1
|
Liu Y, Yin C, Wang J, Xing W, Huang Y, Yan Z, Chen J, Han Y, Zhu W, Zhao Y, Zhang K, Tian T, Guo X, Yuan L, Liu Y. Characterization of the microbial communities and their correlations with volatile flavor compounds and physicochemical factors in Bashang suancai, a traditional Chinese pickle. Front Microbiol 2024; 15:1478207. [PMID: 39629211 PMCID: PMC11613424 DOI: 10.3389/fmicb.2024.1478207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Bashang suancai is one of the most wellknown traditional fermented vegetables in North China. The study examined the variations in bacterial diversity, physicochemical properties, and volatile flavor compounds (VFCs) of Bashang suancai over a 7-day fermentation period, utilizing Illumina NovaSeq sequencing and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The leading bacterial phyla were Firmicutes, Proteobacteria, and Cyanobacteria, while the predominant bacterial species included Vibrio, Lactiplantibacillus, Cyanobacteriales, Weissella, and Latilactobacillus. The bacterial community diversity decreased significantly following 7 days of fermentation. The microbial profiles were markedly affected by pH, reducing sugar content (RSC), and salt content (SC). A total of 187 VFCs were identified from the specimens. Following 5 days of fermentation, the taste compounds achieved equilibrium, with isothiocyanates, alcohols, and esters predominating among the volatile molecules. Spearman correlation analysis revealed that a strong link between Latilactobacillus, Levilactobacillus, Lactiplantibacillus, Weissella, and Vibrio with the flavor of pickles. This study established a significant foundation for identifying strains that enhance taste development and improve the nutritional and sensory quality of Bashang suancai.
Collapse
Affiliation(s)
- Yuan Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Chen Yin
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Jian Wang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Weihai Xing
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Yali Huang
- College of Resources and Environmental Science, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zhiyu Yan
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Jiachen Chen
- Zhangjiakou Food and Drug Inspection Center, Zhangjiakou, China
| | - Yu Han
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Weiran Zhu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Yidi Zhao
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Kai Zhang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tingting Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Xinru Guo
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Lin Yuan
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Yang Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
2
|
Lee M, Kim D, Lee KW, Chang JY. Kimchi Lactic Acid Bacteria Starter Culture: Impact on Fermented Malt Beverage Volatile Profile, Sensory Analysis, and Physicochemical Traits. J Microbiol Biotechnol 2024; 34:1653-1659. [PMID: 39049474 PMCID: PMC11380508 DOI: 10.4014/jmb.2403.03011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
Starter cultures used during the fermentation of malt wort can increase the sensory characteristics of the resulting beverages. This study aimed to explore the aroma composition and flavor recognition of malt wort beverages fermented with lactic acid bacteria (Levilactobacillus brevis WiKim0194) isolated from kimchi, using metabolomic profiling and electronic tongue and nose technologies. Four sugars and five organic acids were detected using high-performance liquid chromatography, with maltose and lactic acid present in the highest amounts. Additionally, e-tongue measurements showed a significant increase in the sourness (AHS), sweetness (ANS), and umami (NMS) sensors, whereas bitterness (SCS) significantly decreased. Furthermore, 20 key aroma compounds were identified using gas chromatography-mass spectrometry and 15 key aroma flavors were detected using an electronic nose. Vanillin, citronellol, and β-damascenone exhibited significant differences in the flavor profile of the beverage fermented by WiKim0194, which correlated with floral, fruity, and sweet notes. Therefore, we suggest that an appropriate starter culture can improve sensory characteristics and predict flavor development in malt wort beverages.
Collapse
Affiliation(s)
- Moeun Lee
- Fermentation regulation research group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daun Kim
- Fermentation regulation research group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Republic of Korea
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Ji Yoon Chang
- Fermentation regulation research group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
- Institute of Smart Farm Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| |
Collapse
|
3
|
Sawada K, Yamada T. Influence of the initial microbiota on eggplant shibazuke pickle and eggplant juice fermentation. Microbiol Spectr 2024; 12:e0046424. [PMID: 39016604 DOI: 10.1128/spectrum.00464-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
The present study aimed to investigate the effects of the initial microbiota on microbial succession and metabolite transition during eggplant fermentation. Samples of traditional Japanese eggplant pickles, shibazuke, which were spontaneously fermented by plant-associated microbiota, were used for the analysis. Microbiota analysis indicated two successional patterns: early dominance of lactic acid bacteria superseded by aerobic bacteria and early dominance of lactic acid bacteria maintained to the end of the production process. Next, shibazuke production was modeled using filter-sterilized eggplant juice, fermenting the average composition of the initial shibazuke microbiota, which was artificially constructed from six major species identified during shibazuke production. In contrast to shibazuke production, all batches of eggplant juice fermentation showed almost identical microbial succession and complete dominance of Lactiplantibacillus plantarum in the final microbiota. These findings revealed the fate of initial microbiota under shibazuke production conditions: the early dominance of lactic acid bacteria that was maintained throughout, with L. plantarum ultimately predominating the microbiota. Furthermore, a comparison of the results between shibazuke production and eggplant juice fermentation suggested that L. plantarum is involved in the production of lactic acid, alanine, and glutamic acid during eggplant fermentation regardless of the final microbiota. IMPORTANCE The findings shown in this study provide insight into the microbial succession during spontaneous pickle fermentation and the role of Lactiplantibacillus plantarum in eggplant pickle production. Moreover, the novel method of using filter-sterilized vegetable juice with an artificial microbiota to emulate spontaneous fermentation can be applied to other spontaneously fermented products. This approach allows for the evaluation of the effect of specific initial microbiota in the absence of plant-associated bacteria from raw materials potentially promoting a greater understanding of microbial behavior in complex microbial ecosystems during vegetable fermentation.
Collapse
Affiliation(s)
- Kazunori Sawada
- Innovation Division, Gurunavi, Inc., Hibiya Mitsui Tower, Chiyoda-ku, Tokyo, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| |
Collapse
|
4
|
Lee DY, Kim EJ, Park SE, Cho KM, Kwon SJ, Roh SW, Kwak S, Whon TW, Son HS. Impact of essential and optional ingredients on microbial and metabolic profiles of kimchi. Food Chem X 2024; 22:101348. [PMID: 38623504 PMCID: PMC11016982 DOI: 10.1016/j.fochx.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
This study aimed to examine the impacts of essential and optional ingredients on the microbial and metabolic profiles of kimchi during 100 days of fermentation, using a mix-omics approach. Kimchi manufactured without essential ingredients (e.g., red pepper, garlic, ginger, green onion, and radish) had lower lactic acid content. The absence of garlic was associated with a higher proportion of Latilactobacillus and Lactococcus, while the absence of red pepper was associated with a greater proportion of Leuconostoc than the control group. In addition, red pepper and garlic served as primary determinants of the levels of organic acids and biogenic amines. Sugar was positively correlated with the levels of melibiose, and anchovy sauce was positively correlated with the levels of amino acids such as methionine, leucine, and glycine. These findings contribute to a fundamental understanding of how ingredients influence kimchi fermentation, offering valuable insights for optimizing kimchi production to meet various preferences.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | | | | - Seong Woon Roh
- Microbiome Research Team, LISCure Biosciences Inc., Gyeonggi-do 13486, Republic of Korea
| | - Suryang Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Park J, Heo S, Lee G, Hong SW, Jeong DW. Bacterial diversity of baechu- kimchi with seafood based on culture-independent investigations. Food Sci Biotechnol 2024; 33:1661-1670. [PMID: 38623433 PMCID: PMC11016024 DOI: 10.1007/s10068-023-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 04/17/2024] Open
Abstract
Baechu-kimchi is a traditional Korean dish of fermented vegetables, in which kimchi cabbage is the major ingredient. Seafood is added to baechu-kimchi in coastal areas, giving this dish regional diversity. However, little is known about how the addition of seafood affects the bacterial diversity of kimchi. Therefore, in this study, the bacterial diversity of five varieties of baechu-kimchi with seafood and one variety of baechu-kimchi without seafood was analyzed using culture-independent techniques. In 81.7% of all kimchi analyzed, the predominant species were members of the phylum Firmicutes and the lactic acid bacteria, Latilactobacillus sakei, Leuconostoc mesenteroides, Pediococcus inopinatus, and Weissella koreensis. These organisms were similar to those identified in baechu-kimchi without the addition of seafood, which was used as a control group, and bacterial community of previously reported kimchi. Therefore, the results of this study confirmed that the addition of seafood did not significantly affect the bacterial community in baechu-kimchi.
Collapse
Affiliation(s)
- Junghyun Park
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Sung Wook Hong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| |
Collapse
|
6
|
Tang H, Ma JK, Chen L, Jiang LW, Kang LZ, Guo YY, Men GY, Nie DX, Zhong RM. Characterization of key flavor substances and their microbial sources in traditional sour bamboo shoots. Food Chem 2024; 437:137858. [PMID: 37924763 DOI: 10.1016/j.foodchem.2023.137858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Identifying key flavor compounds and their producing bacteria in sour bamboo shoots is crucial for flavor stabilization and industrial production. This study analyzed 15 traditional sour bamboo shoot samples from northern Guangdong to determine key flavor substances and microbial community. Results showed key flavor substances were acetic acid (RTC ≥ 50% in 10 samples), lactic acid (RTC ≥ 50% in 5 samples), and p-cresol (ROC ≥ 93%). Lactobacillus (ARA: 54.62%) was the dominant genus, significantly correlated with p-cresol (r = 0.80, p ≤ 0.01). Levilactobacillus (ARA: 3.33%) was positively correlated with lactic acid and p-cresol (r = 0.78, p ≤ 0.01; r = 0.66, p ≤ 0.01). Lentilactobacillus (ARA: 4.29%) was positively correlated with acetic acid (r = 0.85, p ≤ 0.01). Levilactobacillus was isolated, screened, identified, and its ability to produce key flavor substances was tested. Four strains of Levilactobacillus spicheri and their mixed strains produced lactic acid (10.12-16.62 g/kg), acetic acid (10.21-21.60 g/kg), and p-cresol (25.67-143.87 mg/kg). This is the first report of Levilactobacillus spicheri producing p-cresol.
Collapse
Affiliation(s)
- Hui Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan City, Guangdong 512005, China; Henry Fok School of Food Science and Technology, Shaoguan University, Shaoguan City, Guangdong 512005, China
| | - Jin-Kui Ma
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing City, Guangdong 526061, China.
| | - Lin Chen
- Henry Fok School of Food Science and Technology, Shaoguan University, Shaoguan City, Guangdong 512005, China
| | - Li-Wen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha City, Hunan 410128, China
| | - Lin-Zhi Kang
- Henry Fok School of Food Science and Technology, Shaoguan University, Shaoguan City, Guangdong 512005, China
| | - Ying-Yu Guo
- Henry Fok School of Food Science and Technology, Shaoguan University, Shaoguan City, Guangdong 512005, China
| | - Ge-Yang Men
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan City, Guangdong 512005, China
| | - Dan-Xia Nie
- Henry Fok School of Food Science and Technology, Shaoguan University, Shaoguan City, Guangdong 512005, China
| | - Rui-Min Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan City, Guangdong 512005, China.
| |
Collapse
|
7
|
Kim SJ, Ha S, Dang YM, Chang JY, Mun SY, Ha JH. Combined Non-Thermal Microbial Inactivation Techniques to Enhance the Effectiveness of Starter Cultures for Kimchi Fermentation. J Microbiol Biotechnol 2024; 34:622-633. [PMID: 37997263 PMCID: PMC11016767 DOI: 10.4014/jmb.2310.10010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
For quality standardization, the application of functional lactic acid bacteria (LAB) as starter cultures for food fermentation is a well-known method in the fermented food industry. This study assessed the effect of adding a non-thermally microbial inactivated starter culture to kimchi, a traditional Korean food, in standardizing its quality. In this study, pretreatment based on sterilization processes, namely, slightly acidic electrolyzed water (SAEW) disinfection and ultraviolet C light-emitting diode (UVC-LED) of raw and subsidiary kimchi materials were used to reduce the initial microorganisms in them, thereby increasing the efficiency and value of the kimchi LAB starter during fermentation. Pretreatment sterilization effectively suppressed microorganisms that threatened the sanitary value and quality of kimchi. In addition, pretreatment based on sterilization effectively reduced the number of initial microbial colonies in kimchi, creating an environment in which kimchi LAB starters could settle or dominate, compared to non-sterilized kimchi. These differences in the initial microbial composition following the sterilization process and the addition of kimchi LAB starters led to differences in the metabolites that positively affect the taste and flavor of kimchi. The combined processing technology used in our study, that is, pre-sterilization and LAB addition, may be a powerful approach for kimchi quality standardization.
Collapse
Affiliation(s)
- Su-Ji Kim
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sanghyun Ha
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Yun-Mi Dang
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji Yoon Chang
- Fermentation Regulation Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - So Yeong Mun
- Fermentation Regulation Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
8
|
Mun SY, Lee W, Lee SY, Chang JY, Chang HC. Pediococcus inopinatus with a well-developed CRISPR-Cas system dominates in long-term fermented kimchi, Mukeunji. Food Microbiol 2024; 117:104385. [PMID: 37919000 DOI: 10.1016/j.fm.2023.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023]
Abstract
Kimchi is produced through a low-temperature fermentation without pre-sterilization, resulting in a heterogeneous microbial community. As fermentation progresses, dominant lactic acid bacteria (LAB) species emerge and undergo a transition process. In this study, LAB were isolated from Mukeunji, a long-term fermented kimchi that is in the final stage of kimchi fermentation process. It was confirmed, through culture-dependent and independent analysis, as well as metagenome analysis, that Pediococcus inopinatus are generally dominant in long-term fermented kimchi. Comparative analysis of the de novo assembled whole genome of P. inopinatus with other kimchi LAB revealed that this species has a well-developed clustered regularly interspaced short palindromic repeats (CRISPR) system. The CRISPR system of P. inopinatus has an additional copy of the csa3 gene, a transcription factor for cas genes. Indeed, this species not only highly expresses cas1 and cas2, which induce spacer acquisition, but also has many diverse spacers that are actively expressed. These findings indicate that the well-developed CRISPR-Cas system is enabling P. inopinatus to dominate in long-fermented kimchi. Overall, this study revealed that LAB with a robust defense system dominate in the final stage of kimchi fermentation and presented a model for the succession mechanism of kimchi LAB.
Collapse
Affiliation(s)
- So Yeong Mun
- Research and Development Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755, South Korea; Department of Food and Nutrition, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, South Korea
| | - Wooje Lee
- Research and Development Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755, South Korea
| | - Soo-Young Lee
- Department of Food and Nutrition, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, South Korea
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755, South Korea
| | - Hae Choon Chang
- Research and Development Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755, South Korea; Department of Food and Nutrition, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, South Korea.
| |
Collapse
|
9
|
Thierry A, Madec MN, Chuat V, Bage AS, Picard O, Grondin C, Rué O, Mariadassou M, Marché L, Valence F. Microbial communities of a variety of 75 homemade fermented vegetables. Front Microbiol 2023; 14:1323424. [PMID: 38163080 PMCID: PMC10757351 DOI: 10.3389/fmicb.2023.1323424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Fermentation is an ancient practice of food preservation. Fermented vegetables are popular in Eastern European and Asian countries. They have received a growing interest in Western countries, where they are mainly manufactured at domestic and artisanal scales and poorly characterized. Our aim was to investigate the microbial communities and the safety of French homemade fermented vegetables, in the frame of a citizen science project. Fermented vegetables and the data associated with their manufacture were collected from citizens and characterized for pH, NaCl concentration, and microbiology by culturomics and 16S DNA metabarcoding analysis. Lactic acid bacteria (LAB) and yeast isolates were identified by 16S rRNA gene sequencing and D1/D2 domains of the large subunit of the rRNA gene, respectively. The 75 collected samples contained 23 types of vegetables, mainly cabbage, followed by carrots and beets, and many mixtures of vegetables. They were 2 weeks to 4 years old, and their median pH was 3.56, except for two samples with a pH over 4.5. LAB represented the dominant viable bacteria. LAB concentrations ranged from non-detectable values to 8.7 log colony-forming units (CFU)/g and only depended on the age of the samples, with the highest most frequently observed in the youngest samples (<100 days). The 93 LAB isolates identified belonged to 23 species, the two mains being Lactiplantibacillus pentosus/plantarum and Levilactobacillus brevis. The other microbial groups enumerated (total aerobic bacteria, halotolerant bacteria, Gram-negative bacteria, and acetic acid bacteria) generally showed lower concentrations compared to LAB concentrations. No pathogenic bacteria were detected. Viable yeasts were observed in nearly half the samples, at concentrations reaching up to 8.0 log CFU/g. The 33 yeast clones identified belonged to 16 species. Bacterial metabarcoding showed two main orders, namely, Lactobacillales (i.e., LAB, 79% of abundance, 177 of the 398 total ASVs) and Enterobacterales (19% of abundance, 191 ASVs). Fifteen LAB genera were identified, with Lactiplantibacillus and Levilactobacillus as the most abundant, with 41 and 12% of total reads, respectively. Enterobacterales members were mainly represented by Enterobacteriaceae and Yersiniaceae. This study is the first wide description of the microbiota of a large variety of homemade fermented vegetables and documents their safety.
Collapse
Affiliation(s)
| | | | | | | | | | - Cécile Grondin
- INRAE, Université de Montpellier, Institut Agro, URM SPO, Montpellier, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
10
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
11
|
Jin Y, Qi Y, Fan M, Zhang J, Kong B, Shao B. Biotransformation of carbendazim in cowpea pickling process. Food Chem 2023; 415:135766. [PMID: 36868064 DOI: 10.1016/j.foodchem.2023.135766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
Carbendazim, a systemic fungicide, is one of the most commonly detected pesticides in cowpeas. Pickled cowpea is a fermented vegetable product with unique flavor favored in China. The dissipation and degradation of carbendazim were investigated in the pickled process. The degradation rate constant of carbendazim in pickled cowpeas was 0.9945 and the half-life of the carbendazim was 14.06 ± 0.82 d. Seven transformation products (TPs) were identified in the pickled process. Furthermore, the toxicity of some TPs show more harmful to three aquatic organisms (TP134) and rats (all the identified TPs) than carbendazim. And most of the TPs posed more development toxicity and mutagenicity than carbendazim. 4 out of 7 TPs were discovered in the real pickled cowpea samples. These results shed light on the degradation and biotransformation of the carbendazim in the pickled process, to better understand the potential health risk of pickled food and evaluate the environmental pollution.
Collapse
Affiliation(s)
- Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing 100013, China
| | - Yan Qi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengdie Fan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing 100013, China
| | - Biao Kong
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing 100013, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China.
| |
Collapse
|
12
|
Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 2023; 12:2140. [PMID: 37297385 PMCID: PMC10252221 DOI: 10.3390/foods12112140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Various fields have been identified in the "omics" era, such as genomics, proteomics, transcriptomics, metabolomics, phenomics, and metagenomics. Among these, metagenomics has enabled a significant increase in discoveries related to the microbial world. Newly discovered microbiomes in different ecologies provide meaningful information on the diversity and functions of microorganisms on the Earth. Therefore, the results of metagenomic studies have enabled new microbe-based applications in human health, agriculture, and the food industry, among others. This review summarizes the fundamental procedures on recent advances in bioinformatic tools. It also explores up-to-date applications of metagenomics in human health, food study, plant research, environmental sciences, and other fields. Finally, metagenomics is a powerful tool for studying the microbial world, and it still has numerous applications that are currently hidden and awaiting discovery. Therefore, this review also discusses the future perspectives of metagenomics.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 72820, Vietnam
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
13
|
Lee DY, Park SH, Park SE, Kim EJ, Kim HW, Seo SH, Cho KM, Kwon SJ, Whon TW, Min SG, Choi YJ, Roh SW, Seo HY, Son HS. Comprehensive elucidation of the terroir of Korean kimchi through the study of recipes, metabolites, microbiota, and sensory characteristics. Food Res Int 2023; 166:112614. [PMID: 36914329 DOI: 10.1016/j.foodres.2023.112614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The aim of this study was to investigate the differences in characteristics of the fermented food kimchi based on the regions where it is produced. A total of 108 kimchi samples were collected from five different provinces in Korea to analyze the recipes, metabolites, microbes, and sensory characteristics. Overall, 18 ingredients (including salted anchovy and seaweed), 7 quality indicators (such as salinity and moisture content), 14 genera of microorganisms (mainly Tetragenococcus and Weissella belonging to LAB), and 38 metabolites contributed to the characteristics of kimchi by region. Kimchi from the southern and northern regions showed distinct metabolite profile (collected 108 kimchi) and flavor profile differences (kimchi manufactured using the standard regional recipes). This is the first study to investigate the terroir effect of kimchi by identifying differences in ingredients, metabolites, microbes, and sensory characteristics based on the region of production, and the correlations between these factors.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Hee Park
- World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyun-Woo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | | | | | | - Tae Woong Whon
- World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Sung Gi Min
- World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Yun-Jeong Choi
- World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seong Woon Roh
- Microbiome Research Team, LISCure Biosciences Inc, Gyeonggi-do 13486, Republic of Korea.
| | - Hye-Young Seo
- World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Yu Y, Xu Y, Li L, Chen S, An K, Yu Y, Xu ZL. Isolation of lactic acid bacteria from Chinese pickle and evaluation of fermentation characteristics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Chen C, Li J, Cheng G, Liu Y, Yi Y, Chen D, Wang X, Cao J. Flavor changes and microbial evolution in fermentation liquid of sour bamboo shoots. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
16
|
Shi Q, Tang H, Mei Y, Chen J, Wang X, Liu B, Cai Y, Zhao N, Yang M, Li H. Effects of endogenous capsaicin stress and fermentation time on the microbial succession and flavor compounds of chili paste (a Chinese fermented chili pepper). Food Res Int 2023; 168:112763. [PMID: 37120214 DOI: 10.1016/j.foodres.2023.112763] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Chili paste, is a popular traditional product derived from chili pepper, and its fermentation system is affected by the variable concentration of capsaicin, which originates from the peppers. In the present study, the effects of capsaicin and fermentation time on the microbial community and flavor compounds of chili paste were investigated. After capsaicin supplementation, the total acid was significantly decreased (p < 0.05) along with lower total bacteria, especially lactic acid bacteria. Lactiplantibacillus, Lactobacillus, Weissella, Issatchenkia, Trichoderma, and Pichia were the shared and predominant genera; whereas, the Bacteroides and Kazachstania abundance was significantly increased due to the selection effect of capsaicin over time. Additionally, alterations of the microbial interaction networks and their metabolic preferences led to less lactic acid content with greater accumulation of ethyl nonanoate, methyl nonanoate, etc. This study will provide a perspective for selecting chili pepper varieties and improving the quality of fermented chili paste.
Collapse
|
17
|
Cai Y, Yang X, Chen S, Tian K, Xu S, Deng R, Chen M, Yang Y, Liu T. Regular consumption of pickled vegetables and fermented bean curd reduces the risk of diabetes: a prospective cohort study. Front Public Health 2023; 11:1155989. [PMID: 37181698 PMCID: PMC10173413 DOI: 10.3389/fpubh.2023.1155989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/14/2023] [Indexed: 05/16/2023] Open
Abstract
Objective The global incidence of diabetes is rising, in part due to the widespread adoption of poor dietary habits. Fermented vegetables have numerous health benefits and are generally affordable. Here, we examined whether regular consumption of pickled vegetables or fermented bean curd reduces the risk of diabetes. Methods A total of 9,280 adults (≥18 years of age) were recruited via multi-stage sampling from 48 townships in China between 2010 and 2012 for this 10-year prospective study. In addition to demographic information, monthly consumption levels of pickled vegetables and fermented bean curd were recorded. Participants were then monitored for diabetes onset. After the final follow-up, logistic regression analyses with multiple covariant corrections were conducted to estimate the changes in diabetes risk associated with consumption of pickled vegetables and fermented bean curd compared to non-consumption. Results A total of 6,640 subjects without diabetes at the start of the study were followed up for a median period of 6.49 years, among whom 714 were diagnosed with diabetes during the study. According to a regression model with multivariable adjustment, diabetes risk was significantly reduced by consumption of 0-0.5 kg/month of pickled vegetables (OR = 0.77, 95% CI: 0.63, 0.94) and further reduced by consumption of >0.5 kg/month of pickled vegetables (OR = 0.37, 95% CI: 0.23, 0.60) compared to no consumption (both P-trend < 0.001). Consumption of fermented bean curd also reduced diabetes risk (OR = 0.68, 95% CI: 0.55, 0.84). Conclusion Regular consumption of pickled vegetables and/or fermented bean curd can reduce the long-term risk of diabetes.
Collapse
Affiliation(s)
- Yulan Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoxia Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Siju Chen
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunming Tian
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Renli Deng
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Min Chen
- Department of Chronic Disease Prevention and Control, Guizhou Disease Prevention and Control, Guiyang, Guizhou, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- *Correspondence: Yan Yang
| | - Tao Liu
- Department of Chronic Disease Prevention and Control, Guizhou Disease Prevention and Control, Guiyang, Guizhou, China
- Tao Liu
| |
Collapse
|
18
|
Jung S, Chang JY, Lee JH. Arginine metabolism and the role of arginine deiminase-producing microorganisms in kimchi fermentation. Heliyon 2022; 8:e11802. [DOI: 10.1016/j.heliyon.2022.e11802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
|
19
|
Zhao N, Ge L, Lai H, Wang Y, Mei Y, Huang Y, Zeng X, Su Y, Shi Q, Li H, Yuan H, Zhu Y, Zuo Y, Pang F, Guo C, Wang H, Hu T. Unraveling the contribution of pre-salting duration to microbial succession and changes of volatile and non-volatile organic compounds in Suancai (a Chinese traditional fermented vegetable) during fermentation. Food Res Int 2022; 159:111673. [DOI: 10.1016/j.foodres.2022.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
20
|
Salas-Millán JÁ, Aznar A, Conesa E, Conesa-Bueno A, Aguayo E. Functional food obtained from fermentation of broccoli by-products (stalk): Metagenomics profile and glucosinolate and phenolic compounds characterization by LC-ESI-QqQ-MS/MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Maini ZA, Lopez CM. Transitions in bacterial communities across two fermentation-based virgin coconut oil (VCO) production processes. Heliyon 2022; 8:e10154. [PMID: 36042721 PMCID: PMC9420384 DOI: 10.1016/j.heliyon.2022.e10154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Despite being one of the most used methods of virgin coconut oil (VCO) production, there is no metagenomic study that details the bacterial community shifts during fermentation-based VCO production. The identification and quantification of bacteria associated with coconut milk fermentation is useful for detecting the dominant microbial genera actively involved in VCO production which remains largely undescribed. Describing the constitutive microbial genera involved in this traditional fermentation practice can be used as a preliminary basis for improving industrial practices and developing better fermentation procedures. In this study, we utilized 16S rRNA metagenomic sequencing to trace the transitions in microbial community profiles as coconut milk is fermented to release VCO in two VCO production lines. The results show that difference in the microbiome composition between the different processing steps examined in this work was mainly due to the abundance of the Leuconostoc genus in the raw materials and its decline and transition into the lactic acid bacteria groups Weissella, Enterococcus, Lactobacillus, Lactococcus, and Streptococcus during the latter stages of fermentation. A total of 17 genera with relative abundances greater than 0.01% constitute the core microbiome of the two processing lines and account for 74%–97% of the microbial abundance in all coconut-derived samples. Significant correlations were shown through an analysis of the Spearman’s rank between and within the microbial composition and pH at the genus level. The results of the present study show that the dynamics of VCO fermentation rely on the shifts in abundances of various members of the Lactobacillales order.
Collapse
Affiliation(s)
- Zomesh A Maini
- Department of Biology, School of Science & Engineering, Loyola Schools, Ateneo de Manila University, Philippines
| | - Crisanto M Lopez
- Department of Biology, School of Science & Engineering, Loyola Schools, Ateneo de Manila University, Philippines
| |
Collapse
|
22
|
Yasir M, Al-Zahrani IA, Bibi F, Abd El Ghany M, Azhar EI. New insights of bacterial communities in fermented vegetables from shotgun metagenomics and identification of antibiotic resistance genes and probiotic bacteria. Food Res Int 2022; 157:111190. [DOI: 10.1016/j.foodres.2022.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
|
23
|
Unraveling the microbial community and succession during zha-chili fermentation and their relationships with flavor formation. Food Res Int 2022; 157:111239. [DOI: 10.1016/j.foodres.2022.111239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 01/04/2023]
|
24
|
Diversity of a Lactic Acid Bacterial Community during Fermentation of Gajami-Sikhae, a Traditional Korean Fermented Fish, as Determined by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Foods 2022; 11:foods11070909. [PMID: 35406996 PMCID: PMC8997922 DOI: 10.3390/foods11070909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Gajami-sikhae is a traditional Korean fermented fish food made by naturally fermenting flatfish (Glyptocephalus stelleri) with other ingredients. This study was the first to investigate the diversity and dynamics of lactic acid bacteria in gajami-sikhae fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 4824 isolates were isolated from the fermented gajami-sikhae. These findings indicated that Latilactobacillus, Lactiplantibacillus, Levilactobacillus, Weissella, and Leuconostoc were the dominant genera during fermentation, while the dominant species were Latilactobacillus sakei, Lactiplantibacillus plantarum, Levilactobacillus brevis, Weissella koreensis, and Leuconostoc mesenteroides. At all temperatures, L. sakei was dominant at the early stage of gajami-sikhae fermentation, and it maintained dominance until the later stage of fermentation at low temperatures (5 °C and 10 °C). However, L. plantarum and L. brevis replaced it at higher temperatures (15 °C and 20 °C). The relative abundance of L. plantarum and L. brevis reached 100% at the later fermentation stage at 20 °C. These results suggest that the optimal fermentation temperatures for gajami-sikhae are low rather than high temperatures. This study could allow for the selection of an adjunct culture to control gajami-sikhae fermentation.
Collapse
|
25
|
Yongsawas R, Inta A, Kampuansai J, Pandith H, Suwannarach N, Lamyong S, Chantawannakul P, Chitov T, Disayathanoowat T. Bacterial Communities in Lanna Phak-Gard-Dong (Pickled Mustard Green) from Three Different Ethnolinguistic Groups in Northern Thailand. BIOLOGY 2022; 11:biology11010150. [PMID: 35053147 PMCID: PMC8772952 DOI: 10.3390/biology11010150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 01/04/2023]
Abstract
The Lanna region, the main part of northern Thailand, is a place of ethnic diversity. In this study, we investigated phak-gard-dong (PGD), or pickled mustard green (Brassica juncea L. Czern.), for its beneficial bacteria content and to analyse the variations in bacterial compositions among the PGD of three different ethnolinguistic groups, the Karen, Lawa, and Shan. DNA was extracted from the PGD pickled brine, and 16S rRNA gene Illumina sequencing was performed. Metagenomic data were analysed and the results demonstrated that the dominant bacterial species were Weissella (54.2%, 65.0%, and 10.0%) and Lactobacillus (17.5%, 5.6%, and 79.1%) in the PGD of the Karen, Lawa, and Shan, respectively. Pediococcus was found only in the PGD of the Karen and Shan. Bacterial communities in PGD of the Lawa were distinctive from the other ethnic groups, both in the alpha and beta diversity, as well as the predicted functions of the bacterial communities. In addition, overall network analysis results were correlated to bacterial proportions in every ethnic PGD. We suggest that all ethnic PGDs have the potential to be a good source of beneficial bacteria, warranting its conservation and further development into health food products.
Collapse
Affiliation(s)
- Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (A.I.); (J.K.); (H.P.); (N.S.); (S.L.); (P.C.); (T.C.)
| | - Angkana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (A.I.); (J.K.); (H.P.); (N.S.); (S.L.); (P.C.); (T.C.)
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (A.I.); (J.K.); (H.P.); (N.S.); (S.L.); (P.C.); (T.C.)
| | - Hataichanok Pandith
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (A.I.); (J.K.); (H.P.); (N.S.); (S.L.); (P.C.); (T.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (A.I.); (J.K.); (H.P.); (N.S.); (S.L.); (P.C.); (T.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lamyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (A.I.); (J.K.); (H.P.); (N.S.); (S.L.); (P.C.); (T.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (A.I.); (J.K.); (H.P.); (N.S.); (S.L.); (P.C.); (T.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thararat Chitov
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (A.I.); (J.K.); (H.P.); (N.S.); (S.L.); (P.C.); (T.C.)
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (A.I.); (J.K.); (H.P.); (N.S.); (S.L.); (P.C.); (T.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-81-7249624
| |
Collapse
|
26
|
Microbial Communities and Physiochemical Properties of Four Distinctive Traditionally Fermented Vegetables from North China and Their Influence on Quality and Safety. Foods 2021; 11:foods11010021. [PMID: 35010147 PMCID: PMC8750469 DOI: 10.3390/foods11010021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
The bacterial communities and physicochemical characteristics of four types of extremely distinctive traditionally fermented vegetables (pickled pepper (PP), pickled Brassica napobrassica (PBN), salted flowers of wild chives (SFWC), and pickled cucumber (PC)) were identified and compared from north China. Lactobacillus was the main bacterial genus in PP and PBN samples, with Oceanobacillus only being observed in PBN. The predominant genus in SFWC was Weissella, while in PC they were were Carnimonas and Salinivibrio. At the species level, Companilactobacillus ginsenosidimutans, Fructilactobacillus fructivorans, and Arcobacter marinus were abundant in PP and PBN. Levilactobacillus brevis and Companilactobacillus alimentarius were enriched in PP, and L. acetotolerans, Ligilactobacillus acidipiscis and Pediococcus parvulus were observed in PBN. Weissella cibaria and Kosakonia cowanii were abundant in SFWC. Moreover, tartaric acid was the most physicochemical factor influencing microbial composition, followed by malic acid, titratable acidity (TA), and lactic acid. Furthermore, functional analysis demonstrated that the most genes of the bacterial profiles correlated with carbohydrate metabolism. However, some foodborne pathogens were existed, such as Staphylococcus and Arcobacter marinus. The results of this study provide detailed insight into the relationship between the bacterial communities and physicochemical indices of fermented vegetables, and may improve the quality and safety of traditional Chinese fermented vegetables.
Collapse
|
27
|
Seo H, Seong H, Kim GY, Jo YM, Cheon SW, Song Y, Ryu BH, Kang H, Han NS. Development of Anti-inflammatory Probiotic Limosilactobacillus reuteri EFEL6901 as Kimchi Starter: in vitro and In vivo Evidence. Front Microbiol 2021; 12:760476. [PMID: 34899643 PMCID: PMC8656428 DOI: 10.3389/fmicb.2021.760476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. In this study, we developed an anti-inflammatory probiotic starter, Limosilactobacillus reuteri EFEL6901, for use in kimchi fermentation. The EFEL6901 strain was safe for use in foods and was stable under human gastrointestinal conditions. In in vitro experiments, EFEL6901 cells adhered well to colonic epithelial cells and decreased nitric oxide production in lipopolysaccharide-induced macrophages. In in vivo experiments, oral administration of EFEL6901 to DSS-induced colitis mice models significantly alleviated the observed colitis symptoms, prevented body weight loss, lowered the disease activity index score, and prevented colon length shortening. Analysis of these results indicated that EFEL6901 played a probiotic role by preventing the overproduction of pro-inflammatory cytokines, improving gut barrier function, and up-regulating the concentrations of short-chain fatty acids. In addition, EFEL6901 made a fast growth in a simulated kimchi juice and it synthesized similar amounts of metabolites in nabak-kimchi comparable to a commercial kimchi. This study demonstrates that EFEL6901 can be used as a suitable kimchi starter to promote gut health and product quality.
Collapse
Affiliation(s)
- Hee Seo
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Hyunbin Seong
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Ga Yun Kim
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Yu Mi Jo
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Seong Won Cheon
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Byung Hee Ryu
- Fresh Food Research Division, Food BU, Daesang Corporation Research Institute, Icheon, South Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, South Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
28
|
Diversity and potential function of bacterial communities during milk fermentation of Kazak artisanal cheese. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Wang X, Song G, He Z, Zhao M, Cao X, Lin X, Ji C, Zhang S, Liang H. Effects of salt concentration on the quality of paocai, a fermented vegetable product from China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6202-6210. [PMID: 33908047 DOI: 10.1002/jsfa.11271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Paocai is a traditional Chinese fermented vegetable food. As the most important ingredient, salt has crucial effects on the bacterial community and volatile compounds of paocai. To demonstrate the effects of salt on the fermentation of paocai, the bacterial composition and volatile compounds were investigated using high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS). RESULTS The salt had no significant effects on the bacterial community at the phylum level. Proteobacteria and Bacteroidetes gradually decreased during the fermentation, and Firmicutes gradually increased as the dominant bacteria in the late stage of fermentation. At the genus level, Lactobacillus and Lactococcus gradually increased in relative abundance during the fermentation and became the dominant bacteria in paocai. High salt levels can contribute to the growth of Lactobacillus, which became the dominant genus in paocai. The salt concentration affected the profiles of volatile compounds in paocai after fermentation. A total of 42 volatile components were detected by GC-MS, among which phenols, aldehydes, and nitriles were the main ones. A high salt concentration will increase the volatile compound content, mainly aldehydes and alcohols, and improve the flavor of paocai. At the same time, the electronic tongue analysis also showed that a high salt concentration made a major contribution to the flavor of paocai. CONCLUSIONS These data are helpful to elucidate the effects of salt on the quality of paocai and contribute to improving the quality and reducing the use of salt. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Wang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ge Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhen He
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mingwei Zhao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinying Cao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
30
|
Lee W, Choi HJ, Zin H, Kim E, Yang SM, Hwang J, Kwak HS, Kim SH, Kim HY. Effect of Enterotoxigenic Escherichia coli on Microbial Communities during Kimchi Fermentation. J Microbiol Biotechnol 2021; 31:1552-1558. [PMID: 34489379 PMCID: PMC9705866 DOI: 10.4014/jmb.2108.08038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
The diverse microbial communities in kimchi are dependent on fermentation period and temperature. Here, we investigated the effect of enterotoxigenic Escherichia coli (ETEC) during the fermentation of kimchi at two temperatures using high-throughput sequencing. There were no differences in pH between the control group, samples not inoculated with ETEC, and the ETEC group, samples inoculated with ETEC MFDS 1009477. The pH of the two groups, which were fermented at 10 and 25°C, decreased rapidly at the beginning of fermentation and then reached pH 3.96 and pH 3.62. In both groups, the genera Lactobacillus, Leuconostoc, and Weissella were predominant. Our result suggests that microbial communities during kimchi fermentation may be affected by the fermentation parameters, such as temperature and period, and not enterotoxigenic E. coli (ETEC).
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyo Ju Choi
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyunwoo Zin
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jinhee Hwang
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyo-Sun Kwak
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea,Corresponding authors S.H. Kim E-mail:
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea,
H.Y. Kim Phone: +82-31-201-2123 Fax: +82-31-204-8116 E-mail:
| |
Collapse
|
31
|
Mannaa M, Han G, Seo YS, Park I. Evolution of Food Fermentation Processes and the Use of Multi-Omics in Deciphering the Roles of the Microbiota. Foods 2021; 10:2861. [PMID: 34829140 PMCID: PMC8618017 DOI: 10.3390/foods10112861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Food fermentation has been practised since ancient times to improve sensory properties and food preservation. This review discusses the process of fermentation, which has undergone remarkable improvement over the years, from relying on natural microbes and spontaneous fermentation to back-slopping and the use of starter cultures. Modern biotechnological approaches, including genome editing using CRISPR/Cas9, have been investigated and hold promise for improving the fermentation process. The invention of next-generation sequencing techniques and the rise of meta-omics tools have advanced our knowledge on the characterisation of microbiomes involved in food fermentation and their functional roles. The contribution and potential advantages of meta-omics technologies in understanding the process of fermentation and examples of recent studies utilising multi-omics approaches for studying food-fermentation microbiomes are reviewed. Recent technological advances in studying food fermentation have provided insights into the ancient wisdom in the practice of food fermentation, such as the choice of substrates and fermentation conditions leading to desirable properties. This review aims to stimulate research on the process of fermentation and the associated microbiomes to produce fermented food efficiently and sustainably. Prospects and the usefulness of recent advances in molecular tools and integrated multi-omics approaches are highlighted.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Inmyoung Park
- School of Culinary Arts, Youngsan University, Busan 48015, Korea
| |
Collapse
|
32
|
Lee M, Song JH, Choi EJ, Yun YR, Lee KW, Chang JY. UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential. Antioxidants (Basel) 2021; 10:antiox10111761. [PMID: 34829632 PMCID: PMC8614894 DOI: 10.3390/antiox10111761] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
This study aims to investigate fermentative metabolites in probiotic vegetable juice from four crop varieties (Brassica oleracea var. capitata, B. oleracea var. italica, Daucus carota L., and Beta vulgaris) and their antioxidant properties. Vegetable juice was inoculated with two lactic acid bacteria (LAB) (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124) isolated from kimchi and their properties were evaluated using untargeted UPLC-QTOF-MS/MS and GC-MS. The samples were also evaluated for radical (DPPH• and OH•) scavenging activities, lipid peroxidation, and ferric-reducing antioxidant power. The fermented vegetable juices exhibited high antioxidant activities and increased amounts of total phenolic compounds. Fifteen compounds and thirty-two volatiles were identified using UPLC-QTOF-MS/MS and GC-MS, respectively. LAB fermentation significantly increased the contents of d-leucic acid, indole-3-lactic acid, 3-phenyllactic acid, pyroglutamic acid, γ-aminobutyric acid, and gluconic acid. These six metabolites showed a positive correlation with antioxidant properties. Thus, vegetable juices fermented with WiKim39 and WiKim0124 can be considered as novel bioactive health-promoting sources.
Collapse
Affiliation(s)
- Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
| | - Ye-Rang Yun
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
- Correspondence: (K.W.L.); (J.Y.C.)
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
- Correspondence: (K.W.L.); (J.Y.C.)
| |
Collapse
|
33
|
Effects of the main ingredients of the fermented food, kimchi, on bacterial composition and metabolite profile. Food Res Int 2021; 149:110668. [PMID: 34600670 DOI: 10.1016/j.foodres.2021.110668] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Kimchi is a fermented food prepared via spontaneous fermentation by lactic acid bacteria originating from raw ingredients. To investigate the effect of these ingredients on food fermentation, four types of food that differed only in their main raw ingredients (kimchi cabbage, green onion, leaf mustard, and young radish) were evaluated. The major microorganisms were Leuconostoc gelidum, Weissella kandleri, and Lactobacillus sakei groups. The distribution of these species depended on the sample type. All three species were primarily distributed in the food prepared from kimchi cabbage and young radish; however, the Lac. sakei group was hardly found in the food prepared using green onion and leaf mustard. Metabolite analysis results showed that the free sugar, organic acid, ethanol, and amino acid profiles differed with the sample type. This study indicates that the main ingredients could be an important factor in determining the composition of the microbial community and the metabolite composition.
Collapse
|
34
|
Liang T, Xie X, Ma J, Wu L, Xi Y, Zhao H, Li L, Li H, Feng Y, Xue L, Chen M, Chen X, Zhang J, Ding Y, Wu Q. Microbial Communities and Physicochemical Characteristics of Traditional Dajiang and Sufu in North China Revealed by High-Throughput Sequencing of 16S rRNA. Front Microbiol 2021; 12:665243. [PMID: 34526973 PMCID: PMC8435802 DOI: 10.3389/fmicb.2021.665243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
The process of soybean fermentation has been practiced for more than 3,000 years. Although Dajiang and Sufu are two popular fermented soybean products consumed in North China, limited information is available regarding their microbial composition. Hence, the current study sought to investigate, and compare, the physicochemical indicators and microbial communities of traditional Dajiang and Sufu. Results showed that the titratable acidity (TA), and salinity, as well as the lactic acid, and malic acid contents were significantly higher in Sufu samples compared to Dajiang. Furthermore, Sufu samples contain abundant sucrose and fructose, while the acetic acid content was lower in Sufu compared to Dajiang samples. Moreover, the predominant bacterial phyla in Dajiang and Sufu samples were Firmicutes and Proteobacteria, while the major genera comprise Bacillus, Lactobacillus, Tetragenococcus, and Weissella. Moreover, Dajiang samples also contained abundant Pseudomonas, and Brevundimonas spp., while Halomonas, Staphylococcus, Lysinibacillus, Enterobacter, Streptococcus, Acinetobacter, and Halanaerobium spp. were abundant in Sufu samples. At the species level, Bacillus velezensis, Tetragenococcus halophilus, Lactobacillus rennini, Weissella cibaria, Weissella viridescens, Pseudomonas brenneri, and Lactobacillus acidipiscis represented the major species in Dajiang, while Halomonas sp., Staphylococcus equorum, and Halanaerobium praevalens were the predominant species in Sufu. Acetic acid and sucrose were found to be the primary major physicochemical factor influencing the bacterial communities in Dajiang and Sufu, respectively. Furthermore, Bacillus subtilis is strongly correlated with lactic acid levels, L. acidipiscis is positively correlated with acetic acid levels, while Staphylococcus sciuri and S. equorum are strongly, and positively, correlated with malic acid. Following analysis of carbohydrate and amino acid metabolism in all samples, cysteine and methionine metabolism, as well as fatty acid biosynthesis-related genes are upregulated in Dajiang compared to Sufu samples. However, such as the Staphylococcus, W. viridescens, and P. brenneri, as potentially foodborne pathogens, existed in Dajang and Sufu samples. Cumulatively, these results suggested that Dajiang and Sufu have unique bacterial communities that influence their specific characteristics. Hence, the current study provides insights into the microbial community composition in Dajiang and Sufu samples, which may facilitate the isolation of functional bacterial species suitable for Dajiang and Sufu production, thus improving their production efficiency.
Collapse
Affiliation(s)
- Tingting Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Feng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
35
|
Park WJ, Kong SJ, Park JH. Kimchi bacteriophages of lactic acid bacteria: population, characteristics, and their role in watery kimchi. Food Sci Biotechnol 2021; 30:949-957. [PMID: 34395026 PMCID: PMC8302715 DOI: 10.1007/s10068-021-00930-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
The bacteriophages (phages) in the watery kimchis (Baek-kimchi and Dongchimi) were characterized to determine the phage ecology of lactic acid bacteria (LAB). Kimchi obtained from the Seoul markets had an average of 2.1 log phage particles/mL, corresponding to 28% of the bacterial counts on a log scale. High counts of 5.5-6.5 log particles/mL of phages were noted in the early phase of fermentation (reaching pH 4), and 2.1-3.0 log phage particles/mL were found in the later phase, with some fluctuation in numbers. The LAB hosts changed from Weissella and Leuconostoc to Lactobacillus during Dongchimi fermentation. Fifteen phages, except for those of Lactobacillus, were isolated from diverse strains in the early phase. Five Weissella phages were Podoviridae, and all 10 Leuconostoc phages were Myoviridae. Phages had narrow and different host infection spectra to strains of the same species and high acidic stability. Therefore, the mortality and diversity of LAB during natural kimchi fermentation may be related to the specific phages of the hosts. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-00930-y.
Collapse
Affiliation(s)
- Won-Jeong Park
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Se-Jin Kong
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
36
|
Ryu JA, Kim E, Yang SM, Lee S, Yoon SR, Jang KS, Kim HY. High-throughput sequencing of the microbial community associated with the physicochemical properties of meju (dried fermented soybean) and doenjang (traditional Korean fermented soybean paste). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, Leow ATC, Alitheen NB. Metagenomic and phytochemical analyses of kefir water and its subchronic toxicity study in BALB/c mice. BMC Complement Med Ther 2021; 21:183. [PMID: 34210310 PMCID: PMC8247212 DOI: 10.1186/s12906-021-03358-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation. METHODS This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays. RESULTS The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples. CONCLUSIONS This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.
Collapse
Affiliation(s)
- Muganti Rajah Kumar
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Melati Khalid
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Adam Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Biomedical Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
38
|
Suitability Analysis of 17 Probiotic Type Strains of Lactic Acid Bacteria as Starter for Kimchi Fermentation. Foods 2021; 10:foods10061435. [PMID: 34205741 PMCID: PMC8234146 DOI: 10.3390/foods10061435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. This study aimed to evaluate the suitability of probiotic lactic acid bacteria (LAB) as a starter for kimchi fermentation. Seventeen probiotic type strains were tested for their growth rates, volatile aroma compounds, metabolites, and sensory characteristics of kimchi, and their characteristics were compared to those of Leuconostoc (Le.) mesenteroides DRC 1506, a commercial kimchi starter. Among the tested strains, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Ligilactobacillus salivarius exhibited high or moderate growth rates in simulated kimchi juice (SKJ) at 37 °C and 15 °C. When these five strains were inoculated in kimchi and metabolite profiles were analyzed during fermentation using GC/MS and 1H-NMR, data from the principal component analysis (PCA) showed that L. fermentum and L. reuteri were highly correlated with Le. mesenteroides in concentrations of sugar, mannitol, lactate, acetate, and total volatile compounds. Sensory test results also indicated that these three strains showed similar sensory preferences. In conclusion, L. fermentum and L. reuteri can be considered potential candidates as probiotic starters or cocultures to develop health-promoting kimchi products.
Collapse
|
39
|
An F, Sun H, Wu J, Zhao C, Li T, Huang H, Fang Q, Mu E, Wu R. Investigating the core microbiota and its influencing factors in traditional Chinese pickles. Food Res Int 2021; 147:110543. [PMID: 34399520 DOI: 10.1016/j.foodres.2021.110543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Pickles are a type of traditional fermented food in Northeast China that exhibit a broad variety of preparations, flavors and microbial components. Despite their widespread consumption, the core microorganisms in various traditional pickles and the precise impact of ecological variables on the microbiota remains obscure. The present study aims to unravel the microbial diversity in different pickle types collected from household (12 samples) and industrial (10 samples) sources. Among these 22 samples tested, differences were observed in total acid, amino acid nitrogen, nitrite, and salt content. Firmicutes and Ascomycota emerged as the predominant microbial phyla as observed by Illumina MiSeq sequencing. Amongst these, the commonly encountered microorganisms were Lactobacillus, Weissella and yeast. Comparative analysis based on non-metric multidimensional scaling (NMDS), showed that the microbial community in the pickles was affected by external conditions such as major ingredients and manufacturing process. Correlation analysis further showed that the resident core microorganisms in pickles could adapt to the changing internal fermentation environment. The insights gained from this study further our understanding of traditional fermented foods and can be used to guide the isolation of excellent fermented strains.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Huijun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Agricultural Development Service Center, Shenyang 110034, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Chunyan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Heting Huang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiang Fang
- Liaoning Provincial Institute of Agricultural Mechanization, Shenyang 110161, China
| | - Endong Mu
- Liaoning Agricultural Development Service Center, Shenyang 110034, China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China.
| |
Collapse
|
40
|
Chung YB, Lee H, Hwang S, Seo HY, Suh HJ, Jo K. Effect of capsaicinoids in hot pepper powder on microbial community and free sugar during kimchi fermentation. J Food Sci 2021; 86:3195-3204. [PMID: 34146398 DOI: 10.1111/1750-3841.15785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023]
Abstract
Effect of capsaicinoids in hot pepper powder (HP) contains various chemical compounds, including capsaicin and dihydrocapsaicin, which are the main ingredients of the spicy taste. To evaluate the effect of HP on the microbial community in kimchi fermentation, kimchi [kimchi-HP, kimchi-HPE and kimchi-HPER made by adding HP, HP alcohol extract (HPE) and HPE residues (HPER)] was fermented at 4°C for 28 days. The pH and titratable acidity of the samples and the number of bacteria changed with fermentation time. Kimchi-HPER had significantly higher total viable and lactic acid bacteria (LAB) than other samples after 28 days of fermentation. The capsaicinoids content did not differ before and after fermentation, whereas the major free sugar content decreased, and the mannitol content increased. The principal component analysis (PCA) biplots showed similar patterns between kimchi-HP and -HPE. It was confirmed that Leuconostoc and Weissella were related to the initial fermentation, and Lactobacillus was involved in late fermentation. Kimchi-HP and kimchi-HPE increased the ratio of Lactobacillus sakei and decreased that of Leuconostoc mesenteroides compared to kimchi-HPER. Overall, these results revealed that capsaicinoids contained in HP affected Lactobacillus proliferation and mannitol increase during kimchi fermentation.
Collapse
Affiliation(s)
- Young Bae Chung
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea.,Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyojung Lee
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Sojeong Hwang
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hye-Young Seo
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea.,Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Zhang J, Zhang C, Xin X, Liu D, Zhang W. Comparative Analysis of Traditional and Modern Fermentation for Xuecai and Correlations Between Volatile Flavor Compounds and Bacterial Community. Front Microbiol 2021; 12:631054. [PMID: 33995294 PMCID: PMC8118120 DOI: 10.3389/fmicb.2021.631054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/07/2021] [Indexed: 01/28/2023] Open
Abstract
Differences in flavor compounds and bacterial communities of Xuecai by traditional and modern fermentation are poorly understood. Allyl isothiocyanate (E9), ethyl acetate (E1), 3-butenenitrile (N1), phenol (P1), ethanol (A1), and 3-(2,6,6-trimethyl-1-cyclohexen-1-yl) acrylaldehyde (L11) were the main flavor compounds that differed between Xuecai produced by traditional and modern fermentation. Among these compounds, the contents of N1 and E9 were higher in modern fermentation Xuecai. Traditional fermentation Xuecai possessed higher contents of A1, P1, E1, and L11. High-throughput sequencing showed that Lactobacillus-related genera was the most abundant genus (50%) in modern fermentation Xuecai. However, in traditional fermentation Xuecai, Halanaerobium (29.06%) and Halomonas (12.96%) were the dominant genera. Halophilic bacteria (HB) positively contribute to the flavor of Xuecai. Carbohydrate metabolism and amino acid metabolism were the most abundant pathways associated with the bacterial communities of the Xuecai. This indicated that Xuecai flavor formation is mainly dependent on protein and carbohydrate degradation. This study provides a novel insight that HB may be important for flavor formation of Xuecai.
Collapse
Affiliation(s)
- Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengcheng Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Xin
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Daqun Liu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Zhang
- Hangzhou Trendbiotech Co., Ltd, Hangzhou, China
| |
Collapse
|
42
|
Kim E, Yang SM, Kim HY. Analysis of Cultivable Microbial Community during Kimchi Fermentation Using MALDI-TOF MS. Foods 2021; 10:foods10051068. [PMID: 34066045 PMCID: PMC8151656 DOI: 10.3390/foods10051068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 12/31/2022] Open
Abstract
Kimchi, a traditional Korean fermented vegetable, has received considerable attention for its health-promoting effects. This study analyzes the cultivable microbial community in kimchi fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to comprehensively understand the factors affecting the quality of kimchi. Of the 5204 strains isolated from kimchi, aligned with the in-house database, 4467 (85.8%) were correctly identified at the species level. The fermentation temperature affected the microbial community by varying the pH and acidity, which was mainly caused by temperature-dependent competition between the different lactic acid bacteria (LAB) species in kimchi. LAB, such as Levilactobacillus (Lb.) brevis and Lactiplantibacillus (Lpb.) plantarum associated with rancidity and tissue softening, proliferated faster at higher temperatures than at low temperature. In addition, LAB, such as Latilactobacillus (Lat.) sakei and Leuconostoc (Leu.) mesenteroides, which produce beneficial substances and flavor, were mainly distributed in kimchi fermented at 4 °C. This study shows as a novelty that MALDI-TOF MS is a robust and economically affordable method for investigating viable microbial communities in kimchi.
Collapse
Affiliation(s)
| | | | - Hae-Yeong Kim
- Correspondence: ; Tel.: +82-31-201-2600; Fax: +82-31-204-8116
| |
Collapse
|
43
|
Sawada K, Koyano H, Yamamoto N, Yamada T. The effects of vegetable pickling conditions on the dynamics of microbiota and metabolites. PeerJ 2021; 9:e11123. [PMID: 33868815 PMCID: PMC8034358 DOI: 10.7717/peerj.11123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background Salting is a traditional procedure for producing pickled vegetables. Salting can be used as a pretreatment, for safe lactic acid fermentation and for salt stock preparation. This study aimed to provide valuable knowledge to improve pickle production by investigating the dynamics of microbiota and metabolites during the pretreatment and salt stock preparation processes, which have previously been overlooked. The differences in these process conditions would be expected to change the microbiota and consequently influence the content of metabolites in pickles. Methods Samples, collected from eight commercial pickle manufacturers in Japan, consisted of the initial raw materials, pickled vegetables and used brine. The microbiota were analyzed by 16S rRNA sequencing and the metabolites quantified by liquid chromatograph-mass spectrometry. Statistical analyses helped to identify any significant differences between samples from the initial raw materials, pretreatment process and salt stock preparation process groups. Results Under pretreatment conditions, aerobic and facultative anaerobic bacteria were predominant, including Vibrio, a potentially undesirable genus for pickle production. Under salt stock preparation conditions, the presence of halophilic bacteria, Halanaerobium, suggested their involvement in the increase in pyruvate derivatives such as branched-chain amino acids (BCAA). PICRUSt analysis indicated that the enhanced production of BCAA in salt stock was caused not by quantitative but by qualitative differences in the biosynthetic pathway of BCAA in the microbiota. Conclusion The differences in the microbiota between pretreatment and previously studied lactic acid fermentation processes emphasized the importance of anaerobic conditions and low pH under moderate salinity conditions for assuring safe pickle production. The results from the salt stock preparation process suggested that the Halanaerobium present may provide a key enzyme in the BCAA biosynthetic pathway which prefers NADH as a coenzyme. This feature can enhance BCAA production under anaerobic conditions where NADH is in excess. The effects shown in this study will be important for adjusting pickling conditions by changing the abundance of bacteria to improve the quality of pickled vegetables.
Collapse
Affiliation(s)
- Kazunori Sawada
- Innovation Division, Gurunavi, Inc., Chiyoda-ku, Tokyo, Japan
| | - Hitoshi Koyano
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Nozomi Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| |
Collapse
|
44
|
Jung S, An H, Lee JH. Red pepper powder is an essential factor for ornithine production in kimchi fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Sawada K, Koyano H, Yamamoto N, Yamada T. The relationships between microbiota and the amino acids and organic acids in commercial vegetable pickle fermented in rice-bran beds. Sci Rep 2021; 11:1791. [PMID: 33469050 PMCID: PMC7815776 DOI: 10.1038/s41598-021-81105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
The microbial community during fermented vegetable production has a large impact on the quality of the final products. Lactic acid bacteria have been well-studied in such processes, but knowledge about the roles of non-lactic acid bacteria is limited. This study aimed to provide useful knowledge about the relationships between the microbiota, including non-lactic acid bacteria, and metabolites in commercial pickle production by investigating Japanese pickles fermented in rice-bran. The samples were provided by six manufacturers, divided into two groups depending on the production conditions. The microbiological content of these samples was investigated by high-throughput sequencing, and metabolites were assessed by liquid chromatography-mass spectrometry and enzymatic assay. The data suggest that Halomonas, halophilic Gram-negative bacteria, can increase glutamic acid content during the pickling process under selective conditions for bacterial growth. In contrast, in less selective conditions, the microbiota consumed glutamic acid. Our results indicate that the glutamic acid content in fermented pickle is influenced by the microbiota, rather than by externally added glutamic acid. Our data suggest that both lactic acid bacteria and non-lactic acid bacteria are positive key factors in the mechanism of commercial vegetable fermentation and affect the quality of pickles.
Collapse
Affiliation(s)
- Kazunori Sawada
- Corporate Strategy Office, Gurunavi, Inc., Toho Hibiya Building, 1-2-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Hitoshi Koyano
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Nozomi Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
46
|
Yoon SR, Dang YM, Kim SY, You SY, Kim MK, Ha JH. Correlating Capsaicinoid Levels and Physicochemical Proper-ties of Kimchi and Its Perceived Spiciness. Foods 2021; 10:foods10010086. [PMID: 33406748 PMCID: PMC7829842 DOI: 10.3390/foods10010086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022] Open
Abstract
Capsaicinoid content, among other factors, affects the perception of spiciness of commercial kimchi. Here, we investigated whether the physicochemical properties of kimchi affect the spicy taste of capsaicinoids perceived by the tasting. High-performance liquid chromatography (HPLC) was used to evaluate the capsaicinoid content (mg/kg) of thirteen types of commercial kimchi. The physicochemical properties such as pH, titratable acidity, salinity, free sugar content, and free amino acid content were evaluated, and the spicy strength grade was determined by selected panel to analyze the correlation between these properties. Panels were trained for 48 h prior to actual evaluation by panel leaders trained for over 1000 h according to the SpectrumTM method. Partial correlation analysis was performed to examine other candidate parameters that interfere with the sensory evaluation of spiciness and capsaicinoid content. To express the specific variance after eliminating the effects of other variables, partial correlations were used to estimate the relationships between two variables. We observed a strong correlation between spiciness intensity ratings and capsaicinoid content, with a Pearson’s correlation coefficient of 0.78 at p ≤ 0.001. However, other specific variables may have influenced the relationship between spiciness intensity and total capsaicinoid content. Partial correlation analysis indicated that the free sugar content most strongly affected the relationship between spiciness intensity and capsaicinoid content, showing the largest first-order partial correlation coefficient (rxy/z: 0.091, p ≤ 0.01).
Collapse
Affiliation(s)
- So-Ra Yoon
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Korea; (S.-R.Y.); (Y.-M.D.); (S.-Y.K.); (S.-Y.Y.)
| | - Yun-Mi Dang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Korea; (S.-R.Y.); (Y.-M.D.); (S.-Y.K.); (S.-Y.Y.)
| | - Su-Yeon Kim
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Korea; (S.-R.Y.); (Y.-M.D.); (S.-Y.K.); (S.-Y.Y.)
| | - Su-Yeon You
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Korea; (S.-R.Y.); (Y.-M.D.); (S.-Y.K.); (S.-Y.Y.)
| | - Mina K. Kim
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeollabuk-do 54896, Korea
- Correspondence: (M.K.K.); (J.-H.H.); Tel.: +82-63-270-3879 (M.K.K); +82-62-610-1845 (J.-H.H.)
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Korea; (S.-R.Y.); (Y.-M.D.); (S.-Y.K.); (S.-Y.Y.)
- Correspondence: (M.K.K.); (J.-H.H.); Tel.: +82-63-270-3879 (M.K.K); +82-62-610-1845 (J.-H.H.)
| |
Collapse
|
47
|
Kim EJ, Seo SH, Park SE, Lim YW, Roh SW, Son HS. Initial storage of kimchi at room temperature alters its microbial and metabolite profiles. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Chen Z, Kang J, Zhang Y, Yi X, Pang X, Li-Byarlay H, Gao X. Differences in the bacterial profiles and physicochemical between natural and inoculated fermentation of vegetables from Shanxi Province. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01605-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPurposeFermented vegetables can be divided into two types, natural fermented and artificially inoculated fermented. By detecting and identifying the changes of bacterial diversity using physical and chemical indicators during natural and inoculation fermentation, we analyzed and determined the dominant bacteria in the fermentation process and revealed the relationship between bacteria and volatile substances.MethodsWe used the Illumina Miseq to sequence the bacteria in fermented vegetable samples at different fermentation periods, and calculated the total number of mesophilic microorganisms and lactic acid bacteria. We used the pH and nitrite to monitor the acidification process. GC-MS was used to determine volatile flavor compounds. Finally, we analyzed the correlation between volatile flavor compounds and bacteria.ResultsTotal mesophilic microorganisms and the number of lactic acid bacteria in the inoculated fermentation were higher than the natural fermentation. The bacterial diversity Shannon and Simpson indexes of the natural fermentation, higher than those of inoculated fermentation in 0~7 days, were between 55~71% and 36~45%, respectively. On the 7th day, the proportion ofLactobacillusin the natural fermentation and inoculated fermentation were 53.4% and 90.2%, respectively, which were significantly different.Lactobacilluswas the dominant genus in the fermented vegetables and an important genus to promote the formation of volatile flavors.Lactobacilluswas negatively correlated with two volatile substances (4-[2,2,6-trimethyl-7-oxabicyclo [4.1.0] hept-1-yl]-3-Buten-2-one (K4) and a-Phellandrene (X1)) and played a leading role in the fermentation process.ConclusionsResults demonstrated that the total number of mesophilic microorganisms and lactic acid bacteria in inoculated fermentation were more than those in natural fermentation. Inoculated fermentation can shorten the fermentation cycle and reduce the content of nitrite. Lactic acid bacteria were the dominant bacteria in fermented vegetables.
Collapse
|
49
|
Leech J, Cabrera-Rubio R, Walsh AM, Macori G, Walsh CJ, Barton W, Finnegan L, Crispie F, O'Sullivan O, Claesson MJ, Cotter PD. Fermented-Food Metagenomics Reveals Substrate-Associated Differences in Taxonomy and Health-Associated and Antibiotic Resistance Determinants. mSystems 2020; 5:e00522-20. [PMID: 33172966 PMCID: PMC7657593 DOI: 10.1128/msystems.00522-20] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Fermented foods have been the focus of ever greater interest as a consequence of purported health benefits. Indeed, it has been suggested that consumption of these foods helps to address the negative consequences of "industrialization" of the human gut microbiota in Western society. However, as the mechanisms via which the microbes in fermented foods improve health are not understood, it is necessary to develop an understanding of the composition and functionality of the fermented-food microbiota to better harness desirable traits. Here, we considerably expand the understanding of fermented-food microbiomes by employing shotgun metagenomic sequencing to provide a comprehensive insight into the microbial composition, diversity, and functional potential (including antimicrobial resistance and carbohydrate-degrading and health-associated gene content) of a diverse range of 58 fermented foods from artisanal producers from a number of countries. Food type, i.e., dairy-, sugar-, or brine-type fermented foods, was the primary driver of microbial composition, with dairy foods found to have the lowest microbial diversity. From the combined data set, 127 high-quality metagenome-assembled genomes (MAGs), including 10 MAGs representing putatively novel species of Acetobacter, Acidisphaera, Gluconobacter, Companilactobacillus, Leuconostoc, and Rouxiella, were generated. Potential health promoting attributes were more common in fermented foods than nonfermented equivalents, with water kefirs, sauerkrauts, and kvasses containing the greatest numbers of potentially health-associated gene clusters. Ultimately, this study provides the most comprehensive insight into the microbiomes of fermented foods to date and yields novel information regarding their relative health-promoting potential.IMPORTANCE Fermented foods are regaining popularity worldwide due in part to a greater appreciation of the health benefits of these foods and the associated microorganisms. Here, we use state-of-the-art approaches to explore the microbiomes of 58 of these foods, identifying the factors that drive the microbial composition of these foods and potential functional benefits associated with these populations. Food type, i.e., dairy-, sugar-, or brine-type fermented foods, was the primary driver of microbial composition, with dairy foods found to have the lowest microbial diversity and, notably, potential health promoting attributes were more common in fermented foods than nonfermented equivalents. The information provided here will provide significant opportunities for the further optimization of fermented-food production and the harnessing of their health-promoting potential.
Collapse
Affiliation(s)
- John Leech
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | | | - Guerrino Macori
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Calum J Walsh
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Wiley Barton
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
| | - Laura Finnegan
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
50
|
Guan Q, Zheng W, Mo J, Huang T, Xiao Y, Liu Z, Peng Z, Xie M, Xiong T. Evaluation and comparison of the microbial communities and volatile profiles in homemade suansun from Guangdong and Yunnan provinces in China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5197-5206. [PMID: 32530042 DOI: 10.1002/jsfa.10569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Suansun is a traditional salt-free fermented bamboo shoot product that has been widely consumed as a cooking ingredient in south China for centuries. The aim of this study was to evaluate and compare the microbial and metabolic diversity in samples of two kinds of suansun, namely Guangdong suansun (GD) and Yunnan suansun (YN), using high-throughput sequencing (HTS) and headspace solid-phase microextraction-gas chromatograph-mass spectrometry (HS-SPME/GC-MS), respectively, and then to assess the influence of environmental factors on the microbial communities. RESULTS The results showed that Lactobacillus and Serratia were the most abundant bacterial genera in both the GD and YN groups. For the fungi, Pichia, Candida, and Debaryomyces were the major genera in the GD group, whereas Pichia and Zygosaccharomyces were the dominant genera in the YN group. The canonical correlation analysis (CCA) results demonstrated that three environmental factors - temperature, longitude, and altitude - play a more important role in affecting the microbial community composition of suansun than physical and chemical factors. The fugal community composition was more influenced by environmental factors than the bacterial community. The volatile profile of the GD group differed from that of the YN group, and the difference was mainly reflected in the relative alcohol, aldehyde, ester, and aromatic compound content. CONCLUSIONS This study provided insights into the microbial and metabolic profiles of suansun products. The findings might be useful for the improvement and standardization of suansun production. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianqian Guan
- State Key Laboratory of Food Science and Technology, Nanchang, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Technology, Nanchang, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Jialing Mo
- State Key Laboratory of Food Science and Technology, Nanchang, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, Nanchang, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Yangsheng Xiao
- State Key Laboratory of Food Science and Technology, Nanchang, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Zhanggen Liu
- State Key Laboratory of Food Science and Technology, Nanchang, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Technology, Nanchang, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, Nanchang, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| |
Collapse
|