1
|
Yang Y, Shi X, Zhang J, Xiao H, Li C. Molecular mechanisms underlying the beneficial effects of fermented yoghurt prepared by nano-exopolysaccharide-producing Lactiplantibacillus plantarum LCC-605 based on untargeted metabolomic analysis. Food Chem 2025; 465:142068. [PMID: 39577262 DOI: 10.1016/j.foodchem.2024.142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Following our previous discovery that Lactiplantibacillus plantarum LCC-605 secreted spherical exopolysaccharide nanoparticles (EPS-605 NPs), which may contribute to the quality, function, and stability of the fermented yoghurt. We thus prepared the fermented skim milk with strain LCC-605 (Y-605) and investigated the functions and metabolic changes of Y-605. Y-605 showed excellent antioxidant activities with DPPH, ABTS+, and hydroxyl scavenging ability of 90.6 ± 0.1 %, 96.1 ± 0.2 %, and 99.3 ± 0.4 %, respectively, and cholesterol-lowering ability up to 39.9 %. After storage for 7 days, the bacterial count reached 10.9 log CFU/mL. EPS production significantly improved the water holding capacity (71.7 ± 0.5 %), and the texture of the yoghurt. Untargeted metabolomic analysis further revealed significant metabolomic differences between skim milk and Y-605, validating the beneficial mechanism of Y-605. This study develops a novel probiotic for producing functional yoghurts and provides the basis for understanding the beneficial mechanism of Y-605.
Collapse
Affiliation(s)
- Ying Yang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junze Zhang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Yunnan Yunke Characteristic Plant Extraction Laboratory Co. Ltd., Kunming 650106, China.
| |
Collapse
|
2
|
Correia Gomes D, Meza Alvarado JE, Zamora Briseño JA, Cano Sarmiento C, Camacho Morales A, Viveros Contreras R. Maternal Supplementation with Lacticaseibacillus rhamnosus GG Improves Glucose Tolerance and Modulates the Intestinal Microbiota of Offspring. Diseases 2024; 12:312. [PMID: 39727642 PMCID: PMC11726987 DOI: 10.3390/diseases12120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Consuming hypercaloric diets during pregnancy induces metabolic, immune, and maternal intestinal dysbiosis disorders. These conditions are transferred to the offspring through the placenta and breastfeeding, increasing susceptibility to metabolic diseases. We investigated the effect of L. rhamnosus GG supplementation on offspring maternally programmed with a hypercaloric diet. METHODS Our study involved sixteen female Wistar rats aged ten weeks, which were divided into four groups based on their diets: control (Ctrl), cafeteria (CAF), control + probiotic (PRO), and cafeteria + probiotic (CPRO). The control + probiotic and cafeteria + probiotic groups received a daily oral administration of 250 μL of L. rhamnosus GG cell suspension (equivalent to 109 UFC) for nine weeks. The body weight of the animals was recorded weekly, and their food intake was monitored every 24 h. An oral glucose tolerance test was conducted on the offspring at seven weeks of age. At the ninth week of age, animals were euthanized, and blood, tissues, and organs were collected. RESULTS Maternal supplementation with L. rhamnosus GG decreased food intake and the average birth weight, improved glucose sensitivity, and lowered the levels of LDL, cholesterol, triglycerides, and mesenteric adipose tissue in offspring compared with the control and cafeteria groups. CONCLUSIONS Our findings indicate that supplementing with LGG during maternal programming could protect offspring from metabolic disruptions caused by a hypercaloric maternal diet.
Collapse
Affiliation(s)
- Dayane Correia Gomes
- Centro de Investigaciones Biomédicas, Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico; (D.C.G.); (J.E.M.A.)
| | - José Enrique Meza Alvarado
- Centro de Investigaciones Biomédicas, Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico; (D.C.G.); (J.E.M.A.)
| | | | - Cynthia Cano Sarmiento
- Food Research and Development Unit, Technological Institute of Veracruz, National Institute of Technology of Mexico, M.A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Alberto Camacho Morales
- Faculty of Medicine, Department of Biochemistry and Molecular Medicine, Autonomous University of Nuevo León, Monterrey 66455, Mexico;
| | - Rubi Viveros Contreras
- Centro de Investigaciones Biomédicas, Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico; (D.C.G.); (J.E.M.A.)
| |
Collapse
|
3
|
Guhanraj R, Dhanasekaran D. Probiotic functional gene explorations in the genome of Limosilactobacillus fermentum GD5MG. Microb Pathog 2024; 192:106686. [PMID: 38750775 DOI: 10.1016/j.micpath.2024.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Limosilactobacillus fermentum is an isolate obtained from oral gingival samples of healthy human individuals. The whole genome of Lb. fermentum GD5MG is composed of a circular DNA molecule containing 1,834,134 bp and exhibits a GC content of 52.80 %. The sequencing effort produced 38.6 million reads, each 150 bp in length, resulting in a sequencing depth of 2912.48x. Our examination unveiled a total of 1961 protein-coding genes, 27 rRNA genes, 24 tRNA genes, 3 non-coding RNA genes, and 63 pseudogenes with the use of gene annotations in NCBI Prokaryotic Genome Annotation tool. RAST revealed 1863 coding genes distributed across 209 subsystems, with a predominant involvement in amino acid, carbohydrate, and protein metabolism. Phylogenetic analysis infers that the Lb. fermentum GD5MG shares 281 gene clusters. Furthermore, the genome features showed a single CRISPR locus of 45 bp in length. Three genes associated with adhesion ability (strA, dltD, and dltA) and 26 genes related to acid tolerance, digestive enzyme secretion, and bile salt resistance were identified. Numerous genes associated with oral probiotic properties, comprising adhesion, acid and bile salt tolerance, oxidative stress tolerance, and sugar metabolism, were identified in the genome. Our findings shed light on the genomic characteristics of Lb. fermentum GD5MG, which are probable probiotics with functional benefits in humans.
Collapse
Affiliation(s)
- Radhamanalan Guhanraj
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dharumadurai Dhanasekaran
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; National Repository for Microalgae and Cyanobacteria, Freshwater (NRMC-F), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
4
|
Čuljak N, Bellich B, Pedroni A, Butorac K, Pavunc AL, Novak J, Banić M, Šušković J, Cescutti P, Kos B. Limosilactobacillus fermentum strains MC1 and D12: Functional properties and exopolysaccharides characterization. Int J Biol Macromol 2024; 273:133215. [PMID: 38897515 DOI: 10.1016/j.ijbiomac.2024.133215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Lactic acid bacteria (LAB) produce a broad spectrum of exopolysaccharides (EPSs), commonly used as texturizers in food products. Due to their potential contribution to LAB probiotic properties, like adhesion to human epithelial cells and competitive exclusion of pathogens from human intestinal epithelial cells, this study was focussed on the structural and functional characterization of the EPSs produced by two Limosilactobacillus fermentum strains - MC1, originating from mother's milk, and D12, autochthonous from Croatian smoked fresh cheese. Whole-genome sequencing and functional annotation of both L. fermentum strains by RAST server revealed the genes involved in EPS production and transport, with some differences in functionally related genes. EPSs were extracted from the cell surface of both bacterial strains and purified by size-exclusion chromatography. Structural characterization of the EPSs, achieved by chemical analyses and 1D and 2D NMR spectroscopy, showed that both strains produce an identical mixture of three different EPSs containing galactofuranose and glucopyranose residues. However, a comparison of the functional properties showed that the MC1 strain adhered better to the Caco-2 cell line and exhibited stronger antimicrobial effect against Salmonella enterica serovar Typhimurium FP1 than the D12 strain, which may be attributed to the potential bacteriocin activity of the MC1 strain.
Collapse
Affiliation(s)
- Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Barbara Bellich
- Department of Advanced Translational Diagnostics, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy
| | - Alice Pedroni
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127 Trieste, Italy
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127 Trieste, Italy.
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Liang S, Wang X, Li C, Liu L. Biological Activity of Lactic Acid Bacteria Exopolysaccharides and Their Applications in the Food and Pharmaceutical Industries. Foods 2024; 13:1621. [PMID: 38890849 PMCID: PMC11172363 DOI: 10.3390/foods13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Exopolysaccharides are natural macromolecular bioactive substances produced by lactic acid bacteria. With their unique physiological activity and structural characteristics, they are gradually showing broad application prospects in the food and pharmaceutical industries. Exopolysaccharides have various biological functions, such as exerting antioxidant and anti-tumor activities and regulating gut microbiota. Meanwhile, as a food additive, exopolysaccharides can significantly enhance the taste and quality of food, bringing consumers a better eating experience. In the field of medicine, exopolysaccharides have been widely used as drug carriers due to their non-toxic properties and good biocompatibility. This article summarizes the biological activities of exopolysaccharides produced by lactic acid bacteria, their synthesis, and their applications in food and pharmaceutical industries, aiming to promote further research and development in this field.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
D'Incecco P, Bettera L, Bancalari E, Rosi V, Sindaco M, Gobbi S, Candotti P, Nazzicari N, Limbo S, Gatti M, Pellegrino L. High-speed cold centrifugation of milk modifies the microbiota, the ripening process and the sensory characteristics of raw-milk hard cheeses. Food Res Int 2023; 172:113102. [PMID: 37689872 DOI: 10.1016/j.foodres.2023.113102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The microbial population of raw milk plays a crucial role in the development of distinctive traits of raw-milk cheeses particularly appreciated by consumers. It was previously demonstrated that the microbial population of raw milk is modified by a high-speed centrifugation (also called bactofugation) conducted at 39 °C. The aim of the present study was to evaluate the effects of this process, performed once or twice, on the microbial, compositional, biochemical, and sensory characteristics of the derived hard cheeses. Experimental and control cheesemaking were conducted in parallel at a cheese factory during a 13-month period. Cheeses were analysed after 9, 15 and 20 months of ripening for microbial count, composition, proteolysis extent, volatile compounds, and sensory profile. Results evidenced that experimental cheeses were characterized by lower numbers of viable lactobacilli respect to control. Experimental cheeses also showed differences in the progress of primary and secondary proteolysis which, in turn, caused different patterns of free amino acids at all ripening times. Experimental cheeses had significantly lower content of esters and were differentiated from control for some traits by assessors. In conclusion, use of high-speed centrifugation of milk shall be discouraged if characteristic traits of raw-milk cheeses, particularly PDO cheeses, want to be retained.
Collapse
Affiliation(s)
- Paolo D'Incecco
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy.
| | - Luca Bettera
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Elena Bancalari
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Veronica Rosi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Marta Sindaco
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Serena Gobbi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Paolo Candotti
- National Reference Centre for Animal Welfare, IZSLER, 25124 Brescia, Italy
| | - Nelson Nazzicari
- Council for Agricultural Research and Economics (CREA), Research Centre for Fodder Crops and Dairy Productions, 26900 Lodi, Italy
| | - Sara Limbo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Monica Gatti
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Luisa Pellegrino
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
7
|
Huang CL, Chu HF, Wu CC, Deng FS, Wen PJ, Chien SP, Chao CH, Chen YT, Lu MK, Tsai YC. Exopolysaccharide is the potential effector of Lactobacillus fermentum PS150, a hypnotic psychobiotic strain. Front Microbiol 2023; 14:1209067. [PMID: 37469436 PMCID: PMC10352126 DOI: 10.3389/fmicb.2023.1209067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Psychobiotics are a class of probiotics that confer beneficial effects on the mental health of the host. We have previously reported hypnotic effects of a psychobiotic strain, Lactobacillus fermentum PS150 (PS150), which significantly shortens sleep latency in experimental mice, and effectively ameliorate sleep disturbances caused by either caffeine consumption or a novel environment. In the present study, we discovered a L. fermentum strain, GR1009, isolated from the same source of PS150, and found that GR1009 is phenotypically distinct but genetically similar to PS150. Compared with PS150, GR1009 have no significant hypnotic effects in the pentobarbital-induced sleep test in mice. In addition, we found that heat-killed PS150 exhibited hypnotic effects and altered the gut microbiota in a manner similar to live bacteria, suggesting that a heat-stable effector, such as exopolysaccharide (EPS), could be responsible for these effects. Our comparative genomics analysis also revealed distinct genetic characteristics in EPS biosynthesis between GR1009 and PS150. Furthermore, scanning electron microscopy imaging showed a sheet-like EPS structure in PS150, while GR1009 displayed no apparent EPS structure. Using the phenol-sulfate assay, we found that the sugar content value of the crude extract containing EPS (C-EPS) from PS150 was approximately five times higher than that of GR1009, indicating that GR1009 has a lower EPS production activity than PS150. Through the pentobarbital-induced sleep test, we confirmed the hypnotic effects of the C-EPS isolated from PS150, as evidenced by a significant reduction in sleep latency and recovery time following oral administration in mice. In summary, we utilized a comparative approach to delineate differences between PS150 and GR1009 and proposed that EPS may serve as a key factor that mediates the observed hypnotic effect.
Collapse
Affiliation(s)
- Chin-Lin Huang
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Bened Biomedical Co., Ltd., Taipei, Taiwan
| | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | | | | | - Shao-Ping Chien
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ying-Tsong Chen
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Hadef S, Idoui T, Sifour M, Genay M, Dary-Mourot A. Screening of Wild Lactic Acid Bacteria from Algerian Traditional Cheeses and Goat Butter to Develop a New Probiotic Starter Culture. Probiotics Antimicrob Proteins 2023; 15:387-399. [PMID: 36307627 DOI: 10.1007/s12602-022-10000-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
Abstract
Twenty-five lactic acid bacterial (LAB) strains have been isolated from traditional goat butter and three types of cheese (dry Klila, frech Klila, and Bouhezza) and evaluated for technological abilities, probiotic properties, and potentials as starter cultures. The twenty-five LAB strains comprised eight strains belonging to Lactobacillus, four strains belonging to Lactococcus, eleven strains belonging to Enterococcus, and two strains belonging to Leuconostoc. A non-hierarchical cluster analysis was performed in order to select the performing strains. After carrying out the preliminary phenotypic characterizations and the probiotic potential, three strains designated as BM10, B15, and C30 belonging to the genus Lactobacillus and Enterococcus with good tolerance to acidity were selected. The strains showed a significant resistance to 0.5% bile salts and 0.4% phenol. Hemolytic activity was not detected; in addition, good hydrophobicity and autoaggregation was obtained. A significant antimicrobial activity was exhibited by all selected strains against Listeria innocua. Genotypic identification by 16S rRNA allowed the identification of B15, BM10, and C30 as Lactobacillus plantarum, Lactobacillus casei, and Enterococcus durans, respectively. The results of the current study suggest that the strains isolated from Algerian fermented dairy products have high potential as probiotic starter cultures in the goat butter and cheese industry.
Collapse
Affiliation(s)
- Sawsen Hadef
- Department of Nature and Life Sciences, Abdelhafid Boussouf University Center, RP. 26, 43000, Mila, Algeria.
- Laboratory of Biotechnology, Environment and Health, University Mohamed Seddik Benyahia of Jijel, 18000, Jijel, Algeria.
| | - Tayeb Idoui
- Laboratory of Biotechnology, Environment and Health, University Mohamed Seddik Benyahia of Jijel, 18000, Jijel, Algeria
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University Mohamed Seddik Benyahia of Jijel, 18000, Jijel, Algeria
| | - Magali Genay
- CALBINOTOX, University of Lorraine, 54000, Nancy, France
| | | |
Collapse
|
9
|
Nelli A, Venardou B, Skoufos I, Voidarou C(C, Lagkouvardos I, Tzora A. An Insight into Goat Cheese: The Tales of Artisanal and Industrial Gidotyri Microbiota. Microorganisms 2023; 11:123. [PMID: 36677415 PMCID: PMC9863150 DOI: 10.3390/microorganisms11010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to determine for the first time the microbiota in artisanal-type and industrial-type Gidotyri cheeses and investigate the influence of the cheese-making practices on their composition using culture-independent techniques. The microbiota present in artisanal with commercial starters (Artisanal_CS, n = 15), artisanal with in-house starters (Artisanal_IHS, n = 10) and industrial (Ind., n = 9) Gidotyri cheese samples were analyzed using a targeted metagenomic approach (16S rRNA gene). The Ind. Gidotyri cheese microbiota were less complex, dominated by the Streptococcaceae family (91%) that was more abundant compared to the artisanal Gidotyri cheeses (p < 0.05). Artisanal cheeses were more diverse compositionally with specific bacterial species being prevalent to each subtype. Particularly, Loigolactobacillus coryniformis (OTU 175), Secundilactobacillus malefermentans (OTU 48), and Streptococcus parauberis (OTU 50) were more prevalent in Artisanal_IHS cheeses compared to Artisanal_CS (p ≤ 0.001) and Ind. (p < 0.01) Gidotyri cheeses. Carnobacterium maltaromaticum (OTU 23) and Enterobacter hormaechei subsp. hoffmannii (OTU 268) were more prevalent in Artisanal_CS cheeses compared to Artisanal_IHS cheeses (p < 0.05) and Ind. cheeses (p < 0.05). Hafnia alvei (OTU 13) and Acinetobacter colistiniresistens (OTU 111) tended to be more prevalent in Artisanal_CS compared to the other two cheese groups (p < 0.10). In conclusion, higher microbial diversity was observed in the artisanal-type Gidotyri cheeses, with possible bacterial markers specific to each subtype identified with potential application to traceability of the manufacturing processes’ authenticity and cheese quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| |
Collapse
|
10
|
Bengoa AA, Dueñas MT, Prieto A, Garrote GL, Abraham AG. Exopolysaccharide-producing Lacticaseibacillus paracasei strains isolated from kefir as starter for functional dairy products. Front Microbiol 2023; 14:1110177. [PMID: 36910219 PMCID: PMC9998950 DOI: 10.3389/fmicb.2023.1110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Exopolysaccharides (EPS) produced by lactic acid bacteria are molecules of great interest for the dairy food industry. Lacticaseibacillus paracasei CIDCA 8339, CIDCA 83123, and CIDCA 83124 are potentially probiotic strains isolated from kefir grains whose EPS-production on MRS broth is dependent on incubation temperature. The aim of the present work is to evaluate the effect of fermentation temperature on the characteristics of EPS produced in milk by L. paracasei strains and the consequent impact on the rheological properties of the fermented products. Additionally, the protective effect of these EPS against Salmonella infection was evaluated in vitro. Acid gels with each strain were obtained by milk fermentation at 20°C, 30°C, and 37°C evidencing for all the strains a reduction in growth and acidification rate at lower temperature. Lacticaseibacillus paracasei CIDCA 83123 showed low fermentation rate at all temperatures requiring between 3 and 8 days to obtain acids gels, whereas CIDCA 8339 and 83124 needed between 24 and 48 h even when the temperature was 20°C. Fermentation temperature led to changes in crude EPS characteristics of the three strains, observing an increase in the relative amount of the high molecular weight fraction when the fermentation temperature diminished. Additionally, EPS83124 and EPS83123 presented modifications in monosaccharide composition, with a reduction of rhamnose and an increase of amino-sugars as temperature rise. These changes in the structure of EPS83124 resulted in an increase of the apparent viscosity of milks fermented at 20°C (223 mPa.s) and 30°C (217 mPa.s) with respect to acid gels obtained at 37°C (167 mPa.s). In order to deepen the knowledge on EPS characteristics, monosaccharide composition of low and high molecular weight EPS fractions were evaluated. Finally, it was evidenced that the preincubation of intestinal epithelial cells Caco-2/TC-7 with EPS8339 and EPS83124 partially inhibit the association and invasion of Salmonella. In light of these results, it can be concluded that the selection of the EPS-producing strain along with the appropriate fermentation conditions could be an interesting strategy to improve the technological properties of these L. paracasei fermented milks with potential protective effects against intestinal pathogens.
Collapse
Affiliation(s)
- Ana Agustina Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) (CONICET-UNLP-CIC), Buenos Aires, Argentina
| | - María Teresa Dueñas
- Dpto. de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Alicia Prieto
- Grupo de Sistemas Microbianos e Ingeniería de Proteínas, Dpto. de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) (CONICET-UNLP-CIC), Buenos Aires, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) (CONICET-UNLP-CIC), Buenos Aires, Argentina.,Area Bioquímica y Control de Alimentos (Dto de Ciencias Biológicas - Facultad de Ciencias Exactas, UNLP), Buenos Aires, Argentina
| |
Collapse
|
11
|
Wang J, Lu C, Xu Q, Li Z, Song Y, Zhou S, Guo L, Zhang T, Luo X. Comparative Genomics Analysis Provides New Insights into High Ethanol Tolerance of Lactiplantibacillus pentosus LTJ12, a Novel Strain Isolated from Chinese Baijiu. Foods 2022; 12:35. [PMID: 36613254 PMCID: PMC9818588 DOI: 10.3390/foods12010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lactic acid bacteria have received a significant amount of attention due to their probiotic characteristics. The species Lactiplantibacillus plantarum and Lactiplantibacillus pentosus are genotypically closely related, and their phenotypes are so similar that they are easily confused and mistaken. In the previous study, an ethanol-resistant strain, LTJ12, isolated from the fermented grains of soy sauce aroma type baijiu in North China, was originally identified as L. plantarum through a 16S rRNA sequence analysis. Here, the genome of strain LTJ12 was further sequenced using PacBio and Illumina sequencing technology to obtain a better understanding of the metabolic pathway underlying its resistance to ethanol stress. The results showed that the genome of strain LTJ12 was composed of one circular chromosome and three circular plasmids. The genome size is 3,512,307 bp with a GC content of 46.37%, and the number of predicted coding genes is 3248. Moreover, by comparing the coding genes with the GO (Gene Ontology), COG (Cluster of Orthologous Groups) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases, the functional annotation of the genome and an assessment of the metabolic pathways were performed, with the results showing that strain LTJ12 has multiple genes that may be related to alcohol metabolism and probiotic-related genes. Antibiotic resistance gene analysis showed that there were few potential safety hazards. Further, after conducting the comparative genomics analysis, it was found that strain LTJ12 is L. pentosus but not L. plantarum, but it has more functional genes than other L. pentosus strains that are mainly related to carbohydrate transport and metabolism, transcription, replication, recombination and repair, signal transduction mechanisms, defense mechanisms and cell wall/membrane/envelope biogenesis. These unique functional genes, such as gene 2754 (encodes alcohol dehydrogenase), gene 3093 (encodes gamma-D-glutamyl-meso-diaminopimelate peptidase) and some others may enhance the ethanol tolerance and alcohol metabolism of the strain. Taken together, L. pentosus LTJ12 might be a potentially safe probiotic with a high ethanol tolerance and alcohol metabolism. The findings of this study will also shed light on the accurate identification and rational application of the Lactiplantibacillus species.
Collapse
Affiliation(s)
- Jiali Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chengshun Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Xu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yajian Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
12
|
Improvement the texture of nitrite-free fermented sausages using microencapsulation of fermenting bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Banić M, Butorac K, Čuljak N, Leboš Pavunc A, Novak J, Bellich B, Kazazić S, Kazazić S, Cescutti P, Šušković J, Zucko J, Kos B. The Human Milk Microbiota Produces Potential Therapeutic Biomolecules and Shapes the Intestinal Microbiota of Infants. Int J Mol Sci 2022; 23:ijms232214382. [PMID: 36430861 PMCID: PMC9699365 DOI: 10.3390/ijms232214382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Human milk not only provides a perfect balance of nutrients to meet all the needs of the infant in the first months of life but also contains a variety of bacteria that play a key role in tailoring the neonatal faecal microbiome. Microbiome analysis of human milk and infant faeces from mother-breastfed infant pairs was performed by sequencing the V1-V3 region of the 16S rRNA gene using the Illumina MiSeq platform. According to the results, there is a connection in the composition of the microbiome in each mother-breastfed infant pair, supporting the hypothesis that the infant's gut is colonised with bacteria from human milk. MiSeq sequencing also revealed high biodiversity of the human milk microbiome and the infant faecal microbiome, whose composition changes during lactation and infant development, respectively. A total of 28 genetically distinct strains were selected by hierarchical cluster analysis of RAPD-PCR (Random Amplified Polymorphic DNA-Polymerase Chain Reaction) electrophoresis profiles of 100 strains isolated from human milk and identified by 16S RNA sequencing. Since certain cellular molecules may support their use as probiotics, the next focus was to detect (S)-layer proteins, bacteriocins and exopolysaccharides (EPSs) that have potential as therapeutic biomolecules. SDS-PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis) coupled with LC-MS (liquid chromatography-mass spectrometry) analysis revealed that four Levilactobacillus brevis strains expressed S-layer proteins, which were identified for the first time in strains isolated from human milk. The potential biosynthesis of plantaricin was detected in six Lactiplantibacillus plantarum strains by PCR analysis and in vitro antibacterial studies. 1H NMR (Proton Nuclear Magnetic Resonance) analysis confirmed EPS production in only one strain, Limosilactobacillus fermentum MC1. The overall microbiome analysis suggests that human milk contributes to the establishment of the intestinal microbiota of infants. In addition, it is a promising source of novel Lactobacillus strains expressing specific functional biomolecules.
Collapse
Affiliation(s)
- Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Ed. C11, 34127 Trieste, Italy
| | - Saša Kazazić
- The Ruđer Bošković Institute, Laboratory for Mass Spectrometry, Bijenička 54, 10000 Zagreb, Croatia
| | - Snježana Kazazić
- The Ruđer Bošković Institute, Laboratory for Mass Spectrometry, Bijenička 54, 10000 Zagreb, Croatia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Ed. C11, 34127 Trieste, Italy
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Laboratory for Bioinformatics, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
14
|
Hossain TJ. Functional genomics of the lactic acid bacterium Limosilactobacillus fermentum LAB-1: metabolic, probiotic and biotechnological perspectives. Heliyon 2022; 8:e11412. [PMID: 36387576 PMCID: PMC9647476 DOI: 10.1016/j.heliyon.2022.e11412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
A genome-based systematic analysis was conducted to characterize the metabolic, probiotic, fitness, and safety properties of Limosilactobacillus fermentum LAB-1, a lactic acid bacterium demonstrating strong antimicrobial effects against clinical pathogens. Gene functional characterization revealed a large number of genes for carbohydrate metabolism and a heterofermentative system for carbon dissimilation. Genes for intact pyruvate oxidation, pentose phosphate, and PRPP biosynthetic pathways were identified. Substantial carbohydrate-active enzymes and transporters were also predicted. Metabolic reconstruction revealed complete sets of enzymes for arginine, lysine, methionine, threonine, proline, and ornithine biosynthesis. The bacterium harbors a diverse range of peptidases, and a large variety of peptide and amino acid uptake systems. It encodes restriction-modification and CRISPR-Cas systems for protection against phage infections and carries a wide spectrum of stress proteins for adaptation in the gut and industrial conditions. Genes related to the biosynthesis of B-group and K vitamins were identified allowing its application for novel bio-enriched food production. Other beneficial traits of probiotic and industrial importance such as production of flavor compounds, exopolysaccharide, acetoin, and butanediol were identified. Three antimicrobial peptides were predicted which showed >98% sequence-identity to experimentally validated bacteriocins. Negative traits such as transmissible antibiotic resistance, pathogenicity or virulence appeared to be absent suggesting the strain to be considered safe. The genome analysis will allow precisely targeted laboratory research and full exploitation of the probiotic potentials towards functional-food, biotechnology and health-related applications.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
- Biochemistry and Pathogenesis of Microbes (BPM) Research Group, Chattogram, Bangladesh
| |
Collapse
|
15
|
Allaith SA, Abdel-aziz ME, Thabit ZA, Altemimi AB, Abd El-Ghany K, Giuffrè AM, Al-Manhel AJA, Ebrahim HS, Mohamed RM, Abedelmaksoud TG. Screening and Molecular Identification of Lactic Acid Bacteria Producing β-Glucan in Boza and Cider. FERMENTATION-BASEL 2022; 8:350. [DOI: 10.3390/fermentation8080350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The goal of this study was screening and molecular identification of Lactic Acid Bacteria (LAB) producing β-glucan from different species isolated from boza and cider compared to a standard strain for Lactobacillus rhamnosus NRRL 1937 (LGG). From 48 unknown isolates, four LAB strains were selected. Based on the NCBI database, their nomenclature was A3, B6, and C9 for Limosilactobacillus fermentum SH1, SH2, and SH3 along with D6 for Leuconostoc mesenteroides SH4. Also, their similarity values were 100%, 99.8%, 100%, and 100%, respectively. The potential of Exopolysaccharide (EPS) (as β-glucan) production for selected LAB strains by gtf gene, conventional PCR and gene expression using both LGG as a control and LAB 16S rRNA gene as a house-keeping gene was investigated. In addition, EPS (mg/100 mL), cell mass (mg/100 mL), pH, total carbohydrate%, total protein% and β-glucan% by the HPLC for all selected LAB isolates were studied. All results of genetic and chemical tests proved the superiority of B6 treatment for L. fermentum SH2. The results showed the superiority of B6 treatment in gtf gene expression (14.7230 ± 0.070-fold) followed by C9 and A3 treatments, which were 10.1730 ± 0.231-fold and 8.6139 ± 0.320-fold, respectively. while D6 treatment recorded the lowest value of gene expression (0.8566 ± 0.040-fold) compared to the control LGG (one-fold). The results also demonstrated that B6 treatment was superior to the other treatments in terms of EPS formation, with a value of 481 ± 1.00 mg/100 mL, followed by the C9 treatment at 440 ± 2.00 mg/100 mL, compared to the LGG (control) reaching 199.7 ± 3.51 mg/100 mL. Also, the highest % of quantitative and qualitative β-glucan in EPS was observed in B6 followed by C9, D6 and A3 which were 5.56 ± 0.01%, 4.46 ± 0.01%, 0.25 ± 0.008% and 0.12 ± 0.008%, respectively compared to control (0.31 ± 0.01%). Finally, the presented results indicate the importance of screening the local LAB isolates to obtain a superior strain for β-glucan production which will be introduced in a subsequent study under optimum conditions.
Collapse
|
16
|
Arepally D, Reddy RS, Goswami TK, Coorey R. A Review on Probiotic Microencapsulation and Recent Advances of their Application in Bakery Products. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02796-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Pourjafar H, Ansari F, Sadeghi A, Samakkhah SA, Jafari SM. Functional and health-promoting properties of probiotics' exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr 2022; 63:8194-8225. [PMID: 35266799 DOI: 10.1080/10408398.2022.2047883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) are extracellular sugar metabolites/polymers of some slim microorganisms and, a wide variety of probiotics have been broadly investigated for their ability to produce EPS. EPS originated from probiotics have potential applications in food, pharmaceutical, cosmetology, wastewater treatment, and textiles industries, nevertheless slight is recognized about their function. The present review purposes to comprehensively discuss the structure, classification, biosynthesis, extraction, purification, sources, health-promoting properties, techno-functional benefits, application in the food industry, safety, toxicology, analysis, and characterization methods of EPS originated from probiotic microorganisms. Various studies have shown that probiotic EPS used as stabilizers, emulsifiers, gelling agents, viscosifiers, and prebiotics can alter the nutritional, texture, and rheological characteristics of food and beverages and play a major role in improving the quality of these products. Numerous studies have also proven the beneficial health effects of probiotic EPS, including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, anticancer, antidiabetic, antibiofilm, antiulcer, and antitoxin activities. Although the use of probiotic EPS has health effects and improves the organoleptic and textural properties of food and pharmaceutical products and there is a high tendency for their use in related industries, the production yield of these products is low and requires basic studies to support their products in large scale.
Collapse
Affiliation(s)
- Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
18
|
Limosilactobacillus fermentum ING8, a Potential Multifunctional Non-Starter Strain with Relevant Technological Properties and Antimicrobial Activity. Foods 2022; 11:foods11050703. [PMID: 35267336 PMCID: PMC8909343 DOI: 10.3390/foods11050703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Lactic acid bacteria (LAB) have gained particular attention among different exopolysaccharide-producing microorganisms due to their safety status and effects on human health and food production. Exopolysaccharide-producing LAB play a crucial role in different ways, such as improving texture, mouthfeel, controlling viscosity, and for low-calorie food production. In this study, we isolated a multifunctional strain with good exopolysaccharide production properties. Limosilactobacillus fermentum ING8 was isolated from an Indian traditional fermented milk (Dahi) and evaluated for its safety, enzymatic activity, NaCl resistance and temperature tolerance, milk coagulation, and storage stability. Finally, the complete genome of this strain was sequenced and subjected to safety in silico evaluation and genomic analysis. The results revealed that L. fermentum ING8 possesses relevant technological properties, such as exopolysaccharide production, antimicrobial activity, and galactose utilization. Besides, this strain showed very high stability to storage conditions at refrigeration temperature. In addition, the genomic analysis did not evidence any possible deleterious elements, such as acquired antibiotic resistance genes, virulence genes, or hemolysis-related genes. However, all structural genes related to the galactose operon and EPS production were detected. Therefore, L. fermentum ING8 can be considered a promising multifunctional bacterium to be proposed as non-starter in different types of dairy productions.
Collapse
|
19
|
Wu J, Han X, Ye M, Li Y, Wang X, Zhong Q. Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability. Crit Rev Food Sci Nutr 2022; 63:7043-7064. [PMID: 35213280 DOI: 10.1080/10408398.2022.2043822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics and their fermentation products are increasingly been focused on due to their health-boosting effects. Exopolysaccharides (EPS) synthetized by lactic acid bacteria (LAB) are widely applied as texture modifiers in dairy, meat and bakery products owning to their improved properties. Moreover, LAB-derived EPS have been confirmed to possess diverse physiological bioactivities including antioxidant, anti-biofilm, antiviral, immune-regulatory or antitumor. However, the low production and high acquisition cost hinder their development. Even though LAB-derived EPS have been extensively studied for their production-improving, there are only few reports on the systematic elucidation and summary of the relationship among biosynthesis pathway, strain selection, production parameter, structure-function relationship. Therefore, a detailed summary on biosynthesis pathway, production parameter and structure-function relationship of LAB-derived EPS is provided in this review, the structural modifications together with the current and potential applications are also discussed in this paper.
Collapse
Affiliation(s)
- Jinsong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Xiangpeng Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meizhi Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi Wang
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Shudong P, Guo C, Wu S, Cui H, Suo H, Duan Z. Bioactivity and metabolomics changes of plant-based drink fermented by Bacillus coagulans VHProbi C08. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Oberg TS, McMahon DJ, Culumber MD, McAuliffe O, Oberg CJ. Invited review: Review of taxonomic changes in dairy-related lactobacilli. J Dairy Sci 2022; 105:2750-2770. [DOI: 10.3168/jds.2021-21138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
|
22
|
Stergiou OS, Tegopoulos K, Kiousi DE, Tsifintaris M, Papageorgiou AC, Tassou CC, Chorianopoulos N, Kolovos P, Galanis A. Whole-Genome Sequencing, Phylogenetic and Genomic Analysis of Lactiplantibacillus pentosus L33, a Potential Probiotic Strain Isolated From Fermented Sausages. Front Microbiol 2021; 12:746659. [PMID: 34764945 PMCID: PMC8576124 DOI: 10.3389/fmicb.2021.746659] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Lactobacillus is a diverse genus that includes species of industrial and biomedical interest. Lactiplantibacillus pentosus, formerly known as Lactobacillus pentosus, is a recently reclassified species, that contains strains isolated from diverse environmental niches, ranging from fermented products to mammalian gut microbiota. Importantly, several L. pentosus strains present health-promoting properties, such as immunomodulatory and antiproliferative activities, and are regarded as potential probiotic strains. In this study, we present the draft genome sequence of the potential probiotic strain L. pentosus L33, originally isolated from fermented sausages. Comprehensive bioinformatic analysis and whole-genome annotation were performed to highlight the genetic loci involved in host-microbe interactions and the probiotic phenotype. Consequently, we found that this strain codes for bile salt hydrolases, adhesins and moonlighting proteins, and for Class IIb bacteriocin peptides lacking the GxxxG and GxxxG-like motifs, crucial for their inhibitory activity. Its adhesion ability was also validated in vitro, on human cancer cells. Furthermore, L. pentosus L33 contains an exopolysaccharide (EPS) biosynthesis cluster, and it does not carry transferable antibiotic resistance genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and CAZymes analyses showed that L. pentosus L33 possesses biosynthetic pathways for seven amino acids, while it can degrade a wide array of carbohydrates. In parallel, Clusters of Orthologous Groups (COGs) and KEGG profiles of L. pentosus L33 are similar to those of 26 L. pentosus strains, as well as of two well documented L. plantarum probiotic strains. Conclusively, L. pentosus L33 exhibits good probiotic potential, although further studies are needed to elucidate the extent of its biological properties.
Collapse
Affiliation(s)
- Odysseas Sotirios Stergiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Tegopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aristotelis C Papageorgiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chrysoula C Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Nikos Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
23
|
Anti- Helicobacter pylori Activity of a Lactobacillus sp. PW-7 Exopolysaccharide. Foods 2021; 10:foods10102453. [PMID: 34681500 PMCID: PMC8535340 DOI: 10.3390/foods10102453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a cause of gastric cancer. We extracted the exopolysaccharide (EPS) of Lactobacillus plajomi PW-7 for antibacterial activity versus H. pylori, elucidating its biological activity and structural characteristics. The minimum inhibitory concentration (MIC) of EPS against H. pylori was 50 mg/mL. Disruption of the cell membranes of pathogenic bacteria by EPS was indicated via the antibacterial mechanism test and confirmed through electron microscopy. EPS also has antioxidant capacity. The IC50 of EPS for 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide anions, and hydroxyl radicals were 300 μg/mL, 180 μg/mL, and 10 mg/mL, respectively. The reducing power of EPS was 2 mg/mL, equivalent to 20 μg/mL of ascorbic acid. EPS is a heteropolysaccharide comprising six monosaccharides, with an approximate molecular weight of 2.33 × 104 Da. Xylose had a significant effect on H. pylori. EPS from L. plajomi PW-7 showed potential as an antibacterial compound and antioxidant, laying a foundation for the development of EPS-based foods.
Collapse
|
24
|
Jo YM, Kim GY, Kim SA, Cheon SW, Kang CH, Han NS. Limosilactobacillus fermentum MG7011: An Amylase and Phytase Producing Starter for the Preparation of Rice-Based Probiotic Beverages. Front Microbiol 2021; 12:745952. [PMID: 34659181 PMCID: PMC8511794 DOI: 10.3389/fmicb.2021.745952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
The goal of this study was to develop a starter strain of Limosilactobacillus fermentum which is beneficial for human health and suitable for rice fermentation. To achieve the goal, the characteristics of 25 strains of L. fermentum were compared in terms of health promoting potentials and rice fermenting abilities. L. fermentum MG7011 was selected as a superior strain to meet the required properties. First, as probiotic traits, the strain had tolerance to gastrointestinal conditions and ability to adhere to Caco-2 and HT-29 cells. The strain showed the antioxidative activity, anti-inflammatory activity, and a protective effect on the epithelial barrier. Next, as starter traits for rice fermentation, MG7011 exhibited proper fermentation profiles in rice solution, such as fast growth rate, pH and metabolite changes, amylase and phytase activities, and optimal viscosity changes for beverage. In conclusion, L. fermentum MG7011 has excellent probiotic activities and proper starter traits in rice, thereby it can be used as a suitable probiotic starter for rice fermentation.
Collapse
Affiliation(s)
- Yu Mi Jo
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Ga Yun Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Seong Won Cheon
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | | | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
25
|
Screening and identification of Lactobacillus with potential cadmium removal and its application in fruit and vegetable juices. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Lv T, Huang X, Zhang C, Chen D, Gu R, Wa Y, Peng K, Zong L, Chen X. Enhancement of the Antibacterial Properties of Kefir by Adding Lactobacillus fermentum grx08. J Food Prot 2021; 84:1463-1471. [PMID: 33902109 DOI: 10.4315/jfp-21-113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023]
Abstract
ABSTRACT Kefir is an acidic-alcoholic fermented milk that can provide probiotic benefits, such as intestinal microecological balance regulation, antibacterial activity, and anti-inflammatory activity. In this study, Lactobacillus fermentum grx08 isolated from longevous people was used to further improve the health properties of kefir. L. fermentum grx08 and kefir grains obtained from Xinjiang, People's Republic of China, were mixed at ratios of 1:1, 5:1, and 25:1 as starters. The six gram-positive and gram-negative foodborne pathogens were able to grow in the supernatant of kefir but not in the supernatant of kefir with L. fermentum grx08. With increasing amounts of inoculated L. fermentum grx08, the antibacterial activity of the mixed fermented kefir gradually increased. The contents of lactic acid, fumaric acid, and malic acid in the mixed fermented milk were significantly increased by adding L. fermentum grx08 (P < 0.05), while the content of acetic acid decreased with the increase of L. fermentum grx08 and the content of citric acid was unaffected. This study suggests that the addition of L. fermentum grx08 shortened the fermentation time, improved the acidity, and retained the quality of fermented milk. Moreover, the antibacterial properties of kefir is enhanced by increasing the production of certain acids. HIGHLIGHTS
Collapse
Affiliation(s)
- Tian Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225000, People's Republic of China
| | - Xueting Huang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225000, People's Republic of China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225000, People's Republic of China
| | - Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225000, People's Republic of China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225000, People's Republic of China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225000, People's Republic of China
| | - Kuiyao Peng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225000, People's Republic of China
| | - Lina Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225000, People's Republic of China
| | - Xia Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225000, People's Republic of China
| |
Collapse
|
27
|
Butorac K, Novak J, Bellich B, Terán LC, Banić M, Leboš Pavunc A, Zjalić S, Cescutti P, Šušković J, Kos B. Lyophilized alginate-based microspheres containing Lactobacillus fermentum D12, an exopolysaccharides producer, contribute to the strain's functionality in vitro. Microb Cell Fact 2021; 20:85. [PMID: 33865380 PMCID: PMC8052780 DOI: 10.1186/s12934-021-01575-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
Lactobacillus (Limosilactobacillus) fermentum D12 is an exopolysaccharide (EPS) producing strain whose genome contains a putative eps operon. Whole-genome analysis of D12 was performed to disclose the essential genes correlated with activation of precursor molecules, elongation and export of the polysaccharide chain, and regulation of EPS synthesis. These included the genes required for EPS biosynthesis such as epsA, B, C, D and E, also gt, wzx, and wzy and those involved in the activation of the precursor molecules galE, galT and galU. Both the biosynthesis and export mechanism of EPS were proposed based on functional annotation. When grown on MRS broth with an additional 2% w/v glucose, L. fermentum D12 secreted up to 200 mg/L of a mixture of EPSs, whose porous structure was visualized by scanning electron microscopy (SEM). Structural information obtained by 1HNMR spectroscopy together with composition and linkage analyses, suggested the presence of at least two different EPSs, a branched heteropolysaccharide containing t-Glcp and 2,6-linked Galf, and glycogen. Since recent reports showed that polysaccharides facilitate the probiotic-host interactions, we at first sought to evaluate the functional potential of L. fermentum D12. Strain D12 survived simulated gastrointestinal tract (GIT) conditions, exhibited antibacterial activity against enteropathogenic bacteria, adhered to Caco-2 cells in vitro, and as such showed potential for in vivo functionality. The EPS crude extract positively influenced D12 strain capacity to survive during freeze-drying and to adhere to extracellular matrix (ECM) proteins but did not interfere Caco-2 and mucin adherence when added at concentrations of 0.2, 0.5, and 1.0 mg/mL. Since the viable bacterial count of free D12 cells was 3 logarithmic units lower after the exposure to simulated GIT conditions than the initial count, the bacterial cells had been loaded into alginate for viability improvement. Microspheres of D12 cells, which were previously analyzed at SEM, significantly influenced their survival during freeze-drying and in simulated GIT conditions. Furthermore, the addition of the prebiotic substrates mannitol and lactulose improved the viability of L. fermentum D12 in freeze-dried alginate microspheres during 1-year storage at 4 °C compared to the control.
Collapse
Affiliation(s)
- Katarina Butorac
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Jasna Novak
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia.
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Lucrecia C Terán
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Martina Banić
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Andreja Leboš Pavunc
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Slaven Zjalić
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg Kneza Višeslava 9, 23000, Zadar, Croatia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Jagoda Šušković
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Blaženka Kos
- Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| |
Collapse
|
28
|
Lactic Acid Bacterial Production of Exopolysaccharides from Fruit and Vegetables and Associated Benefits. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microbial polysaccharides have interesting and attractive characteristics for the food industry, especially when produced by food grade bacteria. Polysaccharides produced by lactic acid bacteria (LAB) during fermentation are extracellular macromolecules of either homo or hetero polysaccharidic nature, and can be classified according to their chemical composition and structure. The most prominent exopolysaccharide (EPS) producing lactic acid bacteria are Lactobacillus, Leuconostoc, Weissella, Lactococcus, Streptococcus, Pediococcus and Bifidobacterium sp. The EPS biosynthesis and regulation pathways are under the dependence of numerous factors as producing-species or strain, nutrient availability, and environmental conditions, resulting in varied carbohydrate compositions and beneficial properties. The interest is growing for fruits and vegetables fermented products, as new functional foods, and the present review is focused on exploring the EPS that could derive from lactic fermented fruit and vegetables. The chemical composition, biosynthetic pathways of EPS and their regulation mode is reported. The consequences of EPS on food quality, especially texture, are explored in relation to producing species. Attention is given to the scientific investigations on health benefits attributed to EPS such as prebiotic, antioxidant, anti-inflammatory and cholesterol lowering activities.
Collapse
|
29
|
Luo M, Gan M, Yu X, Wu X, Xu F. Study on the regulatory effects and mechanisms of action of bifidobacterial exopolysaccharides on anaphylaxes in mice. Int J Biol Macromol 2020; 165:1447-1454. [PMID: 33011263 DOI: 10.1016/j.ijbiomac.2020.09.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023]
Abstract
This study used bifidobacterial exopolysaccharides (EPSs) from the selected strains of Bifidobacterium bifidum WBBI01 and WBIN03, Bifidobacterium breve WBBR04, Bifidobacterium infantis WBAN07 and Bifidobacterium longum WBLO01 to explore the EPSs regulatory effect on anaphylaxis in mice. First of all, allergy mouse models were established via subcutaneous injection followed by OVA gavage, and then the EPSs from the five Bifidobacteria were fed into the mice via continuous gavage. Samples were taken from the mice periodically to determine the changes of cytokine levels in serum, including those of IgE, IgG, IL-4, IL-5, IL-13 and INF-γ. The test revealed that the EPSs from B. breve WBBR04 could considerably relieve food allergy in the mouse models, but the effect of B. infantis WBAN07 was unsatisfactory. Based on the above conclusions, the EPSs of B. bifidum WBBR04 and WBIN03, B. breve WBBR04, and B. longum WBLO01 were respectively incubated with the small intestine tissue sections of an allergic mouse model. The resulting culture supernatants were then tested. Based on the above, it can be concluded that EPS of B. breve WBBR04 can enhance the intestinal barrier integrity by attaching themselves onto the inner walls of the small intestine, hence effectively isolating the allergens and preventing food allergy.
Collapse
Affiliation(s)
- Meng Luo
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Min Gan
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - XiaoMin Yu
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - XiaoLi Wu
- College of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Feng Xu
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
30
|
Zarandona I, Estupiñán M, Pérez C, Alonso-Sáez L, Guerrero P, de la Caba K. Chitosan Films Incorporated with Exopolysaccharides from Deep Seawater Alteromonas Sp. Mar Drugs 2020; 18:md18090447. [PMID: 32867255 PMCID: PMC7551391 DOI: 10.3390/md18090447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Two Alteromonas sp. strains isolated from deep seawater were grown to promote the production of exopolysaccharides (EPS, E611 and E805), which were incorporated into chitosan solutions to develop films. The combination of the major marine polysaccharides (chitosan and the isolated bacterial EPS) resulted in the formation of homogenous, transparent, colorless films, suggesting good compatibility between the two components of the film-forming formulation. With regards to optical properties, the films showed low values of gloss, in the range of 5-10 GU, indicating the formation of non-glossy and rough surfaces. In addition to the film surface, both showed hydrophobic character, with water contact angles higher than 100 º, regardless of EPS addition. Among the two EPS under analysis, chitosan films with E805 showed better mechanical performance, leading to resistant, flexible, easy to handle films.
Collapse
Affiliation(s)
- Iratxe Zarandona
- BIOMAT research group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Mónica Estupiñán
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; (M.E.); (C.P.); (L.A.-S.)
| | - Carla Pérez
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; (M.E.); (C.P.); (L.A.-S.)
| | - Laura Alonso-Sáez
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; (M.E.); (C.P.); (L.A.-S.)
| | - Pedro Guerrero
- BIOMAT research group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- Correspondence: (P.G.); (K.d.l.C.)
| | - Koro de la Caba
- BIOMAT research group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- Correspondence: (P.G.); (K.d.l.C.)
| |
Collapse
|
31
|
Milanović V, Osimani A, Garofalo C, Belleggia L, Maoloni A, Cardinali F, Mozzon M, Foligni R, Aquilanti L, Clementi F. Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. PLoS One 2020; 15:e0236190. [PMID: 32702068 PMCID: PMC7377444 DOI: 10.1371/journal.pone.0236190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023] Open
Abstract
The quality of sourdough bread mainly depends on metabolic activities of lactic acid bacteria (LAB). The exopolysaccharides (EPS) produced by LAB affect positively the technological and nutritional properties of the bread, while phytases improve the bioavailability of the minerals by reducing its phytate content. In the present study, a pool of 152 cereal-sourced LAB were screened for production of phytases and EPS for potential use as sourdough starter cultures for the baking industry. There was large heterogeneity in the phytase activity observed among the screened isolates, with 95% showing the ability to degrade sodium phytate on plates containing Sourdough Simulation Medium (SSM). The isolates Lactobacillus brevis LD65 and Lactobacillus plantarum PB241 showed the highest enzymatic activity, while the isolates ascribed to Weissella confusa were characterized by low or no phytase activity. Only 18% of the screened LAB produced EPS, which were distinguished as ropy or mucoid phenotypes on SSM supplemented with sucrose. Almost all the EPS producers carried one or more genes (epsD/E and/or epsA) involved in the production of heteropolysaccharides (HePS), whereas the isolates ascribed to Leuconostoc citreum and W. confusa carried genes involved in the production of both HePS and homopolysaccharides (HoPS). Monosaccharide composition analysis of the EPS produced by a selected subset of isolates revealed that all the HePS included glucose, mannose, and galactose, though at different ratios. Furthermore, a few isolates ascribed to L. citreum and W. confusa and carrying the gtf gene produced β-glucans after fermentation in an ad hoc formulated barley flour medium. Based on the overall results collected, a subset of candidate sourdough starter cultures for the baking industry was selected, including Lb. brevis LD66 and L. citreum PB220, which showed high phytase activity and positive EPS production.
Collapse
Affiliation(s)
- Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Massimo Mozzon
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Foligni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
- * E-mail: (FC); (LA)
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
- * E-mail: (FC); (LA)
| |
Collapse
|
32
|
Minj J, Chandra P, Paul C, Sharma RK. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Crit Rev Food Sci Nutr 2020; 61:2207-2224. [PMID: 32519883 DOI: 10.1080/10408398.2020.1774496] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactic acid bacteria as a starter culture are very important component in the fermentation process of dairy and food industry. Application of lactic acid bacteria as probiotic bacteria adds more functionality to the developed product. Gut colonizing bacteria have attractive benefits related to human health. Bio-functional properties such as antimicrobial activity, anti-inflammatory, ACE-inhibitory, antioxidant, antidiarrheal, antiviral, immunomodulatory, hypocholesterolemic, anti-diabetic and anti-cancer activities are the most applicable research areas of lactic acid bacteria. Different strains of Lactobacillus are generally consumed as probiotics and colonize the gastrointestinal tract. Sometimes these bacteria may possess antimicrobial activity and may positively influence the effect of antibiotics. Use of Lactobacillus spp. for the development of functional foods is one of the promising areas of current research and applications. Individual bacterial species have unique biological activity, which may vary from strains to strains and identification of this uniqueness could be helpful in the development of functional and therapeutic food products.
Collapse
Affiliation(s)
- Jagrani Minj
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | | | - Catherine Paul
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|