1
|
Yoon JH, Oh MS, Lee SY. Effectiveness of organic acids for inactivating pathogenic bacteria inoculated in laboratory media and foods: an updated minireview. Food Sci Biotechnol 2024; 33:2715-2728. [PMID: 39184989 PMCID: PMC11339227 DOI: 10.1007/s10068-024-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 08/27/2024] Open
Abstract
Food processing industries commonly employ organic acids (OAAs) to determine bacterial contamination in acidified and fermented foods. OAAs are believed to possess potent antimicrobial properties by permeating cell membranes, altering proton and anion concentrations in the cytoplasm due to their lipophilic undissociated forms. The bacteriostatic or bactericidal effects of OAAs are influenced by various factors including microbial physiology, environmental pH, and acid dissociation ratios. Despite their utility, the precise mechanisms underlying OAA-mediated inhibition of pathogenic bacteria remain incompletely understood. Therefore, the objectives of this review are to compile a selected area of researches that focus on the current propensity of different OAAs for inactivating food-borne pathogens, and then to present a theoretical insight on the use of OAAs to prevent and control pathogenic bacteria present in acidic/acidified foods and their mode of mechanisms.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Sunchon National University, 235 Jungang-Ro, Suncheon-Si, Jeollanam-Do 57922 Republic of Korea
| | - Min-Seok Oh
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-Dearo, Anseong Si, Gyeonggi-Do 17546 Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-Dearo, Anseong Si, Gyeonggi-Do 17546 Republic of Korea
| |
Collapse
|
2
|
Gill A, McMahon T, Ferrato C, Chui L. Survival of O157 and non-O157 shiga toxin-producing Escherichia coli in Korean style kimchi. Food Microbiol 2024; 121:104526. [PMID: 38637088 DOI: 10.1016/j.fm.2024.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
Korean style kimchi contaminated with Shiga toxin-producing Escherichia coli (STEC) O157:H7 was the cause of an outbreak in Canada from December 2021 to January 2022. To determine if this STEC O157:H7 has greater potential for survival in kimchi than other STEC, the outbreak strain and six other STEC strains (O26:H11, O91:H21, O103:H2, O121:H19, and two O157:H7) were inoculated individually at 6 to 6.5 log CFU/g into commercially sourced kimchi and incubation at 4 °C. At intervals of seven days inoculated and control kimchi was plated onto MacConkey agar to enumerate lactose utilising bacteria. The colony counts were interpreted as enumerating the inoculated STEC, since no colonies were observed on MacConkey agar plated with uninoculated kimchi. Over eight weeks of incubation the pH was stable at 4.10 to 4.05 and the STEC strains declined by 0.7-1.0 log, with a median reduction of 0.9 log. The linear rate of reduction of kimchi outbreak STEC O157:H7 was -0.4 log per 30 days (Slope Uncertainty 0.05), which was not significantly different from the other O157 and nonO157 STEC strains (P = 0.091). These results indicate that the outbreak was not due to the presence of strain better adapted to survival in kimchi than other STEC, and that STEC can persist in refrigerated Korean style kimchi with a minimal decline over the shelf-life of the product.
Collapse
Affiliation(s)
- Alexander Gill
- Health Canada/Santé Canada, Bureau of Microbial Hazards, Ottawa, Ontario, Canada.
| | - Tanis McMahon
- Health Canada/Santé Canada, Bureau of Microbial Hazards, Ottawa, Ontario, Canada
| | - Christina Ferrato
- Alberta Precision Laboratories: Provincial Laboratory for Public Health, Edmonton, AB, Canada
| | - Linda Chui
- Alberta Precision Laboratories: Provincial Laboratory for Public Health, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Gavriil A, Giannenas I, Skandamis PN. A current insight into Salmonella's inducible acid resistance. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39014992 DOI: 10.1080/10408398.2024.2373387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis N Skandamis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
4
|
Yoon JH, Bae YM, Shin Y, Lee SY. Escherichia coli O157:H7 had a high degree of acid resistance in the presence of osmolytes (glycerol, glycine or fructose) by altering its lipid membrane composition. Food Microbiol 2024; 117:104388. [PMID: 37919012 DOI: 10.1016/j.fm.2023.104388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
This study aims to investigate the resistance of E. coli O157:H7 to acetic acid (AA) or malic acid (MA) by adding osmolytes, such as glycerol, glycine, glucose, and fructose, in Luria-Bertani broth without NaCl (LBW/S) or phosphate buffer (PB) stored at 25 °C. In LBW/S, a significantly (p < 0.05) higher D-value of E. coli O157:H7 was observed when treated with AA and 20% glycine (D-value: 1.18-3.44) or 40% glucose (D-value: 1.05-2.52) compared to that of AA alone (D-value: 0.40-0.47). In contrast, the addition of osmolytes (i.e. 3-40% glucose, 3-40% fructose or 20% glycine) to LBW/S acidified by MA significantly decreased D-values of E. coli O157:H7, which was enumerated by using a selective medium. Furthermore, when E. coli O157:H7 was incubated in LBW/S containing AA and osmolytes at 25 °C for 3 d, this bacterium had an increased proportion of C16:0 and C17:0 cyclo (cyclopropane acid) compared to its AA-treated counterparts. Along with the altered shift in membrane phospholipids, the addition of osmolytes into a laboratory medium in the presence of nutritive substrates may increase the resistance of E. coli O157:H7 to AA.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Sunchon National University, 235 Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Republic of Korea
| | - Young-Min Bae
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Yooncheol Shin
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
5
|
Wu J, Yang L, Wu Z, Zhang W. Kinetic modeling the survival of
Escherichia coli
in pickled radish fermentation with different salt concentrations. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiale Wu
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Li Yang
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Zhengyun Wu
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Wenxue Zhang
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| |
Collapse
|
6
|
Xiang L, Ying Z, Xue M, Xiaoxian P, Xiaorong L, Chunyang L, Yu W, Mingcheng L, Binxian L. A novel Lactobacillus bulgaricus isolate can maintain the intestinal health, improve the growth performance and reduce the colonization of E. coli O157:H7 in broilers. Br Poult Sci 2022; 63:621-632. [PMID: 35383527 DOI: 10.1080/00071668.2022.2062220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study aimed at the effects of a novel Lactobacillus bulgaricus (L. bulgaricus) strain and Enterohemorrhagic Escherichia coli (E. coli) O157: H7 on intestinal flora and growth performance of broilers, and the protective effect of L. bulgaricus on broilers in challenged experiment by E. coli O157: H7.2. In vitro bacteriostatic test showed that the cell-free supernatant (CFS) of L. bulgaricus isolate had obvious inhibitory effect on E. coli O157: H7.3. Eighty 1-day-old male broilers were randomly assigned into 4 treatment groups with 4 replicate per treatment. All group received basic diet in addition to the specific treatments: NC group, gavage with normal saline; In LBP group, gavage with L. bulgaricus isolate (1×109 CFU/mL) during the whole process, and challenged with E. coli O157: H7 (3×109 CFU/mL); EC group, gavage with E. coli O157: H7 (3×109 CFU/mL); LB Group, gavage with L. bulgaricus isolate. At the age of 21 days, broilers were weighed and feed conversion ratio (FCR) was calculated. Cecum and cecal contents, ileum and feces samples were taken after slaughter.4. The challenge of E. coli O157: H7 resulted in an increase in TLR-4, NF-κB and IL-8 mRNA in cecal tissue, a decrease in Villus: crypt ratio in ileum, a decrease in overall diversity of intestinal microflora and a poor FCR.5. The L. bulgaricus isolate decreased the mRNA expression of TLR-4, NF-κB and IL-8 induced by E. coli O157: H7, reduced the content of E. coli O157: H7 in the cecum of broilers, increased the Villus: crypt ratio, increased the abundance of beneficial bacteria and overall diversity of intestinal microflora, made good FCR.6. The L. bulgaricus isolate can maintain the intestinal health, improve the growth performance of broilers and reduce the colonization of E. coli O157:H7 in the cecum.
Collapse
Affiliation(s)
- Li Xiang
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Zhang Ying
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Meng Xue
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Pei Xiaoxian
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Liu Xiaorong
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Lan Chunyang
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Wang Yu
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Li Mingcheng
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Li Binxian
- Dept. of Clinical Microbiology, Associated Hospital, Beihua University, Jilin, Jilin 132013, China
| |
Collapse
|
7
|
Bae YM, Song H, Lee SY. Salt, glucose, glycine, and sucrose protect Escherichia coli O157:H7 against acid treatment in laboratory media. Food Microbiol 2021; 100:103854. [PMID: 34416957 DOI: 10.1016/j.fm.2021.103854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of combinations of acetic or malic acid and various solutes (salt, glucose, glycine, or sucrose) on the survival of Escherichia coli O157:H7 in laboratory broth. Additionally, the effectiveness of combining organic acids and various concentrations of salt (0-18%) or sucrose (0-100%) with different water activity values against E. coli O157:H7 were evaluated. For treatment of 1% malic acid, the addition of 3% salt showed synergistic effect. Whereas, when 3% salt, glucose, glycine, or sucrose was added to 1% acetic acid, the solutes antagonized the action of the acid against E. coli O157:H7. Acetic, lactic, or propionic acid combined with salt at either 7 or 9% or sucrose at 60, 80, or 100% resulted in the highest resistance of E. coli O157:H7. From a result of evaluating the membrane fatty acid (MFA) composition of cells, salt or sucrose significantly increased levels of saturated fatty acids (SFAs) or SFAs and cyclopropane fatty acids, respectively. From the results of this study, the addition of solutes and organic compounds may increase the tolerance of E. coli O157:H7 to acetic, lactic, and propionic acid treatments and that the salt or sucrose significantly affects cell MFA composition.
Collapse
Affiliation(s)
- Young-Min Bae
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Hana Song
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
Kim JY, Song H, Kim D, Lee SY. Physiological changes and stress responses of heat shock treated Salmonella enterica serovar Typhimurium. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Kim JH, Lee SY. Effect of NaCl addition on the antibacterial effectiveness of acetic acid and its salts against pathogenic bacteria. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Song H, Lee SY. High concentration of sodium chloride could induce the viable and culturable states of Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. Lett Appl Microbiol 2021; 72:741-749. [PMID: 33650683 DOI: 10.1111/lam.13468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
In the present study, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were transferred into Luria-Bertani medium without NaCl (LBWS) and adjusted to various pHs (4, 5, 6 and 7) with lactic acid containing 0·75, 5, 10 and 30% NaCl, and stored at 25°C until the bacterial populations reached below detectable levels on tryptic soy agar (TSA). Although E. coli O157:H7 and S. Enteritidis did not grow on TSA when incubated in LBWS with 30% NaCl for 35 and 7 days, more than 60 and 70% of the bacterial cells were shown to be viable via fluorescent staining with SYTO9 and propidium iodide (PI), respectively, suggesting that a number of cells could be induced into the viable but nonculturable (VBNC) state. These bacteria that were induced into a VBNC state were transferred to a newly prepared tryptic soy broth (TSB) and then incubated at 37°C for several days. After more than 7 days, E. coli O157:H7 and S. Enteritidis regained their culturability. We, therefore, suggest that E. coli O157:H7 and S. Enteritidis entered the VBNC state under the adverse condition of higher salt concentrations and were revived when these conditions were reversed.
Collapse
Affiliation(s)
- Hana Song
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
11
|
Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme pH environments and their effect on microbial corrosion are presented and discussed.
Collapse
|
12
|
Qiu X, Wu G, Wang L, Tan Y, Song Z. Lactobacillus delbrueckii alleviates depression-like behavior through inhibiting toll-like receptor 4 (TLR4) signaling in mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:366. [PMID: 33842587 PMCID: PMC8033381 DOI: 10.21037/atm-20-4411] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background The intestinal flora can influence behavior through the microbiota-gut-brain axis and is closely related to the occurrence and development of nervous system diseases such as depression. Probiotics like Lactobacillus may regulate the balance of the intestinal flora and play an active role in preventing and treating depression. Methods Eight-week-old C57BL/6J mice (n=32) were randomly and equally divided into a normal control group, a control + Lac group, a model group, and a model + Lac group. The model and model + Lac groups were intraperitoneally injected with 1.2 mg/kg lipopolysaccharide for 7 days, and the behavior of the mice was assessed 24 hours later. The normal and model groups received intragastric administration of saline daily, while the control + Lac and model + Lac groups were given 109 cfu Lac intragastrically daily for 7 days. The inhibitory effect of Lac and its fermentation products on depression-related bacteria were examined in vitro. Results Lac effectively inhibited the production of depression-like behaviors in mice. The expression levels of zonula occludens-1 (ZO-1) and E-cadherin in the small intestine in the model group were significantly decreased, but Lac abrogated this effect. Overactivation of microglia and decreased expression of dopamine transporter (DAT) in brain tissues, which are closely related to depression, were also abrogated by Lac treatment. Furthermore, the expression of toll-like receptor 4 (TLR4) and nod-like receptor protein-3 (NLRP3), as well as the level of interleukin-1 beta (IL-1β) in the intestine and brain, were all significantly increased; however, these effects were subsequently abrogated by Lac. Moreover, Lac inhibited dysbiosis through its metabolites. Conclusions Lac has a remarkable antidepressant function, which it performs through the inhibition of dysbiosis (via its metabolites) and pattern recognition receptor TLR4 signaling.
Collapse
Affiliation(s)
- Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhi Song
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Hosotani Y, Kawasaki S, Maeda T, Inatsu Y. Fate of Escherichia coli O157 Spiked into Commercially Available Fermented Soybean Paste (miso). J JPN SOC FOOD SCI 2020. [DOI: 10.3136/nskkk.67.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yukie Hosotani
- Food Research Institute, NARO
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology
| | | | - Toshinari Maeda
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology
| | | |
Collapse
|
14
|
Gavriil A, Thanasoulia A, Skandamis PN. Sublethal concentrations of undissociated acetic acid may not always stimulate acid resistance in Salmonella enterica sub. enterica serovar Enteritidis Phage Type 4: Implications of challenge substrate associated factors. PLoS One 2020; 15:e0234999. [PMID: 32702039 PMCID: PMC7377465 DOI: 10.1371/journal.pone.0234999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/06/2020] [Indexed: 11/26/2022] Open
Abstract
Acid adaptation enhances survival of foodborne pathogens under lethal acid conditions that prevail in several food-related ecosystems. In the present study, the role of undissociated acetic acid in inducing acid resistance of Salmonella Enteritidis Phage Type 4 both in laboratory media and in an acid food matrix was investigated. Several combinations of acetic acid (0, 15, 25, 35 and 45 mM) and pH values (4.0, 4.5, 5.0, 5.5, 6.0) were screened for their ability to activate acid resistance mechanisms of pathogen exposed to pH 2.5 (screening assay). Increased survival was observed when increasing undissociated acetic acid within a range of sublethal concentrations (1.9–5.4 mM), but only at pH 5.5 and 6.0. No effect was observed at lower pH values, regardless of the undissociated acetic acid levels. Three combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) were selected and further used for adaptation prior to inoculation in commercial tarama (fish roe) salad, i.e., an acid spread (pH 4.35 ± 0.02), stored at 5°C. Surprisingly and contrary to the results of the screening assay, none of the acid adaptation treatments enhanced survival of Salmonella Enteritidis in the food matrix, as compared to non-adapted cells (control). Further examination of the food pH value, acidulant and storage (challenge) temperature on the responses of the pathogen adapted to 15mM/pH5.0, 35mM/pH5.5 and 45mM/pH6.0 was performed in culture media. Cells adapted to 35mM/pH5.5 were unable to induce acid resistance when exposed to pH 4.35 (tarama salad pH value) at 37°C and 5°C, whereas incubation under refrigeration (5°C) at pH 4.35 sensitized 45mM/pH6.0 adapted cells against the subsequent acid and cold stress. In conclusion, pre-exposure to undissociated acetic acid affected the adaptive responses of Salmonella Enteritidis Phage Type 4 in a concentration- and pH-dependent manner, with regard to conditions prevailing during acid challenge.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Athina Thanasoulia
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
15
|
Dos Santos Rosario AIL, da Silva Mutz Y, Castro VS, da Silva MCA, Conte-Junior CA, da Costa MP. Everybody loves cheese: crosslink between persistence and virulence of Shiga-toxin Escherichia coli. Crit Rev Food Sci Nutr 2020; 61:1877-1899. [PMID: 32519880 DOI: 10.1080/10408398.2020.1767033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
General cheese manufacturing involves high temperatures, fermentation and ripening steps that function as hurdles to microbial growth. On the other hand, the application of several different formulations and manufacturing techniques may create a bacterial protective environment. In cheese, the persistent behavior of Shiga toxin-producing Escherichia coli (STEC) relies on complex mechanisms that enable bacteria to respond to stressful conditions found in cheese matrix. In this review, we discuss how STEC manages to survive to high and low temperatures, hyperosmotic conditions, exposure to weak organic acids, and pH decreasing related to cheese manufacturing, the cheese matrix itself and storage. Moreover, we discuss how these stress responses interact with each other by enhancing adaptation and consequently, the persistence of STEC in cheese. Further, we show how virulence genes eae and tir are affected by stress response mechanisms, increasing either cell adherence or virulence factors production, which leads to a selection of more resistant and virulent pathogens in the cheese industry, leading to a public health issue.
Collapse
Affiliation(s)
- Anisio Iuri Lima Dos Santos Rosario
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Yhan da Silva Mutz
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinícius Silva Castro
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Costa Alves da Silva
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil.,National Institute for Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marion Pereira da Costa
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
16
|
Zhang X, Nakaura Y, Zhu J, Zhang Z, Yamamoto K. Effect of Hyperosmotic Salt Concentration and Temperature on Viability of Escherichia coli during Cold Storage. Biocontrol Sci 2020; 25:55-62. [PMID: 32507791 DOI: 10.4265/bio.25.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Escherichia coli cells were suspended in phosphate-buffered saline solutions (pH 7.4) at physiological (0.9 %) and hyperosmotic (3.5, 5.0, and 10.0 %) concentrations of sodium chloride (NaCl) and stored at 5, 10, 15, 20, and 25 °C up to 48 d. During storage at 5 and 10 °C, viable cell counts decreased approximately from 9 log CFU/ml to 6-7 log CFU/ml, and NaCl showed slight protective effect on the decrease. When stored at 15, 20, and 25 °C, the counts decreased with increases in NaCl concentration and/or storage temperature. The cells in 10.0 % NaCl suspension became nondetectable after storage at 25 °C for 28 d. Under some storage conditions (NaCl ≤ 5 %, 20 and 25 °C), the counts approached constant values, indicating possible adaptation to NaCl. Injured cells were observed at 5.0 and 10.0 % NaCl. However, recovery was observed only at 5.0 % NaCl during storage at 20 °C. In addition, more cells were detected on nonselective medium when incubated at 37 °C than at 25 °C. Higher hyperosmotic NaCl solutions at higher storage temperatures reduced more viable cells of E. coli.
Collapse
Affiliation(s)
- Xue Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba.,Food Research Institute, National Agriculture and Food Research Organization
| | - Yoshiko Nakaura
- Food Research Institute, National Agriculture and Food Research Organization
| | - Junzhang Zhu
- Graduate School of Life and Environmental Sciences, University of Tsukuba.,Food Research Institute, National Agriculture and Food Research Organization
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Kazutaka Yamamoto
- Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
17
|
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 2020; 104:51-65. [PMID: 31773206 PMCID: PMC6942593 DOI: 10.1007/s00253-019-10226-1] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Microorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
18
|
Resistance of biofilm formation and formed-biofilm of Escherichia coli O157:H7 exposed to acid stress. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Ribeiro da Cunha B, Fonseca LP, Calado CRC. A phenotypic screening bioassay for Escherichia coli stress and antibiotic responses based on Fourier-transform infrared (FTIR) spectroscopy and multivariate analysis. J Appl Microbiol 2019; 127:1776-1789. [PMID: 31464358 DOI: 10.1111/jam.14429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022]
Abstract
AIMS To develop and optimize a Fourier-transform infrared spectroscopy (FTIRS) phenotypic screening bioassay for stress responses, regarding the effect of nutrient content, bacterial growth phase and stress agent exposure time. METHODS AND RESULTS A high-throughput FTIRS bioassay was developed to distinguish the stress responses of Escherichia coli to sodium hydroxide, hydrochloric acid, sodium chloride, sodium hypochlorite and ethanol. Principal component analysis and hierarchical clustering were used to quantify the effect of each parameter on bioassay performance, namely its reproducibility and metabolic resolution. Bioassay performance varied greatly, ranging from poor to very good. Spectra were partitioned into biologically relevant regions to evaluate their contributions to bioassay performance, but further improvements were not observed. Bioassay optimization was validated against empirical parameters, which confirmed a closer representation of known mechanisms on the antibiotic-induced stress responses. CONCLUSIONS The optimized bioassay used standard nutrient content, cells in the late-stationary growth phase and a one-shift exposure duration. Only the optimized bioassay adequately and reproducibly distinguished the E. coli stress and antibiotic responses. The absence of performance improvements using partitioned spectra indicated that stress responses are imprinted on the whole-spectra metabolic signature. SIGNIFICANCE AND IMPACT OF THE STUDY Highly optimized FTIRS bioassay parameters are vital in capturing whole-spectra metabolic signatures that can be used for satisfactory and reproducible phenotypic screening of stress and antibiotic responses.
Collapse
Affiliation(s)
- B Ribeiro da Cunha
- iBB - Institute of Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisboa, Portugal.,ISEL - Instituto Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa (IPL), Lisboa, Portugal
| | - L P Fonseca
- iBB - Institute of Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisboa, Portugal
| | - C R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa (IPL), Lisboa, Portugal
| |
Collapse
|
20
|
Survival of acid-adapted and non-adapted Shiga toxin-producing Escherichia coli using an in vitro model. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Dupree DE, Price RE, Burgess BA, Andress EL, Breidt F. Effects of Sodium Chloride or Calcium Chloride Concentration on the Growth and Survival of Escherichia coli O157:H7 in Model Vegetable Fermentations. J Food Prot 2019; 82:570-578. [PMID: 30907663 DOI: 10.4315/0362-028x.jfp-18-468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS NaCl and CaCl2 concentrations affected LAB and STEC strains differently. Growth rates at 6% NaCl were reduced for STEC more than LAB in vegetable broth. Extent of growth was reduced for STEC versus LAB for most vegetable fermentations. Death rates were minimally affected by salt type or concentration with lactic acid. Correlations between salt and STEC die-off were inconsistent for fermentation.
Collapse
Affiliation(s)
- Dorothy E Dupree
- 1 Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, Georgia 30602
| | - Robert E Price
- 2 U.S. Department of Agriculture, Agricultural Research Service, Food Science Research Unit, 322 Schaub Hall, Box 7624, North Carolina State University, Raleigh, North Carolina 27695
| | - Breanne A Burgess
- 3 Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Box 7622, Raleigh, North Carolina 27695, USA
| | - Elizabeth L Andress
- 1 Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, Georgia 30602
| | - Frederick Breidt
- 2 U.S. Department of Agriculture, Agricultural Research Service, Food Science Research Unit, 322 Schaub Hall, Box 7624, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
22
|
Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol 2017; 25:851-873. [PMID: 28602521 DOI: 10.1016/j.tim.2017.05.004] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
Abstract
Weaning is a critical event in the pig's life cycle, frequently associated with severe enteric infections and overuse of antibiotics; this raises serious economic and public health concerns. In this review, we explain why gut microbiota dysbiosis, induced by abrupt changes in the diet and environment of piglets, emerges as a leading cause of post-weaning diarrhea, even if the exact underlying mechanisms remain unclear. Then, we focus on nonantimicrobial alternatives, such as zinc oxide, essential oils, and prebiotics or probiotics, which are currently evaluated to restore intestinal balance and allow a better management of the crucial weaning transition. Finally, we discuss how in vitro models of the piglet gut could be advantageously used as a complement to ex vivo and in vivo studies for the development and testing of new feed additives.
Collapse
Affiliation(s)
- Raphaële Gresse
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRA, F-63000 Clermont-Ferrand, France; Lallemand Animal Nutrition, F-31702 Blagnac Cedex, France
| | | | | | - Tom Van de Wiele
- Ghent University, Center for Microbial Ecology and Technology, B-9000, Gent, Belgium
| | - Evelyne Forano
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRA, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
23
|
Xu Z, Xie J, Liu J, Ji L, Soteyome T, Peters BM, Chen D, Li B, Li L, Shirtliff ME. Whole-genome resequencing of Bacillus cereus and expression of genes functioning in sodium chloride stress. Microb Pathog 2017; 104:248-253. [DOI: 10.1016/j.micpath.2017.01.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/14/2017] [Accepted: 01/24/2017] [Indexed: 10/24/2022]
|
24
|
Bae YM, Lee SY. Effect of salt addition on acid resistance response of Escherichia coli O157:H7 against acetic acid. Food Microbiol 2017; 65:74-82. [PMID: 28400023 DOI: 10.1016/j.fm.2016.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/17/2016] [Accepted: 12/29/2016] [Indexed: 12/25/2022]
Abstract
A combination of salt and acid is commonly used in the production of many foods, such as pickles and fermented foods. However, in our previous studies, addition of salt significantly reduced the inhibitory effect of acetic acid against E. coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the effect of salt addition on the acid resistance (AR) response of E. coli O157:H7 after treatment with acetic acid. The combined effect of acetic acid and salt showed different results depending on media tested. Organic compounds such as yeast extract and tryptone were required to observe the antagonistic effect of salt and acetic acid in combination. However, use of an rpoS mutant or addition of chloramphenicol resulted in no changes in the antagonistic effect of acetic acid and salt. The addition of glutamate to phosphate buffer significantly increased the survival levels of E. coli O157:H7 after the acetic acid treatment; however, the survival levels were lower than those after the treatment with acetic acid alone. Thus, the addition of salt may increase the AR response of E. coli O157:H7; however, these survival mechanisms were not proven clearly. Therefore, further studies need to be performed to better understand the antagonism of acetic acid salt against E. coli O157:H7.
Collapse
Affiliation(s)
- Young-Min Bae
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Anseong-si, Gyeonggi-do, 17546, South Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Anseong-si, Gyeonggi-do, 17546, South Korea.
| |
Collapse
|
25
|
Affiliation(s)
- Elif Akbas
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Turkey
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - U. Betul Soyler
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Mecit Halil Oztop
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
26
|
Al-Nabulsi AA, Osaili TM, Mahmoud KZ, Ayyash MM, Olaimat AN, Shaker RR, Holley RA. Modeling the combined effect of NaCl and pH againstCronobacterspp. using response surface methodology. J Food Saf 2016. [DOI: 10.1111/jfs.12303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - Tareq M. Osaili
- Department of Nutrition and Food Technology; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - Kamel Z. Mahmoud
- Department of Animal Production; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - Mutamed M. Ayyash
- Department of Food Science; United Arab Emirates University; Al-Ain 15551 UAE
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics; Hashemite University; Zarqa JO
| | - Reyad R. Shaker
- Department of Clinical Nutrition; University of Sharjah; P.O.BOX 27272 Sharjah AE 27272
| | - Richard A. Holley
- Department of Food Science; University of Manitoba; Winnipeg MB R3T 2N2 Canada
| |
Collapse
|