1
|
Zhang Y, Chen Z, Chen L, Dong Q, Yang DH, Zhang Q, Zeng J, Wang Y, Liu X, Cui Y, Li M, Luo X, Zhou C, Ye M, Li L, He Y. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. Chin Med 2024; 19:119. [PMID: 39215362 PMCID: PMC11363671 DOI: 10.1186/s13020-024-00977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Astragali radix (AR, namded Huangqi in Chinese) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. As a widely used ethnomedicine, the biological activities of AR include immunomodulatory, anti-hyperglycemic, anti-oxidant, anti-aging, anti-inflammatory, anti-viral, anti-tumor, cardioprotective, and anti-diabetic effects, with minimum side effects. Currently, it is known that polysaccharides, saponins, and flavonoids are the indispensable components of AR. In this review, we will elaborate the research advancements of AR on ethnobotany, ethnopharmacological practices, phytochemicals, pharmacological activities, clinical uses, quality control, production developments, and toxicology. The information is expected to assist clinicians and scientists in developing useful therapeutic medicines with minimal systemic side effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Qi Zhang
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu, 610045, China
| | - Chongjian Zhou
- HuBei Guizhenyuan Chinese Herbal Medicine Co.Ltd., Hong'an, 438400, China
| | - Mingzhu Ye
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
2
|
Shi H, Zhang S, Zhu M, Li X, Jie W, Kan L. Extraction Optimization, Structural Analysis, and Potential Bioactivities of a Novel Polysaccharide from Sporisorium reilianum. Antioxidants (Basel) 2024; 13:965. [PMID: 39199211 PMCID: PMC11352142 DOI: 10.3390/antiox13080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Sporisorium reilianum is an important biotrophic pathogen that causes head smut disease. Polysaccharides extracted from diseased sorghum heads by Sporisorium reilianum exhibit significant medicinal and edible value. However, the structure and biological activities of these novel polysaccharides have not been explored. In this study, a novel polysaccharide (WM-NP'-60) was isolated and purified from the fruit bodies of S. reilianum and aimed to explore the structural characteristics and substantial antioxidant and antitumor properties of WM-NP'-60. Monosaccharide composition determination, periodate oxidation-Smith degradation, 1D/2D-NMR analysis, and methylation analysis revealed that WM-NP'-60 consisted mainly of β-1,6-D-Glcp, β-1,3-D-Glcp, and β-1,3,6-D-Glcp linkages. The antioxidant assays demonstrated that WM-NP'-60 exhibited great activities, including scavenging free radicals, chelating ferrous ions, and eliminating reactive oxygen species (ROS) within cells. The HepG2, SGC7901, and HCT116 cells examined by transmission electron microscopy (TEM) revealed typical apoptotic bodies. Therefore, a novel fungal polysaccharide (WM-NP'-60) was discovered, extracted, and purified in this experiment, with the aim of providing a reference for the development of a new generation of food and nutraceutical products suitable for human consumption.
Collapse
Affiliation(s)
- He Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Siyi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Mandi Zhu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Xiaoyan Li
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Weiguang Jie
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Lianbao Kan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| |
Collapse
|
3
|
Shi Y, Ma P. Pharmacological effects of Astragalus polysaccharides in treating neurodegenerative diseases. Front Pharmacol 2024; 15:1449101. [PMID: 39156112 PMCID: PMC11327089 DOI: 10.3389/fphar.2024.1449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Astragalus membranaceus widely used in traditional Chinese medicine, exhibits multiple pharmacological effects, including immune stimulation, antioxidation, hepatoprotection, diuresis, antidiabetes, anticancer, and expectorant properties. Its main bioactive compounds include flavonoids, triterpene saponins, and polysaccharides. Astragalus polysaccharides (APS), one of its primary bioactive components, have been shown to possess a variety of pharmacological activities, such as antioxidant, immunomodulatory, anti-inflammatory, antitumor, antidiabetic, antiviral, hepatoprotective, anti-atherosclerotic, hematopoietic, and neuroprotective effects. This review provides a comprehensive summary of the molecular mechanisms and therapeutic effects of APS in treating neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). It discusses how APS improve insulin resistance, reduce blood glucose levels, enhance cognitive function, and reduce Aβ accumulation and neuronal apoptosis by modulating various pathways such as Nrf2, JAK/STAT, Toll, and IMD. For PD, APS protect neurons and stabilize mitochondrial function by inhibiting ROS production and promoting autophagy through the PI3K/AKT/mTOR pathway. APS also reduce oxidative stress and neurotoxicity induced by 6-hydroxydopamine, showcasing their neuroprotective effects. In MS, APS alleviate symptoms by suppressing T cell proliferation and reducing pro-inflammatory cytokine expression via the PD-1/PD-Ls pathway. APS promote myelin regeneration by activating the Sonic hedgehog signaling pathway and fostering the differentiation of neural stem cells into oligodendrocytes. This article emphasizes the significant antioxidant, anti-inflammatory, immunomodulatory, and neuroprotective pharmacological activities of APS, highlighting their potential as promising candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ping Ma
- School of Basic Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Xu Q, Cheng W, Wei J, Ou Y, Xiao X, Jia Y. Synergist for antitumor therapy: Astragalus polysaccharides acting on immune microenvironment. Discov Oncol 2023; 14:179. [PMID: 37741920 PMCID: PMC10517906 DOI: 10.1007/s12672-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Various new treatments are emerging constantly in anti-tumor therapies, including chemotherapy, immunotherapy, and targeted therapy. However, the efficacy is still not satisfactory. Astragalus polysaccharide is an important bioactive component derived from the dry root of Radix astragali. Studies found that astragalus polysaccharides have gained great significance in increasing the sensitivity of anti-tumor treatment, reducing the side effects of anti-tumor treatment, reversing the drug resistance of anti-tumor drugs, etc. In this review, we focused on the role of astragalus polysaccharides in tumor immune microenvironment. We reviewed the immunomodulatory effect of astragalus polysaccharides on macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes. We found that astragalus polysaccharides can promote the activities of macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes and induce the expression of a variety of cytokines and chemokines. Furthermore, we summarized the clinical applications of astragalus polysaccharides in patients with digestive tract tumors. We summarized the effective mechanism of astragalus polysaccharides on digestive tract tumors, including apoptosis induction, proliferation inhibition, immunoactivity regulation, enhancement of the anticancer effect and chemosensitivity. Therefore, in view of the multiple functions of astragalus polysaccharides in tumor immune microenvironment and its clinical efficacy, the combination of astragalus polysaccharides with antitumor therapy such as immunotherapy may provide new sparks to the bottleneck of current treatment methods.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinrui Wei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
5
|
Dong M, Li J, Yang D, Li M, Wei J. Biosynthesis and Pharmacological Activities of Flavonoids, Triterpene Saponins and Polysaccharides Derived from Astragalus membranaceus. Molecules 2023; 28:5018. [PMID: 37446680 PMCID: PMC10343288 DOI: 10.3390/molecules28135018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Astragalus membranaceus (A. membranaceus), a well-known traditional herbal medicine, has been widely used in ailments for more than 2000 years. The main bioactive compounds including flavonoids, triterpene saponins and polysaccharides obtained from A. membranaceus have shown a wide range of biological activities and pharmacological effects. These bioactive compounds have a significant role in protecting the liver, immunomodulation, anticancer, antidiabetic, antiviral, antiinflammatory, antioxidant and anti-cardiovascular activities. The flavonoids are initially synthesized through the phenylpropanoid pathway, followed by catalysis with corresponding enzymes, while the triterpenoid saponins, especially astragalosides, are synthesized through the universal upstream pathways of mevalonate (MVA) and methylerythritol phosphate (MEP), and the downstream pathway of triterpenoid skeleton formation and modification. Moreover, the Astragalus polysaccharide (APS) possesses multiple pharmacological activities. In this review, we comprehensively discussed the biosynthesis pathway of flavonoids and triterpenoid saponins, and the structural features of polysaccharides in A. membranaceus. We further systematically summarized the pharmacological effects of bioactive ingredients in A. membranaceus, which laid the foundation for the development of clinical candidate agents. Finally, we proposed potential strategies of heterologous biosynthesis to improve the industrialized production and sustainable supply of natural products with pharmacological activities from A. membranaceus, thereby providing an important guide for their future development trend.
Collapse
Affiliation(s)
- Miaoyin Dong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.D.); (D.Y.)
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinjuan Li
- Institute of Agricultural Quality Standards and Testing Technology, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Delong Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.D.); (D.Y.)
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengfei Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
6
|
Wang S, Peng Y, Zhuang Y, Wang N, Jin J, Zhan Z. Purification, Structural Analysis and Cardio-Protective Activity of Polysaccharides from Radix Astragali. Molecules 2023; 28:molecules28104167. [PMID: 37241906 DOI: 10.3390/molecules28104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Two polysaccharides, named APS2-I and APS3-I, were purified from the water extract of Radix Astragali. The average molecular weight of APS2-I was 1.96 × 106 Da and composed of Man, Rha, GlcA, GalA, Glc, Gal, Xyl, and Ara in a molar ratio of 2.3:4.8:1.7:14.0:5.8:11.7:2.8:12.6, while the average molecular weight of APS3-I was 3.91 × 106 Da and composed of Rha, GalA, Glc, Gal, and Ara in a molar ratio of 0.8:2.3:0.8:2.3:4.1. Biological evaluation showed APS2-I and APS3-I had significant antioxidant activity and myocardial protection activity. Furthermore, total polysaccharide treatment could significantly enhance hemodynamic parameters and improve cardiac function in rat ischemia and reperfusion isolated heart models. These results provided important information for the clinical application of APS in the field of cardiovascular disease and implied that Astragalus polysaccharides (APS) could be considered as a reference for the quality control of Radix Astragali.
Collapse
Affiliation(s)
- Shilei Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuan Peng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Zhuang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jianchang Jin
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhajun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
7
|
Genetic diversity of the Chinese medicinal plant Astragali Radix based on transcriptome-derived SSR markers. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
8
|
Chen X, Chen C, Fu X. Hypoglycemic activity in vitro and vivo of a water-soluble polysaccharide from Astragalus membranaceus. Food Funct 2022; 13:11210-11222. [PMID: 36222262 DOI: 10.1039/d2fo02298b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The polysaccharide AMP as one main bioactive component of Astragalus membranaceus (Fisch.) Bunge was separated and characterized. The results showed that AMP was a typical acidic heteropolysaccharide dominated by glucose, galacturonic acid and arabinose with typical shear-thinning and fluid-like behavior. Scanning electron microscopy images showed that AMP existed in the state of lamellar aggregates with a smooth compact surface. In addition, AMP exhibited strong antioxidant activity with an oxygen radical absorption capacity value of 278.68 ± 9.31 μM TE per g, and excellent α-glucosidase inhibitory activity and cholate binding ability. Furthermore, in vivo, AMP treatment significantly decreased blood glucose and serum insulin levels, improved glucose intolerance and insulin resistance, regulated the blood lipid profile, alleviated oxidative stress, and relieved liver damage in type 2 diabetes mellitus (T2DM) mice. Pearson correlation analysis suggested that the mitigation of oxidative stress contributed to the hypoglycemic effect of AMP, indicating that it is a beneficial functional food ingredient for T2DM.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Chun Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 510641, China.,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 510641, China.,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
9
|
Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 2022; 45:367-389. [PMID: 35713852 DOI: 10.1007/s12272-022-01393-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The Astragalus polysaccharide is an important bioactive component derived from the dry root of Astragalus membranaceus. This review aims to provide a comprehensive overview of the research progress on the immunomodulatory effect of Astragalus polysaccharide and provide valuable reference information. We review the immunomodulatory effect of Astragalus polysaccharide on central and peripheral immune organs, including bone marrow, thymus, lymph nodes, spleen, and mucosal tissues. Furthermore, the immunomodulatory effect of Astragalus polysaccharide on a variety of immune cells is summarized. Studies have shown that Astragalus polysaccharide can promote the activities of macrophages, natural killer cells, dendritic cells, T lymphocytes, B lymphocytes and microglia and induce the expression of a variety of cytokines and chemokines. The immunomodulatory effect of Astragalus polysaccharide makes it promising for the treatment of many diseases, including cancer, infection, type 1 diabetes, asthma, and autoimmune disease. Among them, the anticancer effect is the most prominent. In short, Astragalus polysaccharide is a valuable immunomodulatory medicine, but further high-quality studies are warranted to corroborate its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Chun Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiang Lai
- Department of Anorectal Surgery, Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
10
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
11
|
Xu D, Xiao J, Jiang D, Liu Y, Gou Z, Li J, Shi M, Wang X, Guo Y, Ma L, Yin H, Guo L, Zhu C, Zhang Y, Guo H. Inhibitory effects of a water-soluble jujube polysaccharide against biofilm-forming oral pathogenic bacteria. Int J Biol Macromol 2022; 208:1046-1062. [PMID: 35378158 DOI: 10.1016/j.ijbiomac.2022.03.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023]
Abstract
Oral diseases caused by infectious pathogens raises significant concerns in public health. In the light of side effects of current antibiotics therapy and growing drug resistance of pathogenic bacteria, natural products have become attractive alternatives for antibiotics agents in dental practice. This current study investigated the effects of polysaccharides extracted from Zizyphus jujuba Mill. on three major oral biofilm-forming pathogenic bacteria including caries-inducing Streptococcus mutans, lesions-causing MRSA, and periodontitis-related Porphyromonas gingivalis, as well as general oral microbiota. Our results demonstrated that jujube polysaccharide prepared in this study was mainly composed by galacturonic acid with an average molecular weight 242 kDa, which were further characterized for structural features by FT-IR spectra and NMR spectroscopy analysis. This jujube polysaccharide was shown to exhibit remarkable inhibitory effects against all the tested oral bacterial pathogens through various mechanisms including growth inhibition, biofilm prevention and disruption, intervention of bacterial infection (adhesion and invasion), attenuation of cytotoxicity, modulation of excessive inflammatory response of LPS-stimulated and MRSA-infected macrophages as well as positive regulation of oral microbiota. The present study paves the way to explore jujube polysaccharides for the prevention and treatment of oral infectious diseases. Graphic Abstract.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Jiu Xiao
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dazhao Jiang
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yaxin Liu
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhuolun Gou
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingyao Shi
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xinyi Wang
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yaxuan Guo
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lingyan Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hong Yin
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Chunhui Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yali Zhang
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Hui Guo
- Department of Endocrinology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
12
|
Dehkordi EA, Heidari-Soureshjani E, Aryan A, Ganjirad Z, Soveyzi F, Hoseinsalari A, Derisi MM, Rafieian-Kopaei M. Antiviral Compounds Based on Natural ASTRAGALUS POLYSACCHARIDE (APS): Researches and Foresight in the Strategies for Combating SARS-CoV-2 (COVID-19). Mini Rev Med Chem 2022; 22:2299-2307. [PMID: 35232341 DOI: 10.2174/1389557522666220301143113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Today, finding natural polymers with desirable properties for use in various industries is one of the critical axes of research in the world. Polysaccharides are a group of natural polymers that have various applications in the pharmaceutical industry. The attachment of monosaccharides forms polysaccharides through glycosidic bonds that are widely found in various sources, including plants. Genus Astragalus belongs to the Fabaceae family. Plants belonging to this genus have different polysaccharides. Astragalus polysaccharides (APS) have attracted a great deal of attention among natural polymers because they are non-toxic, biodegradable, and biocompatible. Currently, APS has great drug potential for curing or treating various diseases. Due to the different biological activities of polysaccharides, including Astragalus, this study has investigated the chemical structure of APS, research report on antiviral, anti-inflammatory, and stimulation of cytokine secretion by these polysaccharides. Also, in this study, the pharmaceutical approaches of APS compounds, as a natural, new and inexpensive source, have been discussed as suitable candidates for use in pharmaceutical formulations and preparation of new drugs to control COVID-19 infection.
Collapse
Affiliation(s)
- Elahe Aleebrahim Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ehsan Heidari-Soureshjani
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- SaNa Zist Pardaz Co, Member of Chahar Mahal and Bakhtiari Science and Technology Park, Shahrekord, Iran
| | - Alisam Aryan
- Medical Student, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ganjirad
- Student research committee, Hamedan University of medical sciences, Hamedan, Iran
| | - Faezeh Soveyzi
- Medical Student, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Hoseinsalari
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Mehdi Derisi
- Medical Student, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
13
|
Hwang J, Zhang W, Dhananjay Y, An EK, Kwak M, You S, Lee PCW, Jin JO. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int J Biol Macromol 2021; 182:1292-1300. [PMID: 34000307 DOI: 10.1016/j.ijbiomac.2021.05.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Astragalus membranaceus (A. membranaceus) is commonly used in various herbal formulations to treat several human and animal diseases. Polysaccharides, which are the major bioactive components in the A. membranaceus, exhibit various bioactive properties. However, the ability of A. membranaceus polysaccharides (APS) to activate the mucosal immune response has not been examined. We examined the effect of intranasal administration of APS on mucosal immune cell activation and the growth-inhibitory activity against pulmonary metastatic melanoma in mice by combination treatment with immune checkpoint blockade. The intranasal treatment of APS increased the number of lineage-CD11c+ dendritic cell (DCs) in the mesenteric lymph nodes (mLN) through the upregulation of CC-chemokine receptor 7 expression. Moreover, intranasal treatment of APS activated DCs, which further stimulated natural killer (NK) and T cells in the mLN. The APS/anti-PD-L1 antibody combination inhibited the pulmonary infiltration of B16 melanoma cells. The depletion of NK cells and CD8 T cells in mice mitigated the anti-cancer effect of this combination, thereby highlighting the critical role of NK cells and CD8 T cells in mediating anti-cancer immunity. These findings demonstrated that APS could be used as a topical mucosal adjuvant to enhance the immune check point inhibitor anti-cancer effect.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
14
|
Mzoughi Z, Majdoub H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials. Int J Biol Macromol 2021; 173:554-579. [PMID: 33508358 DOI: 10.1016/j.ijbiomac.2021.01.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The preparation, chemical properties and bio-activities of polysaccharides derived from halophytes have gained an increasing interest in the past few years. Phytochemical and pharmacological reports have shown that carbohydrates are important biologically active compounds of halophytes with numerous biological potentials. It is believed that the mechanisms involved in these bio-activities are due to the modulation of immune system. The main objective of this summary is to appraise available literature of a comparative study on the extraction, structural characterizations and biological potentials, particularly immunomodulatory effects, of carbohydrates isolated from halophytes (10 families). This review also attempts to discuss on bioactivities of polysaccharides related with their structure-activity relationship. Data indicated that the highest polysaccharides yield of around 35% was obtained under microwave irradiation. Structurally, results revealed that the most of extracted carbohydrates are pectic polysaccharides which mainly composed of arabinose (from 0.9 to 72%), accompanied by other monosaccharides (galactose, glucose, rhamnose, mannose and xylose), significant amounts of uronic acids (from 18.9 to 90.1%) and some proportions of fucose (from 0.2 to 8.3%). The molecular mass of these pectic polysaccharides was varied from 10 to 2650 kDa. Hence, the evaluation of these polysaccharides offers a great opportunity to discover novel therapeutic agents that presented especially beneficial immunomodulatory properties. Moreover, reports indicated that uronic acids, molecular weights, as well as the presence of sulfate and unmethylated acidic groups may play a significant role in biological activities of carbohydrates from halophyte species.
Collapse
Affiliation(s)
- Zeineb Mzoughi
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia.
| | - Hatem Majdoub
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
15
|
Li K, Cui LJ, Cao YX, Li SY, Shi LX, Qin XM, Du YG. UHPLC Q-Exactive MS-Based Serum Metabolomics to Explore the Effect Mechanisms of Immunological Activity of Astragalus Polysaccharides With Different Molecular Weights. Front Pharmacol 2021; 11:595692. [PMID: 33390982 PMCID: PMC7774101 DOI: 10.3389/fphar.2020.595692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Astragalus polysaccharides (APS) have a wide range of biological activities. Most researchers discuss total APS as the main research object. However, because the relative molecular weight of APS has a wide distribution, in-depth studies on the mechanisms of the biological activity of notable molecules are limited. For example, the relationship between the immunomodulatory effect of APS and its relative molecular weight has not been clearly defined. Therefore, in this paper, we separated and obtained APS of different molecular weights by ultrafiltration technology and then constructed a mouse cyclophosphamide-induced immunosuppression model to investigate the immune activity of APS of different molecular weights. The immune enhancement mechanism of APS was explored by examining changes in routine blood indicators, body weight, immune organs, and differential metabolites in mouse serum. Results showed that APS-I (molecular weight, >2,000 kDa), APS-II (molecular weight, 1.02 × 104 Da) and APS-III (molecular weight, 286 Da) could increase the number of immune cells in mouse serum and improve immune organ damage to varying degrees. Among the samples obtained, APS-II showed the best effects. Compared with those in the blank group, 29 metabolites determined by UHPLC Q-Exactive MS in the serum of the model group changed remarkably, and APS-I, APS-II, and APS-III respectively restored 13, 25, and 19 of these metabolites to normal levels. Metabolomics analysis revealed that APS-II is mainly responsible for the immunomodulatory activity of APS. Metabolomics analysis revealed that the mechanisms of this specific molecule may involve the regulation of phenylalanine metabolism, cysteine and methionine metabolism, tricarboxylic acid cycle (TCA cycle) and arginine and proline metabolism.
Collapse
Affiliation(s)
- Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Lian-Jie Cui
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Yu-Xin Cao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Shu-Ying Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Li-Xia Shi
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yu-Guang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Li K, Cao YX, Jiao SM, Du GH, Du YG, Qin XM. Structural Characterization and Immune Activity Screening of Polysaccharides With Different Molecular Weights From Astragali Radix. Front Pharmacol 2021; 11:582091. [PMID: 33390949 PMCID: PMC7774520 DOI: 10.3389/fphar.2020.582091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/14/2020] [Indexed: 01/09/2023] Open
Abstract
Saccharides are the most abundant substance with the strongest immunological activity in Astragali Radix (AR). However, systematic structure study and immunoactivity screening of polysaccharides with different molecular weights (Mw) in AR have yet to be conducted. In this study, Astragalus polysaccharides (APSs) were divided into three fragments of different Mw values, >2,000 kDa (APS-Ⅰ), about 10 kDa (APS-Ⅱ), and about 300 Da (APS-Ⅲ), by using ultrafiltration for the first time. The structural differences of the three products were determined on the basis of monosaccharide composition, FT-IR spectrum, linkage analysis, and nuclear magnetic resonance analysis. Cellular immune activity experiments in vitro and cyclophosphamide immunosuppression animal model experiments in vivo for nonspecific and specific immunoactivity screening were applied to identify the most immunogenic fragment in APSs. Linkage analysis results showed that APS-Ⅰ, APS-Ⅱ, and APS-Ⅲ have different attachment sites of monosaccharide residues. Immune screening experiments indicated that the Mw of the APSs influenced their activity, and APS-Ⅱ had the strongest immunoenhancing activity among the products. This research may serve as a reference for further study on APSs with different structures and immune activities, and as a guidance for the quality control of APSs and the development of new APS products.
Collapse
Affiliation(s)
- Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Y-X Cao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - S-M Jiao
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - G-H Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Y-G Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - X-M Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
17
|
An Q, Ye X, Han Y, Zhao M, Chen S, Liu X, Li X, Zhao Z, Zhang Y, Ouyang K, Wang W. Structure analysis of polysaccharides purified from Cyclocarya paliurus with DEAE-Cellulose and its antioxidant activity in RAW264.7 cells. Int J Biol Macromol 2020; 157:604-615. [PMID: 31786297 DOI: 10.1016/j.ijbiomac.2019.11.212] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
CPP was isolated from Cyclocarya paliurus (C. paliurus) and CPP-D was purified from CPP with a further step by DEAE-Cellulose. In this study, the structure and antioxidant activities of these two polysaccharides were investigated. The molecular weight of CPP was determined as 1.15 × 105 Da and the monosaccharides of it were Rha, Ara, Xyl, Man, Glc, Gal in a molar ratio of 0.021:0.237:0.020:0.036:0.454:0.231, while the molecular weight of CPP-D was 9.1 × 103 Da and the monosaccharides of it were Man, Glc, Gal in a molar ratio of 0.235:0.677:0.088. CPP-D consisted of three structural residues →4)-β-D-Glc-(1→, →2,6)-β-D-Man-(1→ and →4)-β-D-Gal. These structures were characterized by SEM, FT-IR, GC-MS, HPGPC, and NMR. The antioxidant assay in RAW264.7 cell showed that both CPP and CPP-D promoted cell viability and antioxidant activity, which decreased the content of MDA and increased the activity of SOD, T-AOC, CAT (P < .05). As a result, CPP-D isolated by DEAE-Cellulose didn't reduce the antioxidant activity of C. paliurus polysaccharide and could enhance the cell viability.
Collapse
Affiliation(s)
- Qi An
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ximei Ye
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Han
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang Li
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zitong Zhao
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yang Zhang
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
18
|
An Q, Ye X, Han Y, Zhao M, Chen S, Liu X, Li X, Zhao Z, Zhang Y, Ouyang K, Wang W. Structure analysis of polysaccharides purified from Cyclocarya paliurus with DEAE-Cellulose and its antioxidant activity in RAW264.7 cells. Int J Biol Macromol 2020. [DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Awad A, Khalil SR, Hendam BM, Abd El-Aziz RM, Metwally MMM, Imam TS. Protective potency of Astragalus polysaccharides against tilmicosin- induced cardiac injury via targeting oxidative stress and cell apoptosis-encoding pathways in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20861-20875. [PMID: 32246429 DOI: 10.1007/s11356-020-08565-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Tilmicosin (Til) was purposed to be used in the treatment of a wide range of respiratory diseases in livestock. However, undesirable adverse effects, cardiac toxicity, in particular, may be associated with Til therapy. In the present study, the response of adult rats administered Til subcutaneously at different doses (10, 25, 50, 75, and 100 mg/kg b.w.; single injection) was evaluated. Astragalus polysaccharide (AP) at two doses (100 and 200 mg/kg b.w.; intraperitoneally) was investigated for its potential to counteract the cardiac influences, involving the oxidative stress-induced damage and apoptotic cell death, elicited by the Til treatment at a dose of 75 mg/kg b.w. in rats. Til induced mortalities and altered the levels of the biomarkers for the cardiac damage, particularly in the rats treated with the doses of 75 and 100 mg/kg b.w.; similarly, morphological alterations in cardiac tissue were seen at all studied doses. AP was found to cause a significant (P ˂ 0.05) decline in the levels of impaired cardiac injury markers (troponin, creatine phosphokinase, and creatine phosphokinase-MB), improvement in the antioxidant endpoints (total antioxidant capacity), and attenuation in the oxidative stress indices (total reactive oxygen species, 8-hydroxy-2-deoxyguanosine, lipid peroxides [malondialdehyde], and protein carbonyl), associated with a significant (P ˂ 0.05) modulation in the mRNA expression levels of the encoding genes (Bcl-2, Bax, caspase-3, P53, Apaf-1, and AIF), related to the intrinsic pathway of apoptotic cell death in the cardiac tissue. AP administration partially restored the morphological changes in the rat's heart. The highest protective efficacy of AP was recorded at a dose level of 200 mg/kg b.w. Taken together, these results indicated that AP is a promising cardioprotective compound capable of attenuating Til-induced cardiac impact by protecting the rat cardiac tissue from Til-induced apoptosis when administered concurrently with and after the Til injection.
Collapse
Affiliation(s)
- Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reda M Abd El-Aziz
- Physiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
20
|
Zeng H, Xi Y, Li Y, Wang Z, Zhang L, Han Z. Analysis of Astragalus Polysaccharide Intervention in Heat-Stressed Dairy Cows' Serum Metabolomics. Animals (Basel) 2020; 10:ani10040574. [PMID: 32235382 PMCID: PMC7222412 DOI: 10.3390/ani10040574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
This experiment was conducted to investigate the effects of astragalus polysaccharides (APS) on serum metabolism of dairy cows under heat stress. Thirty healthy Holstein dairy cows were randomly divided into three groups (10 cows in each group). In the experimental group, 30 mL/d (Treatment I) and 50 mL/d (Treatment II) of APS injection were injected into the neck muscle respectively. Each stage was injected with APS for 4 days (8:00 a.m. every day) and stopped for 3 days. Serum hormone and antioxidant indexes of dairy cows were investigated. Through repeated measurement analysis of variance, the results have shown that cortisol (COR) (F = 6.982, p = 0.026), triiodothyronine (T3) (F = 10.005, p = 0.012) and thyroxine (T4) (F = 22.530, p = 0.002) at different time points were significantly different. COR showed a downward trend, T3 and T4 showed an upward trend. At each time point, different concentrations of APS have significant effects on COR (F = 30.298, p = 0.000 < 0.05), T3 (F = 18.122, p = 0.001), and T4 (F = 44.067, p = 0.000 < 0.05). However, there were no significant differences in serum insulin (INS), glucagon (GC) and heat shock protein 70 (HSP70) between different time points (p > 0.05) and at each time point (p > 0.05). Additionally, the results have also shown that there were also no significant differences in serum Superoxide dismutase (SOD), malondialdehyde (MDA) and lactate dehydrogenase (LDH) between different time points (p > 0.05) and at each time point (p > 0.05). However, the injection of APS had a significant impact on glutathione peroxidase (GSH-Px) (F = 9.421, p = 0.014) at different times, and showed a trend of rising first and then falling. At each time point, APS of different concentrations had no significant effect on GSH-Px (p > 0.05). Furthermore, we used gas chromatography-mass spectrometry (GC-MS) non-targeted metabolomics to determine the potential markers of APS for heat-stressed dairy cows. Twenty metabolites were identified as potential biomarkers for the diagnosis of APS in heat-stressed dairy cows. These substances are involved in protein digestion and absorption, glutathione metabolism, prolactin signaling pathway, aminoacyl-tRNA biosynthesis, pentose and glucuronate interconversions, and so on. Our findings suggest that APS have an effect on the serum hormones of heat-stressed dairy cows, and regulate the metabolism of heat-stressed dairy cows through glucose metabolism and amino acid metabolism pathways.
Collapse
Affiliation(s)
- Hanfang Zeng
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Yumeng Xi
- Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Yeqing Li
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zedong Wang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Lin Zhang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zhaoyu Han
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
- Correspondence: ; Tel.: +13851685522; Fax: +02584395314
| |
Collapse
|
21
|
Zhang WJ, Wang S, Kang CZ, Lv CG, Zhou L, Huang LQ, Guo LP. Pharmacodynamic material basis of traditional Chinese medicine based on biomacromolecules: a review. PLANT METHODS 2020; 16:26. [PMID: 32140174 PMCID: PMC7049221 DOI: 10.1186/s13007-020-00571-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/19/2020] [Indexed: 05/06/2023]
Abstract
Biomacromolecules, the first components of bioactive substances in traditional Chinese medicines (TCM) have wide bioactivity-related efficacy but have not yet been fully appreciated compared to small molecule components. The present review brings a novel and systemic point of view to deepen the understanding of the pharmacodynamic material basis of TCM based on biomacromolecules (polysaccharides, proteins and nucleic acids). Biomacromolecules have been, are and will have considerable roles in the efficacy of Chinese medicine, as evidenced by the number of biological activities related to traditional clinical efficacy. The direct and indirect mechanisms of biomacromolecules are further accounted for in a variety of neurotransmitters, hormones, and immune substances to maintain immune function in both sensitive and stable equilibrium. The biological functions of biomacromolecules have been elaborated on in regard to their roles in the process of plant growth and development to the relationship between primary metabolism and secondary metabolism and to the indispensable role of polysaccharides, proteins, and nucleic acids in the quality formation of TCM. Understanding the functional properties and mechanisms of biological macromolecules will help to demystify the drug properties and health benefits of TCM.
Collapse
Affiliation(s)
- Wen-Jin Zhang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004 China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Chuan-zhi Kang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Chao-geng Lv
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Li Zhou
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Lu-Qi Huang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Lan-Ping Guo
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
22
|
Li C, Peng D, Huang W, Ou X, Song L, Guo Z, Wang H, Liu W, Zhu J, Yu R. Structural characterization of novel comb-like branched α-d-glucan from Arca inflata and its immunoregulatory activities in vitro and in vivo. Food Funct 2020; 10:6589-6603. [PMID: 31552984 DOI: 10.1039/c9fo01395d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the current study, we identified and characterized a novel water-soluble polysaccharide (JNY2PW) with significant immunoregulatory effects and no apparent overall toxicity. JNY2PW, which was isolated from Arca inflata, belongs to a novel class of α-glucans with a molecular weight of 5.25 × 107 Da. Its backbone is composed of (1 → 4)-linked α-d-glucopyranosyl residues and a single (1 → 6)-α-d-glucopyranosyl branched unit for every five α-d-glucopyranosyl residues, showing a comb-like α-d-glucan with intensive short branches. Using in vitro models, we demonstrated that JNY2PW exerts significant immunoregulatory effects by promoting the production of nitric oxide, interleukin-6, and tumor necrosis factor α. The pathway involves the activation of the TLR4-MAPK/NF-κB signaling cassette in murine RAW264.7 macrophages. In an in vivo immunosuppressive mice model induced by cyclophosphamide treatment, we found that the JNY2PW treatment produced good antitumor activity, comparable to that of chemotherapy by doxycycline in murine breast carcinoma 4T1-bearing mice, but devoid of any observable side effects (e.g. weight loss) related with doxycycline treatment. The anti-tumor mechanism of JNY2PW may involve an overall enhancement in the immune responses of the mice to tumors. These results indicate that JNY2PW possesses potential as an adjuvant to existing chemotherapy and current immune-oncology treatment.
Collapse
Affiliation(s)
- Chunlei Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
He X, Fang J, Guo Q, Wang M, Li Y, Meng Y, Huang L. Advances in antiviral polysaccharides derived from edible and medicinal plants and mushrooms. Carbohydr Polym 2020; 229:115548. [DOI: 10.1016/j.carbpol.2019.115548] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/21/2022]
|
24
|
Xia YG, Yu SM, Liang J, Yang BY, Kuang HX. Chemical fingerprinting techniques for the differentiation of polysaccharides from genus Astragalus. J Pharm Biomed Anal 2020; 178:112898. [DOI: 10.1016/j.jpba.2019.112898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
|
25
|
Hu W, Jiang Y, Xue Q, Sun F, Zhang J, Zhou J, Niu Z, Li Q, Li F, Shen T. Structural characterisation and immunomodulatory activity of a polysaccharide isolated from lotus (Nelumbo nucifera Gaertn.) root residues. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Qiu C, Cheng Y. Effect of Astragalus membranaceus polysaccharide on the serum cytokine levels and spermatogenesis of mice. Int J Biol Macromol 2019; 140:771-774. [PMID: 31446104 DOI: 10.1016/j.ijbiomac.2019.08.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022]
Abstract
In this work, a water-soluble Astragalus membranaceus polysaccharide (AMP) was prepared by hot water extraction, and the effects of AMP on the serum cytokine levels and spermatogenesis of Kunming mice were investigated. Sixty Kunming mice were randomly divided into five groups: a normal control group, a model control group (treated with cyclophosphamide) and three treatment groups (treated with cyclophosphamide and 25, 50 and 75 mg/kg AMP). The effects of AMP on the serum cytokine levels and spermatogenesis of mice were evaluated. Intragastric treatment with different levels of AMP significantly increased serum interleukin-11, tumour necrosis factor-α and interferon-γ levels; protein expression and superoxide dismutase activity in testis; and sperm density, sperm movement and the rate of normal sperm morphology. In addition, AMP decreased the nitrate nitrogen level in the testes of Kunming mice compared with the model control group. The results indicated that AMP can ameliorate the immunity and spermatogenesis of mice with reproduction system impaired by cyclophosphamide.
Collapse
Affiliation(s)
- Chunjiang Qiu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, 59 Cangwu Road, Haizhou 222005, China
| | - Yuanxia Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, 59 Cangwu Road, Haizhou 222005, China.
| |
Collapse
|
27
|
Yi Y, Huang XY, Zhong ZT, Huang F, Li SY, Wang LM, Min T, Wang HX. Structural and biological properties of polysaccharides from lotus root. Int J Biol Macromol 2019; 130:454-461. [DOI: 10.1016/j.ijbiomac.2019.02.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
|
28
|
Wei W, Li ZP, Bian ZX, Han QB. Astragalus Polysaccharide RAP Induces Macrophage Phenotype Polarization to M1 via the Notch Signaling Pathway. Molecules 2019; 24:E2016. [PMID: 31137782 PMCID: PMC6572696 DOI: 10.3390/molecules24102016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
Macrophages occur in polarized phenotypes, whose characteristics determine the role they play in tumor growth. The M1 phenotype macrophages promote tumoricidal responses and suppress tumor growth. Our previous study showed that a polysaccharide isolated from Radix Astragali, named RAP, was itself non-cytotoxic but induced RAW264.7 cells' cytotoxicity against cancer cells. The current study was undertaken to determine its mechanism. Series studies was conducted to show that RAP is able to induce much higher gene expression of M1 markers, including iNOS, IL-6, TNF-a, and CXCL10, compared with the control group. When RAP-induced BMDMs were transplanted together with 4T1 tumor cells in BALB/c mice, both tumor volume and tumor weight decreased. Further studies indicated that RAP induces the Notch signaling pathway in RAW264.7 cells. The function of Notch signaling in macrophage polarization was confirmed by using γ-secretase inhibitor. These results suggested that Astragalus polysaccharide RAP induces macrophage's polarization to M1 phenotype via the Notch signaling pathway.
Collapse
Affiliation(s)
- Wei Wei
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Zhi-Peng Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
29
|
Antioxidant, immunomodulatory, oxidative stress inhibitory and iron supplementation effect of Astragalus membranaceus polysaccharide-iron (III) complex on iron-deficiency anemia mouse model. Int J Biol Macromol 2019; 132:213-221. [PMID: 30926500 DOI: 10.1016/j.ijbiomac.2019.03.196] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/30/2022]
Abstract
As iron supplement, the antioxidant activities of APS-iron (III) complex were comprehensively evaluated by 5-axe cobweb charts, which indicated the APS-iron (III) complex had a certain antioxidant activity and been weaker than that of APS. The results of immunological activity experiments indicated the stimulation index increased with APS-iron (III) complex concentration increase. When the concentration of the APS-iron (III) complex was 50 μg/mL, the lymphocytes proliferation increased by 35.7% compared with APS. APS-iron (III) complex also had better complement fixing activity than APS, 0.589 mg/mL of which achieved 50% complement fixing activities. Through the iron supplement experiments on iron-deficiency anemia mouse model, we found the APS-iron (III) complex faster increased hemoglobin concentration, SOD, CAT and faster decreased MDA to the normal level than Niferex and ferrous sulfate. Histological results revealed that the tissue sections were clear without obvious pathological changes and bone marrow had most hematopoietic cells from APS-iron (III) complex rat group, which also proved the APS-iron (III) complex had no significant side effects. Therefore, APS-iron (III) complex may be developed as a multifunctional iron supplement for clinical application.
Collapse
|
30
|
Gao Y, Peng B, Xu Y, Yang JN, Song LY, Bi SX, Chen Y, Zhu JH, Wen Y, Yu RM. Structural characterization and immunoregulatory activity of a new polysaccharide from Citrus medica L. var. sarcodactylis. RSC Adv 2019; 9:6603-6612. [PMID: 35518453 PMCID: PMC9061120 DOI: 10.1039/c8ra10664a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
A new homogeneous heteropolysaccharide (CMSPA90-1) was purified from bergamot by DEAE sepharose fast flow and Sephadex G-75 columns, and was shown to have a molecular weight of 17.6 kDa. Its chemical structure was elucidated by acid hydrolysis and methylation analysis, along with high-performance anion-exchange chromatography, Fourier transform infrared spectroscopy coupled with gas chromatography-mass spectrometry, NMR spectroscopies, the Congo red test, and circular dichroism. CMSPA90-1 consisted of a pyranoside and funanside with branches containing α- and β-configurations simultaneously. Arabinose and glucose might form an arabinoglucan backbone. The ultrastructure of CMSPA90-1 was further characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results of thermogravimetric analysis (TGA) revealed that CMSPA90-1 had good thermal stability. The results of DPPH˙ and ABTS+˙ radical scavenging assays indicated that CMSPA90-1 exhibited free-radical-scavenging properties. Otherwise, CMSPA90-1 could promote the proliferation of mouse splenocytes and the neutral red phagocytosis of RAW264.7 cells, which indicated that CMSPA90-1 could be researched and developed as one of the potential functional foods or natural medicines. A new homogeneous heteropolysaccharide (CMSPA90-1) was purified from bergamot by DEAE sepharose fast flow and Sephadex G-75 columns, and was shown to have a molecular weight of 17.6 kDa.![]()
Collapse
|
31
|
Extraction, Structure, and Pharmacological Activities of Astragalus Polysaccharides. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app9010122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Astragalus polysaccharides (APS) are important bioactive components of Astragali Radix, the dry root of Astragalus membranaceus, which has been used in traditional Chinese medicine. In this review, the extraction conditions and extraction rates of APS are first compared for water, microwave-assisted, ultrasonic wave, and enzymatic hydrolysis extraction methods. Some studies have also shown that different methods can be combined to improve the extraction rate of APS. Subsequently, the chemical composition and structure of APS are discussed, as related to the extraction and purification method. Most studies have shown that APS is mainly composed of glucose, in addition to rhamnose, galactose, arabinose, xylose, mannose, glucuronic acid, and galacturonic acid. We also reviewed studies on the modification of APS using chemical methods, including sulfated modification using the chlorosulfonic acid–pyridine method, which is commonly used for chemical modification of APS. Finally, the pharmacological activities and mechanisms of action of APS are summarized, with a special focus on its immunoregulatory, antitumor, anti-inflammatory, and antiviral effects. This review will serve as a valuable resource for the research on APS.
Collapse
|
32
|
Influences of extraction methods on physicochemical characteristics and activities of Astragalus cicer L. polysaccharides. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Li Y, Lei X, Guo W, Wu S, Duan Y, Yang X, Yang X. Transgenerational endotoxin tolerance-like effect caused by paternal dietary Astragalus polysaccharides in broilers' jejunum. Int J Biol Macromol 2018; 111:769-779. [DOI: 10.1016/j.ijbiomac.2018.01.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
|
34
|
Ma H, Jiang Q, Dai D, Li H, Bi W, Da Yong Chen D. Direct Analysis in Real Time Mass Spectrometry for Characterization of Large Saccharides. Anal Chem 2018; 90:3628-3636. [DOI: 10.1021/acs.analchem.8b00242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Huiying Ma
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qing Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Diya Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| |
Collapse
|
35
|
Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from Astragalus cicer L. Sci Rep 2018; 8:3359. [PMID: 29463789 PMCID: PMC5820361 DOI: 10.1038/s41598-018-21295-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/01/2018] [Indexed: 01/29/2023] Open
Abstract
Response surface methodology (RSM) including three variables was performed to optimize the extraction parameters of Astragalus cicer L. polysaccharides (ACPs). The influence of different drying techniques on the physicochemical properties and antioxidant abilities of ACPs were evaluated. The ACPs were dried with hot air (HD), vacuum (VD) and freeze drying (FD) methods. The optimal conditions for ACPs extraction were as follows: water to raw material ratio of 25 mL/g, extraction time of 61 min and temperature of 75 °C. Under these parameters, an ACPs yield of 10.97% was obtained. HPLC analysis showed that the monosaccharide compositions of the three ACPs dried with HD, VD or FD techniques were identical. The three ACPs exhibited antioxidant abilities in a concentration-dependent manner. ACPs dried with the FD method (FD-ACPs) had the best antioxidant activities, which might be related to their smaller molecular weight and higher uronic acid content. At the determined concentration of 1 mg/mL, the ferric reducing power, and DPPH and ABTS free radical scavenging capacities of FD-ACPs were 0.762, 75.30% and 99.21%, respectively. Therefore, FD was a good choice for the drying of Astragalus cicer L. polysaccharides.
Collapse
|
36
|
Bi S, Jing Y, Zhou Q, Hu X, Zhu J, Guo Z, Song L, Yu R. Structural elucidation and immunostimulatory activity of a new polysaccharide from Cordyceps militaris. Food Funct 2018; 9:279-293. [DOI: 10.1039/c7fo01147d] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical structure of new polysaccharide (CMPB90-1) obtained from Cordyceps militaris was elucidated, and its strengthening effects on immunostimulatory activities of lymphocytes and inducing effects on M1 polarization of macrophages were evaluated.
Collapse
Affiliation(s)
- Sixue Bi
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Yongshuai Jing
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Qinqin Zhou
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Xianjing Hu
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica
- Jinan University
- Guangzhou 510632
- China
| | - Zhongyi Guo
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Liyan Song
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Rongmin Yu
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
37
|
The immunoregulatory activities of astragalus polysaccharide liposome on macrophages and dendritic cells. Int J Biol Macromol 2017; 105:852-861. [DOI: 10.1016/j.ijbiomac.2017.07.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
|
38
|
Li Z, Wang L, Lin X, Shen L, Feng Y. Drug delivery for bioactive polysaccharides to improve their drug-like properties and curative efficacy. Drug Deliv 2017; 24:70-80. [PMID: 29124977 PMCID: PMC8812577 DOI: 10.1080/10717544.2017.1396383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Over several decades, natural polysaccharides (PSs) have been actively exploited for their wide bioactivities. So far, many PS-related reviews have been published; however, none focused on the delivery of bioactive PSs as therapeutic molecules. Herein, we summarized and discussed general pharmacokinetic properties of PSs and drug delivery systems (DDSs) developed for them, together with the challenges and prospects. Overall, most bioactive PSs suffer from undesirable pharmacokinetic attributes, which negatively affect their efficacy and clinical use. Various DDSs therefore have been being utilized to improve the drug-like properties and curative efficacy of bioactive PSs by means of improving oral absorption, controlling the release, enhancing the in vivo retention ability, targeting the delivery, exerting synergistic effects, and so on. Specifically, nano-sized insoluble DDSs were mainly applied to improve the oral absorption and target delivery of PSs, among which liposome was especially suitable for immunoregulatory and/or anti-ischemic PSs due to its synergistic effects in immunoregulation and biomembrane repair. Chemical conjugation of PSs was mainly utilized to improve their oral absorption and/or prolong their blood residence. With formulation flexibility, in situ forming systems alone or in combination with drug conjugation could be used to achieve day(s)- or month(s)-long sustained delivery of PSs per dosing.
Collapse
Affiliation(s)
- Zhe Li
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - LiNa Wang
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
39
|
Chouana T, Pierre G, Vial C, Gardarin C, Wadouachi A, Cailleu D, Le Cerf D, Boual Z, Ould El Hadj M, Michaud P, Delattre C. Structural characterization and rheological properties of a galactomannan from Astragalus gombo Bunge seeds harvested in Algerian Sahara. Carbohydr Polym 2017; 175:387-394. [DOI: 10.1016/j.carbpol.2017.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022]
|
40
|
Sahragard N, Jahanbin K. Structural elucidation of the main water-soluble polysaccharide from Rubus anatolicus roots. Carbohydr Polym 2017; 175:610-617. [DOI: 10.1016/j.carbpol.2017.08.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 11/27/2022]
|
41
|
Peng HS, Wang J, Zhang HT, Duan HY, Xie XM, Zhang L, Cheng ME, Peng DY. Rapid identification of growth years and profiling of bioactive ingredients in Astragalus membranaceus var. mongholicus ( Huangqi) roots from Hunyuan, Shanxi. Chin Med 2017; 12:14. [PMID: 28533813 PMCID: PMC5438511 DOI: 10.1186/s13020-017-0135-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/15/2017] [Indexed: 01/16/2023] Open
Abstract
Background The content of medicinal bioactive constituents in huangqi is affected by plant age. In this study, we devised a quick and convenient method for determining the age of huangqi, which was cultivated in Hunyuan County (Shanxi Province). Methods 1, 2, 3, 4, 5, 8, 10 growth years huangqi had 38 samples, all samples were collected separately. The growth rings in these samples were observed after making paraffin section and freehand-section. The relationship between growth rings and its growth years was analyzed by SPSS 19.0 software. Histochemical localization of total flavones and saponins in huangqi was determined by color reactions. The concentration of four flavonoids and two saponins in the roots of huangqi of different ages and different organizational structure (normal roots and rotten heart roots) were determined by HPLC-DAD and HPLC-ELSD. The results were analyzed by SPSS 19.0 software. Results All huangqi samples had clear growth rings, and the statistical result about growth rings (X) and growth years (Y) showed significant correlation (r = 1, P = 0.000). The calibration curves of these six ingredients showed good linearity respectively, with significant correlation. All relative standard deviations (RSDs) of precision, recovery, repeatability, and stability experiments were less than 2%. Roots of 5-year-old plants contained the highest concentrations of total flavonoids and saponins. Saponin concentrations increased toward the center of the roots, whereas the four flavonoids showed an opposite trend in tissue distribution. Conclusion The growth year of huangqi (Hunyuan County, Shanxi Province) could be determined soon and conveniently by naked eyes after staining phloroglucinol-HCl solution on freehand section. The content of saponins and flavonoids in rotten heart root and the surrounding normal tissues were affected by the formation and the extent of rotten heart. Electronic supplementary material The online version of this article (doi:10.1186/s13020-017-0135-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua-Sheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031 China.,State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Jun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031 China.,School of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800 China
| | - He-Ting Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031 China
| | - Hai-Yan Duan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031 China
| | - Xiao-Mei Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031 China
| | - Ling Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031 China
| | - Ming-En Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031 China.,Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230031 People's Republic of China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031 China.,Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230031 People's Republic of China
| |
Collapse
|
42
|
Ma Y, Liu C, Qu D, Chen Y, Huang M, Liu Y. Antibacterial evaluation of sliver nanoparticles synthesized by polysaccharides from Astragalus membranaceus roots. Biomed Pharmacother 2017; 89:351-357. [DOI: 10.1016/j.biopha.2017.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 01/03/2023] Open
|
43
|
Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP, Shang P, Xie MY. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit Rev Food Sci Nutr 2017; 56 Suppl 1:S60-84. [PMID: 26463231 DOI: 10.1080/10408398.2015.1069255] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Jian-Hua Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Ming-Liang Jin
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Gordon A Morris
- c Department of Chemical Sciences , School of Applied Sciences, University of Huddersfield , Huddersfield , UK
| | - Xue-Qiang Zha
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Han-Qing Chen
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Yang Yi
- e College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan , P.R. China
| | - Jing-En Li
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China.,f College of Food Science and Engineering, Jiangxi Agricultural University , Nanchang , P.R. China
| | - Zhi-Jun Wang
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Jie Gao
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Shao-Ping Nie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Peng Shang
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Ming-Yong Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| |
Collapse
|
44
|
Wang Y, Chen Y, Du H, Yang J, Ming K, Song M, Liu J. Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides. Exp Biol Med (Maywood) 2016; 242:344-353. [PMID: 27703041 DOI: 10.1177/1535370216672750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duck hepatitis A virus (DHAV) (Picornaviridae) causes an infectious disease in ducks which results in severe losses in duck industry. However, the proper antiviral supportive drugs for this disease have not been discovered. Polysaccharide is the main ingredient of Astragalus that has been demonstrated to directly and indirectly inhibit RNA of viruses replication. In this study, the antiviral activities of Astragalus polysaccharide (APS) and its derivatives against DHAV were evaluated and compared. APS was modified via the sodium trimetaphosphate and sodium tripolyphosphate (STMP-STPP) method and chlorosulfonic acid-pyridine method to obtain its phosphate (pAPS) and sulfate (sAPS), respectively. The infrared structures of APS, pAPS, and sAPS were analyzed with the potassium bromide disc method. Additionally, the antiviral activities were evaluated with the MTT ((4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) method in vitro and the artificial inoculation method in vivo. The clinical therapy effects were evaluated by mortality rate, liver function-related biochemical indicators, and visual changes in pathological anatomy. The anti-DHAV proliferation effects of APS, pAPS, and sAPS on the viral multiplication process in cell and blood were observed with the reverse transcription-polymerase chain reaction method. The results revealed that pAPS inhibited DHAV proliferation more efficiently in the entire process of viral multiplication than APS and sAPS. Moreover, only pAPS significantly improved the survival rate to 33.5% and reduced the DHAV particle titer in the blood as well as liver lesions in clinical trials. The results indicated that pAPS exhibited greater anti-DHAV activity than APS and sAPS both in vitro and in vivo.
Collapse
Affiliation(s)
- Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jingjing Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| |
Collapse
|
45
|
Yelithao K, Surayot U, Lee JH, You S. RAW264.7 Cell Activating Glucomannans Extracted from Rhizome of Polygonatum sibiricum. Prev Nutr Food Sci 2016; 21:245-254. [PMID: 27752501 PMCID: PMC5063210 DOI: 10.3746/pnf.2016.21.3.245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/21/2016] [Indexed: 12/23/2022] Open
Abstract
Water-soluble polysaccharides isolated from the rhizome of Polygonatum sibiricum and fractionated using ion-exchange chromatography were investigated to determine their structure and immunostimulating activity. Crude and fractions (F1 and F2) consisted of carbohydrates (85.1~88.3%) with proteins (4.51~11.9%) and uronic acid (1.79~7.47%), and included different levels of mannose (62.3~76.3%), glucose (15.2~20.3%), galactose (4.35~15.3%), and arabinose (4.00~7.65%). The crude contained two peaks with molecular weights (Mw) of 151×103 and 31.8×103, but F1 and F2 exhibited one major peak with Mw of 103×103 and 628×103, respectively. Little immunostimulatory activity was observed by the crude; however, F1 and F2 significantly activated RAW264.7 cells to release nitric oxide and various cytokines, suggesting they were potent immunostimulators. The backbone of the most immunostimulating fraction (F1) was (1→4)-manno- and (1→4)-gluco-pyranosyl residues with galactose and glucose attached to O-6 of manno-pyranoside.
Collapse
Affiliation(s)
- Khamphone Yelithao
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 25457, Korea
| | - Utoomporn Surayot
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 25457, Korea
| | - Ju Hun Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 25457, Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 25457, Korea
| |
Collapse
|
46
|
Jiang J, Kong F, Li N, Zhang D, Yan C, Lv H. Purification, structural characterization and in vitro antioxidant activity of a novel polysaccharide from Boshuzhi. Carbohydr Polym 2016; 147:365-371. [DOI: 10.1016/j.carbpol.2016.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 11/26/2022]
|
47
|
Liu W, Wang H, Yu J, Liu Y, Lu W, Chai Y, Liu C, Pan C, Yao W, Gao X. Structure, chain conformation, and immunomodulatory activity of the polysaccharide purified from Bacillus Calmette Guerin formulation. Carbohydr Polym 2016; 150:149-58. [PMID: 27312624 DOI: 10.1016/j.carbpol.2016.05.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 01/08/2023]
Abstract
A polysaccharide, coded as BDP, purified from the injection powder of Bacillus Calmette Guerin (BCG) polysaccharide and nucleic acid, was composed mainly of α-D-(1→4)-linked glucan with (1→6)-linked branches and trace amounts of fucose and mannose from the results of FT-IR, HPAEC-PAD and NMR spectrum. The Mw, Mn, Mz, and [Formula: see text] were determined to be 1.320×10(5)g/mol, 1.012×10(5)g/mol, 2.139×10(5)g/mol, and 21.8±3.2%nm by using HPSEC-MALLS, respectively. The ν value from [Formula: see text] was calculated to be 0.52±0.01, which firstly clarified that BDP existed as random coils in 0.9% NaCl aqueous solution. AFM and SEM combined with Congo-red test also revealed that the polysaccharide was irregular globular like or curly structure. Furthermore, in vitro tests on RAW264.7 murine macrophages cells revealed that BDP exhibited significant immunomodulatory activity.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Juping Yu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yameng Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weisheng Lu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yin Chai
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
48
|
Jiang Y, Qi X, Gao K, Liu W, Li N, Cheng N, Ding G, Huang W, Wang Z, Xiao W. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides. Glycoconj J 2016; 33:755-61. [DOI: 10.1007/s10719-016-9669-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 11/24/2022]
|
49
|
Huang F, Zhang R, Tang X, Hu T, Xiao J, Liu L, Dong L, Wei Z, Wang G, Zhang M. Preliminary characterization and immunomodulatory activity of polysaccharide fractions from litchi pulp. RSC Adv 2016. [DOI: 10.1039/c6ra20505d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two polysaccharide fractions extracted from litchi pulp have immunostimulatory activity.
Collapse
|
50
|
Jiao R, Liu Y, Gao H, Xiao J, So KF. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:463-488. [DOI: 10.1142/s0192415x16500269] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Oxidative stress has been increasingly recognized as a major contributing factor in a variety of human diseases, from inflammation to cancer. Although certain parts of signaling pathways are still under investigation, detailed molecular mechanisms for the induction of diseases have been elucidated, especially the link between excessive oxygen reactive species (ROS) damage and tumorigenesis. Emerging evidence suggests anti-oxidant therapy can play a key role in treating those diseases. Among potential drug resources, plant polysaccharides are natural anti-oxidant constituents important for human health because of their long history in ethnopharmacology, wide availability and few side effects upon consumption. Plant polysaccharides have been shown to possess anti-oxidant, anti-inflammation, cell viability promotion, immune-regulation and antitumor functions in a number of disease models, both in laboratory studies and in the clinic. In this paper, we reviewed the research progress of signaling pathways involved in the initiation and progression of oxidative stress- and cancer-related diseases in humans. The natural sources, structural properties and biological actions of several common plant polysaccharides, including Lycium barbarum, Ginseng, Zizyphus Jujuba, Astragalus lentiginosus, and Ginkgo biloba are discussed in detail, with emphasis on their signaling pathways. All of the mentioned common plant polysaccharides have great potential to treat oxidative stress and cancinogenic disorders in cell models, animal disease models and clinical cases. ROS-centered pathways (e.g. mitochondrial autophagy, MAPK and JNK) and transcription factor-related pathways (e.g. NF-[Formula: see text]B and HIF) are frequently utilized by these polysaccharides with or without the further involvement of inflammatory and death receptor pathways. Some of the polysaccharides may also influence tumorigenic pathways, such as Wnt and p53 to play their anti-tumor roles. In addition, current problems and future directions for the application of those plant polysaccharides are also listed and discussed.
Collapse
Affiliation(s)
- Rui Jiao
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yingxia Liu
- State Key Discipline of Infectious Diseases, Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jia Xiao
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
- State Key Discipline of Infectious Diseases, Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, China
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok Fai So
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- GMH Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|