for minimizing the risk of Salmonella in tahini without compromising its quality.
Collapse
Affiliation(s)
- Tareq M Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Salisu A Abubakar
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Akram R Alaboudi
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Murad A Al-Holy
- Department of Clinical Nutrition, Faculty of Allied Health Sciences, Hashemite University, Zarqa 13115, Jordan
| |
Collapse
|
30
|
Condón-Abanto S, Condón S, Raso J, Lyng JG, Álvarez I. Inactivation of Salmonella typhimurium and Lactobacillus plantarum by UV-C light in flour powder. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Cebrián G, Mañas P, Condón S. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation. Front Microbiol 2016; 7:734. [PMID: 27242749 PMCID: PMC4873515 DOI: 10.3389/fmicb.2016.00734] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be exploited in order to design combined processes. Further work would be required in order to fully elucidate the mechanisms of action of these technologies and to exhaustively characterize the influence of all the factors acting before, during, and after treatment. This would be very useful in the areas of process optimization and combined process design.
Collapse
Affiliation(s)
| | | | - Santiago Condón
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Instituto Agroalimentario de Aragón – IA2 – (Universidad de Zaragoza-CITA), ZaragozaSpain
| |
Collapse
|
32
|
Gabriel AA, Estilo EEC, Isnit NCC, Membrebe BNQ. Suboptimal growth conditions induce heterologous ultraviolet-C adaptation in Salmonella enterica in orange juice. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Müller A, Pietsch VL, Schneele JS, Stahl MR, Greiner R, Posten C. Effect of temperature and pH value on the UV-C sensitivity of Escherichia coli and Lactobacillus plantarum. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Inactivation of spoilage yeasts in apple juice by UV–C light and in combination with mild heat. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth. BIOMED RESEARCH INTERNATIONAL 2015; 2015:436030. [PMID: 26539493 PMCID: PMC4619797 DOI: 10.1155/2015/436030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/01/2015] [Indexed: 11/17/2022]
Abstract
This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment) to inactivate 5-Log10 cycles (performance criterion) of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature) that would achieve the stated performance criterion, mathematical equations based on Geeraerd's model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min) and 2.26 J/mL (2.09 min) to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C.
Collapse
|
36
|
Cichoski AJ, Moura HC, Silva MS, Rampelotto C, Wagner R, Barin JS, Vendruscolo RG, Dugatto JS, Athayde DR, Dalla Costa MA. Oxidative and Microbiological Profiles of Chicken Drumsticks Treated with Ultraviolet-C Radiation. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexandre J. Cichoski
- Department of Food Science and Technology; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Heloísa C. Moura
- Department of Food Science and Technology; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Marianna S. Silva
- Department of Food Science and Technology; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Cristine Rampelotto
- Department of Food Science and Technology; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Roger Wagner
- Department of Food Science and Technology; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Juliano S. Barin
- Department of Food Science and Technology; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Raquel G. Vendruscolo
- Department of Food Science and Technology; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Jonas S. Dugatto
- Department of Food Science and Technology; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Dirceu R. Athayde
- Department of Food Science and Technology; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Marco A. Dalla Costa
- Department of Electric Energy Processing; Federal University of Santa Maria; 97105-900 Santa Maria RS Brazil
| |
Collapse
|
37
|
Gouma M, Gayán E, Raso J, Condón S, Álvarez I. Influence of dimethyl dicarbonate on the resistance of Escherichia coli to a combined UV-Heat treatment in apple juice. Front Microbiol 2015; 6:501. [PMID: 26042117 PMCID: PMC4436884 DOI: 10.3389/fmicb.2015.00501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/06/2015] [Indexed: 11/30/2022] Open
Abstract
Commercial apple juice inoculated with Escherichia coli was treated with UV-C, heat (55°C) and dimethyl dicarbonate – DMDC (25, 50, and 75 mg/L)-, applied separately and in combination, in order to investigate the possibility of synergistic lethal effects. The inactivation levels resulting from each treatment applied individually for a maximum treatment time of 3.58 min were limited, reaching 1.2, 2.9, and 0.06 log10 reductions for UV, heat, and DMDC (75 mg/L), respectively. However, all the investigated combinations resulted in a synergistic lethal effect, reducing the total treatment time and UV dose, with the synergistic lethal effect being higher when larger concentrations of DMDC were added to the apple juice. The addition of 75 mg/L of DMDC prior to the combined UV-C light treatment at 55°C resulted in 5 log10 reductions after only 1.8 min, reducing the treatment time and UV dose of the combined UV-Heat treatment by 44%.
Collapse
Affiliation(s)
- Maria Gouma
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain
| | - Elisa Gayán
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain ; Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven Leuven Belgium
| | - Javier Raso
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain
| | - Santiago Condón
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain
| | - Ignacio Álvarez
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain
| |
Collapse
|
38
|
Previous physicochemical stress exposures influence subsequent resistance of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes to ultraviolet-C in coconut liquid endosperm beverage. Int J Food Microbiol 2015; 201:7-16. [DOI: 10.1016/j.ijfoodmicro.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/30/2022]
|