1
|
Criollo Nuñez J, Ramirez-Toro C, Bolivar G, Sandoval A AP, Lozano Tovar MD. Effect of microencapsulated inoculum of Pichia kudriavzevii on the fermentation and sensory quality of cacao CCN51 genotype. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2425-2435. [PMID: 36606570 DOI: 10.1002/jsfa.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Microencapsulated yeasts are a novel alternative as a delivery matrix for microbiological starters. This technology aims to protect the active compounds from adverse environmental conditions and prolong their useful life and could also improve the conditions of the starters for cocoa fermentation. The present study established the effective dose to apply the microencapsulated yeast Pichia kudriavzevii as a microbiological starter of fermentation and biotechnological strategy for promoting the biochemical dynamics and sensory expression of the cocoa variety CCN-51. For this, 0.5%, 1%, 2%, and 3% of microencapsulated P. kudriavzevii yeast insolated from the artisanal fermentation process of cocoa was added to the cocoa mass to be fermented and studied on a laboratory scale. RESULTS The partial least squares regression of fermentation was related in four quartiles, comprising the hedonic judgments of the sensory evaluation with the biochemical traits of the cocoa liquor, finding a high correlation between the physicochemical variables total phenols, percentage of insufficiently fermented grains, and percentage of total acidity, with a level of bitterness and defects found in liquors with the addition of 0.5% of microencapsulated starter. The treatments with the addition of 2% and 3% of the inoculum showed a high correlation between the variables pH, total anthocyanins, cocoa, fruity and floral aromas, sweet taste, and general aroma perception. CONCLUSION The higher presence of volatile compounds such as 2,3-butanediol associated with cocoa aroma and 1-phenyl-2-ethanol and acetophenone associated with aromatic descriptors of fruity and floral series allowed establishment in 2% of microencapsulated P. kudriavzevii yeast, comprising the effective dose for promoting the biochemical dynamics of laboratory-scale fermentation and the development of cocoa, as well as the fruity and floral aromas of cocoa CCN-51 liquor. The microencapsulation is suitable for cocoa starters. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jenifer Criollo Nuñez
- Centro de Investigación Nataima, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tolima, Colombia
- Facultad de Ingeniería, Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali, Colombia
| | - Cristina Ramirez-Toro
- Facultad de Ingeniería, Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali, Colombia
| | - German Bolivar
- Facultad de Ciencias Naturales y Exactas, Biología Marina, Universidad del Valle, Cali, Colombia
| | | | - María D Lozano Tovar
- Centro de Investigación Nataima, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tolima, Colombia
| |
Collapse
|
2
|
Ateeq M, Adeel MM, Kanwal A, Tahir ul Qamar M, Saeed A, Khaliq B, Saeed Q, Atiq MN, Bilal M, Alharbi M, Alshammari A, Akrem A. In Silico Analysis and Functional Characterization of Antimicrobial and Insecticidal Vicilin from Moth Bean ( Vigna aconitifolia (Jacq.) Marechal) Seeds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103251. [PMID: 35630727 PMCID: PMC9145308 DOI: 10.3390/molecules27103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023]
Abstract
Vicilin has nutraceutical potential and different noteworthy medicative health-promoting biotic diversions, and it is remarkable against pathogenic microorganisms and insects. In this study, Vigna aconitifolia vicilin (VacV) has been identified and characterized from the seed of Vigna aconitifolia (Jacq.) Marechal (Moth beans). LC-MS/MS analysis of VacV provided seven random fragmented sequences comprising 238 residues, showing significant homology with already reported Vigna radiata vicilin (VraV). VacV was purified using ammonium sulfate precipitation (60%) followed by size exclusion chromatography on Hi-Load 16/60 Superdex 200 pg column and anion-exchange chromatography (Hi trap Q FF column). Purified VacV showed a major ~50 kDa band and multiple lower bands on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under both reduced and non-reduced conditions. After all, a three-dimensional molecular structure of VacV was predicted, which showed β-sheeted molecular conformation similar to crystallographic structure of VraV. All Vicilins from V. aconitifolia and other plants were divided into six sub-groups by phylogenetic analysis, and VacV shared a high degree of similarity with vicilins of Vigna radiata, Pisum sativum, Lupinus albus, Cicer arietinum and Glycine max. Additionally, VacV (20 μg) has significant growth inhibition against different pathogenic bacteria along strong antifungal activity (50 μg). Likewise, VacV (3.0 mg) produced significant growth reduction in Rice Weevil Sitophilus oryzae larvae after 9 days compared with control. Furthermore, by using MMT assay, the cytotoxicity effect of VacV on the growth of HepG2 liver cancerous cells was tested. VacV showed cytotoxicity against the HepG-2 line and the acquired value was 180 µg after 48 h. Finally, we performed molecular docking against caspase-3 protein (PDB ID: 3DEI) for VacV bioactive receptor interface residues. Hence, our results reveal that VacV, has nutraceutical potential and moth beans can be used as a rich resource of functional foods.
Collapse
Affiliation(s)
- Muhammad Ateeq
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Muzammal Adeel
- Hubei Provincial Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Ayesha Kanwal
- College of Life Sciences, University of Science and Technology of China, Hefei 230027, China;
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.H.); (A.A.)
| | - Ahsan Saeed
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Binish Khaliq
- Department of Botany, Faculty of Life Science, University of Okara, Okara 56300, Pakistan;
| | - Qamar Saeed
- Department of Entomology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Nauman Atiq
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Muhammad Bilal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road Thokar Niaz Baig, Lahore 53700, Pakistan;
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (M.T.u.Q.); (A.A.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (M.T.u.Q.); (A.A.)
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Correspondence: (M.H.); (A.A.)
| |
Collapse
|
3
|
Tee YK, Bariah K, Hisyam Zainudin B, Samuel Yap KC, Ong NG. Impacts of cocoa pod maturity at harvest and bean fermentation period on the production of chocolate with potential health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1576-1585. [PMID: 34405409 DOI: 10.1002/jsfa.11494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cacao beans are rich sources of polyphenols with an abundance of flavonoids and methylxanthines that have positive influences on human health. The main factors affecting the formation of flavor as well as the chemical and bioactive composition of cacao beans are cacao pod maturity and post-harvest fermentation. The purpose of this research was to evaluate the effects of pod harvest maturity (mature and ripe) and post-fermentation period (1, 3, and 5 days in a controlled temperature environment) measured by pre-harvest maturity indices, post-harvest quality tests, chemical measurements, and organoleptic evaluation. RESULTS As pods developed, flavonol accumulated while nitrogen content degraded. Mature pods produced beans with a higher flavonol, catechin, and total phenolic content (TPC). As fermentation progressed, the beans' fat, TPC, antioxidant activity, and catechin content increased, regardless of pod maturity at harvest. Free fatty acid (FFA) levels were highest in 5 day fermented beans. The 3 day fermented beans contained significantly higher epicatechin, with lower FFA content. Chocolate made from mature beans with 3 day fermentation was more pleasant as it scored the highest in flavor intensity and complexity and the lowest in acidity and astringency. CONCLUSION This study suggests that cacao pods harvested at the mature stage with further fermentation for 3 days under controlled temperatures produce specialty beans with potential health benefits. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yei-Kheng Tee
- Cocoa Upstream Technology Division, Malaysian Cocoa Board, Sg. Sumun, Malaysia
| | - Khairul Bariah
- Cocoa Downstream Technology Division, Malaysian Cocoa Board, Cocoa Innovative and Technology Centre, Nilai, Malaysia
| | - Badrul Hisyam Zainudin
- Cocoa Downstream Technology Division, Malaysian Cocoa Board, Cocoa Innovative and Technology Centre, Nilai, Malaysia
| | - Kian-Chee Samuel Yap
- Cocoa Downstream Technology Division, Malaysian Cocoa Board, Cocoa Innovative and Technology Centre, Nilai, Malaysia
| | | |
Collapse
|
4
|
Abstract
Several research efforts on cocoa have been focused on parameters for controlling the transformation process to guarantee homogeneity and quality of cocoa beans, the main raw material in the chocolate industry. The main changes that determine the final quality of cocoa-and also the product's homogeneity-occur during fermentation, given the great number of factors that affect the process. This research seeks to identify the most relevant factors affecting quality in order to offer higher-quality and more homogeneous cocoa for the chocolate industry. The dynamics of the fermentation process were observed in three contrasting locations, monitoring different variables and evaluating the final quality of the cocoa. Results show that temperature and pH profile are the key factors to be monitored and controlled in order to achieve high-quality cocoa beans.
Collapse
|
5
|
Escobar S, Santander M, Zuluaga M, Chacón I, Rodríguez J, Vaillant F. Fine cocoa beans production: Tracking aroma precursors through a comprehensive analysis of flavor attributes formation. Food Chem 2021; 365:130627. [PMID: 34329875 DOI: 10.1016/j.foodchem.2021.130627] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
The fine flavor cocoa (FFC) market offers cocoa farmers better monetary and nonmonetary benefits than the bulk market. In this work, during cocoa fermentation, flavor formation was studied at different fermentation times based on sensory profiles, volatile compound contents and untargeted metabolomics. It was observed that chocolate quality is influenced by fermentation time. Thus, at 72 h, the sensory profiles showed no outstanding attributes, while at 96 h, the global quality presented a stronger influence of fine attributes, such as fruitiness, florality, spices and nuttiness. Finally, at 120/144 h, these FFC features diminished. Metabolomic fingerprint of cocoa beans (related to peptides, sugars, amino acids, and phenolic compounds) and the volatile fingerprint of chocolate showed a change according to the fermentation time. This allowed the proposal of 96 h as the optimal fermentation time to produce FFC beans. Additionally, 20 volatiles and 48 discriminating metabolites were defined as potential quality biomarkers.
Collapse
Affiliation(s)
- Sebastián Escobar
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory. Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca, P.O. Box 344300, Colombia.
| | - Margareth Santander
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory. Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca, P.O. Box 344300, Colombia
| | - Martha Zuluaga
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory. Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca, P.O. Box 344300, Colombia
| | - Iván Chacón
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory. Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca, P.O. Box 344300, Colombia
| | - Jader Rodríguez
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory. Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca, P.O. Box 344300, Colombia
| | - Fabrice Vaillant
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory. Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca, P.O. Box 344300, Colombia; Centre de Coopération Internationale en Recherche Agronomique pour le Développement- CIRAD, UMR QualiSud, 1101 avenue Agropolis, CS 24501, 34093. Montpellier Cedex 5, Francia; UMR QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ La Reunion, Montpellier, France
| |
Collapse
|
6
|
Febrianto NA, Wang S, Zhu F. Chemical and biological properties of cocoa beans affected by processing: a review. Crit Rev Food Sci Nutr 2021; 62:8403-8434. [PMID: 34047627 DOI: 10.1080/10408398.2021.1928597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cocoa (Theobroma cacao L.) is widely cultivated in tropical countries. The cocoa beans are a popular ingredient of confectionery. Cocoa beans contain various chemicals that contribute to their bioactivity and nutritional properties. There has been increasing interest in developing cocoa beans for "healthy" food products. Cocoa beans have special combination of nutrients such as lipids, carbohydrates, proteins and other compounds of biological activities. The bioactive phytochemicals include methylxanthines, polyphenols, biogenic amines, melanoidins, isoprostanoids and oxalates. These phytochemicals of cocoa are related to various in vivo and in vitro biological activities such as antioxidation, anti-cancer, anti-microbial, anti-inflammation, anti-diabetes, cardiovascular protection, physical improvement, anti-photoaging, anti-depression and blood glucose regulation. The potential of bioactive compounds in cocoa remains to be maximized for food and nutritional applications. The current processing technology promotes the degradation of beneficial bioactive compounds, while maximizing the flavors and its precursors. It is not optimized for the utilization of cocoa beans for "healthy" product formulations. Modifications of the current processing line and non-conventional processing are needed to better preserve and utilize the beneficial bioactive compounds in cocoa beans.
Collapse
Affiliation(s)
- Noor Ariefandie Febrianto
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, East Java, Indonesia
| | - Sunan Wang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Canadian Food and Wine Institute, Niagara College, Ontario, Canada
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
De Vuyst L, Leroy F. Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol Rev 2021; 44:432-453. [PMID: 32420601 DOI: 10.1093/femsre/fuaa014] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/16/2020] [Indexed: 01/07/2023] Open
Abstract
Cured cocoa beans are obtained through a post-harvest, batchwise process of fermentation and drying carried out on farms in the equatorial zone. Fermentation of cocoa pulp-bean mass is performed mainly in heaps or boxes. It is made possible by a succession of yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) activities. Yeasts ferment the glucose of the cocoa pulp into ethanol, perform pectinolysis and produce flavour compounds, such as (higher) alcohols, aldehydes, organic acids and esters. LAB ferment the glucose, fructose and citric acid of the cocoa pulp into lactic acid, acetic acid, mannitol and pyruvate, generate a microbiologically stable fermentation environment, provide lactate as carbon source for the indispensable growth of AAB, and contribute to the cocoa and chocolate flavours by the production of sugar alcohols, organic acids, (higher) alcohols and aldehydes. AAB oxidize the ethanol into acetic acid, which penetrates into the bean cotyledons to prevent seed germination. Destruction of the subcellular seed structure in turn initiates enzymatic and non-enzymatic conversions inside the cocoa beans, which provides the necessary colour and flavour precursor molecules (hydrophilic peptides, hydrophobic amino acids and reducing sugars) for later roasting of the cured cocoa beans, the first step of the chocolate-making.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
8
|
González‐González RM, Peraza‐Campos AL, Ceballos‐Magaña SG, Rodríguez‐Pérez MA, Sañudo‐Barajas JA, Parra‐Delgado H, Osuna‐Castro JA. Biochemical and functional characterization of albumins and globulins of
Brosimum alicastrum
seeds. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Juan A. Osuna‐Castro
- Facultad de Ciencias Biológicas y Agropecuarias Universidad de Colima Tecomán México
| |
Collapse
|
9
|
Fang Y, Li R, Chu Z, Zhu K, Gu F, Zhang Y. Chemical and flavor profile changes of cocoa beans ( Theobroma cacao L.) during primary fermentation. Food Sci Nutr 2020; 8:4121-4133. [PMID: 32884693 PMCID: PMC7455942 DOI: 10.1002/fsn3.1701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 11/11/2022] Open
Abstract
This survey reports for the first time the changed of quality of fermented cocoa (Theobroma cacao L.) beans. The quality evaluation and simultaneous detection of amino acids, flavor, procyanidin, color, fat, protein, antioxidant activity, and enthalpy were obtained for different fermentation stages of cocoa beans. The results showed that total essential amino acids contents ranged from 2.64 g/100 g to 3.68 g/100 g. A total of 88 compounds identified at the end of the fermentation belonged to alcohols, acids, esters, ketones, pyrazines, aldehydes, and terpenoids. One of the chemical groups that were present in highest abundance in the consummation treatments was acids, representing 56.04% of the total extracted area, followed by alcohols (22.95%) and ketones (9.40%). The colors of the beans in different fermentation stages were different, from deep purple to deep red-brown. Fermented cocoa beans were shown to be 53.45% and 13.51% bean butter and protein content, respectively. The value of denaturation enthalpy (ΔH) ranged from 30.4 (J/g) to 43.38 (J/g). The 3-day fermented sample had the highest ΔH (43.38 J/g). When the fermentation process was complete, the procyanidin concentration of the beans decreased, with the final yield of procyanidin at 6.2%. During fermentation, the antioxidant capacity of beans gradually reduced. The fermenting of cocoa beans had a significant effect on the quality formation. The findings of this study constitute a basis for further investigations on the quality formation of cocoa during fermentation.
Collapse
Affiliation(s)
- Yiming Fang
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningChina
- National Center of Important Tropical Crops Engineering and Technology ResearchWanningChina
- Hainan Provincial Engineering Research Center of Tropical Spice and Beverage CropsWanningChina
| | - Rui Li
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningChina
- National Center of Important Tropical Crops Engineering and Technology ResearchWanningChina
- Hainan Provincial Engineering Research Center of Tropical Spice and Beverage CropsWanningChina
| | - Zhong Chu
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningChina
- National Center of Important Tropical Crops Engineering and Technology ResearchWanningChina
- Hainan Provincial Engineering Research Center of Tropical Spice and Beverage CropsWanningChina
| | - Kexue Zhu
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningChina
- National Center of Important Tropical Crops Engineering and Technology ResearchWanningChina
- Hainan Provincial Engineering Research Center of Tropical Spice and Beverage CropsWanningChina
| | - Fenglin Gu
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningChina
- National Center of Important Tropical Crops Engineering and Technology ResearchWanningChina
- Hainan Provincial Engineering Research Center of Tropical Spice and Beverage CropsWanningChina
| | - Yanjun Zhang
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningChina
- National Center of Important Tropical Crops Engineering and Technology ResearchWanningChina
- Hainan Provincial Engineering Research Center of Tropical Spice and Beverage CropsWanningChina
| |
Collapse
|
10
|
Nandan A, Nampoothiri KM. Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Appl Microbiol Biotechnol 2020; 104:5243-5257. [PMID: 32342144 PMCID: PMC7186005 DOI: 10.1007/s00253-020-10641-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Aminopeptidases (EC 3.4.11.) belongs to exoprotease family, which can catalyze the cleavage of peptide bond which connects the N-terminal amino acid to the penultimate residue in a protein. Aminopeptidases catalyze the process of removal of the N-terminal amino acids of target substrates by sequential cleavage of one amino acid residue at a time. Microbial aminopeptidase are of great acceptance as industrial enzymes with varying applications in food and pharma industry since these enzymes possess unique characteristics than aminopeptidases from other sources. This review describes the various applications of microbial aminopeptidases in different industrial sectors. These enzymes are widely used in food industry as a debittering agent as well as in the preparation of protein hydrolysates. In baking, brewing, and cheese making aminopeptidases are extensively used for removing the bitterness of peptides. The inhibitors of these enzymes are found great clinical applications against various diseases such as cancer, diabetes, and viral infections. Aminopeptidases are widely used for the synthesis of biopeptides and amino acids, and found to be efficient than chemical synthesis. These enzymes are capable of hydrolyzing organophosphate compounds, thus having biological as well as environmental significance.Key Points • Cleaves the amino-terminal amino acid residues from proteins and peptides. • Microbial aminopeptidase are of great acceptance as both therapeutic and industrial enzyme. • Review describes the potential applications of microbial aminopeptidases. |
Collapse
Affiliation(s)
- Arya Nandan
- Department of Zoology, Kannur University, Mananthavady Campus, Wayanad, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial processing Technology Division (MPTD), CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695 019, India.
| |
Collapse
|
11
|
Rojas KE, García MC, Cerón IX, Ortiz RE, Tarazona MP. Identification of potential maturity indicators for harvesting cacao. Heliyon 2020; 6:e03416. [PMID: 32140578 PMCID: PMC7044803 DOI: 10.1016/j.heliyon.2020.e03416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Cocoa production is a complex process where the conditions of the raw materials decisively impact the final quality of the product. Three universal clones (CCN51, ICS95, and TSH565) from the Department of Huila in Colombia were evaluated to characterize the ripening process of cocoa fruits. Maturity indicators were identified by following the evolution of basic fruit characteristics, including size, weight, seed count, depth and distance between grooves, width and length of the apex, diameter and length of the seed, moisture content, color parameters, fruit firmness, soluble solids content, pH, and acidity. The results indicated that each cocoa clone has a unique set of ripeness parameters: color for ICS95; firmness and weight of the seed for CCN51; and color, morphological characteristics of the apex and grooves, weight, moisture content, pH, and total soluble solids for TSH565. The establishment of reliable, practical, and objective ripeness indicators for each cocoa clone will allow more homogenous cocoa pods to be selected for fermentation, which will ultimately contribute to improved quality and homogeneity of cocoa and its derived products.
Collapse
Affiliation(s)
- Karen E Rojas
- Process Engineering and Industrial Systems Research Group, Department of Engineering, Universidad Jorge Tadeo Lozano, Bogotá, Colombia
| | - Maria C García
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Ivonne X Cerón
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Nataima, Espinal, Colombia
| | - Ronnal E Ortiz
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Martha P Tarazona
- Process Engineering and Industrial Systems Research Group, Department of Engineering, Universidad Jorge Tadeo Lozano, Bogotá, Colombia
| |
Collapse
|
12
|
Cocoa Bean Proteins-Characterization, Changes and Modifications due to Ripening and Post-Harvest Processing. Nutrients 2019; 11:nu11020428. [PMID: 30791360 PMCID: PMC6413064 DOI: 10.3390/nu11020428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/30/2023] Open
Abstract
The protein fractions of cocoa have been implicated influencing both the bioactive potential and sensory properties of cocoa and cocoa products. The objective of the present review is to show the impact of different stages of cultivation and processing with regard to the changes induced in the protein fractions. Special focus has been laid on the major seed storage proteins throughout the different stages of processing. The study starts with classical introduction of the extraction and the characterization methods used, while addressing classification approaches of cocoa proteins evolved during the timeline. The changes in protein composition during ripening and maturation of cocoa seeds, together with the possible modifications during the post-harvest processing (fermentation, drying, and roasting), have been documented. Finally, the bioactive potential arising directly or indirectly from cocoa proteins has been elucidated. The “state of the art” suggests that exploration of other potentially bioactive components in cocoa needs to be undertaken, while considering the complexity of reaction products occurring during the roasting phase of the post-harvest processing. Finally, the utilization of partially processed cocoa beans (e.g., fermented, conciliatory thermal treatment) can be recommended, providing a large reservoir of bioactive potentials arising from the protein components that could be instrumented in functionalizing foods.
Collapse
|
13
|
Kunz D, Oliveira GB, Brascher TC, Samuels RI, Macedo MLR, de Souza LF, Dafré AL, Silva CP. Phaseolin ingestion affects vesicular traffic causing oxidative stress in the midgut of Callosobruchus maculatus larvae. Comp Biochem Physiol B Biochem Mol Biol 2018; 228:34-40. [PMID: 30445225 DOI: 10.1016/j.cbpb.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 11/19/2022]
Abstract
It has been reported that phaseolin, the major storage globulin of the common bean (Phaseolus vulgaris), is toxic to Callosobruchus maculatus larvae, an Old World bruchid beetle that is not capable of infesting this New World edible bean. It has also been demonstrated that vicilin, the major storage globulin found in cowpea (Vigna unguiculata) seeds, is absorbed through receptor-mediated endocytosis in the insect midgut. A putative vicilin receptor has been purified and showed high homology to α-tocopherol transfer protein. However, the ingestion of a variant vicilin purified from C. maculatus resistant seeds inhibits transcytosis, resulting in the accumulation of vicilins in the midgut cells and ultimately antibiosis. In the present work, we studied the cellular up-take of phaseolin in C. maculatus larvae with the aim of discovering if this protein is also capable of inhibiting endocytic traffic in the enterocytes. FITC-labelled vicilin and FITC-labelled phaseolin were incorporated into the diet of the larvae at a physiological concentration of 0.5% w/w. The fate of labelled and non-labelled globulins was monitored by confocal microscopy. Here we demonstrated that phaseolin is also endocytosed by enterocytes causing an accumulation of endocytic vesicles in the midgut when compared to the ingestion of vicilin obtained from a susceptible V. unguiculata cultivar. From the results obtained for HNE, MDA and TBARS, a pro-oxidative scenario was established in the intestinal epithelial cells of the larvae, which may explain the deleterious effect observed in larvae developing inside P. vulgaris seeds.
Collapse
Affiliation(s)
- Daniele Kunz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis 88040-900, Brazil
| | - Gabriel B Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis 88040-900, Brazil
| | - Theo C Brascher
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis 88040-900, Brazil
| | - Richard I Samuels
- Laboratório de Entomologia e Fitopatologia, Centro de Ciências e Tecnologia Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Brazil
| | - Maria Lígia R Macedo
- Departamento de Tecnologia de Alimentos e Saúde Pública, Universidade Federal de Mato Grosso do Sul, C.P. 549, Campo Grande 79070-900, Brazil
| | - Luiz F de Souza
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis 88040-900, Brazil
| | - Alcir L Dafré
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis 88040-900, Brazil
| | - Carlos P Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis 88040-900, Brazil.
| |
Collapse
|
14
|
Kumari N, Grimbs A, D'Souza RN, Verma SK, Corno M, Kuhnert N, Ullrich MS. Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Res Int 2018; 111:137-147. [DOI: 10.1016/j.foodres.2018.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
|
15
|
Voigt J, Textoris-Taube K, Wöstemeyer J. pH-Dependency of the proteolytic formation of cocoa- and nutty-specific aroma precursors. Food Chem 2018; 255:209-215. [DOI: 10.1016/j.foodchem.2018.02.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
16
|
Wilson KA, Tan-Wilson A. Proteases catalyzing vicilin cleavage in developing pea (Pisum sativum L.) seeds. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:86-94. [PMID: 29609123 DOI: 10.1016/j.jplph.2018.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Legume species differ in whether or not the 7S globulins stored in seeds undergo proteolytic processing during seed development, while preserving the bicupin structure and trimeric assembly necessary for accumulation and packing into protein storage vacuoles. Two such cleavage sites have been documented for the vicilins in pea cotyledons: one in the linker region between the two cupin domains, and another in an exposed loop in the C-terminal cupin. In this report, we explain the occurrence of vicilin cleavage in developing pea by showing that the storage vacuoles are already acidified before germination, in contrast to soybean and peanut where acidification occurs only after germination. We also show that the two cleavage reactions are catalyzed by two different proteases. The vicilin cleavage at the linker region was inhibited by AEBSF (4-(2-aminoethyl)benzenesulfonyl fluoride), indicative of a serine protease. The cleavage in the C-terminal cupin domain was sensitive to the sulfhydryl-reactive reagents p-chloromercuriphenylsulfonate and iodoacetate, but not to E-64 (N-[N-(L-3-transcarboxyirane-2-carbonyl)-l-leucyl]-agmatine), characteristic of the legumain class of cysteine proteases. During seed development, we found the predominant vicilin cleavage in this pea cultivar (Knight) to be at the site in the second cupin domain; but after germination, both sites were cleaved at about the same rate.
Collapse
Affiliation(s)
- Karl A Wilson
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Anna Tan-Wilson
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
17
|
Scollo E, Neville D, Oruna-Concha MJ, Trotin M, Cramer R. Characterization of the Proteome of Theobroma cacao Beans by Nano-UHPLC-ESI MS/MS. Proteomics 2018; 18. [PMID: 29280563 DOI: 10.1002/pmic.201700339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/29/2017] [Indexed: 11/06/2022]
Abstract
Cocoa seed storage proteins play an important role in flavour development as aroma precursors are formed from their degradation during fermentation. Major proteins in the beans of Theobroma cacao are the storage proteins belonging to the vicilin and albumin classes. Although both these classes of proteins have been extensively characterized, there is still limited information on the expression and abundance of other proteins present in cocoa beans. This work is the first attempt to characterize the whole cocoa bean proteome by nano-UHPLC-ESI MS/MS analysis using tryptic digests of cocoa bean protein extracts. The results of this analysis show that >1000 proteins could be identified using a species-specific Theobroma cacao database. The majority of the identified proteins were involved with metabolism and energy. Additionally, a significant number of the identified proteins were linked to protein synthesis and processing. Several proteins were also involved with plant response to stress conditions and defence. Albumin and vicilin storage proteins showed the highest intensity values among all detected proteins, although only seven entries were identified as storage proteins. A comparison of MS/MS data searches carried out against larger non-specific databases confirmed that using a species-specific database can increase the number of identified proteins, and at the same time reduce the number of false positives. The results of this work will be useful in developing tools that can allow the comparison of the proteomic profile of cocoa beans from different genotypes and geographic origins. Data are available via ProteomeXchange with identifier PXD005586.
Collapse
Affiliation(s)
- Emanuele Scollo
- Department of Chemistry, University of Reading, Reading, UK.,Mondelēz International, Reading Science Centre, Reading, UK
| | - David Neville
- Mondelēz International, Reading Science Centre, Reading, UK
| | - M Jose Oruna-Concha
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Martine Trotin
- Mondelēz International, Reading Science Centre, Reading, UK
| | - Rainer Cramer
- Department of Chemistry, University of Reading, Reading, UK
| |
Collapse
|
18
|
Pérez-Mora W, Jorrin-Novo JV, Melgarejo LM. Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chem 2017; 240:496-504. [PMID: 28946303 DOI: 10.1016/j.foodchem.2017.07.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Substantial equivalence studies were performed in three Theobroma spp., cacao, bicolor and grandiflorum through chemical composition analysis and protein profiling of fruit (pulp juice and seeds). Principal component analysis of sugar, organic acid, and phenol content in pulp juice revealed equivalence among the three species, with differences in some of the compounds that may result in different organoleptic properties. Proteins were extracted from seeds and pulp juice, resolved by two dimensional electrophoresis and major spots subjected to mass spectrometry analysis and identification. The protein profile, as revealed by principal component analysis, was variable among the three species in both seed and pulp, with qualitative and quantitative differences in some of protein species. The functional grouping of the identified proteins correlated with the biological role of each organ. Some of the identified proteins are of interest, being minimally discussed, including vicilin, a protease inhibitor, and a flavonol synthase/flavanone 3-hydroxylase. BIOLOGICAL SIGNIFICANCE Theobroma grandiflorum and Theobroma bicolor are endemic Amazonian plants that are poorly traded at the local level. As close relatives of Theobroma cacao, they may provide a good alternative for human consumption and industrial purposes. In this regard, we performed equivalence studies by conducting a comparative biochemical and proteomics analysis of the fruit, pulp juice and seeds of these three species. The results indicated equivalent chemical compositions and variable protein profiles with some differences in the content of the specific compounds or protein species that may result in variable organoleptic properties between the species and can be exploited for traceability purposes.
Collapse
Affiliation(s)
- Walter Pérez-Mora
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Jesús V Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology Research Group, Dpt. of Biochemistry and Molecular University of Córdoba-CeiA3 Córdoba, Spain.
| | - Luz Marina Melgarejo
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
19
|
Ozturk G, Young GM. Food Evolution: The Impact of Society and Science on the Fermentation of Cocoa Beans. Compr Rev Food Sci Food Saf 2017; 16:431-455. [PMID: 33371559 DOI: 10.1111/1541-4337.12264] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Abstract
Cocoa is part of the cultural heritage in many areas of South and Central America and has played an important role in the history of human culture there. The modern methods of cocoa bean production for the purpose of the manufacture of modern chocolate are tied to the origin and development of cocoa bean fermentation and processing methods and the science of microbiology. To date, however, there has not been a study that discusses the impacts of both science and culture on the evolution of cocoa beans and cocoa bean processing. This work provides both a detailed overview of the evolution and historical development of cocoa, from its earliest forms to modern chocolate manufacturing, an in-depth discussion of the biochemistry of cocoa bean fermentation, as well as a compilation of primary research studies with details on fermentation methods, the scientific bases of interactions in microbial fermentations, and methods for their investigation, as well as metabolites that are produced. As a result, we present here the major microorganisms among all the ones that have been identified in previous studies. This database will aid researchers seeking standardized inoculants to drive cocoa bean fermentation, as well as serve as a guide for inventorying and assessing other food evolution-related studies regarding traditional and artisanal-based food systems.
Collapse
Affiliation(s)
- Gulustan Ozturk
- Dept. of Food Science and Technology, Univ. of California, Davis, CA, U.S.A
| | - Glenn M Young
- Dept. of Food Science and Technology, Univ. of California, Davis, CA, U.S.A
| |
Collapse
|
20
|
Kumari N, Kofi KJ, Grimbs S, D'Souza RN, Kuhnert N, Vrancken G, Ullrich MS. Biochemical fate of vicilin storage protein during fermentation and drying of cocoa beans. Food Res Int 2016; 90:53-65. [DOI: 10.1016/j.foodres.2016.10.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
|
21
|
Janek K, Niewienda A, Wöstemeyer J, Voigt J. The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors. Food Chem 2016; 211:320-8. [DOI: 10.1016/j.foodchem.2016.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 11/26/2022]
|
22
|
Voigt J, Janek K, Textoris-Taube K, Niewienda A, Wöstemeyer J. Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components. Food Chem 2016; 192:706-13. [DOI: 10.1016/j.foodchem.2015.07.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/25/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
|
23
|
Aprotosoaie AC, Luca SV, Miron A. Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Compr Rev Food Sci Food Saf 2015; 15:73-91. [PMID: 33371573 DOI: 10.1111/1541-4337.12180] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022]
Abstract
Cocoa originates from beans of the cocoa tree (Theobroma cacao L.) and it is an important commodity in the world and the main ingredient in chocolate manufacture. Its value and quality are related to unique and complex flavors. Bulk cocoas (Forastero type) exhibit strong basic cocoa notes, whereas fine varieties (Criollo, Nacional) show aromatic, floral, or smoother flavor characteristics. About 600 various compounds (alcohols, carboxylic acids, aldehydes, ketones, esters, and pyrazines) have been identified as odor-active components. The specific cocoa aroma arises from complex biochemical and chemical reactions during the postharvest processing of raw beans, and from many influences of the cocoa genotype, chemical make-up of raw seeds, environmental conditions, farming practices, processing, and manufacturing stages. There has been much research on cocoa flavor components. However, the relationships between all chemical components that are likely to play a role in cocoa flavor, their sensory properties, and the sources and mechanisms of flavor formation are not fully understood. This paper provides an overview on cocoa flavor from a compositional and a sensory perspective. The nonvolatile and volatile chemical components of cocoa and chocolate flavor, and their sensory properties correlated to the main influences involved in flavor formation, are reviewed.
Collapse
Affiliation(s)
- Ana Clara Aprotosoaie
- Dept. of Pharmacognosy, Faculty of Pharmacy, Univ. of Medicine and Pharmacy Grigore T. Popa-Iasi, 16 University Street, 700115 Iasi, Romania
| | - Simon Vlad Luca
- Dept. of Pharmacognosy, Faculty of Pharmacy, Univ. of Medicine and Pharmacy Grigore T. Popa-Iasi, 16 University Street, 700115 Iasi, Romania
| | - Anca Miron
- Dept. of Pharmacognosy, Faculty of Pharmacy, Univ. of Medicine and Pharmacy Grigore T. Popa-Iasi, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
24
|
Niemenak N, Kaiser E, Maximova SN, Laremore T, Guiltinan MJ. Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:49-60. [PMID: 25889873 DOI: 10.1016/j.jplph.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/30/2015] [Accepted: 02/24/2015] [Indexed: 05/22/2023]
Abstract
Two dimensional electrophoresis and nano-LC-MS were performed in order to identify alterations in protein abundance that correlate with maturation of cacao zygotic and somatic embryos. The cacao pod proteome was also characterized during development. The recently published cacao genome sequence was used to create a predicted proteolytic fragment database. Several hundred protein spots were resolved on each tissue analysis, of which 72 variable spots were subjected to MS analysis, resulting in 49 identifications. The identified proteins represent an array of functional categories, including seed storage, stress response, photosynthesis and translation factors. The seed storage protein was strongly accumulated in cacao zygotic embryos compared to their somatic counterpart. However, sucrose treatment (60 g L(-1)) allows up-regulation of storage protein in SE. A high similarity in the profiles of acidic proteins was observed in mature zygotic and somatic embryos. Differential expression in both tissues was observed in proteins having high pI. Several proteins were detected exclusively in fruit tissues, including a chitinase and a 14-3-3 protein. We also identified a novel cacao protein related to known mabinlin type sweet storage proteins. Moreover, the specific presence of thaumatin-like protein, another sweet protein, was also detected in fruit tissue. We discuss our observed correlations between protein expression profiles, developmental stage and stress responses.
Collapse
Affiliation(s)
- Nicolas Niemenak
- Laboratory of Plant Physiology, Department of Biological Science, Higher Teachers Training College, University of Yaounde I, P.O. Box 47, Yaounde, Cameroon.
| | - Edward Kaiser
- Proteomics and Mass Spectrometry Core Facility, the Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Siela N Maximova
- The Pennsylvania State University, Department of Plant Science and the Huck Institutes of the Life Sciences, University Park, Pennsylvania, PA 16802, USA
| | - Tatiana Laremore
- Proteomics and Mass Spectrometry Core Facility, the Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Mark J Guiltinan
- The Pennsylvania State University, Department of Plant Science and the Huck Institutes of the Life Sciences, University Park, Pennsylvania, PA 16802, USA
| |
Collapse
|
25
|
Sánchez-Mundo M, Bautista-Muñoz C, Jaramillo-Flores M. Characterization of protease activities in a crude extract of germinated cacao. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Identification of predominant yeasts associated with artisan Mexican cocoa fermentations using culture-dependent and culture-independent approaches. World J Microbiol Biotechnol 2015; 31:359-69. [DOI: 10.1007/s11274-014-1788-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
27
|
Marseglia A, Sforza S, Faccini A, Bencivenni M, Palla G, Caligiani A. Extraction, identification and semi-quantification of oligopeptides in cocoa beans. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Crafack M, Keul H, Eskildsen CE, Petersen MA, Saerens S, Blennow A, Skovmand-Larsen M, Swiegers JH, Petersen GB, Heimdal H, Nielsen DS. Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.04.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Kozelová D, Matejková E, Fikselová M, Dékányová J. Analysis of consumer behavior at chocolate purchase. POTRAVINARSTVO 2014. [DOI: 10.5219/325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Romero-Cortes T, Salgado-Cervantes MA, García-Alamilla P, García-Alvarado MA, Rodríguez-Jimenes GDC, Hidalgo-Morales M, Robles-Olvera V. Relationship between fermentation index and other biochemical changes evaluated during the fermentation of Mexican cocoa (Theobroma cacao) beans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2596-2604. [PMID: 23553798 DOI: 10.1002/jsfa.6088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/21/2012] [Accepted: 02/04/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND During traditional cocoa processing, the end of fermentation is empirically determined by the workers; consequently, a high variability on the quality of fermented cocoa beans is observed. Some physicochemical properties (such as fermentation index) have been used to measure the degree of fermentation and changes in quality, but only after the fermentation process has concluded, using dried cocoa beans. This would suggest that it is necessary to establish a relationship between the chemical changes inside the cocoa bean and the fermentation conditions during the fermentation in order to standardize the process. RESULTS Cocoa beans were traditionally fermented inside wooden boxes, sampled every 24 h and analyzed to evaluate fermentation changes in complete bean, cotyledon and dried beans. The value of the fermentation index suggested as the minimal adequate (≥1) was observed at 72 h in all bean parts analyzed. At this time, values of pH, spectral absorption, total protein hydrolysis and vicilin-class globulins of fermented beans suggested that they were well fermented. CONCLUSION Since no difference was found between the types of samples, the pH value could be used as a first indicator of the end of the fermentation and confirmed by evaluation of the fermentation index using undried samples, during the process.
Collapse
Affiliation(s)
- Teresa Romero-Cortes
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Veracruz, Mexico
| | | | | | | | | | | | | |
Collapse
|
31
|
Crafack M, Mikkelsen MB, Saerens S, Knudsen M, Blennow A, Lowor S, Takrama J, Swiegers JH, Petersen GB, Heimdal H, Nielsen DS. Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int J Food Microbiol 2013; 167:103-16. [PMID: 23866910 DOI: 10.1016/j.ijfoodmicro.2013.06.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 01/07/2023]
Abstract
The potential impact of aromatic and pectinolytic yeasts on cocoa flavour was investigated using two defined mixed starter cultures encompassing strains of Pichia kluyveri and Kluyveromyces marxianus for inoculating cocoa beans in small scale tray fermentations. Samples for microbial and metabolite analysis were collected at 12-24 hour intervals during 120 h of fermentation. Yeast isolates were grouped by (GTG)5-based rep-PCR fingerprinting and identified by sequencing of the D1/D2 region of the 26S rRNA gene and the actin gene. Pulsed Field Gel Electrophoresis (PFGE) was conducted on isolates belonging to the species P. kluyveri and K. marxianus to verify strain level identity with the inoculated strains. Furthermore, Denaturing Gradient Gel Electrophoresis (DGGE) was performed to follow yeast and bacterial dynamics over time including the presence of the bacterial inoculum consisting of Lactobacillus fermentum and Acetobacter pasteurianus. Yeast cell counts peaked after 12 h of fermentation with the predominant species being identified as Hanseniaspora opuntiae and Hanseniaspora thailandica. P. kluyveri and K. marxianus were found to compose 9.3% and 13.5% of the yeast population, respectively, after 12 h of fermentation whilst PFGE showed that ~88% of all P. kluyveri isolates and 100% of all K. marxianus isolates were identical to the inoculated strains. Despite never being the dominant yeast species at any stage of fermentation, the un-conched chocolates produced from the two inoculated fermentations were judged by sensory analysis to differ in flavour profile compared to the spontaneously fermented control. This could indicate that yeasts have a greater impact on the sensory qualities of cocoa than previously assumed.
Collapse
Affiliation(s)
- Michael Crafack
- Department of Food Science, Section for Food Microbiology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Comparison of Cocoa Beans from China, Indonesia and Papua New Guinea. Foods 2013; 2:183-197. [PMID: 28239108 PMCID: PMC5302260 DOI: 10.3390/foods2020183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/02/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022] Open
Abstract
A survey on five kinds of cocoa beans from new cocoa planting countries was conducted to analyze each kind’s basic quality. The average bean weight and butter content of Hainan cocoa beans were the lowest, at less than 1.1 g, and 39.24% to 43.44%, respectively. Cocoa beans from Indonesia where shown to be about 8.0% and 9.0% higher in average bean weight and butter content, respectively, than that of Papua New Guinea and about 20.0% and 25.0% higher in average bean weight and butter content than Chinese dried beans, respectively. The average total polyphenolic content ranged from 81.22 mg/10 g to 301.01 mg/10 g. The Hainan 2011 sample had the highest total polyphenolic content, followed by the unfermented sample from Indonesia and the Papua New Guinea sample. The polyphenolic levels found in the Hainan 2010 sample were 123.61 mg/10 g and lower than the other three samples, but the Indonesian fermented sample had the lowest total polyphenolic content of 81.22 mg/10 g. The average total amino acid content ranged from 11.58 g/100 g to 18.17 g/100 g. The total amino acid content was the highest in the Indonesian unfermented sample, followed by the Hainan 2011 sample and the Papua New Guinea sample. The levels found in the Hainan 2010 sample were lower; the Indonesian fermented sample had the lowest total amino acid content.
Collapse
|
33
|
|
34
|
Bertazzo A, Agnolin F, Comai S, Zancato M, Costa CVL, Seraglia R, Traldi P. The protein profile of Theobroma cacao L. seeds as obtained by matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2035-2042. [PMID: 21698686 DOI: 10.1002/rcm.5080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The water-soluble protein profile of the seeds of green, red, and yellow Theobroma cacao L. fruits has been determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS). The seeds were powdered under liquid nitrogen and defatted. The residues were dialyzed and lyophilized. The obtained samples were suspended in the matrix solution of sinapinic acid. The obtained MALDI mass spectra showed the presence of a wide number of proteins with molecular weight ranging from 8000 to 13,000 Da and a cluster of peaks centered at 21,000 Da that were attributed to albumin. The abundance of this peak was found to depend on the different portion of the seed (husk, apical and cortical parts); however, the MALDI mass spectra obtained from the different varieties of cocoa were practically superimposable. Changes in the protein profiles were also observed after the cocoa seeds were treated by fermentation and roasting, which are processes usually employed for the commercial production of cocoa.
Collapse
Affiliation(s)
- Antonella Bertazzo
- Dipartimento di Scienze Farmaceutiche, Universita' di Padova, Via Francesco Marzolo 5, 35131 Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. Journal of Food Science and Technology 2011; 50:1097-105. [PMID: 24426021 DOI: 10.1007/s13197-011-0446-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/11/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
Investigations were conducted to evaluate the effects of pod storage (as a means of pulp preconditioning) and fermentation on the chemical composition and physical characteristics of Ghanaian cocoa beans. A 4 × 2 full factorial design with factors as pod storage (0, 7, 14, 21 days) and cocoa treatment (fermented and unfermented) were conducted. Samples were analyzed for their chemical composition (moisture, crude fat, crude protein, ash and carbohydrate content) and mineral content using standard analytical methods. The physical qualities of the beans were analyzed for their proportions of cocoa nibs, shells and germ. Fermentation and increasing pod storage resulted in significant (P < 0.05) decreases in ash (3.48-2.92%), protein (21.63-17.62%) and fat (55.21-50.40%) content of the beans while carbohydrate content increased from 15.47% to 24.93% with both treatments. As well, increasing pod storage and fermentation significantly (P < 0.05) increased the copper content of the beans from while reductions in Mg and K occurred. Amongst the minerals studied, potassium was the most abundant mineral followed by magnesium, phosphorus and calcium in the fermented cocoa beans. Proportion of cocoa nibs also increased from with increasing pod storage and fermentation whiles reductions in shell content and no appreciable changes in germ proportions were noted.
Collapse
|
36
|
Afoakwa EO, Quao J, Budu AS, Takrama J, Saalia FK. Effect of pulp preconditioning on acidification, proteolysis, sugars and free fatty acids concentration during fermentation of cocoa (Theobroma cacao) beans. Int J Food Sci Nutr 2011; 62:755-64. [PMID: 21599466 DOI: 10.3109/09637486.2011.581224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Changes in acidification, proteolysis, sugars and free fatty acids (FFAs) concentrations of Ghanaian cocoa beans as affected by pulp preconditioning (pod storage or PS) and fermentation were investigated. Non-volatile acidity, pH, proteolysis, sugars (total, reducing and non-reducing) and FFAs concentrations were analysed using standard methods. Increasing PS consistently decreased the non-volatile acidity with concomitant increase in pH during fermentation of the beans. Fermentation decreased the pH of the unstored beans from 6.7 to 4.9 within the first 4 days and then increased slightly again to 5.3 by the sixth day. Protein, total sugars and non-reducing sugars decreased significantly (p < 0.05) during fermentation, whereas reducing sugars and FFA increased. PS increased the FFA levels, reduced the protein content but did not have any effect on the sugars. The rate of total and non-reducing sugars degeneration with concomitant generation of reducing sugars in the cocoa beans was largely affected by fermentation than by PS.
Collapse
Affiliation(s)
- Emmanuel Ohene Afoakwa
- Department of Nutrition and Food Science, University of Ghana, PO Box LG 134, Legon-Accra, Ghana.
| | | | | | | | | |
Collapse
|
37
|
Oliveira HSS, Mamede MEO, Góes-Neto A, Koblitz MGB. Improving Chocolate Flavor in Poor-Quality Cocoa Almonds by Enzymatic Treatment. J Food Sci 2011; 76:C755-9. [DOI: 10.1111/j.1750-3841.2011.02168.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Preza AM, Jaramillo ME, Puebla AM, Mateos JC, Hernández R, Lugo E. Antitumor activity against murine lymphoma L5178Y model of proteins from cacao (Theobroma cacao L.) seeds in relation with in vitro antioxidant activity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 10:61. [PMID: 20961452 PMCID: PMC2974655 DOI: 10.1186/1472-6882-10-61] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 10/20/2010] [Indexed: 01/12/2023]
Abstract
Background Recently, proteins and peptides have become an added value to foodstuffs due to new knowledge about its structural analyses as related to antioxidant and anticancer activity. Our goal was to evaluate if protein fractions from cacao seeds show antitumor activity on lymphoma murine L5178Y model. The antioxidant activity of these fractions was also evaluated with the aim of finding a correlation with the antitumor activity. Methods Differential extraction of proteins from unfermented and semi-fermented-dry cacao seeds was performed and characterized by SDS-PAGE and FPLC size-exclusion chromatography. Antitumor activity was evaluated against murine lymphoma L5178Y in BALB/c mice (6 × 104 cells i.p.), with a treatment oral dose of 25 mg/kg/day of each protein fraction, over a period of 15 days. Antioxidant activity was evaluated by the ABTS+ and ORAC-FL assays. Results Albumin, globulin and glutelin fractions from both cacao seed type were obtained by differential solubility extraction. Glutelins were the predominant fraction. In the albumin fraction, polypeptides of 42.3 and 8.5 kDa were found in native conditions, presumably in the form of two peptide chains of 21.5 kDa each one. The globulin fraction presented polypeptides of 86 and 57 kDa in unfermented cacao seed that produced the specific-cacao aroma precursors, and after fermentation the polypeptides were of 45 and 39 kDa. The glutelin fraction presented proteins >200 kDa and globulins components <100 KDa in lesser proportion. Regarding the semifermented-dry cacao seed, it was observed that the albumin fraction showed antitumoral activity, since it caused significant decreases (p < 0.05) in the ascetic fluid volume and packed cell volume, inhibiting cell growth in 59.98 ± 13.6% at 60% of the population; while the greatest antioxidant capacity due to free radical scavenging capacity was showed by the albumin and glutelin fraction in both methods assayed. Conclusion This study is the first report on the biological activity of semifermented-dry cacao protein fractions with their identification, supporting the traditional use of the plant. The albumin fraction showed antitumor and free radical scavenging capacity, however both activities were not correlated. The protein fractions could be considered as source of potential antitumor peptides.
Collapse
|
39
|
Sánchez-Mundo M, Bautista-Muñoz C, Jaramillo-Flores M. Characterization of the exopeptidase activity existing in Theobroma cacao L. during germination. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Voigt J, Frank R, Wöstemeyer J. The chaotrope-soluble glycoprotein GP1 is a constituent of the insoluble glycoprotein framework of the Chlamydomonas cell wall. FEMS Microbiol Lett 2009; 291:209-15. [PMID: 19146575 DOI: 10.1111/j.1574-6968.2008.01456.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chlamydomonas reinhardtii wild-type cells are surrounded by the insoluble cell wall component, a sac-like framework of cross-linked glycoproteins containing 22% hydroxyproline. The chaotrope-soluble cell wall glycoprotein GP1 is the only polypeptide with an even higher proportion of hydroxyproline (35%) occurring in vegetative C. reinhardtii cells. Mass spectrometric analyses of peptides released from the purified insoluble cell wall fraction by trypsin treatment and epitope analyses of polyclonal antibodies raised against different deglycosylation products of this particular wall fraction using 181 chemically synthesized GP1-derived pentadecapeptides revealed evidence that GP1 is indeed a constituent of the insoluble wall component.
Collapse
Affiliation(s)
- Jürgen Voigt
- Institute for Biochemistry, Charité, Paul Ehrlich Centre for Experimental Medicine, Berlin, Germany.
| | | | | |
Collapse
|