1
|
Issac Abraham SVP, Arumugam VR, Mary NI, Dharmadhas JS, Sundararaj R, Devanesan AA, Rajamanickam R, Veerapandian R, John Bosco JP, Danaraj J. Ocimum sanctum as a Source of Quorum Sensing Inhibitors to Combat Antibiotic Resistance of Human and Aquaculture Pathogens. Life (Basel) 2024; 14:785. [PMID: 39063540 PMCID: PMC11278316 DOI: 10.3390/life14070785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Biofilms play a decisive role in the infectious process and the development of antibiotic resistance. The establishment of bacterial biofilms is regulated by a signal-mediated cell-cell communication process called "quorum sensing" (QS). The identification of quorum sensing inhibitors (QSI) to mitigate the QS process may facilitate the development of novel treatment strategies for biofilm-based infections. In this study, the traditional medicinal plant Ocimum sanctum was screened for QS inhibitory potential. Sub-MICs of the extract significantly affected the secretion of EPS in Gram-negative human pathogens such as Escherichia coli, Pseudomonas aeruginosa PAO1, Proteus mirabilis, and Serratia marcescens, as well as aquaculture pathogens Vibrio harveyi, V. parahaemolyticus, and V. vulnificus, which render the bacteria more sensitive, leading to a loss of bacterial biomass from the substratum. The observed inhibitory activity of the O. sanctum extract might be attributed to the presence of eugenol, as evidenced through ultraviolet (UV)-visible, gas chromatography-mass spectroscopy (GC-MS), Fourier transformer infrared (FTIR) spectroscopy analyses, and computational studies. Additionally, the QSI potential of eugenol was corroborated through in vitro studies using the marker strain Chromobacterium violaceum.
Collapse
Affiliation(s)
| | - Veera Ravi Arumugam
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India; (V.R.A.); (N.I.M.)
| | - Nancy Immaculate Mary
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India; (V.R.A.); (N.I.M.)
| | - Jeba Sweetly Dharmadhas
- Department of Biochemistry and Biotechnology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India;
| | - Rajamanikandan Sundararaj
- Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India;
| | - Arul Ananth Devanesan
- Department of Biotechnology, The American College, Satellite Campus, Madurai 625 503, Tamil Nadu, India;
| | - Ramachandran Rajamanickam
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli 620 005, Tamil Nadu, India;
| | - Raja Veerapandian
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA;
| | - John Paul John Bosco
- Division of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India;
| | - Jeyapragash Danaraj
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India;
| |
Collapse
|
2
|
Bazaid AS, Alsolami A, Patel M, Khateb AM, Aldarhami A, Snoussi M, Almusheet SM, Qanash H. Antibiofilm, Antimicrobial, Anti-Quorum Sensing, and Antioxidant Activities of Saudi Sidr Honey: In Vitro and Molecular Docking Studies. Pharmaceutics 2023; 15:2177. [PMID: 37765148 PMCID: PMC10534861 DOI: 10.3390/pharmaceutics15092177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Sidr honey is a valuable source of bioactive compounds with promising biological properties. In the present study, antimicrobial, antioxidant, and anti-quorum sensing properties of Saudi Sidr honey were assessed, along with phytochemical analysis, via gas chromatography-mass spectrometry (GC-MS). In silico study was also carried out to study the drug-likeness properties of the identified compounds and to study their affinity with known target proteins assessed using molecular docking approach. The results showed that Saudi Sidr honey exhibited promising antibacterial activity, with MIC values ranging from 50 to 400 mg/mL and MBC values from 50 to >450 mg/mL. Interestingly, the Saudi Sidr honey was active against Candida auris and Candida neoformans, with an MIC value of about 500 mg/mL. Moreover, the Sidr honey showed important antioxidant activities (ABTS assay: IC50 5.41 ± 0.045 mg/mL; DPPH assay: IC50 7.70 ± 0.065 mg/mL) and β-carotene bleaching test results (IC50 ≥ 20 mg/mL). In addition, the Saudi Sidr honey was able to inhibit biofilm formation on glass slides at 1/2 MIC by 77.11% for Bacillus subtilis, 70.88% for Staphylococcus aureus, 61.79% for Escherichia coli, and 56.64% for Pseudomonas aeruginosa. Similarly, violacein production by Chromobacterium violaceum was reduced by about 56.63%, while the production of pyocyanin by P. aeruginosa was decreased to 46.27% at a low concentration of Saudi Sidr honey. ADMET properties showed that five identified compounds, namely, 1-cyclohexylimidazolidin-2-one, 3-Butyl-3-methylcyclohexanone, 4-butyl-3-methoxy-2-cyclo penten-1-one, 2,2,3,3-Tetramethyl cyclopropane carboxylic acid, and 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl showed promising drug-likeness properties. The compound 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl exhibited the highest binding energy against antimicrobial and antioxidant target proteins (1JIJ, 2VAM, 6B8A, 6F86, 2CDU, and 1OG5). Overall, the obtained results highlighted the promising potential of Saudi Sidr honey as a rich source of bioactive compounds that can be used as food preservatives and antimicrobial, antioxidant, and anti-quorum sensing molecules.
Collapse
Affiliation(s)
- Abdulrahman S. Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India;
| | - Aiah Mustafa Khateb
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah 21961, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 55476, Saudi Arabia;
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | | | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| |
Collapse
|
3
|
Mackin C, Dahiya D, Nigam PS. Honey as a Natural Nutraceutical: Its Combinational Therapeutic Strategies Applicable to Blood Infections-Septicemia, HIV, SARS-CoV-2, Malaria. Pharmaceuticals (Basel) 2023; 16:1154. [PMID: 37631069 PMCID: PMC10459786 DOI: 10.3390/ph16081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Honey is a natural substance that has existed alongside humanity since the time of antiquity, acting then as a source of nutrition, as well as a source of medicinal aid for people. Ancient civilizations from multiple nations of the world, from ancient China to ancient Greece and Egypt, utilized the supposed healing properties of honey to treat lacerations and wounds, as well as for internal pathologies such as intestinal disease. At present, honey has entered the modern scientific research program in search of novel antibiotics. In recent research, honey has demonstrated its potential use for static and/or cidal effects on microbial strains which are becoming resistant to chemical antibiotics. Additionally, the use of honey as an agent of treatment for more severe infections, namely blood infections pertaining to septicemia, HIV, and SARS-CoV-2, as well as parasitic infections such as malaria, have also been investigated in recent years. In this article, the literature has been reviewed on some of the therapeutic properties of natural nutraceutical honey, where it has been observed to act as a potential ameliorating agent; reducing the severity of such conditions that may amplify a disease, as well as reducing the progression of the disease and its symptoms.
Collapse
Affiliation(s)
- Caoimhin Mackin
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | | | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
4
|
Russo N, Di Rosa AR, Pino A, Mazzeo G, Liotta L, Caggia C, Randazzo CL. Assessment of sensory properties and in vitro antimicrobial activity of monofloral Sicilian honey. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Yi S, Zhang G, Liu M, Yu W, Cheng G, Luo L, Ning F. Citrus Honey Ameliorates Liver Disease and Restores Gut Microbiota in Alcohol-Feeding Mice. Nutrients 2023; 15:nu15051078. [PMID: 36904078 PMCID: PMC10005585 DOI: 10.3390/nu15051078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Citrus honey (CH) is rich in nutrients that have a wide variety of biological functions, such as antibacterial, anti-inflammatory, and antioxidant activities, and which demonstrate therapeutic properties, such as anti-cancer and wound-healing abilities. However, the effects of CH on alcohol-related liver disease (ALD) and the intestinal microbiota remain unknown. This study aimed to determine the alleviating effects of CH on ALD and its regulatory effects on the gut microbiota in mice. In total, 26 metabolites were identified and quantified in CH, and the results suggested that the primary metabolites were abscisic acid, 3,4-dimethoxycinnamic acid, rutin, and two markers of CH, hesperetin and hesperidin. CH lowered the levels of aspartate aminotransferase, glutamate aminotransferase, and alcohol-induced hepatic edema. CH could promote the proliferation of Bacteroidetes while reducing the abundance of Firmicutes. Additionally, CH also showed some inhibitory effects on the growth of Campylobacterota and Turicibacter. CH enhanced the secretion of short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, butyric acid, and valeric acid. Given its alleviating functions in liver tissue damage and its regulatory effects on the gut microbiota and SCFAs, CH could be a promising candidate for the therapeutic treatment of ALD.
Collapse
Affiliation(s)
- Shengxiang Yi
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Mingyan Liu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Wenjie Yu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Guohua Cheng
- Agriculture and Rural Affairs Bureau of Nanfeng County, Fuzhou 344500, China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (L.L.); (F.N.); Tel./Fax: +86-0791-83969519 (L.L.)
| | - Fangjian Ning
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (L.L.); (F.N.); Tel./Fax: +86-0791-83969519 (L.L.)
| |
Collapse
|
6
|
Anti-Inflammatory and Antibacterial Effects and Mode of Action of Greek Arbutus, Chestnut, and Fir Honey in Mouse Models of Inflammation and Sepsis. Microorganisms 2022; 10:microorganisms10122374. [PMID: 36557628 PMCID: PMC9784341 DOI: 10.3390/microorganisms10122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Honey has been shown to possess anti-inflammatory and bactericidal properties that may be useful for the prevention and treatment of infections as well as of acute and chronic inflammatory diseases. The antimicrobial potency of honey could be attributed to its physicochemical characteristics combined with the presence of certain compounds, such as hydrogen peroxide and polyphenols. Honey's bacteriostatic or bactericidal capacity varies depending on its composition and the bacterial type of each infection. Nevertheless, not all honey samples possess anti-inflammatory or antibacterial properties and their mechanism of action has not been clearly elucidated. Objectives: We therefore investigated the anti-inflammatory properties of three different honey samples that derived from different geographical areas of Greece and different botanical origins, namely, arbutus, chestnut, and fir; they were compared to manuka honey, previously known for its anti-inflammatory and antibacterial activity. Materials and Methods: To test the anti-inflammatory activity of the different samples, we utilized the in vivo model of LPS-driven inflammation, which induces septic shock without the presence of pathogens. To evaluate the antibacterial action of the same honey preparations, we utilized the cecal-slurry-induced peritonitis model in mice. Since acute inflammation and sepsis reduce the biotransformation capacity of the liver, the expression of key enzymes in the process was also measured. Results: The administration of all Greek honey samples to LPS-stimulated mice revealed a potent anti-inflammatory activity by suppressing the TNFα serum levels and the expression of TNFα and iNOS in the liver at levels comparable to those of the manuka honey, but they had no effect on IL-6 or IL-1β. It was shown that the LPS-induced suppression of CYP1A1 in the liver was reversed by Epirus and Crete fir honey, while, correspondingly, the suppression of CYP2B10 in the liver was reversed by Evros chestnut and Epirus fir honey. The effect of the same honey samples in polymicrobial peritonitis in mice was also evaluated. Even though no effect was observed on the disease severity or peritoneal bacterial load, the bacterial load in the liver was reduced in mice treated with Evros chestnut, Epiros fir, and Crete fir, while the bacterial load in the lungs was reduced in Epirus arbutus, Crete fir, and manuka honey-treated mice. Conclusion: Our findings suggest that these specific Greek honey samples possess distinct anti-inflammatory and antibacterial properties, as evidenced by the reduced production of pro-inflammatory mediators and the impaired translocation of bacteria to tissues in septic mice. Their mode of action was comparable or more potent to those of manuka honey.
Collapse
|
7
|
Linalool reduces the virulence of Pseudomonas syringae pv. tomato DC 3000 by modulating the PsyI/PsyR quorum-sensing system. Microb Pathog 2022; 173:105884. [DOI: 10.1016/j.micpath.2022.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
|
8
|
Akbarian M, Chen SH, Kianpour M, Farjadian F, Tayebi L, Uversky VN. A review on biofilms and the currently available antibiofilm approaches: Matrix-destabilizing hydrolases and anti-bacterial peptides as promising candidates for the food industries. Int J Biol Macromol 2022; 219:1163-1179. [PMID: 36058386 DOI: 10.1016/j.ijbiomac.2022.08.192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Biofilms are communities of microorganisms that can be harmful and/or beneficial, depending on location and cell content. Since in most cases (such as the formation of biofilms in laboratory/medicinal equipment, water pipes, high humidity-placed structures, and the food packaging machinery) these bacterial and fungal communities are troublesome, researchers in various fields are trying to find a promising strategy to destroy or slow down their formation. In general, anti-biofilm strategies are divided into the plant-based and non-plant categories, with the latter including nanoparticles, bacteriophages, enzymes, surfactants, active peptides and free fatty acids. In most cases, using a single strategy will not be sufficient to eliminate biofilm, and consequently, two or more strategies will inevitably be used to deal with this unwanted phenomenon. According to the analysis of potential biofilm inhibition strategies, the best option for the food industry would be the use of hydrolase enzymes and peptides extracted from natural sources. This article represents a systematic review of the previous efforts made in these directions.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Maryam Kianpour
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, Russia.
| |
Collapse
|
9
|
Hewett SR, Crabtrey SD, Dodson EE, Rieth CA, Tarkka RM, Naylor K. Both Manuka and Non-Manuka Honey Types Inhibit Antibiotic Resistant Wound-Infecting Bacteria. Antibiotics (Basel) 2022; 11:1132. [PMID: 36010001 PMCID: PMC9405051 DOI: 10.3390/antibiotics11081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Postoperative infections are a major concern in United States hospitals, accounting for roughly 20% of all hospital-acquired infections yearly. Wound-infecting bacteria, in particular, have a high rate of drug resistance (up to 65%), creating life-threatening complications. Manuka honey, native to New Zealand, has been FDA-approved for wound treatment in the United States after studies demonstrated its ability to inhibit a variety of bacterial species and facilitate wound healing. The aim of this study was to identify alternative (non-manuka) honey types that can be specifically used against antibiotic resistance bacteria in wound infections. We utilized a honey-plate method to measure the minimum inhibitory concentration (MIC) of honey to avoid the limitations of agar diffusion, where large, nonpolar polyphenols (which will not diffuse efficiently) play an important role in bioactivity. This study demonstrated that there are several alternative (non-manuka) honey types, particularly fresh raw Arkansas wildflower honeys, that comparably inhibit the growth of the antibiotic-resistant bacterial species specifically implicated in wound infections. Concentrations of 10-30% honey inhibited the growth of the highly antibiotic-resistant organisms colloquially referred to as "superbugs", which the WHO declared in 2017 to be in critical need of new antibiotics. There was no statistical difference between manuka honey and fresh summer Arkansas wildflower honey in overall bacterial inhibition. These results could transform wound care in the United States, where manuka honey can be expensive and difficult to obtain and where antibiotic resistance remains a troubling concern for wound treatment.
Collapse
Affiliation(s)
- Samantha R. Hewett
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | | | - Esther E. Dodson
- Department of Chemistry, University of Central Arkansas, Conway, AR 72035, USA
| | - C. Alexander Rieth
- Department of Chemistry, University of Central Arkansas, Conway, AR 72035, USA
| | - Richard M. Tarkka
- Department of Chemistry, University of Central Arkansas, Conway, AR 72035, USA
| | - Kari Naylor
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| |
Collapse
|
10
|
Scepankova H, Combarros-Fuertes P, Fresno JM, Tornadijo ME, Dias MS, Pinto CA, Saraiva JA, Estevinho LM. Role of Honey in Advanced Wound Care. Molecules 2021; 26:4784. [PMID: 34443372 PMCID: PMC8398244 DOI: 10.3390/molecules26164784] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Honey is a natural product rich in several phenolic compounds, enzymes, and sugars with antioxidant, anticarcinogenic, anti-inflammatory, and antimicrobial potential. Indeed, the development of honey-based adhesives for wound care and other biomedical applications are topics being widely investigated over the years. Some of the advantages of the use of honey for wound-healing solutions are the acceleration of dermal repair and epithelialization, angiogenesis promotion, immune response promotion and the reduction in healing-related infections with pathogenic microorganisms. This paper reviews the main role of honey on the development of wound-healing-based applications, the main compounds responsible for the healing capacity, how the honey origin can influence the healing properties, also highlighting promising results in in vitro and in vivo trials. The challenges in the use of honey for wound healing are also covered and discussed. The delivery methodology (direct application, incorporated in fibrous membranes and hydrogels) is also presented and discussed.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Patricia Combarros-Fuertes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - José María Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - María Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Miguel Sousa Dias
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal;
| | - Carlos A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Letícia M. Estevinho
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal;
| |
Collapse
|
11
|
Bischofberger AM, Pfrunder Cardozo KR, Baumgartner M, Hall AR. Evolution of honey resistance in experimental populations of bacteria depends on the type of honey and has no major side effects for antibiotic susceptibility. Evol Appl 2021; 14:1314-1327. [PMID: 34025770 PMCID: PMC8127710 DOI: 10.1111/eva.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023] Open
Abstract
With rising antibiotic resistance, alternative treatments for communicable diseases are increasingly relevant. One possible alternative for some types of infections is honey, used in wound care since before 2000 BCE and more recently in licensed, medical-grade products. However, it is unclear whether medical application of honey results in the evolution of bacterial honey resistance and whether this has collateral effects on other bacterial traits such as antibiotic resistance. Here, we used single-step screening assays and serial transfer at increasing concentrations to isolate honey-resistant mutants of Escherichia coli. We only detected bacteria with consistently increased resistance to the honey they evolved in for two of the four tested honey products, and the observed increases were small (maximum twofold increase in IC90). Genomic sequencing and experiments with single-gene knockouts showed a key mechanism by which bacteria increased their honey resistance was by mutating genes involved in detoxifying methylglyoxal, which contributes to the antibacterial activity of Leptospermum honeys. Crucially, we found no evidence that honey adaptation conferred cross-resistance or collateral sensitivity against nine antibiotics from six different classes. These results reveal constraints on bacterial adaptation to different types of honey, improving our ability to predict downstream consequences of wider honey application in medicine.
Collapse
Affiliation(s)
| | | | | | - Alex R. Hall
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| |
Collapse
|
12
|
Seraglio SKT, Schulz M, Brugnerotto P, Silva B, Gonzaga LV, Fett R, Costa ACO. Quality, composition and health-protective properties of citrus honey: A review. Food Res Int 2021; 143:110268. [PMID: 33992369 DOI: 10.1016/j.foodres.2021.110268] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Citrus honey is one of the most important monofloral honeys produced and consumed worldwide. This honey has pleasant sensorial characteristics, which include light color and typical aroma and flavor. Besides that, several constituents such as minerals, phenolic and volatile compounds, amino acids, sugars, enzymes, vitamins, methylglyoxal and organic acids are found in citrus honey. Moreover, potential biological properties have been associated with citrus honey. All these factors make it highly desired by consumers, increasing its market value, which can stimulates the practice of fraud. Also, citrus honey is susceptible to contamination and to inadequate processing. All these factors can compromise the quality, safety and authenticity of citrus honey. In this sense, this review aims to update and to discuss, for the first time, the data available in the literature about the physicochemical and the sensorial characteristics, composition, health properties, contamination, authenticity and adulteration of citrus honey. With this background, we aim to provide data that can guide future researches related to this honey.
Collapse
Affiliation(s)
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
13
|
Combarros-Fuertes P, Fresno JM, Estevinho MM, Sousa-Pimenta M, Tornadijo ME, Estevinho LM. Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria? Antibiotics (Basel) 2020; 9:antibiotics9110774. [PMID: 33158063 PMCID: PMC7694208 DOI: 10.3390/antibiotics9110774] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Antibacterial resistance has become a challenging situation worldwide. The increasing emergence of multidrug-resistant pathogens stresses the need for developing alternative or complementary antimicrobial strategies, which has led the scientific community to study substances, formulas or active ingredients used before the antibiotic era. Honey has been traditionally used not only as a food, but also with therapeutic purposes, especially for the topical treatment of chronic-infected wounds. The intrinsic characteristics and the complex composition of honey, in which different substances with antimicrobial properties are included, make it an antimicrobial agent with multiple and different target sites in the fight against bacteria. This, together with the difficulty to develop honey-resistance, indicates that it could become an effective alternative in the treatment of antibiotic-resistant bacteria, against which honey has already shown to be effective. Despite all of these assets, honey possesses some limitations, and has to fulfill a number of requirements in order to be used for medical purposes.
Collapse
Affiliation(s)
- Patricia Combarros-Fuertes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - José M. Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mário Sousa-Pimenta
- Department of Onco-Hematology, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal;
| | - M. Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Leticia M. Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
- Correspondence: ; Tel.: +351-273303342
| |
Collapse
|
14
|
Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. mSystems 2020; 5:5/3/e00106-20. [PMID: 32606022 PMCID: PMC7329319 DOI: 10.1128/msystems.00106-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria.
Collapse
|
15
|
Synthesis, structural characterization and biological evaluation of novel mixed-ligand Co(II) complexes as quorum sensing inhibitory agent. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Quorum quenching potential of Enterococcus faecium QQ12 isolated from gastrointestinal tract of Oreochromis niloticus and its application as a probiotic for the control of Aeromonas hydrophila infection in goldfish Carassius auratus (Linnaeus 1758). Braz J Microbiol 2020; 51:1333-1343. [PMID: 31955395 DOI: 10.1007/s42770-020-00230-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Quorum quenching (QQ), the obstruction of quorum sensing, is the most attractive way to break down the N-acyl-homoserine lactones (AHL) molecules. This work was focused at isolating AHL degrading bacteria from gastrointestinal tract of Oreochromis niloticus, with abilities appropriate for use as probiotic in aquaculture. The presence of an autoinducer inactivation (aiiA) homolog gene and AHL inactivation assay showed that Enterococcus faecium QQ12, which was one among the 20 isolates, could rapidly degrade synthetic C6-HSL in vitro and hampered violacein production by Chromobacterium violaceum. It had excellent biodegrading ability of natural N-AHL produced by Aeromonas hydrophila, suggesting that it can be used as a potential quencher bacterium for disrupting the virulence of A. hydrophila. It was susceptible to all the five antibiotics tried out. The isolate grew well at pH 3.0-7.0, was resistant to high level of bile salts (0-0.9%) and 0.5% of phenol. QQ12 also exhibited high degree of auto-aggregation and co-aggregation, confirming that it possessed good probiotic attributes. Goldfish fed diet incorporated with 108 and 1010 CFU g-1 of the QQ12 for 30 days showed 76.66-86.66% survival when challenged with A. hydrophila. The study indicates that Enterococcus faecium QQ12 could be used as a non-antibiotic feed additive in aquaculture to control bacterial diseases.
Collapse
|
17
|
Hamidi S, Tüfekci EF, Demirbaş N, Ünver Y, Kılıç AO. Bazı Sefalosporanik Asit, Siprofloksasin, Norfloksasin ve Penicillanik Asit Türevlerinin Antimikrobiyal ve Anti-Quorum Sensing Özelliklerinin Araştırılması. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2020. [DOI: 10.30934/kusbed.604829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Wang W, Huang X, Yang H, Niu X, Li D, Yang C, Li L, Zou L, Qiu Z, Wu S, Li Y. Antibacterial Activity and Anti-Quorum Sensing Mediated Phenotype in Response to Essential Oil from Melaleuca bracteata Leaves. Int J Mol Sci 2019; 20:E5696. [PMID: 31739398 PMCID: PMC6887945 DOI: 10.3390/ijms20225696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
The prominent antibacterial and quorum sensing (QS) inhibition activity of aromatic plants can be used as a novel intervention strategy for attenuating bacterial pathogenicity. In the present work, a total of 29 chemical components were identified in the essential oil (EO) of Melaleuca bracteata leaves by gas chromatography-mass spectrometry (GC-MS). The principal component was methyleugenol, followed by methyl trans-cinnamate, with relative contents of 90.46% and 4.25%, respectively. Meanwhile, the antibacterial activity and the QS inhibitory activity of M. bracteata EO were first evaluated here. Antibacterial activity assay and MIC detection against seven pathogens (Dickeya dadantii Onc5, Staphylococcus aureus ATCC25933, Pseudomonas spp., Escherichia coli ATCC25922, Serratia marcescens MG1, Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum ATCC31532) demonstrated that S. aureus ATCC25933 and S. marcescens MG1 had the higher sensitivity to M. bracteata EO, while P. aeruginosa PAO1 displayed the strongest resistance to M. bracteata EO. An anti-QS (anti-quorum sensing) assay revealed that at sub-minimal inhibitory concentrations (sub-MICs), M. bracteata EO strongly interfered with the phenotype, including violacein production, biofilm biomass, and swarming motility, as well as N-hexanoyl-L-homoserine lactone (C6-HSL) production (i.e., a signaling molecule in C. violaceum ATCC31532) of C. violaceum. Detection of C6-HSL indicated that M. bracteata EO was capable of not only inhibiting C6-HSL production in C. violaceum, but also degrading the C6-HSL. Importantly, changes of exogenous C6-HSL production in C. violaceum CV026 revealed a possible interaction between M. bracteata EO and a regulatory protein (cviR). Additionally, quantitative real-time polymerase chain reaction (RT-qPCR) analysis demonstrated that the expression of QS-related genes (cviI, cviR, vioABCDE, hmsNR, lasA-B, pilE1, pilE3, and hcnB) was significantly suppressed. Conclusively, these results indicated that M. bracteata EO can act as a potential antibacterial agent and QS inhibitor (QSI) against pathogens, preventing and controlling bacterial contamination.
Collapse
Affiliation(s)
- Wenting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Xiaoqin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Huixiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Xianqian Niu
- Fujian Institute of Tropical Crops, Zhangzhou 363001, China;
| | - Dongxiang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Chao Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Liang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Liting Zou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Ziwen Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| |
Collapse
|
19
|
The role of hydrogen peroxide in the antibacterial activity of different floral honeys. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03393-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Martinotti S, Bucekova M, Majtan J, Ranzato E. Honey: An Effective Regenerative Medicine Product in Wound Management. Curr Med Chem 2019; 26:5230-5240. [DOI: 10.2174/0929867325666180510141824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
:Honey has successfully been used in the treatment of a broad spectrum of injuries including burns and non-healing wounds. It acts as an antibacterial and anti-biofilm agent with anti/pro-inflammatory properties. However, besides these traditional properties, recent evidence suggests that honey is also an immunomodulator in wound healing and contains several bee and plant-derived components that may speed up wound healing and tissue regeneration process. Identifying their exact mechanism of action allows better understanding of honey healing properties and promotes its wider translation into clinical practice.:This review will discuss the physiological basis for the use of honey in wound management, its current clinical uses, as well as the potential role of honey bioactive compounds in dermal regenerative medicine and tissue re-modeling.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, Alessandria, 15121, Italy
| | - Marcela Bucekova
- Laboratory of Apidology and Apitherapy, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Piazza Sant'Eusebio 5, Vercelli, 13100, Italy
| |
Collapse
|
21
|
Lovato A, Pignatti A, Vitulo N, Vandelle E, Polverari A. Inhibition of Virulence-Related Traits in Pseudomonas syringae pv. actinidiae by Gunpowder Green Tea Extracts. Front Microbiol 2019; 10:2362. [PMID: 31681224 PMCID: PMC6797950 DOI: 10.3389/fmicb.2019.02362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Green tea is a widely-consumed healthy drink produced from the leaves of Camellia sinensis. It is renowned for its antioxidant and anticarcinogenic properties, but also displays significant antimicrobial activity against numerous human pathogens. Here we analyzed the antimicrobial activity of Gunpowder green tea against Pseudomonas syringae pv. actinidiae (Psa), the agent that causes kiwifruit bacterial canker. At the phenotypic level, tea extracts strongly inhibited Psa growth and swimming motility, suggesting it could reduce Psa epiphytic survival during plant colonization. The loss of bacterial virulence-related traits following treatment with tea extracts was also investigated by large-scale transcriptome analysis, which confirmed the in vitro phenotypes and revealed the induction of adaptive responses in the treated bacteria allowing them to cope with iron deficiency and oxidative stress. Such molecular changes may account for the ability of Gunpowder green tea to protect kiwifruit against Psa infection.
Collapse
Affiliation(s)
| | | | | | - Elodie Vandelle
- Biotechnology Department, University of Verona, Verona, Italy
| | | |
Collapse
|
22
|
Cooper R, Kirketerp-Møller K. Non-antibiotic antimicrobial interventions and antimicrobial stewardship in wound care. J Wound Care 2019; 27:355-377. [PMID: 29883284 DOI: 10.12968/jowc.2018.27.6.355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Control of wound infection today relies largely on antibiotics, but the continual emergence of antibiotic-resistant microorganisms threatens a return to the pre-antibiotic era when physicians used antiseptics to prevent and manage infection. Some of those antiseptics are still used today, and others have become available. A diverse variety of non-antibiotic antimicrobial interventions are found on modern formularies. Unlike the mode of action of antibiotics, which affect specific cellular target sites of pathogens, many non-antibiotic antimicrobials affect multiple cellular target sites in a non-specific way. Although this reduces the likelihood of selecting for resistant strains of microorganisms, some have emerged and cross-resistance between antibiotics and antiseptics has been detected. With the prospect of a post-antibiotic era looming, ways to maintain and extend our antimicrobial armamentarium must be found. In this narrative review, current and emerging non-antibiotic antimicrobial strategies will be considered and the need for antimicrobial stewardship in wound care will be explained.
Collapse
Affiliation(s)
- Rose Cooper
- Professor of Microbiology, Department of Biomedical Science, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, UK
| | - Klaus Kirketerp-Møller
- Orthopaedic Surgeon, Copenhagen Wound Healing Center, Department of Dermatology and Wounds, Bispebjerg University Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV
| |
Collapse
|
23
|
Cosa S, Chaudhary SK, Chen W, Combrinck S, Viljoen A. Exploring Common Culinary Herbs and Spices as Potential Anti-Quorum Sensing Agents. Nutrients 2019; 11:E739. [PMID: 30934945 PMCID: PMC6521156 DOI: 10.3390/nu11040739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/11/2023] Open
Abstract
Quorum sensing controls bacterial pathogenesis and virulence; hence, interrupting this system renders pathogenic bacteria non-virulent, and presents a novel treatment for various bacterial infections. In the search for novel anti-quorum sensing (AQS) compounds, 14 common culinary herbs and spices were screened for potential antipathogenicity activity against Chromobacterium violaceum ATCC 12472. Extracts of Glycyrrhiza glabra (liquorice), Apium graveolens (celery), Capsicum annuum (cayenne pepper) and Syzygium anisatum (aniseed) demonstrated good AQS potential, yielding opaque halo zones ranging from 12⁻19 mm diameter at sub-minimum inhibitory concentrations (0.350⁻4.00 mg/mL). For the same species, the percentage reduction in violacein production ranged from 56.4 to 97.3%. Zones with violacein inhibitory effects were evident in a celery extract analysed using high performance thin layer chromatography-bio-autography. The major active compound was isolated from celery using preparative-high performance liquid chromatography-mass spectrometry and identified using gas chromatography-mass spectrometry (GC-MS) as 3-n-butyl-4,5-dihydrophthalide (sedanenolide). Potent opaque zones of inhibition observed on the HPTLC-bio-autography plate seeded with C. violaceum confirmed that sedanenolide was probably largely responsible for the AQS activity of celery. The bacteriocidal properties of many herbs and spices are reported. This study, however, was focussed on AQS activity, and may serve as initial scientific validation for the anti-infective properties ascribed to several culinary herbs and spices.
Collapse
Affiliation(s)
- Sekelwa Cosa
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Sushil Kumar Chaudhary
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
- SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
- SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
24
|
Vadakkan K, Choudhury AA, Gunasekaran R, Hemapriya J, Vijayanand S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J Genet Eng Biotechnol 2018; 16:239-252. [PMID: 30733731 PMCID: PMC6353778 DOI: 10.1016/j.jgeb.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Abbas Alam Choudhury
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Ramya Gunasekaran
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | | | - Selvaraj Vijayanand
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| |
Collapse
|
25
|
Kiymaci ME, Altanlar N, Gumustas M, Ozkan SA, Akin A. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain's organic acid. Microb Pathog 2018; 121:190-197. [DOI: 10.1016/j.micpath.2018.05.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
|
26
|
De Vincenti L, Glasenapp Y, Cattò C, Villa F, Cappitelli F, Papenbrock J. Hindering the formation and promoting the dispersion of medical biofilms: non-lethal effects of seagrass extracts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:168. [PMID: 29843708 PMCID: PMC5975390 DOI: 10.1186/s12906-018-2232-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/15/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Biofilms have great significance in healthcare-associated infections owing to their inherent tolerance and resistance to antimicrobial therapies. New approaches to prevent and treat unwanted biofilms are urgently required. To this end, three seagrass species (Enhalus acoroides, Halophila ovalis and Halodule pinifolia) collected in Vietnam and in India were investigated for their effects in mediating non-lethal interactions on sessile bacterial (Escherichia coli) and fungal (Candida albicans) cultures. The present study was focused on anti-biofilm activities of seagrass extracts, without killing cells. METHODS Methanolic extracts were characterized, and major compounds were identified by MS/MS analysis. The antibiofilm properties of the seagrass extracts were tested at sub-lethal concentrations by using microtiter plate adhesion assay. The performance of the most promising extract was further investigated in elegant bioreactors to reproduce mature biofilms both at the solid/liquid and the solid/air interfaces. Dispersion and bioluminescent assays were carried out to decipher the mode of action of the bioactive extract. RESULTS It was shown that up to 100 ppm of crude extracts did not adversely affect microbial growth, nor do they act as a carbon and energy source for the selected microorganisms. Seagrass extracts appear to be more effective in deterring microbial adhesion on hydrophobic surfaces than on hydrophilic. The results revealed that non-lethal concentrations of E. acoroides leaf extract: i) reduce bacterial and fungal coverage by 60.9 and 73.9%, respectively; ii) affect bacterial biofilm maturation and promote dispersion, up to 70%, in fungal biofilm; iii) increase luminescence in Vibrio harveyi by 25.8%. The characterization of methanolic extracts showed the unique profile of the E. acoroides leaf extract. CONCLUSIONS E. acoroides leaf extract proved to be the most promising extract among those tested. Indeed, the selected non-lethal concentrations of E. acoroides leaf extract were found to exert an antibiofilm effect on C. albicans and E. coli biofilm in the first phase of biofilm genesis, opening up the possibility of developing preventive strategies to hinder the adhesion of microbial cells to surfaces. The leaf extract also affected the dispersion and maturation steps in C. albicans and E. coli respectively, suggesting an important role in cell signaling processes.
Collapse
Affiliation(s)
- Luca De Vincenti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Yvana Glasenapp
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| | - Cristina Cattò
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| |
Collapse
|
27
|
Abstract
BACKGROUND The development of bacterial resistance to antibiotics has made it more difficult and expensive to treat infections. Honey is getting worldwide attention as a topical therapeutic agent for wound infections and potential future candidate for systemic infections. OBJECTIVES The purpose of this review was to summarise different antibacterial bio-active compounds in honey, their synergistic interaction and their clinical implications in topical and systemic infections. In addition, contemporary testing methods for evaluating peroxide and non-peroxide antibacterial activity of honey were also critically appraised. DESIGN MEDLINE, EMBASE, Cochrane Library, Pub Med, reference lists and databases were used to review the literature. RESULTS Honey contains several unique antibacterial components. These components are believed to act on diverse bacterial targets, are broad spectrum, operate synergistically, prevent biofilm formation, and decrease production of virulence factors. Moreover, honey has the ability to block bacterial communication (quorum sensing), and therefore, it is unlikely that bacteria develop resistance against honey. Bacterial resistance against honey has not been documented so far. Unlike conventional antibiotics, honey only targets pathogenic bacteria without disturbing the growth of normal gastrointestinal flora when taken orally. It also contains prebiotics, probiotics, and zinc and enhances the growth of beneficial gut flora. The presence of such plethora of antibacterial properties in one product makes it a promising candidate not only in wound infections but also in systemic and particularly for gastrointestinal infections. Agar diffusion assay, being used for evaluating antibacterial activity of honey, is not the most appropriate and sensitive assay as it only detects non-peroxide activity when present at a higher level. Therefore, there is a need to develop more sensitive techniques that may be capable of detecting and evaluating different important components in honey as well as their synergistic interaction. CONCLUSIONS Keeping in view the current guidelines for treatment of diarrhea, honey is considered one of the potential candidates for treatment of diarrhea because it contains a natural combination of probiotics, prebiotics, and zinc. Therefore, it would be worthwhile if such a combination is tested in RCTs for treatment of diarrhea.
Collapse
Affiliation(s)
- Muhammad Barkaat Hussain
- Department of Microbiology, Faculty of Medicine, Rabigh Medical College, King Abdul Aziz University , Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Miguel MG, Antunes MD, Faleiro ML. Honey as a Complementary Medicine. INTEGRATIVE MEDICINE INSIGHTS 2017; 12:1178633717702869. [PMID: 28469409 PMCID: PMC5406168 DOI: 10.1177/1178633717702869] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/19/2017] [Indexed: 12/13/2022]
Abstract
The beneficial effects of honey on human health have long been recognized. Today, many of those positive effects have been studied to elucidate its mode of action. This review briefly summarizes the best studied features of honey, highlighting it as an appealing alternative medicine. In these reports, the health benefits of honey range from antioxidant, immunomodulatory, and anti-inflammatory activity to anticancer action, metabolic and cardiovascular benefits, prebiotic properties, human pathogen control, and antiviral activity. These studies also support that the honey's biological activity is mainly dependent on its floral or geographic origin. In addition, some promising synergies between honey and antibiotics have been found, as well as some antiviral properties that require further investigation. Altogether, these studies show that honey is effectively a nutraceutical foodstuff.
Collapse
Affiliation(s)
- MG Miguel
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - MD Antunes
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
- CEOT, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - ML Faleiro
- CBMR, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
29
|
Prateeksha, Singh BR, Shoeb M, Sharma S, Naqvi AH, Gupta VK, Singh BN. Scaffold of Selenium Nanovectors and Honey Phytochemicals for Inhibition of Pseudomonas aeruginosa Quorum Sensing and Biofilm Formation. Front Cell Infect Microbiol 2017; 7:93. [PMID: 28386534 PMCID: PMC5362927 DOI: 10.3389/fcimb.2017.00093] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
Honey is an excellent source of polyphenolic compounds that are effective in attenuating quorum sensing (QS), a chemical process of cell-to-cell communication system used by the opportunistic pathogen Pseudomonas aeruginosa to regulate virulence and biofilm formation. However, lower water solubility and inadequate bioavailability remains major concerns of these therapeutic polyphenols. Its therapeutic index can be improved by using nano-carrier systems to target QS signaling potently. In the present study, we fabricated a unique drug delivery system comprising selenium nanoparticles (SeNPs; non-viral vectors) and polyphenols of honey (HP) for enhancement of anti-QS activity of HP against P. aeruginosa PAO1. The developed selenium nano-scaffold showed superior anti-QS activity, anti-biofilm efficacy, and anti-virulence potential in both in-vitro and in-vivo over its individual components, SeNPs and HP. LasR is inhibited by selenium nano-scaffold in-vitro. Using computational molecular docking studies, we have also demonstrated that the anti-virulence activity of selenium nano-scaffold is reliant on molecular binding that occurs between HP and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Our preliminary investigations with selenium-based nano-carriers hold significant promise to improve anti-virulence effectiveness of phytochemicals by enhancing effective intracellular delivery.
Collapse
Affiliation(s)
- Prateeksha
- Pharmacognosy and Ethnopharmacology Division, Herbal Nanobiotechnology Lab, CSIR-National Botanical Research InstituteLucknow, India
| | - Braj R. Singh
- Centre of Excellence in Materials Science (Nanomaterials), Z. H. College of Engineering and Technology, Aligarh Muslim UniversityAligarh, India
- TERI-Deakin Nanobiotechnology Centre, The Energy Research InstituteNew Delhi, India
| | - M. Shoeb
- Centre of Excellence in Materials Science (Nanomaterials), Z. H. College of Engineering and Technology, Aligarh Muslim UniversityAligarh, India
- TERI-Deakin Nanobiotechnology Centre, The Energy Research InstituteNew Delhi, India
| | - S. Sharma
- Pharmacognosy and Ethnopharmacology Division, Herbal Nanobiotechnology Lab, CSIR-National Botanical Research InstituteLucknow, India
| | - A. H. Naqvi
- Centre of Excellence in Materials Science (Nanomaterials), Z. H. College of Engineering and Technology, Aligarh Muslim UniversityAligarh, India
- TERI-Deakin Nanobiotechnology Centre, The Energy Research InstituteNew Delhi, India
| | - Vijai K. Gupta
- Molecular Glyco-Biotechnology Group, Discipline of Biochemistry, School of Natural Sciences, NUI GalwayGalway, Ireland
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of TechnologyTallinn, Estonia
| | - Brahma N. Singh
- Pharmacognosy and Ethnopharmacology Division, Herbal Nanobiotechnology Lab, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
30
|
|
31
|
Cokcetin NN, Pappalardo M, Campbell LT, Brooks P, Carter DA, Blair SE, Harry EJ. The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels. PLoS One 2016; 11:e0167780. [PMID: 28030589 PMCID: PMC5193333 DOI: 10.1371/journal.pone.0167780] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/21/2016] [Indexed: 01/10/2023] Open
Abstract
Most commercially available therapeutic honey is derived from flowering Leptospermum scoparium (manuka) plants from New Zealand. Australia has more than 80 Leptospermum species, and limited research to date has found at least some produce honey with high non-peroxide antibacterial activity (NPA) similar to New Zealand manuka, suggesting Australia may have a ready supply of medical-grade honey. The activity of manuka honey is largely due to the presence of methylglyoxal (MGO), which is produced non-enzymatically from dihydroxyacetone (DHA) present in manuka nectar. The aims of the current study were to chemically quantify the compounds contributing to antibacterial activity in a collection of Australian Leptospermum honeys, to assess the relationship between MGO and NPA in these samples, and to determine whether NPA changes during honey storage. Eighty different Leptospermum honey samples were analysed, and therapeutically useful NPA was seen in samples derived from species including L. liversidgei and L. polygalifolium. Exceptionally high levels of up to 1100 mg/kg MGO were present in L. polygalifolium honey samples sourced from the Northern Rivers region in NSW and Byfield, QLD, with considerable diversity among samples. There was a strong positive relationship between NPA and MGO concentration, and DHA was present in all of the active honey samples, indicating a potential for ongoing conversion to MGO. NPA was stable, with most samples showing little change following seven years of storage in the dark at 4°C. This study demonstrates the potential for Australian Leptospermum honey as a wound care product, and argues for an extension of this analysis to other Leptospermum species.
Collapse
Affiliation(s)
- Nural N. Cokcetin
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew Pappalardo
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
- University of the Sunshine Coast, Maroochydore, QLD, Australia
| | | | - Peter Brooks
- University of the Sunshine Coast, Maroochydore, QLD, Australia
| | | | - Shona E. Blair
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Elizabeth J. Harry
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
32
|
Affiliation(s)
- R Cooper
- Professor of Microbiology, Centre for Biomedical, Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff
| |
Collapse
|
33
|
Horniackova M, Bucekova M, Valachova I, Majtan J. Effect of gamma radiation on the antibacterial and antibiofilm activity of honeydew honey. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2725-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
RODRIGUES AC, OLIVEIRA BDD, SILVA ERD, SACRAMENTO NTB, BERTOLDI MC, PINTO UM. Anti-quorum sensing activity of phenolic extract from Eugenia brasiliensis (Brazilian cherry). FOOD SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1590/1678-457x.0089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Laverty G, McCloskey AP, Gorman SP, Gilmore BF. Anti-biofilm activity of ultrashort cinnamic acid peptide derivatives against medical device-related pathogens. J Pept Sci 2015; 21:770-8. [PMID: 26310860 DOI: 10.1002/psc.2805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 11/11/2022]
Abstract
The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes). Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied.
Collapse
Affiliation(s)
- Garry Laverty
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Alice P McCloskey
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Sean P Gorman
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Brendan F Gilmore
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
36
|
Mannina L, Sobolev AP, Di Lorenzo A, Vista S, Tenore GC, Daglia M. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5864-5874. [PMID: 25730368 DOI: 10.1021/jf506192s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.
Collapse
Affiliation(s)
- Luisa Mannina
- †Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
- §Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, I-00015 Monterotondo, Rome, Italy
| | - Anatoly P Sobolev
- §Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, I-00015 Monterotondo, Rome, Italy
| | - Arianna Di Lorenzo
- #Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Silvia Vista
- †Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Gian Carlo Tenore
- ⊥Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- #Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
37
|
Abstract
Honey has been widely accepted as food and medicine by all generations, traditions, and civilizations, both ancient and modern. For at least 2700 years, honey has been used by humans to treat a variety of ailments through topical application, but only recently have the antiseptic and antimicrobial properties of honey been discovered. Honey has been reported to be effective in a number of human pathologies. Clinical studies have demonstrated that application of honey to severely infected cutaneous wounds rapidly clears infection from the wound and improves tissue healing. A large number of in vitro and limited clinical studies have confirmed the broad-spectrum antimicrobial (antibacterial, antifungal, antiviral, and antimycobacterial) properties of honey, which may be attributed to the acidity (low pH), osmotic effect, high sugar concentration, presence of bacteriostatic and bactericidal factors (hydrogen peroxide, antioxidants, lysozyme, polyphenols, phenolic acids, flavonoids, methylglyoxal, and bee peptides), and increase in cytokine release, and to immune modulating and anti-inflammatory properties of honey; the antimicrobial action involves several mechanisms. Despite a large amount of data confirming the antimicrobial activity of honey, there are no studies that support the systemic use of honey as an antibacterial agent.
Collapse
|
38
|
Cooper RA, Bjarnsholt T, Alhede M. Biofilms in wounds: a review of present knowledge. J Wound Care 2015; 23:570, 572-4, 576-80 passim. [PMID: 25375405 DOI: 10.12968/jowc.2014.23.11.570] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in diagnostic laboratories are mainly in a planktonic form that is unrepresentative of the way in which most microbial species exist naturally. Usually microbial species adhere to each other, as well as to living and non-living surfaces, where they form complex communities surrounded by collectively secreted extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of biofilms in chronic wounds has provided new insight into the reasons why. Increased tolerance of biofilms to antimicrobial agents explains the limited efficacy of antimicrobial agents in chronic wounds and illustrates the need to develop new management strategies. This review aims to explain the nature of biofilms, with a view to explaining their impact on wounds.
Collapse
Affiliation(s)
- R A Cooper
- Professor of Microbiology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, S. Wales, UK
| | | | | |
Collapse
|
39
|
Jadaun V, Prateeksha P, Singh BR, Paliya BS, Upreti DK, Rao CV, Rawat AKS, Singh BN. Honey enhances the anti-quorum sensing activity and anti-biofilm potential of curcumin. RSC Adv 2015. [DOI: 10.1039/c5ra14427b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this investigation, the potential of curcumin (50 μg mL−1) plus 1% of honey (ChC) in reducing QS-mediated production of virulence factors and biofilm formation inPseudomonas aeruginosaPAO1 was studied.
Collapse
Affiliation(s)
- V. Jadaun
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Prateeksha Prateeksha
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Braj R. Singh
- Centre of Excellence in Materials Science (Nanomaterials)
- Z.H. College of Engineering & Technology
- Aligarh Muslim University
- Aligarh-202002
- India
| | - B. S. Paliya
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - D. K. Upreti
- Lichenology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Ch. V. Rao
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - A. K. S. Rawat
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Brahma N. Singh
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| |
Collapse
|
40
|
Tang K, Zhang XH. Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 2014; 12:3245-82. [PMID: 24886865 PMCID: PMC4071575 DOI: 10.3390/md12063245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022] Open
Abstract
The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy.
Collapse
Affiliation(s)
- Kaihao Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
41
|
León-Ruiz V, González-Porto AV, Al-Habsi N, Vera S, San Andrés MP, Jauregi P. Antioxidant, antibacterial and ACE-inhibitory activity of four monofloral honeys in relation to their chemical composition. Food Funct 2014; 4:1617-24. [PMID: 24056722 DOI: 10.1039/c3fo60221d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Different monofloral honeys from Castilla-La Mancha (Spain) have been studied in order to determine their main functional and biological properties. Thyme honey and chestnut honey possess the highest antioxidant capacity, which is due to their high vitamin C (in thyme honey) and total polyphenolic content (in chestnut honey). On the other hand, chestnut honey showed high antimicrobial activity against Staphylococcus aureus and Escherichia coli, whilst others had no activity against S. aureus and showed very small activity against E. coli. Moreover it was found that the antimicrobial activity measured in chestnut honey was partly due to its lysozyme content. In addition the angiotensin I-converting enzyme (ACE) inhibitory activity was measured, and the ACE inhibition is one mechanism by which antihypertensive activity is exerted in vivo. All the types of honey showed some activity but chestnut honey had the highest ACE inhibitory activity.
Collapse
Affiliation(s)
- Virginia León-Ruiz
- Centro Agrario de Marchamalo, C/Extramuros, s/n.19180-Marchamalo, Guadalajara, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Effect of ethanol fraction of burdock leaf on biofilm formation and bacteria growth. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2223-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Majtan J. Honey: an immunomodulator in wound healing. Wound Repair Regen 2014; 22:187-92. [PMID: 24612472 DOI: 10.1111/wrr.12117] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/28/2013] [Indexed: 01/22/2023]
Abstract
Honey is a popular natural product that is used in the treatment of burns and a broad spectrum of injuries, in particular chronic wounds. The antibacterial potential of honey has been considered the exclusive criterion for its wound healing properties. The antibacterial activity of honey has recently been fully characterized in medical-grade honeys. Recently, the multifunctional immunomodulatory properties of honey have attracted much attention. The aim of this review is to provide closer insight into the potential immunomodulatory effects of honey in wound healing. Honey and its components are able to either stimulate or inhibit the release of certain cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) from human monocytes and macrophages, depending on wound condition. Similarly, honey seems to either reduce or activate the production of reactive oxygen species from neutrophils, also depending on the wound microenvironment. The honey-induced activation of both types of immune cells could promote debridement of a wound and speed up the repair process. Similarly, human keratinocytes, fibroblasts, and endothelial cell responses (e.g., cell migration and proliferation, collagen matrix production, chemotaxis) are positively affected in the presence of honey; thus, honey may accelerate reepithelization and wound closure. The immunomodulatory activity of honey is highly complex because of the involvement of multiple quantitatively variable compounds among honeys of different origins. The identification of these individual compounds and their contributions to wound healing is crucial for a better understanding of the mechanisms behind honey-mediated healing of chronic wounds.
Collapse
Affiliation(s)
- Juraj Majtan
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Microbiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
44
|
Jenkins R, Burton N, Cooper R. Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. J Antimicrob Chemother 2013; 69:603-15. [PMID: 24176984 PMCID: PMC3922154 DOI: 10.1093/jac/dkt430] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen. Its resistance to multiple antibiotics and its prevalence in healthcare establishments make it a serious threat to human health that requires novel interventions. Manuka honey is a broad-spectrum antimicrobial agent that is gaining acceptance in the topical treatment of wounds. Because its mode of action is only partially understood, proteomic and genomic analysis was used to investigate the effects of manuka honey on MRSA at a molecular level. Methods Two-dimensional gel electrophoresis with dual-channel imaging was combined with matrix-assisted laser desorption ionization–time of flight mass spectrometry to determine the identities of differentially expressed proteins. The expression of the corresponding genes was investigated by quantitative PCR. Microarray analysis provided an overview of alterations in gene expression across the MRSA genome. Results Genes with increased expression following exposure to manuka honey were associated with glycolysis, transport and biosynthesis of amino acids, proteins and purines. Those with decreased expression were involved in the tricarboxylic acid cycle, cell division, quorum sensing and virulence. The greatest reductions were seen in genes conferring virulence (sec3, fnb, hlgA, lip and hla) and coincided with a down-regulation of global regulators, such as agr, sae and sarV. A model to illustrate these multiple effects was constructed and implicated glucose, which is one of the major sugars contained in honey. Conclusions A decreased expression of virulence genes in MRSA will impact on its pathogenicity and needs to be investigated in vivo.
Collapse
Affiliation(s)
- Rowena Jenkins
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | | | | |
Collapse
|
45
|
Nazzaro F, Fratianni F, Coppola R. Quorum sensing and phytochemicals. Int J Mol Sci 2013; 14:12607-19. [PMID: 23774835 PMCID: PMC3709803 DOI: 10.3390/ijms140612607] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 01/15/2023] Open
Abstract
Most infectious diseases are caused by bacteria, which proliferate within quorum sensing (QS)-mediated biofilms. Efforts to block QS in bacteria and disrupt biofilms have enabled the identification of bioactive molecules that are also produced by plants. This mini review primarily focuses on natural QS inhibitors, which display potential for treating bacterial infections and also enhance the safety of food supply.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Institute of Food Science, ISA-CNR, Via Roma 64, Avellino 83100, Italy.
| | | | | |
Collapse
|
46
|
ALVAREZ MARV, MOREIRA MARR, PONCE ALEJANDRA. ANTIQUORUM SENSING AND ANTIMICROBIAL ACTIVITY OF NATURAL AGENTS WITH POTENTIAL USE IN FOOD. J Food Saf 2012. [DOI: 10.1111/j.1745-4565.2012.00390.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Nutraceutical potential of monofloral honeys produced by the Sicilian black honeybees (Apis mellifera ssp. sicula). Food Chem Toxicol 2012; 50:1955-61. [DOI: 10.1016/j.fct.2012.03.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/22/2022]
|
48
|
Truchado P, Tomás-Barberán FA, Larrosa M, Allende A. Food phytochemicals act as Quorum Sensing inhibitors reducing production and/or degrading autoinducers of Yersinia enterocolitica and Erwinia carotovora. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Sybiya Vasantha Packiavathy IA, Agilandeswari P, Musthafa KS, Karutha Pandian S, Veera Ravi A. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.10.022] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Urolithins, ellagitannin metabolites produced by colon microbiota, inhibit Quorum Sensing in Yersinia enterocolitica: Phenotypic response and associated molecular changes. Food Chem 2011; 132:1465-1474. [PMID: 29243637 DOI: 10.1016/j.foodchem.2011.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 01/01/2023]
Abstract
The mammalian enteropathogen Yersinia enterocolitica produces two main N-acylhomoserine lactones (AHLs) involved in Quorum Sensing (QS)-mediated infection processes, such as virulence, biofilm maturation and motility. Ellagitannin (ET)-rich fruits exhibit anti-QS activity but in vivo effects against intestinal pathogens may be associated to the ETs gut microbiota derived metabolites, urolithin-A (Uro-A) and urolithin-B (Uro-B). In this work we show that urolithins, at concentrations achievable in the intestine through the diet, reduce the levels of N-hexanoyl-l-homoserine lactone (C6-HSL) and N-(3-oxo-hexanoyl)-l-homoserine lactone (3-oxo-C6-HSL) in Y. enterocolitica and inhibit QS-associated biofilm maturation and swimming motility. These inhibitory effects were not associated to downregulation of the expression of some of the genes involved in the synthesis of AHLs (yenI and yenR) or in motility (flhDC, fliA, fleB). Our results suggest that urolithins may exert antipathogenic effects in the gut against Y. enterocolitica and highlight the need to investigate the antipathogenic in vivo properties of plant derived metabolites.
Collapse
|