1
|
Wang D, Wang J, Liu X, Du K, Liu H, Yang X, Liu T, Liu Q, Wang M, Guo J. Quantifying carboxymethyl lysine and carboxyethyl lysine in human plasma: clinical insights into aging research using liquid chromatography-tandem mass spectrometry. BMC Biotechnol 2024; 24:12. [PMID: 38454400 PMCID: PMC10919032 DOI: 10.1186/s12896-024-00838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE The objective of this study was to establish a methodology for determining carboxymethyl lysine (CML) and carboxyethyl lysine (CEL) concentrations in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The test results were also used for clinical aging research. METHODS Human plasma samples were incubated with aqueous perfluorovaleric acid (NFPA), succeeded by precipitation utilizing trichloroacetic acid, hydrolysis facilitated by hydrochloric acid, nitrogen drying, and ultimate re-dissolution utilizing NFPA, followed by filtration. Cotinine-D3 was added as an internal standard. The separation was performed on an Agela Venusil ASB C18 column (50 mm × 4.6 mm, 5 μm) with a 5 mmol/L NFPA and acetonitrile/water of 60:40 (v/v) containing 0.15% formic acid. The multiple reaction monitoring mode was used for detecting CML, CEL, and cotinine-D3, with ion pairs m/z 205.2 > 84.1 (for quantitative) and m/z 205.2 > m/z 130.0 for CML, m/z 219.1 > 84.1 (for quantitative) and m/z 219.1 > m/z 130.1 for CEL, and m/z 180.1 > 80.1 for cotinine-D3, respectively. RESULTS The separation of CML and CEL was accomplished within a total analysis time of 6 minutes. The retention times of CML, CEL, and cotinine-D3 were 3.43 minutes, 3.46 minutes, and 4.50 minutes, respectively. The assay exhibited linearity in the concentration range of 0.025-1.500 μmol/L, with a lower limit of quantification of 0.025 μmol/L for both compounds. The relative standard deviations of intra-day and inter-day were both below 9%, and the relative errors were both within the range of ±4%. The average recoveries were 94.24% for CML and 97.89% for CEL. CONCLUSION The results indicate that the developed methodology is fast, highly sensitive, highly specific, reproducible, and suitable for the rapid detection of CML and CEL in clinical human plasma samples. The outcomes of the clinical research project on aging underscored the important indicative significance of these two indicators for research on human aging.
Collapse
Affiliation(s)
- Daguang Wang
- Clinical Laboratory, Aviation General Hospital, Beijing, 100000, China
| | - Junshan Wang
- Iphase Pharma Laboratory, Iphase Pharma Services (Think Tank Research Center for Health Development Laboratory), Beijing, 100000, China
| | - Xinghong Liu
- Iphase Pharma Laboratory, Iphase Pharma Services (Think Tank Research Center for Health Development Laboratory), Beijing, 100000, China
| | - Kehe Du
- Iphase Pharma Laboratory, Iphase Pharma Services (Think Tank Research Center for Health Development Laboratory), Beijing, 100000, China
| | - Hongjun Liu
- Iphase Pharma Laboratory, Iphase Pharma Services (Think Tank Research Center for Health Development Laboratory), Beijing, 100000, China
| | - Xiaofeng Yang
- Beijing Hospital Laboratory, National Center for Gerontology, No.1 of Dahua Road, Dongcheng District, Beijing, 100000, China
| | - Tianyi Liu
- Beijing Hospital Laboratory, National Center for Gerontology, No.1 of Dahua Road, Dongcheng District, Beijing, 100000, China
| | - Qian Liu
- Beijing Hospital Laboratory, National Center for Gerontology, No.1 of Dahua Road, Dongcheng District, Beijing, 100000, China
| | - Meng Wang
- Beijing Hospital Laboratory, National Center for Gerontology, No.1 of Dahua Road, Dongcheng District, Beijing, 100000, China
| | - Jian Guo
- Beijing Hospital Laboratory, National Center for Gerontology, No.1 of Dahua Road, Dongcheng District, Beijing, 100000, China.
| |
Collapse
|
2
|
Skrajewski-Schuler LA, Soule LD, Geiger M, Spence D. UPLC-MS/MS method for quantitative determination of the advanced glycation endproducts Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6698-6705. [PMID: 38047493 PMCID: PMC10720951 DOI: 10.1039/d3ay01817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
During blood storage, red blood cells (RBCs) undergo physical, chemical, and metabolic changes that may contribute to post-transfusion complications. Due to the hyperglycemic environment of typical solutions used for RBC storage, the formation of advanced glycation endproducts (AGEs) on the stored RBCs has been implicated as a detrimental chemical change during storage. Unfortunately, there are limited studies involving quantitative determination and differentiation of carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL), two commonly formed AGEs, and no reported studies comparing these AGEs in experimental storage solutions. In this study, CML and CEL were identified and quantified on freshly drawn blood samples in two types of storage solutions, standard additive solution 1 (AS-1) and a normoglycemic version of AS-1 (AS-1N). To facilitate detection of the AGEs, a novel method was developed to reliably extract AGEs from RBCs, provide Food and Drug Administration (FDA) bioanalytical guidance criteria, and enable acceptable selectivity for these analytes. Ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) was utilized to identify and quantify the AGEs. Results show this method is accurate, precise, has minimal interferences or matrix effects, and overcomes the issue of detecting AGE byproducts. Importantly, AGEs can be detected and quantified in both types of blood storage solutions (AS-1 and AS-1N), thereby enabling long-term (6 weeks) blood storage related studies.
Collapse
Affiliation(s)
- Lauren A Skrajewski-Schuler
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
| | - Logan D Soule
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Morgan Geiger
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Dana Spence
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Zhang Z, Chen Y, Deng P, He Z, Qin F, Chen Q, Wang Z, Chen J, Zeng M, Pan H. Isotope dilution-HPLC-MS/MS to investigate the production patterns and possible pathways of free and protein-bound AGEs and 4-MI in cookies. Food Res Int 2023; 173:113477. [PMID: 37803800 DOI: 10.1016/j.foodres.2023.113477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
A qualitative and quantitative method for detecting free and protein-bound advanced glycation end products (AGEs) and 4-methylimidazole (4-MI) was established using isotope dilution-HPLC-MS/MS, and successfully applied in cookies and model systems. The effects of different temperatures (160-220 °C) on the formation of free and protein-bound AGEs and 4-MI in cookies were discussed, and the possible model systems (Maillard reaction pathway 1 using wheat gluten protein + glucose + sucrose; direct addition pathway 1 using wheat gluten protein + CML/CEL/4-MI) of protein-bound AGEs and 4-MI were verified. The results showed that the contents of protein-bound CML, CEL, and 4-MI were higher than free content with a tendency of increasing first and subsequently decreasing with temperature, reaching a maximum at 200 °C in cookies. In the model systems, the levels of protein-bound CML, CEL, and 4-MI are higher than those of free CML, CEL, and 4-MI. The protein-bound CML, CEL, and 4-MI accounted for 90.73, 87.64, and 97.56% of the total amount in the model system 1, while accounting for 68.19, 59.00, and 50.96% in the model system 2, respectively. In comparison, protein-bound CML, CEL, and 4-MI could be easily generated directly by Maillard reaction.
Collapse
Affiliation(s)
- Zening Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Peng Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Hongyang Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Li L, Zhuang Y, Zou X, Chen M, Cui B, Jiao Y, Cheng Y. Advanced Glycation End Products: A Comprehensive Review of Their Detection and Occurrence in Food. Foods 2023; 12:foods12112103. [PMID: 37297348 DOI: 10.3390/foods12112103] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The Maillard reaction (MR) is a complicated chemical process that has been extensively studied. Harmful chemicals known as advanced glycation end products (AGEs), with complex structures and stable chemical characteristics, are created during the final stage of the MR. AGEs can be formed both during the thermal processing of food and in the human body. The number of AGEs formed in food is much higher compared to endogenous AGEs. A direct connection exists between human health and the build-up of AGEs in the body, which can result in diseases. Therefore, it is essential to understand the content of AGEs in the food we consume. The detection methods of AGEs in food are expounded upon in this review, and the advantages, disadvantages, and application fields of these detection methods are discussed in depth. Additionally, the production of AGEs in food, their content in typical foods, and the mechanisms influencing their formation are summarized. Since AGEs are closely related to the food industry and human health, it is hoped that this review will further the detection of AGEs in food so that their content can be evaluated more conveniently and accurately.
Collapse
Affiliation(s)
- Lixian Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yingjun Zhuang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiuzhi Zou
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
5
|
Boz H. N ϵ -(carboxymethyl)lysine in bakery products: A review. J Food Sci 2023; 88:901-908. [PMID: 36695775 DOI: 10.1111/1750-3841.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
The purpose of this review is to draw attention to the Nϵ -(carboxymethyl)lysine (CML) content of bakery products with respect to their formation during baking and their health effects. Phenolic components added to the formulation in bakery products significantly reduce the formation of CML. Among the phenolic components, ferulic acid showed the most significant lowering effect on CML. Among the flavanones tested in the model cookie system, dihydromyricetin exhibited the strongest CML-reducing effect. The addition of fat-, sugar-, and protein-rich ingredients to the formulations of bakery products generally increases the CML content in these products. In addition, the addition of components that have a water activity-reducing effect, such as dietary fiber, and the high temperature in baking also increase the formation of CML. Therefore, the food industry should also focus on optimizing food production to minimize CML formation while maintaining the safety and organoleptic properties of bakery products. PRACTICAL APPLICATION: The CML level in foods is likely to increase 200 times with an increase in cooking temperature. The addition of protein and fat to bakery product formulations can increase CML formation. The addition of glucose in cakes can produce higher levels of CML than fructose, refined sucrose, or unrefined sucrose. Phenolic compounds have a reducing effect on CML formation in bakery products.
Collapse
Affiliation(s)
- Hüseyin Boz
- Gastronomy and Culinary Arts Department, Tourism Faculty, Erzurum, Turkey
| |
Collapse
|
6
|
Advanced Glycation End Products and Nitrosamines in Sausages Influenced by Processing Parameters, Food Additives and Fat during Thermal Processing. Foods 2023; 12:foods12020394. [PMID: 36673483 PMCID: PMC9858282 DOI: 10.3390/foods12020394] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Advanced glycation end products (AGEs) and nitrosamines (NAs) in sausage are associated with pathogenic and carcinogenic risks. However, the multiple reaction parameters affecting the production of AGEs and NAs during sausage processing remain unclear. This experiment evaluated the effects of processing parameters, food additives and fat ratios on the formation of AGEs and NAs in sausages. The results showed a 2-3-fold increase in Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) when the sausage processing temperature was increased from 90 °C to 130 °C, and N-nitrosodimethylamine (NDEA) increased from 3.68 ng/g to 6.41 ng/g. The addition of salt inhibited the formation of AGEs and NAs, and the inhibitory ability of 2 g/100 g of salt was 63.6% for CML and 36.5% for N-nitrosodimethylamine (NDMA). The addition of 10 mg/kg nitrite to sausages reduced CML formation by 43.9%, however, nitrite had a significant contribution to the formation of NAs. The addition of fat only slightly contributed to the production of CML. In addition, the relationship between α-dicarbonyl compounds and the formation of AGEs was investigated by measuring the changes in α-dicarbonyl compounds in sausages. The results showed two trends of AGEs and α-dicarbonyl compounds: AGEs increased with the increase in α-dicarbonyl compounds and AGE level increased but α-dicarbonyl compound level decreased.
Collapse
|
7
|
Natural Antioxidants and Hydrocolloids as a Mitigation Strategy to Inhibit Advanced Glycation End Products (AGEs) and 5-Hydroxymethylfurfural (HMF) in Butter Cookies. Foods 2022; 11:foods11050657. [PMID: 35267290 PMCID: PMC8909267 DOI: 10.3390/foods11050657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Maillard reaction during food processing contributes to the formation of some unpleasant heat-induced toxicants including advanced glycation end products (AGEs) and 5-hydroxymethylfurfural (HMF). The current study prepared butter cookies fortified with two dietary natural antioxidants (catechins and curcumin) and two dietary hydrocolloids (pectin and chitosan), and investigated their effects on formation of free Nε-(carboxymethyl)lysine (CML)/Nε-(carboxyethyl)lysine (CEL), protein-bound CML/CEL and HMF and on the sensory qualities of butter cookies. Meanwhile, three typical α-dicarbonyl compounds were also determined to identify possible correlations between α-dicarbonyl intermediates and formation of these harmful heat-induced products in butter cookies. Experimental data showed that catechin exhibited the strongest inhibitory effects on formation of AGEs and HMF, but its addition would impair the color and taste of cookies. On the other hand, chitosan was not so effective in inhibiting AGEs and HMF as compared to catechin, but its addition could increase the sensory qualities of butter cookies.
Collapse
|
8
|
A comprehensive review of advanced glycosylation end products and N- Nitrosamines in thermally processed meat products. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Xiao SS, Shi L, Wang PC, Liu X, Fang M, Wu YN, Gong ZY. Determination of Nε-(carboxymethyl)lysine in commercial dairy products in China with liquid chromatography tandem mass spectroscopy. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Yuan X, Nie C, Liu H, Ma Q, Peng B, Zhang M, Chen Z, Li J. Comparison of metabolic fate, target organs, and microbiota interactions of free and bound dietary advanced glycation end products. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34698575 DOI: 10.1080/10408398.2021.1991265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Increased intake of Western diets and ultra-processed foods is accompanied by increased intake of advanced glycation end products (AGEs). AGEs can be generated exogenously in the thermal processing of food and endogenously in the human body, which associated with various chronic diseases. In food, AGEs can be divided into free and bound forms, which differ in their bioavailability, digestion, absorption, gut microbial interactions and untargeted metabolites. We summarized the measurements and contents of free and bound AGE in foods. Moreover, the ingestion, digestion, absorption, excretion, gut microbiota interactions, and metabolites and metabolic pathways between free and bound AGEs based on animal and human studies were compared. Bound AGEs were predominant in most of the selected foods, while beer and soy sauce were rich in free AGEs. Only 10%-30% of AGEs were absorbed into the systemic circulation when orally administered. The excretion of ingested free and bound AGEs was approximately 90% and 60%, respectively. Dietary free CML has a detrimental effect on gut microbiota composition, while bound AGEs have both detrimental and beneficial impacts. Free and bound dietary AGEs changed amino acid metabolism, energy metabolism and carbohydrate metabolism. And besides, bound dietary AGEs altered vitamin metabolism, and glycerolipid metabolism.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bo Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Chen G. Dietary N-epsilon-carboxymethyllysine as for a major glycotoxin in foods: A review. Compr Rev Food Sci Food Saf 2021; 20:4931-4949. [PMID: 34378329 DOI: 10.1111/1541-4337.12817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
N-epsilon-carboxymethyllysine (CML), as a potential glycotoxin and general marker for dietary advanced glycation end products (dAGEs), exists in raw food and is formed via various formation routes in food processing such as Maillard reaction between the reducing sugars and amino acids. Although comprehensive cause-effect proof is not available yet, current research suggests a potential risk of chronic diseases such as diabetes is associated with exogenous CML. Thus, CML is causing public health concerns regarding its dietary exposure, but there is a lack of explicit guidance for understanding if it is detrimental to human health. In this review, inconsistent results of dietary CML contributed to chronic disease are discussed, available concentrations of CML in consumed foods are evaluated, measurements for dietary CML and relevant analytic procedures are listed, and the possible mitigation strategies for protecting against CML formation are presented. Finally, the main challenges and future efforts are highlighted. Further studies are needed to extend the dietary CML database in a wide category of foods, apply new identifying methods, elucidate the pathogenic mechanisms, assess its detrimental role in human health, and propose standard guidelines for processed food.
Collapse
Affiliation(s)
- Gengjun Chen
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
12
|
Chen Y, Guo TL. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J Immunotoxicol 2021; 18:93-104. [PMID: 34436982 PMCID: PMC9885815 DOI: 10.1080/1547691x.2021.1959677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aging immune system is characterized by a low-grade chronic systemic inflammatory state ("inflammaging") marked by elevated serum levels of inflammatory molecules such as interleukin (IL)-6 and C-reactive protein (CRP). These inflammatory markers were also reported to be strong predictors for the development/severity of Type 2 diabetes, obesity, and COVID-19. The levels of these markers have been positively associated with those of advanced glycation end-products (AGEs) generated via non-enzymatic glycation and oxidation of proteins and lipids during normal aging and metabolism. Based on the above observations, it is clinically important to elucidate how dietary AGEs modulate inflammation and might thus increase the risk for aging-exacerbated diseases. The present narrative review discusses the potential pro-inflammatory properties of dietary AGEs with a focus on the inflammatory mediators CRP, IL-6 and ferritin, and their relations to aging in general and Type 2 diabetes in particular. In addition, underlying mechanisms - including those related to gut microbiota and the receptors for AGEs, and the roles AGEs might play in affecting physiologies of the healthy elderly, obese individuals, and diabetics are discussed in regard to any greater susceptibility to COVID-19.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L. Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
Liu J, Yang Z, Hao Y, Wang Z, Han L, Li M, Zhang N, Chen H, Liu Y, Li H, Wang J. Effect of alkylresorcinols on the formation of Nε-(carboxymethyl)lysine and sensory profile of wheat bread. Food Sci Nutr 2021; 9:489-498. [PMID: 33473310 PMCID: PMC7802564 DOI: 10.1002/fsn3.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Alkylresorcinols (ARs) are important bioactive components in wheat bran which have been used as biomarkers for whole grain wheat consumption. In this study, the impact of ARs on the formation of Nε-(carboxymethyl)lysine (CML), the main component of dietary advanced glycation end products which could induce chronic disease was analyzed. Moreover, the influence of the addition of ARs on the sensory profiles of wheat bread was evaluated. ARs supplementation (0.03%, 0.1%, and 0.3% w/w) could significantly decrease the formation of CML by 21.70%, 35.11%, and 42.18%, respectively, compared with the control. Moreover, ARs-supplemented bread achieved a higher score in overall acceptability and buttery-like aroma through sensory evaluation. The volatile compounds in bread supplemented with ARs were characterized by headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), among which acetoin, 2,3-butanedione, 3-methyl-1-butanol, 2-phenylethanol, and 2-methylbutanal were confirmed as the main volatile compounds through determination of odor activity value. In addition, ARs supplementation had no negative impact on the chewiness, hardness, and springiness of bread. These findings demonstrated that ARs could be applied as potential food additives to improve the quality and sensory profile of bread.
Collapse
Affiliation(s)
- Jie Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Zihui Yang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Yiming Hao
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Ziyuan Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Lin Han
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Meng Li
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Ning Zhang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Haitao Chen
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Yingli Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Hongyan Li
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Jing Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business UniversityBeijingChina
| |
Collapse
|
14
|
Zhu Z, Huang M, Cheng Y, Khan IA, Huang J. A comprehensive review of Nε-carboxymethyllysine and Nε-carboxyethyllysine in thermal processed meat products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Aalaei K, Sjöholm I, Rayner M, Teixeira C, Tareke E. Early and advanced stages of Maillard reaction in infant formulas: Analysis of available lysine and carboxymethyl-lysine. PLoS One 2019; 14:e0220138. [PMID: 31339942 PMCID: PMC6655787 DOI: 10.1371/journal.pone.0220138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/09/2019] [Indexed: 01/07/2023] Open
Abstract
Although the literature on the Maillard reaction in infant formulas is extensive, most studies have focused on model systems, and in only a few cases on real food systems. Therefore, the objective of the present study was to determine the status of the Maillard reaction, both the early and advanced phases, in a variety of commercial infant formulas available on the Swedish market. Ten powder and liquid milk-based infant formulas from three manufacturers were selected to determine available lysine and CML contents, the two established indicators of the reaction. The products were also characterized with respect to protein content, carbohydrates composition, water content and water activity. In order to be able to compare the impact of different processing steps applied on powder and liquid formulas, the solid formulas contained similar ingredients as their corresponding liquid ones. Our findings showed that powder and liquid formulas contained similar available lysine concentrations regardless of the manufacturer, showing 27.14-36.57% decrease in the available lysine, compared to the reference skim milk powder in this study. The CML concentrations were in a broad range of 68.77-507.99 mg / kg protein. In the case of one manufacturer, liquid infant formulas had significantly higher CML content, compared to the powder products (p < 0.05). The results from this study are a step taken towards better understanding of the extent of the Maillard reaction in real complex systems of infant formulas.
Collapse
Affiliation(s)
- Kataneh Aalaei
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Ingegerd Sjöholm
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Marilyn Rayner
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Cristina Teixeira
- Food for Health Science Centre, Lund University, Medicon Village, Lund, Sweden
| | - Eden Tareke
- Food for Health Science Centre, Lund University, Medicon Village, Lund, Sweden
| |
Collapse
|
16
|
Gong RZ, Wang YH, Wang YF, Chen B, Gao K, Sun YS. Simultaneous Determination of N ε-(carboxymethyl) Lysine and N ε-(carboxyethyl) Lysine in Different Sections of Antler Velvet after Various Processing Methods by UPLC-MS/MS. Molecules 2018; 23:molecules23123316. [PMID: 30558131 PMCID: PMC6321259 DOI: 10.3390/molecules23123316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
Nε-(Carboxymethyl) lysine (CML) and Nε-(carboxyethyl) advanced glycation end-products (AGEs) and are frequently used as markers of AGE formation. AGEs, such as CML and CEL, have harmful effects in the human body and have been closely linked to many diseases such as diabetes and uremia. However, details on the contents of CML and CEL after applying different antler velvet processing methods are lacking. In this research, a robust lysine (CEL) are two typical UPLC-MS/MS method has been developed for the simultaneous determination of CML and CEL in various sections of antler velvet processed with different methods. In addition, factors affecting the CML and CEL contents are discussed. The CML contents of antler velvet after freeze-drying, boiling, processing without blood, and processing with blood were 74.55–458.59, 119.44–570.69, 75.36–234.92, and 117.11–456.01 μg/g protein, respectively; the CEL contents were 0.74–12.66, 11.33–35.93, 0.00–6.75, and 0.00–23.41 μg/g protein, respectively. The different contents of CML and CEL in the different samples of antler velvet result from the different interactions of the protein and lysine at different temperatures. These data can be used to estimate the potential consumer intake of CML and CEL from antler velvet and for guiding producers on how to reduce the production of CML and CEL.
Collapse
Affiliation(s)
- Rui-Ze Gong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Yan-Hua Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun 130112, China.
| | - Yu-Fang Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Bao Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun 130112, China.
| | - Kun Gao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun 130112, China.
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
17
|
Hillman M, Weström B, Aalaei K, Erlanson-Albertsson C, Wolinski J, Lozinska L, Sjöholm I, Rayner M, Landin-Olsson M. Skim milk powder with high content of Maillard reaction products affect weight gain, organ development and intestinal inflammation in early life in rats. Food Chem Toxicol 2018; 125:78-84. [PMID: 30553875 DOI: 10.1016/j.fct.2018.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The intestinal tract is important for development of immune tolerance and disturbances are suggested to trigger autoimmune disorders. The aim of this study was to explore the effect of Maillard products in skim milk powder obtained after long storage, compared to fresh skim milk powder. METHODS Young rats were weaned onto a diet based on skim milk powder with high concentration of Maillard products (HM-SM, n = 18) or low (C-SM, n = 18) for one week or four weeks. Weekly body weight and feed consumption were noted. At the end, organ weights, intestinal histology, permeability and inflammatory cytokines were evaluated. RESULTS Rats fed with HM-SM had after one week, 15% less weight gain than controls, despite equal feed intake. After one week thymus and spleen were smaller, intestinal mucosa thickness was increased and acute inflammatory cytokines (IL-17, IL-1β, MCP-1) were elevated. After four weeks, cytokines associated with chronic intestinal inflammation (fractalkine, IP-10, leptin, LIX, MIP-2, RANTES and VEGF) were increased in rats fed with HM-SM compared to C-SM. CONCLUSION High content of Maillard products in stored milk powder caused an intestinal inflammation. Whether this is relevant for tolerance development and future autoimmune diseases remains to be explored.
Collapse
Affiliation(s)
- M Hillman
- Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Sweden
| | - B Weström
- Lund University, Faculty of Science, Department of Biology, Lund, Sweden, Sweden
| | - K Aalaei
- Lund University, Faculty of Engineering, Department of Food Technology Engineering and Nutrition, Sweden
| | - C Erlanson-Albertsson
- Lund University, Faculty of Medicine, Department of Experimental Sciences, Lund, Sweden
| | - J Wolinski
- Polish Academy of Sciences, Kielanowski Institute of Animal Nutrition and Physiology, Department of Endocrinology, Jablonna, Poland
| | - L Lozinska
- Lund University, Faculty of Science, Department of Biology, Lund, Sweden, Sweden
| | - I Sjöholm
- Lund University, Faculty of Engineering, Department of Food Technology Engineering and Nutrition, Sweden
| | - M Rayner
- Lund University, Faculty of Engineering, Department of Food Technology Engineering and Nutrition, Sweden
| | - M Landin-Olsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Sweden; Skane University Hospital, Department of Endocrinology, Lund, Sweden.
| |
Collapse
|
18
|
Wei Q, Liu T, Sun DW. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
André A, Wdzieczak-Bakala J, Touré AK, Stien D, Eparvier V. A method to quantify intracellular glycation in dermal fibroblasts using liquid chromatography coupled to fluorescence detection – Application to the selection of deglycation compounds of dermatological interest. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:100-105. [DOI: 10.1016/j.jchromb.2018.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
20
|
Scheijen JL, Hanssen NM, van Greevenbroek MM, Van der Kallen CJ, Feskens EJ, Stehouwer CD, Schalkwijk CG. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clin Nutr 2018; 37:919-925. [DOI: 10.1016/j.clnu.2017.03.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 01/11/2023]
|
21
|
Nε -(carboxymethyl)lysine and Nε -(carboxyethyl)lysine in tea and the factors affecting their formation. Food Chem 2017; 232:683-688. [DOI: 10.1016/j.foodchem.2017.04.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
|
22
|
Gómez-Ojeda A, Jaramillo-Ortíz S, Wrobel K, Wrobel K, Barbosa-Sabanero G, Luevano-Contreras C, de la Maza MP, Uribarri J, Del Castillo MD, Garay-Sevilla ME. Comparative evaluation of three different ELISA assays and HPLC-ESI-ITMS/MS for the analysis of N ε-carboxymethyl lysine in food samples. Food Chem 2017; 243:11-18. [PMID: 29146316 DOI: 10.1016/j.foodchem.2017.09.098] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Nε-carboxymethyl-lysine (CML) is measured in food, but there is a controversy concerning the most convenient yet reliable method(s) for this task. This work compares three different ELISA assays and HPLC-ESI-ITMS/MS for the analysis of CML in several food items. The four methods showed the same decreasing order of CML concentration: beef, bacon>chicken > fish>dairy products>grain products>fruits/vegetables. HPLC-ESI-ITMS/MS results highly correlated with those obtained by ELISA performed with monoclonal CML-antibody (β=0.98, p<0.0001) whereas My Bio Source® kit results were not correlated with those provided by Lamider®. Small differences of CML concentrations in food items prepared by different culinary treatment were clearly distinguished by HPLC-ESI-ITMS/MS, but could not always be detected by ELISA. This work demonstrates a reasonable relationship between CM determined by ELISA and HPLC-ESI-ITMS/MS and therefore supports the implementation of ELISA in food CML/AGEs screening.
Collapse
Affiliation(s)
- Armando Gómez-Ojeda
- Department of Medical Science, University of Guanajuato, 20 de enero 929 Col. Obregón Leon, Guanajuato CP. 37320, Mexico.
| | - Sarahi Jaramillo-Ortíz
- Department of Chemistry, University of Guanajuato, Lascurain de Retana # 6, Centro Guanajuato, Gto., Guanajuato CP. 36000, Mexico.
| | - Katarzyna Wrobel
- Department of Chemistry, University of Guanajuato, Lascurain de Retana # 6, Centro Guanajuato, Gto., Guanajuato CP. 36000, Mexico.
| | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato, Lascurain de Retana # 6, Centro Guanajuato, Gto., Guanajuato CP. 36000, Mexico.
| | - Gloria Barbosa-Sabanero
- Department of Medical Science, University of Guanajuato, 20 de enero 929 Col. Obregón Leon, Guanajuato CP. 37320, Mexico.
| | - Claudia Luevano-Contreras
- Department of Medical Science, University of Guanajuato, 20 de enero 929 Col. Obregón Leon, Guanajuato CP. 37320, Mexico.
| | | | - Jaime Uribarri
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ma Dolores Del Castillo
- Food Bioscience Group, Department of Food Analysis and Bioactivity, Institute of Food Science, Research (CIAL), Spanish National Research Council (CSIC), Nicolas Cabrera 9, Madrid 28049, Spain.
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science, University of Guanajuato, 20 de enero 929 Col. Obregón Leon, Guanajuato CP. 37320, Mexico.
| |
Collapse
|
23
|
Aalaei K, Sjöholm I, Rayner M, Tareke E. The Impact of Different Drying Techniques and Controlled Storage on the Development of Advanced Glycation End Products in Skim Milk Powders Using Isotope Dilution ESI-LC-MS/MS. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1936-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Östman E, Forslund A, Tareke E, Björck I. On the Importance of Processing Conditions for the Nutritional Characteristics of Homogenized Composite Meals Intended for Infants. Nutrients 2016; 8:nu8060340. [PMID: 27271662 PMCID: PMC4924181 DOI: 10.3390/nu8060340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023] Open
Abstract
The nutritional quality of infant food is an important consideration in the effort to prevent a further increase in the rate of childhood obesity. We hypothesized that the canning of composite infant meals would lead to elevated contents of carboxymethyl-lysine (CML) and favor high glycemic and insulinemic responses compared with milder heat treatment conditions. We have compared composite infant pasta Bolognese meals that were either conventionally canned (CANPBol), or prepared by microwave cooking (MWPBol). A meal where the pasta and Bolognese sauce were separate during microwave cooking (MWP_CANBol) was also included. The infant meals were tested at breakfast in healthy adults using white wheat bread (WWB) as reference. A standardized lunch meal was served at 240 min and blood was collected from fasting to 360 min after breakfast. The 2-h glucose response (iAUC) was lower following the test meals than with WWB. The insulin response was lower after the MWP_CANBol (−47%, p = 0.0000) but markedly higher after CANPBol (+40%, p = 0.0019), compared with WWB. A combined measure of the glucose and insulin responses (ISIcomposite) revealed that MWP_CANBol resulted in 94% better insulin sensitivity than CANPBol. Additionally, the separate processing of the meal components in MWP_CANBol resulted in 39% lower CML levels than the CANPBol. It was therefore concluded that intake of commercially canned composite infant meals leads to reduced postprandial insulin sensitivity and increased exposure to oxidative stress promoting agents.
Collapse
Affiliation(s)
- Elin Östman
- Food for Health Science Centre, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Anna Forslund
- Food for Health Science Centre, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Eden Tareke
- Food for Health Science Centre, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Inger Björck
- Food for Health Science Centre, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
25
|
Marungruang N, Fåk F, Tareke E. Heat-treated high-fat diet modifies gut microbiota and metabolic markers in apoe-/- mice. Nutr Metab (Lond) 2016; 13:22. [PMID: 26973703 PMCID: PMC4788960 DOI: 10.1186/s12986-016-0083-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/06/2016] [Indexed: 02/08/2023] Open
Abstract
Background High-fat diet has been known to have adverse effects on metabolic markers, as well as the gut microbiota. However, the effect of heat processing of high-fat diet, which leads to formations of advanced glycation end products (AGEs) has not been clearly distinguished from the effect of unheated fat. This study compared the effect of high-fat diet with heat-treated high-fat diet on adiposity, atherosclerosis and gut microbiota composition in the caecum of apoe−/− mice. Method Male apoe−/− mice were fed either low-fat (LF) control diet, high-fat (40 E% saturated fat, HF) control diet, or heat-treated high-fat (200 °C for 10 min, HT) diet, for 8 weeks. The plasma samples were used in the analysis of Nε-carboxy-methyl-lysine (CML) and Nε-carboxy-ethyl-lysine (CEL). The heart samples were analysed for atherosclerotic plaques, and the DNA from caecum was extracted and analysed for microbiota composition using 16S rRNA gene sequencing on a Miseq instrument. Additionally, the functions of microbial communities were also predicted based on the bacterial 16S rRNA gene sequence using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Results Here we found that HT modifies gut microbiota composition and host adiposity. Prediction of bacterial gene functions based on 16S rRNA gene sequence revealed that HF increased bacterial genera enriched in lipid metabolism genes, while HT did not. Plasma CML and CEL increased 1.7 and 2.5 times, respectively, in mice fed HT as compared to mice fed HF. Despite lower adiposity, mice fed HT maintained atherosclerosis and displayed enlarged spleens. Conclusions The results suggested that heat processing of high-fat diet modifies the substrates reaching the lower gut of apoe−/− mice, resulting in different effects on gut microbiota composition. AGEs seem to maintain the effect on atherosclerosis, despite lower adiposity, and causing enlarged spleens, which possibly reflect elevated levels of inflammation in the body. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0083-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nittaya Marungruang
- Food for Health Science Centre, Lund University, Medicon Village, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Frida Fåk
- Food for Health Science Centre, Lund University, Medicon Village, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Eden Tareke
- Food for Health Science Centre, Lund University, Medicon Village, Scheelevägen 2, SE-223 81 Lund, Sweden
| |
Collapse
|
26
|
Nguyen HT, van der Fels-Klerx HJ, van Boekel MAJS. Kinetics of N(ε)-(carboxymethyl)lysine formation in aqueous model systems of sugars and casein. Food Chem 2015; 192:125-33. [PMID: 26304329 DOI: 10.1016/j.foodchem.2015.06.110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/01/2015] [Accepted: 06/30/2015] [Indexed: 01/02/2023]
Abstract
This study investigated the formation of N(ε)-carboxymethyllysine (CML) in two caseinate solutions containing: (1) glucose, (2) lactose, each heated at 120 °C and 130 °C. At both heating temperatures, CML concentration in lactose-caseinate solution was higher than in glucose-caseinate solution. In both solutions, more CML was formed at 130 °C than at 120 °C. Using multiresponse modelling, two degradation routes for the sugars were confirmed: (1) isomerisation of glucose or lactose and subsequent degradation via Lobry de Bruyn-Alberda van Ekenstein (LA) arrangement; (2) the Maillard reaction between the reducing sugar and lysine residues. Modelling results suggested that CML was not formed from oxidation of the reducing sugars, but from the Maillard reaction via the Amadori rearrangement product. Since CML appeared to be thermally unstable under the current study conditions, it may not be a perfect indicator for heat damage of processed foods. This is the first study in which CML formation was linked to available information on the Maillard reaction via multiresponse modelling.
Collapse
Affiliation(s)
- Ha T Nguyen
- RIKILT Wageningen UR, Wageningen, The Netherlands
| | | | | |
Collapse
|
27
|
LC–MS/MS for the simultaneous determination of polar endogenous ADMA and CML in plasma and urine from diabetics. Bioanalysis 2015; 7:1261-71. [PMID: 26045005 DOI: 10.4155/bio.15.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Asymmetric dimethylarginine (ADMA) and ε-N-carboxymethyl-l-lysine (CML) are microvascular risk factors and potential biomarkers of diabetic microvascular complication. Results: Sample preparation was achieved using acetonitrile for protein precipitation step. ADMA, CML and IS CML-d2 were separated with gradient on a Welch Ultimate® XB- NH2 column. The assays were validated according to current bioanalytical guidelines with respect to specificity, linearity (20–1000 ng/ml for ADMA in human plasma, 50–2000 ng/ml in urine, 10–500 ng/ml for CML in human plasma and urine), accuracy and precision, extraction recovery, matrix effect and stability. Conclusion: The LC–MS/MS method was successfully applied to quantification of ADMA and CML in plasma and urine samples from healthy individuals and patients with diabetic nephropathy.
Collapse
|
28
|
Troise AD, Fiore A, Wiltafsky M, Fogliano V. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry. Food Chem 2015; 188:357-64. [PMID: 26041204 DOI: 10.1016/j.foodchem.2015.04.137] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/02/2023]
Abstract
The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors.
Collapse
Affiliation(s)
- Antonio Dario Troise
- Food Quality Design Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands; Department of Agricultural and Food Science, University of Napoli "Federico II", Parco Gussone, 80055 Portici, Napoli, Italy.
| | - Alberto Fiore
- School of Science, Engineering & Technology, Division of Food Science, Abertay University, Dundee DD1 1HG, UK
| | - Markus Wiltafsky
- Evonik Industries AG, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Vincenzo Fogliano
- Food Quality Design Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
29
|
The rehabilitation of raw and brown butters by the measurement of two of the major Maillard products, N(ε)-carboxymethyl-lysine and 5-hydroxymethylfurfural, with validated chromatographic methods. Food Chem 2015; 177:361-8. [PMID: 25660898 DOI: 10.1016/j.foodchem.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/16/2014] [Accepted: 01/03/2015] [Indexed: 12/22/2022]
Abstract
The fat food group, especially butter, has so far been thought to have a high N(ε)-carboxymethyl-lysine (CML) content. However recent data have challenged this opinion. The objective of this article was to determine not only CML content but also that of 5-hydroxymethylfurfural (HMF) in raw and cooked butters. The first aim of this study was to verify the accuracy of the LC-MS/MS and LC-UV methods used for the quantification of CML and HMF. The tests on fortified butter samples showed recovery values of 72% for CML and 78% for HMF. The amounts of CML in raw and cooked butters were 0.25 ± 0.03 and 2.22 ± 0.56 μg/g, respectively. The level of HMF in cooked butters was 61 ± 40 μg/g. No CML was detected in clarified butter, and no HMF was detected in raw and clarified butters. The results indicate that the contribution of butter alone to the exposure to CML and HMF is very low.
Collapse
|
30
|
Zhou Y, Lin Q, Jin C, Cheng L, Zheng X, Dai M, Zhang Y. Simultaneous Analysis of Nε-(Carboxymethyl)Lysine and Nε-(Carboxyethyl)Lysine in Foods by Ultra-Performance Liquid Chromatography-Mass Spectrometry with Derivatization by 9-Fluorenylmethyl Chloroformate. J Food Sci 2015; 80:C207-17. [DOI: 10.1111/1750-3841.12744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/19/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Yanqiong Zhou
- Dept. of Food Science and Nutrition; College of Biosystems Engineering and Food Science; Zhejiang Univ; Hangzhou 310058 PR China
| | - Qin Lin
- with Fujian Inspection and Research Inst. for Product Quality; Fuzhou 350002 PR China
| | - Cheng Jin
- Dept. of Food Science and Nutrition; College of Biosystems Engineering and Food Science; Zhejiang Univ; Hangzhou 310058 PR China
| | - Lu Cheng
- Dept. of Food Science and Nutrition; College of Biosystems Engineering and Food Science; Zhejiang Univ; Hangzhou 310058 PR China
| | - Xiaoyan Zheng
- with Fujian Inspection and Research Inst. for Product Quality; Fuzhou 350002 PR China
| | - Ming Dai
- with Fujian Inspection and Research Inst. for Product Quality; Fuzhou 350002 PR China
| | - Ying Zhang
- Dept. of Food Science and Nutrition; College of Biosystems Engineering and Food Science; Zhejiang Univ; Hangzhou 310058 PR China
| |
Collapse
|
31
|
Zhong Y, Teixeira C, Marungruang N, Sae-Lim W, Tareke E, Andersson R, Fåk F, Nyman M. Barley malt increases hindgut and portal butyric acid, modulates gene expression of gut tight junction proteins and Toll-like receptors in rats fed high-fat diets, but high advanced glycation end-products partially attenuate the effects. Food Funct 2015; 6:3165-76. [DOI: 10.1039/c5fo00150a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Barley malt has been shown to give high levels of butyric acid in the cecum and serum of rats.
Collapse
Affiliation(s)
- Yadong Zhong
- Food for Health Science Center
- Kemicentrum
- Lund University
- SE-221 00 Lund
- Sweden
| | - Cristina Teixeira
- Food for Health Science Center
- Kemicentrum
- Lund University
- SE-221 00 Lund
- Sweden
| | - Nittaya Marungruang
- Food for Health Science Center
- Kemicentrum
- Lund University
- SE-221 00 Lund
- Sweden
| | - Watina Sae-Lim
- Food for Health Science Center
- Kemicentrum
- Lund University
- SE-221 00 Lund
- Sweden
| | - Eden Tareke
- Food for Health Science Center
- Kemicentrum
- Lund University
- SE-221 00 Lund
- Sweden
| | - Roger Andersson
- Department of Food Science
- Swedish University of Agricultural Sciences
- Uppsala
- Sweden
| | - Frida Fåk
- Food for Health Science Center
- Kemicentrum
- Lund University
- SE-221 00 Lund
- Sweden
| | - Margareta Nyman
- Food for Health Science Center
- Kemicentrum
- Lund University
- SE-221 00 Lund
- Sweden
| |
Collapse
|