1
|
Hu L, Zhao P, Wei Y, Lei Y, Guo X, Deng X, Zhang J. Preparation and Characterization Study of Zein-Sodium Caseinate Nanoparticle Delivery Systems Loaded with Allicin. Foods 2024; 13:3111. [PMID: 39410146 PMCID: PMC11475593 DOI: 10.3390/foods13193111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Allicin, as a natural antibacterial active substance from plants, has great medical and health care value. However, due to its poor stability, its application in the field of food and medicine is limited. So, in this paper, allicin-zein-sodium caseinate composite nanoparticles (zein-Ali-SC) were prepared by antisolvent precipitation and electrostatic deposition. Through the analysis of the particle size, ζ-potential, encapsulation efficiency (EE), loading rate (LC) and microstructure, the optimum preparation conditions for composite nanoparticles were obtained. The mechanism of its formation was studied by fluorescence spectrum, Fourier infrared spectrum (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The stability study results showed that the particle size of composite nanoparticles was less than 200 nm and its PDI was less than 0.3 under different NaCl concentrations and heating conditions, showing good stability. When stored at 4 °C for 21 days, the retention rate of allicin reached 61.67%, which was 52.9% higher than that of free allicin. After freeze-drying and reheating, the nanoparticles showed good redispersibility; meanwhile, antioxidant experiments showed that, compared with free allicin, the nanoparticles had stronger scavenging ability of free radicals, which provided a new idea for improving the stability technology and bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Ling Hu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Pengcheng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
2
|
Mirmajlessi M, Najdabbasi N, Sigillo L, Haesaert G. An implementation framework for evaluating the biocidal potential of essential oils in controlling Fusarium wilt in spinach: from in vitro to in planta. FRONTIERS IN PLANT SCIENCE 2024; 15:1444195. [PMID: 39239191 PMCID: PMC11376204 DOI: 10.3389/fpls.2024.1444195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. spinaciae, causes a significant challenge on vegetative spinach and seed production. Addressing this issue necessitates continuous research focused on innovative treatments and protocols through comprehensive bioassays. Recent studies have highlighted the potential of plant-based compounds in controlling fungal diseases. The present work aims to conduct a series of experiments, encompassing both in vitro and in planta assessments, to investigate the biocontrol capabilities of different essential oils (EOs) at various application rates, with the ultimate goal of reducing the incidence of Fusarium wilt in spinach. The inhibitory effect of four plant EOs (marjoram, thyme, oregano, and tea tree) was initially assessed on the spore germination of five unknown Fusarium strains. The outcomes revealed diverse sensitivities of Fusarium strains to EOs, with thyme exhibiting the broadest inhibition, followed by oregano at the highest concentration (6.66 μL/mL) in most strains. The tested compounds displayed a diverse range of median effective dose (ED50) values (0.69 to 7.53 µL/mL), with thyme and oregano consistently showing lower ED50 values. The direct and indirect inhibitory impact of these compounds on Fusarium mycelial growth ranged from ~14% to ~100%, wherein thyme and oregano consistently exhibiting the highest effectiveness. Following the results of five distinct inoculation approaches and molecular identification, the highly pathogenic strain F-17536 (F. oxysporum f.sp. spinaciae) was chosen for Fusarium wilt assessment in spinach seedlings, employing two promising EO candidates through seed and soil treatments. Our findings indicate that colonized grain (CG) proved to be a convenient and optimal inoculation method for consistent Fusarium wilt assessment under greenhouse conditions. Seed treatments with thyme and oregano EOs consistently resulted in significantly better disease reduction rates, approximately 54% and 36% respectively, compared to soil treatments (P > 0.05). Notably, thyme, applied at 6.66 µL/mL, exhibited a favorable emergence rate (ERI), exceeding seven, in both treatments, emphasizing its potential for effective disease control in spinach seedlings without inducing phytotoxic effects. This study successfully transitions from in vitro to in planta experiments, highlighting the potential incorporation of EOs into integrated disease management for Fusarium wilt in spinach production.
Collapse
Affiliation(s)
- Mahyar Mirmajlessi
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Neda Najdabbasi
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Loredana Sigillo
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Geert Haesaert
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| |
Collapse
|
3
|
Liu J, Yu H, Kong J, Ge X, Sun Y, Mao M, Wang DY, Wang Y. Preparation, characterization, stability, and controlled release of chitosan-coated zein/shellac nanoparticles for the delivery of quercetin. Food Chem 2024; 444:138634. [PMID: 38330608 DOI: 10.1016/j.foodchem.2024.138634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Quercetin, an essential flavonoid compound, exhibits diverse biological activities including anti-inflammatory and antioxidant effects. Nevertheless, due to its inadequate solubility in water and vulnerability to degradation, pure quercetin is constrainedly utilized in pharmaceutical formulations and functional foods. Considering the existing scarcity of nanoparticles consisted of zein and hydrophobic biopolymers, this study developed a quercetin-loaded nanoencapsulation based on zein, shellac, and chitosan (QZSC). When the mass ratio of zein to chitosan was 4:1, the encapsulation efficiency of QZSC reached 74.95%. The ability of QZSC for scavenging DPPH radicals and ABTS radicals increased from 59.2% to 75.4% and from 47.0% to 70.2%, respectively, compared to Quercetin. For QZSC, the maximum release amount of quercetin reached 59.62% in simulated gastric fluid and 81.64% in simulated intestinal fluid, achieving controlled and regulated release in vitro. In summary, this study offers a highly promising encapsulation strategy for hydrophobic bioactive substances that are prone to instability.
Collapse
Affiliation(s)
- Jiawen Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - David Y Wang
- Hong Kong Baptist University, Hong Kong Special Administrative Region; Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, China.
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
4
|
Brindhadevi K, M R, Albeshr MF, Pallath N. Bio-fabrication of calcium oxide nanoparticles from Coccinia grandis as a potential photocatalyst for dye degradation with antimicrobial activity. ENVIRONMENTAL RESEARCH 2024; 258:119449. [PMID: 38901814 DOI: 10.1016/j.envres.2024.119449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
In the current study, Coccinia grandis fruit extract was used to synthesize calcium oxide nanoparticles (CaO NPs) in an economical and environmentally friendly manner. UV-Vis spectroscopy and Fourier transform infrared spectroscopy revealed that the phytoconstituents found in Coccinia grandis fruit extract facilitated the production of CaO NPs by acting as better stabilizing, biodegradable, and reducing agents. The synthesized CG-CaO NPs were also tested for photocatalytic activity in the breakdown of selective dyes such as methyl red, methyl orange, and methylene blue in the presence of sunlight. The degradation percentage was determined by analyzing the color removal rates for all dye components. After 6 h of reaction, the IC50 values for methyl red, methyl orange, as well as methylene blue dyes were 73, 107, and 133, respectively. The CG-CaO NPs were further evaluated for their antimicrobial activity against specific bacteria and fungi using the agar-well diffusion method. 200 μg/mL CG-CaO NPs inhibited Aspergillus niger, Escherichia coli, Salmonella typhi, Streptococcus mutans, and Staphylococcus aureus at zones of 13, 14, 16, 14, and 15 mM, respectively. Further checkerboard assay confirmed the antagonism effect with gentamicin. Also, Artemia salina toxicity assay showed that the LD50 value of CaO NPs was 400 μg/mL of CaO NPs. The findings confirm that Coccinia grandis-mediated CG-CaO NPs can be used effectively in antimicrobial and environmental settings.
Collapse
Affiliation(s)
- Kathirvel Brindhadevi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| | - Rithika M
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Nisha Pallath
- Department of Biosciences, MES College, Marampally, Aluva, Kerala, India.
| |
Collapse
|
5
|
Liu X, Zhang M, Zhou X, Wan M, Cui A, Xiao B, Yang J, Liu H. Research advances in Zein-based nano-delivery systems. Front Nutr 2024; 11:1379982. [PMID: 38798768 PMCID: PMC11119329 DOI: 10.3389/fnut.2024.1379982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Xuelian Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mengjiao Wan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Aiping Cui
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Ahmadzadeh S, Ubeyitogullari A. Lutein encapsulation into dual-layered starch/zein gels using 3D food printing: Improved storage stability and in vitro bioaccessibility. Int J Biol Macromol 2024; 266:131305. [PMID: 38569990 DOI: 10.1016/j.ijbiomac.2024.131305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
The ability of 3D printing to encapsulate, protect, and enhance lutein bioaccessibility was investigated under various printing conditions. A spiral-cube-shaped geometry was used to investigate the effects of printing parameters, namely zein concentration (Z; 20, 40, and 60 %) and printing speed (PS; 4, 8, 14, and 20 mm/s). Coaxial extrusion 3D printing was used with lutein-loaded zein as the internal flow material, and corn starch paste as the external flow material. The viscosities of the inks, microstructural properties, storage stability, and bioaccessibility of encapsulated lutein were determined. The sample printed with a zein concentration of 40 % at a printing speed of 14 mm/s (Z-40/PS-14) exhibited the best shape integrity. When lutein was entrapped in starch/zein gels (Z-40/PS-14), only 39 % of lutein degraded after 21 days at 25 °C, whereas 78 % degraded at the same time when crude lutein was studied. Similar improvements were also observed after storing at 50 °C for 21 days. Furthermore, after simulated digestion, the bioaccessibility of encapsulated lutein (9.8 %) was substantially higher than that of crude lutein (1.5 %). As a result, the developed delivery system using 3D printing could be an effective strategy for enhancing the chemical stability and bioaccessibility of bioactive compounds (BCs).
Collapse
Affiliation(s)
- Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
7
|
Ding X, Gao F, Chen L, Zeng Z, Zhao X, Wang Y, Cui H, Cui B. Size-dependent Effect on Foliar Utilization and Biocontrol Efficacy of Emamectin Benzoate Delivery Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22558-22570. [PMID: 38637157 DOI: 10.1021/acsami.4c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The development of nanopesticides provides new avenues for pesticide reduction and efficiency improvement. However, the size effect of nanopesticides remains unclear, and its underlying mechanisms of influence have become a major obstacle in the design and application of pesticide nanoformulations. In this research, the noncarrier-coated emamectin benzoate (EB) solid dispersions (Micro-EB and Nano-EB) were produced under a constant surfactant-to-active ingredient ratio by a self-emulsifying-carrier solidification technique. The particle size of Micro-EB was 162 times that of spherical Nano-EB. The small size and large specific surface area of Nano-EB facilitated the adsorption of surfactants on the surface of the particles, thereby improving its dispersibility, suspensibility, and stability. The pinning effect of nanoparticles significantly suppressed droplet retraction and rebounding. Moreover, Nano-EB exhibited a 25% higher retention of the active ingredient on cabbage leaves and a 70% higher washing resistance than Micro-EB, and both were significantly different. The improvement of abilities in wetting, spreading, and retention of Nano-EB on crop leaves contributed to the increase in foliar utilization, which further resulted in a 1.6-fold enhancement of bioactivity against target Spodoptera exigua compared to Micro-EB. Especially, Nano-EB did not exacerbate the safety risk to the nontarget organism zebrafish with no significant difference. This study elaborates the size effect on the effectiveness and safety of pesticide formulations and lays a theoretical foundation for the development and rational utilization of efficient and environmentally friendly nanopesticides.
Collapse
Affiliation(s)
- Xiquan Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Long Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
8
|
Hua Y, Wei Z, Xue C, Si J. Stability and programmed sequential release of Lactobacillus plantarum and curcumin encapsulated in bilayer-stabilized W 1/O/W 2 double emulsion: Effect of pectin as protective shell. Int J Biol Macromol 2024; 265:130805. [PMID: 38490382 DOI: 10.1016/j.ijbiomac.2024.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
In order to overcome the problem that traditional W1/O/W2 double emulsions do not have targeted release performance, thereby better meeting the health needs of consumers, ovalbumin fibrils/pectin-based bilayer-stabilized double emulsion (OP-BDE) co-encapsulated with Lactobacillus plantarum and curcumin was constructed with pectin as the outer protective shell, which was expected to be used in the development of novel functional foods. The effects of pectin coating on the viability of Lactobacillus plantarum under conditions including storage, pasteurization, freeze-thaw cycles and in vitro simulated digestion were investigated. Results showed that pectin as protective shell could significantly enhance the tolerance of Lactobacillus plantarum to various environmental factors. Besides, the adsorption of pectin endowed OP-BDE with higher lipolysis and stronger protective effect on curcumin, remarkably improving the photostability and bioaccessibility of curcumin. In addition, in vitro simulated gastrointestinal release study indicated that OP-BDE possessed programmed sequential release property, allowing curcumin and Lactobacillus plantarum to be released in small intestine and colon, respectively. OP-BDE is the first reported co-delivery emulsion system with programmed release characteristic. This study provides new insights into OP-BDE in constructing co-delivery systems and programmed sequential release of active substances, and has potential reference and application value in actual food production.
Collapse
Affiliation(s)
- Yijie Hua
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jingyu Si
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
9
|
Campos LA, Neto AF, Noronha MC, Santos JV, Cavalcante MK, Castro MC, Pereira VR, Cavalcanti IM, Santos-Magalhães NS. Zein nanoparticles containing ceftazidime and tobramycin: antibacterial activity against Gram-negative bacteria. Future Microbiol 2024; 19:317-334. [PMID: 38440893 DOI: 10.2217/fmb-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 03/06/2024] Open
Abstract
Aims: This work describes the encapsulation of ceftazidime and tobramycin in zein nanoparticles (ZNPs) and the characterization of their antibacterial and antibiofilm activities against Gram-negative bacteria. Materials & methods: ZNPs were synthesized by nanoprecipitation. Cytotoxicity was assessed by MTT assay and antibacterial and antibiofilm assays were performed by broth microdilution and violet crystal techniques. Results: ZNPs containing ceftazidime (CAZ-ZNPs) and tobramycin (TOB-ZNPs) showed drug encapsulation and thermal stability. Encapsulation of the drugs reduced their cytotoxicity 9-25-fold. Antibacterial activity, inhibition and eradication of biofilm by CAZ-ZNPs and TOB-ZNPs were observed. There was potentiation when CAZ-ZNPs and TOB-ZNPs were combined. Conclusion: CAZ-ZNPs and TOB-ZNPs present ideal physical characteristics for in vivo studies of antibacterial and antibiofilm activities.
Collapse
Affiliation(s)
- Luís Aa Campos
- Biochemistry Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil
- Clinical Microbiology Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil
| | - Azael Fs Neto
- Biochemistry Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil
| | - Maria Cs Noronha
- Biochemistry Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil
| | - João Vo Santos
- Clinical Microbiology Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil
| | - Marton Ka Cavalcante
- Oswaldo Cruz Pernambuco Foundation, Fiocruz/PE, Immunogenetics Laboratory, Recife, CEP 50740-465, Pernambuco, Brazil
| | - Maria Cab Castro
- Oswaldo Cruz Pernambuco Foundation, Fiocruz/PE, Immunogenetics Laboratory, Recife, CEP 50740-465, Pernambuco, Brazil
- Parasitology Laboratory, Federal University of Pernambuco/Academic Center of Vitória, Vitória de Santo Antão, CEP 55608- 680, Pernambuco, Brazil
| | - Valéria Ra Pereira
- Oswaldo Cruz Pernambuco Foundation, Fiocruz/PE, Immunogenetics Laboratory, Recife, CEP 50740-465, Pernambuco, Brazil
| | - Isabella Mf Cavalcanti
- Clinical Microbiology Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil
- Laboratory of Microbiology & Immunology, Federal University of Pernambuco/Academic Center of Vitória, Vitória de Santo Antão, CEP 55608- 680, Pernambuco, Brazil
| | - Nereide S Santos-Magalhães
- Biochemistry Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, CEP 50670-901, Pernambuco, Brazil
| |
Collapse
|
10
|
Fabrikov D, Varga ÁT, García MCV, Bélteky P, Kozma G, Kónya Z, López Martínez JL, Barroso F, Sánchez-Muros MJ. Antimicrobial and antioxidant activity of encapsulated tea polyphenols in chitosan/alginate-coated zein nanoparticles: a possible supplement against fish pathogens in aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13673-13687. [PMID: 38261222 PMCID: PMC10881692 DOI: 10.1007/s11356-024-32058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Regulation of antibiotic use in aquaculture calls for the emergence of more sustainable alternative treatments. Tea polyphenols (GTE), particularly epigallocatechin gallate (EGCG), have various biological activities. However, tea polyphenols are susceptible to degradation. In this work, EGCG and GTE were encapsulated in zein nanoparticles (ZNP) stabilized with alginate (ALG) and chitosan (CS) to reduce the degradation effect. ALG-coated ZNP and ALG/CS-coated ZNP encapsulating EGCG or GTE were obtained with a hydrodynamic size of less than 300 nm, an absolute ζ-potential value >30 mV, and an encapsulation efficiency greater than 75%. The antioxidant capacity of the encapsulated substances, although lower than that of the free ones, maintained high levels. On the other hand, the evaluation of antimicrobial activity showed greater efficiency in terms of growth inhibition for ALG/CS-ZNP formulations, with average overall values of around 60%, reaching an inhibition of more than 90% for Photobacterium damselae. These results support encapsulation as a good strategy for tea polyphenols, as it allows maintaining significant levels of antioxidant activity and increasing the potential for antimicrobial activity, in addition to increasing protection against sources of degradation.
Collapse
Affiliation(s)
- Dmitri Fabrikov
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain.
| | - Ágnes Timea Varga
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| | - María Carmen Vargas García
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- MTA, Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | | | - Fernando Barroso
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| | - María José Sánchez-Muros
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| |
Collapse
|
11
|
Zhou C, Huang C, Li L, Tian Y, Zhang J, Lin L, Li C, Ye Y. Apricot polysaccharides as new carriers to make curcumin nanoparticles and improve its stability and antibacterial activity. J Food Sci 2024; 89:881-899. [PMID: 38193203 DOI: 10.1111/1750-3841.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Apricot polysaccharides (APs) as new types of natural carriers for encapsulating and delivering active pharmaceutical ingredients can achieve high-value utilization of apricot pulp and improve the solubility, the stability, and the antibacterial activity of insoluble compounds simultaneously. In this research, the purified APs reacted with bovine serum albumin (BSA) by the Maillard reaction, and with d-α-tocopheryl succinate (TOS) and pheophorbide A (PheoA) by grafting to fabricate two materials for the preparation of curcumin (Cur)-encapsulated AP-BSA nanoparticles (CABNs) and Cur-embedded TOS-AP-PheoA micelles (CTAPMs), respectively. The biological activities of two Cur nano-delivery systems were evaluated. APs consisted of arabinose (22.36%), galactose (7.88%), glucose (34.46%), and galacturonic acid (31.32%) after the optimized extraction. Transmission electron microscopy characterization of CABNs and CTAPMs displayed a discrete and non-aggregated morphology with a spherical shape. Compared to the unencapsulated Cur, the release rates of CABNs and CTAPMs decreased from 87% to 70% at 3 h and from 92% to 25% at 48 h, respectively. The antioxidant capacities of CABNs and CTAPMs were significantly improved. The CTAPMs exhibited a better antibacterial effect against Escherichia coli than CABNs due to the synergistic photosensitive effect between Cur and PheoA.
Collapse
Affiliation(s)
- Chunka Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chuanqing Huang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Lu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yunong Tian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jin Zhang
- Gaoyao District Comprehensive Emergency Rescue Center, Zhaoqing, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, China
- Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
12
|
Shehzad Q, Liu Z, Zuo M, Wang J. The role of polysaccharides in improving the functionality of zein coated nanocarriers: Implications for colloidal stability under environmental stresses. Food Chem 2024; 431:136967. [PMID: 37604006 DOI: 10.1016/j.foodchem.2023.136967] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Zein has gained popularity over the past few years as an incredible food and bio-based materials. The potential functions and health benefits of zein microcapsules or micro-/nanoparticles in bioactive components delivery, structured emulsion, etc., have received great attention. However, the development has been limited by colloidal destabilization, especially when thermal processing is involved. There is a recent trend in developing zein-polysaccharide complexes (ZPCs), which has tremendously improved the performance of zein-based colloidal carrier systems or emulsions. Increasing our understanding of zein interactions and their contribution to the structure of various macromolecules can help us to develop novel biomaterials that can be used in food, agriculture, biomedicine, and cosmetics. In addition, these nanocarriers are suitable for the encapsulation and delivery of bioactive compounds which have positive perspective in food industry. Therefore, this article aimed to review recent advances in the ZPCs that can be applied to functional or health-promoting foods, with a focus on the characteristics of different ZPCs, factors and mechanisms affecting the stability (especially thermal stability) of these complexes, and their application in food industry as a carrier for BCs. Further, the stability of ZPCs based emulsions under processing and physiological environments, as well some typical effective methods are introduced. Also, the principal challenges and prospects were enumerated and discussed.
Collapse
Affiliation(s)
- Qayyum Shehzad
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China
| | - Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China.
| | - Min Zuo
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
13
|
Zimath P, Pinto S, Dias S, Rafacho A, Sarmento B. Zein nanoparticles as oral carrier for mometasone furoate delivery. Drug Deliv Transl Res 2023; 13:2948-2959. [PMID: 37208563 PMCID: PMC10545574 DOI: 10.1007/s13346-023-01367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
Mometasone furoate (MF) is a synthetic glucocorticoid used clinically to treat specific inflammatory disorders including superior and inferior respiratory tract. Due to its poor bioavailability we further investigated whether nanoparticles (NPs) made of zein protein may constitute a safe and effective choice to incorporate MF. Thus, in this work, we loaded MF into zein NPs aiming to evaluate possible advantages that could result from oral delivery and extend the range of MF application such as inflammatory gut diseases. MF-loaded zein NPs presented an average size in the range of 100 and 135 nm, narrow size distribution (polydispersity index < 0.300), zeta potential of around + 10 mV and association efficiency of MF over 70%. Transmission electron microscopy imaging revealed that NPs had a round shape and presented a smooth surface. The zein NPs showed low MF release in a buffer that mimics the gastric condition (pH = 1.2) and slower and controlled MF release in the intestinal condition (pH = 6.8). The short and intermediate safety of zein NPs was confirmed assessing the incubation against Caco-2 and HT29-MTX intestinal cells up to 24 h. Permeability studies of MF across Caco-2/HT29-MTX co-culture monolayer evidenced that zein NPs modulated MF transport across cell monolayer resulting in a stronger and prolonged interaction with mucus, potentially extending the time of absorption and overall local and systemic bioavailability. Overall, zein NPs showed to be suitable to carry MF to the intestine and future studies can be developed to investigate the use of MF-loaded zein NPs to treat intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Priscila Zimath
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Alex Rafacho
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal.
- IUCS - CESPU, Gandra, Portugal.
| |
Collapse
|
14
|
Machado S, Pereira R, Sousa RMOF. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166401. [PMID: 37597566 DOI: 10.1016/j.scitotenv.2023.166401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The world's population is continuously increasing; therefore, food availability will be one of the major concerns of our future. In addition to that, many practices and products used, such as pesticides and fertilizers have been shown harmful to the environment and human health and are assumed as being one of the main factors responsible for the loss of biodiversity. Also, climate change could agravate the problem since it causes unpredictable variation of local and regional climate conditions,which frequently favor the growth of diseases, pathogens and pest growth. The use of natural products, like essential oils, plant extracts, or substances of microbial-origin in combination with nanotechnology is one suitable way to outgrow this problem. The most often employed natural products in research studies to date include pyrethrum extract, neem oil, and various essential oils, which when enclosed shown increased resistance to environmental factors. They also demonstrated insecticidal, antibacterial, and fungicidal properties. However, in order to truly determine if these products, despite being natural, would be hazardous or not, testing in non-target organisms, which are rare, must start to become a common practice. Therefore, this review aims to present the existing literature concerning nanoformulations of biopesticides and a standard definition for nanobiopesticides, their synthesis methods and their possible ecotoxicological impacts, while discussing the regulatory aspects regarding their authorization and commercialization. As a result of this, you will find a critical analysis in this reading. The most obvious findings are that i) there are insufficient reliable ecotoxicological data for risk assessment purposes and to establish safety doses; and ii) the requirements for registration and authorization of these new products are not as straightforward as those for synthetic chemicals and take a lot of time, which is a major challenge/limitation in terms of the goals set by the Farm to Fork initiative.
Collapse
Affiliation(s)
- Sofia Machado
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rose Marie O F Sousa
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences & INOV4AGRO, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
15
|
Ghaemi A, Vakili-Azghandi M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Oral non-viral gene delivery platforms for therapeutic applications. Int J Pharm 2023; 642:123198. [PMID: 37406949 DOI: 10.1016/j.ijpharm.2023.123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Since gene therapy can regulate gene and protein expression directly, it has a great potential to prevent or treat a variety of genetic or acquired diseases through vaccines such as viral infections, cystic fibrosis, and cancer. Owing to their high efficacy, in vivo gene therapy trials are usually conducted intravenously, which is usually costly and invasive. There are several advantages to oral drug administration over intravenous injections, such as better patient compliance, ease of use, and lower cost. However, gene therapy is successful if the oligonucleotides can cross the cell membrane easily and reach the nucleus after the endosomal escape. In order to accomplish this task and deliver the cargo to the intended location, appropriate delivery systems should be introduced. This review summarizes oral delivery systems developed for effective gene delivery, vaccination, and treatment of various diseases. Studies have also shown that oral delivery approaches are potentially applicable to treat various diseases, especially inflammatory bowel disease, stomach, and colorectal cancers. Also, the current review provides an update overview on the development of non-viral and oral gene delivery techniques for gene therapy and vaccination purposes.
Collapse
Affiliation(s)
- Asma Ghaemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Caicedo Chacon WD, Verruck S, Monteiro AR, Valencia GA. The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: A review. Food Res Int 2023; 168:112728. [PMID: 37120194 DOI: 10.1016/j.foodres.2023.112728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The anti-solvent precipitation method has been investigated to produce biopolymeric nanoparticles in recent years. Biopolymeric nanoparticles have better water solubility and stability when compared with unmodified biopolymers. This review article focuses on the analysis of the state of the art available in the last ten years about the production mechanism and biopolymer type, as well as the used of these nanomaterials to encapsulate biological compounds, and the potential applications of biopolymeric nanoparticles in food sector. The revised literature revealed the importance to understand the anti-solvent precipitation mechanism since biopolymer and solvent types, as well as anti-solvent and surfactants used, can alter the biopolymeric nanoparticles properties. In general, these nanoparticles have been produced using polysaccharides and proteins as biopolymers, especially starch, chitosan and zein. Finally, it was identified that those biopolymers produced by anti-solvent precipitation were used to stabilize essential oils, plant extracts, pigments, and nutraceutical compounds, promoting their application in functional foods.
Collapse
|
17
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
18
|
Vishwakarma V, Ogunkunle CO, Rufai AB, Okunlola GO, Olatunji OA, Jimoh MA. Nanoengineered particles for sustainable crop production: potentials and challenges. 3 Biotech 2023; 13:163. [PMID: 37159590 PMCID: PMC10163185 DOI: 10.1007/s13205-023-03588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/23/2023] [Indexed: 05/11/2023] Open
Abstract
Nanoengineered nanoparticles have a significant impact on the morphological, physiology, biochemical, cytogenetic, and reproductive yields of agricultural crops. Metal and metal oxide nanoparticles like Ag, Au, Cu, Zn, Ti, Mg, Mn, Fe, Mo, etc. and ZnO, TiO2, CuO, SiO2, MgO, MnO, Fe2O3 or Fe3O4, etc. that found entry into agricultural land, alter the morphological, biochemical and physiological system of crop plants. And the impacts on these parameters vary based on the type of crop and nanoparticles, doses of nanoparticles and its exposure situation or duration, etc. These nanoparticles have application in agriculture as nanofertilizers, nanopesticides, nanoremediator, nanobiosensor, nanoformulation, phytostress-mediator, etc. The challenges of engineered metal and metal oxide nanoparticles pertaining to soil pollution, phytotoxicity, and safety issue for food chains (human and animal safety) need to be understood in detail. This review provides a general overview of the applications of nanoparticles, their potentials and challenges in agriculture for sustainable crop production.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, 203201 India
| | - Clement Oluseye Ogunkunle
- Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, 240003 Nigeria
- Department of Plant Biology, Osun State University, Osogbo, Nigeria
| | | | | | | | | |
Collapse
|
19
|
Zein nanoparticles for drug delivery: Preparation methods and biological applications. Int J Pharm 2023; 635:122754. [PMID: 36812950 DOI: 10.1016/j.ijpharm.2023.122754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Zein, a vegetable protein extracted from corn (Zea mays L.), forms a gastro-resistant and mucoadhesive polymer that is cheap and easy to obtain and facilitates the encapsulation of bioactives with hydrophilic, hydrophobic, and amphiphilic properties. The methods used for synthesizing these nanoparticles include antisolvent precipitation/nanoprecipitation, pH-driven, electrospraying, and solvent emulsification-evaporation methods. Each method has its advantages in the preparation of nanocarriers, nevertheless, all of them enable the production of zein nanoparticles that are stable and resistant to environmental factors, with different biological activities required in the cosmetic, food, and pharmaceutical industries. Therefore, zein nanoparticles are promising nanocarriers that can encapsulate various bioactives with anti-inflammatory, antioxidant, antimicrobial, anticancer, and antidiabetic properties. This article reviews the principal methods for obtaining zein nanoparticles containing bioactives, the advantages and characteristics of each method, as well as the main biological applications of nanotechnology-based formulations.
Collapse
|
20
|
Wang L, Wei Z, Xue C, Yang L. Co-delivery system based on multilayer structural nanoparticles for programmed sequential release of fucoxanthin and curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
21
|
Yin X, Hu Q, Chen X, Tan S, Niu A, Qiu W, Wang G. Inclusion complexes of clove essential oil with sodium caseinate and gum arabic prepared by high-pressure homogenization: Characterization and non-contact antimicrobial activity. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
22
|
Chen X, Wu YC, Qian LH, Zhang YH, Gong PX, Liu W, Li HJ. Fabrication of foxtail millet prolamin/caseinate/chitosan hydrochloride composite nanoparticles using antisolvent and pH-driven methods for curcumin delivery. Food Chem 2023; 404:134604. [DOI: 10.1016/j.foodchem.2022.134604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
23
|
High-internal-phase emulsions stabilized solely by chitosan hydrochloride: Fabrication and effect of pH on stabilization mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Ghadiri Amrei SMH, Ahmadi M, Shahidi SA, Ariaii P, golestan L. Preparation, characterization, and antioxidant activity of nanoliposomes-encapsulated turmeric and omega-3. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Mohsen AM, Nagy YI, Shehabeldine AM, Okba MM. Thymol-Loaded Eudragit RS30D Cationic Nanoparticles-Based Hydrogels for Topical Application in Wounds: In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 15:pharmaceutics15010019. [PMID: 36678648 PMCID: PMC9861126 DOI: 10.3390/pharmaceutics15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Natural medicines formulated using nanotechnology-based systems are a rich source of new wound-treating therapeutics. This study aims to develop thymol-loaded cationic polymeric nanoparticles (CPNPs) to enhance the skin retention and wound healing efficacy of thymol. The developed materials exhibited entrapment efficiencies of 56.58 to 68.97%, particle sizes of 36.30 to 99.41 nm, and positively charged zeta potential. In Vitro sustained release of thymol up to 24 h was achieved. Selected thymol CPNPs (F5 and C2) were mixed with methylcellulose to form hydrogels (GF5 and GC2). An In Vivo skin-retention study revealed that GF5 and GC2 showed 3.3- and 3.6-fold higher retention than free thymol, respectively. An In Vitro scratch-wound healing assay revealed a significant acceleration in wound closure at 24 h by 58.09% (GF5) and 57.45% (GC2). The potential for free thymol hydrogel, GF5, and GC2 to combat MRSA in a murine skin model was evaluated. The bacterial counts, recovered from skin lesions and the spleen, were assessed. Although a significant reduction in the bacterial counts recovered from the skin lesions was shown by all three formulations, only GF5 and GC2 were able to reduce the bacterial dissemination to the spleen. Thus, our study suggests that Eudragit RS30D nanoparticles-based hydrogels are a potential delivery system for enhancing thymol skin retention and wound healing activity.
Collapse
Affiliation(s)
- Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr M. Shehabeldine
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mona M. Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy, Cairo 11562, Egypt
- Correspondence:
| |
Collapse
|
26
|
Lima IBC, Moreno LCGAI, Peres AV, Santana ACG, Carvalho A, Chaves MH, Lima L, Sousa RW, Dittz D, Rolim HML, Nunes LCC. Nanoparticles Obtained from Zein for Encapsulation of Mesalazine. Pharmaceutics 2022; 14:2830. [PMID: 36559323 PMCID: PMC9784488 DOI: 10.3390/pharmaceutics14122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
We encapsulated MSZ in zein nanoparticles (NP-ZN) using a desolvation method followed by drying in a mini spray dryer. These nanoparticles exhibited a size of 266.6 ± 52 nm, IPD of 0.14 ± 1.1 and zeta potential of -36.4 ± 1.5 mV, suggesting colloidal stability. Quantification using HPLC showed a drug-loaded of 43.8 µg/mg. SEM demonstrated a spherical morphology with a size variation from 220 to 400 nm. A FTIR analysis did not show drug spectra in the NPs in relation to the physical mixture, which suggests drug encapsulation without changing its chemical structure. A TGA analysis showed thermal stability up to 300 °C. In vitro release studies demonstrated gastroresistance and a sustained drug release at pH 7.4 (97.67 ± 0.32%) in 120 h. The kinetic model used for the release of MSZ from the NP-ZN in a pH 1.2 medium was the Fickian diffusion, in a pH 6.8 medium it was the Peppas-Sahlin model with the polymeric relaxation mechanism and in a pH 7.4 medium it was the Korsmeyer-Peppas model with the Fickian release mechanism, or "Case I". An in vitro cytotoxicity study in the CT26.WT cell line showed no basal cytotoxicity up to 500 μg/mL. The NP-ZN showed to be a promising vector for the sustained release of MSZ in the colon by oral route.
Collapse
Affiliation(s)
- Izabela Borges C. Lima
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Lina Clara G. A. I. Moreno
- Pharmaceutical Nanosystems Laboratory (NANOSFAR), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Ana Victória Peres
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
- Pharmaceutical Nanosystems Laboratory (NANOSFAR), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Ana Cristina Gramoza Santana
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Adonias Carvalho
- Natural Products Laboratory (LPN), Department of Chemistry, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Mariana H. Chaves
- Natural Products Laboratory (LPN), Department of Chemistry, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Lorena Lima
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
- Pharmaceutical Nanosystems Laboratory (NANOSFAR), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Rayran Walter Sousa
- Laboratory of Experimental Cancerology (LabCâncer), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Dalton Dittz
- Laboratory of Experimental Cancerology (LabCâncer), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Hercília M. L. Rolim
- Pharmaceutical Nanosystems Laboratory (NANOSFAR), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Lívio César Cunha Nunes
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| |
Collapse
|
27
|
Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol 2022; 108:104116. [DOI: 10.1016/j.fm.2022.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
|
28
|
Lv Y, Chen L, Liu F, Xu F, Zhong F. Improvement of the encapsulation capacity and emulsifying properties of soy protein isolate through controlled enzymatic hydrolysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Recent advances in oral delivery of bioactive molecules: Focus on prebiotic carbohydrates as vehicle matrices. Carbohydr Polym 2022; 298:120074. [DOI: 10.1016/j.carbpol.2022.120074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|
30
|
Controlled Release of Thymol by Cyclodextrin Metal-Organic Frameworks for Preservation of Cherry Tomatoes. Foods 2022; 11:foods11233818. [PMID: 36496626 PMCID: PMC9737142 DOI: 10.3390/foods11233818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Thymol is a phenol monoterpene with potential antifungal, antioxidant and antibacterial activities. Due to the low water solubility and high volatility of thymol, encapsulation serves as an effective tool during application. In the present study, cyclodextrin (CD)-based metal-organic-frameworks (MOFs) were synthesized using α-CD, β-CD, and γ-CD as organic building blocks, and further complexed with thymol to produce three CD-MOF-THY inclusion complexes (ICs). The encapsulation content, release kinetics and fruit preservation effect of ICs were analyzed. Results showed that thymol was well embedded in γ-CD-MOFs, with the highest encapsulation content of 286.7 ± 8.4 mg/g. Release kinetics revealed that CD-MOFs exhibited a controlled release effect toward thymol for 35 days. The release kinetics of three ICs fit the Rigter-Peppas model well, with γ-CD-MOF-THY showing the lowest release rate constant of 2.85 at 50 °C, RH 75%. Moreover, γ-CD-MOF-THY exhibited a remarkable preservation performance on cherry tomatoes with the lowest decay index (18.75%) and weight loss (5.17%) after 15 days of storage, suggesting this material as a potential fresh-keeping material for fruit and vegetable preservation.
Collapse
|
31
|
In-Depth Study of Thymus vulgaris Essential Oil: Towards Understanding the Antibacterial Target Mechanism and Toxicological and Pharmacological Aspects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3368883. [PMID: 35909468 PMCID: PMC9334058 DOI: 10.1155/2022/3368883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Questions have been raised apropos the emerging problem of microbial resistance, which may pose a great hazard to the human health. Among biosafe compounds are essential oils which captured consumer draw due to their multifunctional properties compared to chemical medication drugs. Here, we examined the chemical profile and the mechanism(s) of action of the Thymus vulgaris essential oil (TVEO) against a Gram-negative bacterium Salmonella enterica Typhimurium ATTCC 10028 (S. enterica Typhimurium ATTCC 10028) and two Gram-positive bacteria Staphyloccocus aureus ATCC 6538 (S. aureus ATCC 6538) and Listeria monocytogenes ATCC 19117 (L. monocytogenes ATCC 19117). Findings showed that TVEO was principally composed of thymol, o-cymene, and γ-terpinene with 47.44, 16.55, and 7.80%, respectively. Molecular docking simulations stipulated that thymol and β-sesquiphellandrene (a minor compound at 1.37%) could target multiple bacterial pathways including topoisomerase II and DNA and RNA polymerases of the three tested bacteria. This result pointed plausible impairments of the pathogenic bacteria cell replication and transcription processes. Through computational approach, the VEGA quantitative structure–activity relationship (QSAR) model, we revealed that among twenty-six TVEO compounds, sixteen had no toxic effects and could be safe for human consumption as compared to the Food and Drug Administration (FDA) approved drugs (ciprofloxacin and rifamycin SV). Assessed by the SwissADME server, the pharmacokinetic profile of all identified TVEO compounds define their absorption, distribution, metabolism, and excretion (ADME) properties and were assessed. In order to predict their biological activity spectrum based on their chemical structure, all TVEO compounds were subjected to PASS (Prediction of Activity Spectra for Substances) online tool. Results indicated that the tested compounds could have multiple biological activities and various enzymatic targets. Findings of our study support that identified compounds of TVEO can be a safe and effective alternative to synthetic drugs and can easily combats hazardous multidrug-resistant bacteria.
Collapse
|
32
|
Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070793. [PMID: 35890092 PMCID: PMC9320655 DOI: 10.3390/ph15070793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Natural prodrugs extracted from plants are increasingly used in many sectors, including the pharmaceutical, cosmetic, and food industries. Among these prodrugs, essential oils (EOs) are of particular importance. These biologically active volatile oily liquids are produced by medicinal and aromatic plants and characterized by a distinctive odor. EOs possess high anticancer, antibacterial, antiviral, and antioxidant potential but often are associated with low stability; high volatility; and a high risk of deterioration with exposure to heat, humidity, light, or oxygen. Furthermore, their bioavailability is limited because they are not soluble in water, and enhancements are needed to increase their potential to target specific cells or tissues, as well as for controlled release. Nanomedicine, the application of nanotechnology in medicine, may offer efficient solutions to these problems. The technology is based on creating nanostructures in which the natural prodrug is connected to or encapsulated in nanoparticles or submicron-sized capsules that ensure their solubility in water and their targeting properties, as well as controlled delivery. The potential of EOs as anticancer prodrugs is considerable but not fully exploited. This review focusses on the recent progress towards the practical application of EOs in cancer therapy based on nanotechnology applications.
Collapse
|
33
|
Jayari A, Donsì F, Ferrari G, Maaroufi A. Nanoencapsulation of Thyme Essential Oils: Formulation, Characterization, Storage Stability, and Biological Activity. Foods 2022; 11:foods11131858. [PMID: 35804672 PMCID: PMC9265609 DOI: 10.3390/foods11131858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to improve the effectiveness of Thymus capitatus and Thymus algeriensis essential oils (EOs), as food preservatives, through their encapsulation in different delivery systems (DSs), namely nanoemulsions and biopolymeric nanoparticles. DSs’ preparation is tailored to enhance not only physical stability but also resulting Eos’ antioxidant and antibacterial activities through different fabrication methods (high-pressure homogenization emulsification or antisolvent precipitation) and using different emulsifiers and stabilizers. DSs are characterized in terms of droplet size distribution, ζ-potential, and stability over time, as well as antioxidant and antibacterial activities of encapsulated EOs. The antioxidant activity was studied by the FRAP assay; the antibacterial activity was evaluated by the well diffusion method. EOs of different compositions were tested, namely two EOs extracted from Thymus capitatus, harvested from Tunisia during different periods of the year (TC1 and TC2), and one EO extracted from Thymus algeriensis (TA). The composition of TC1 was significantly richer in carvacrol than TC2 and TA. The most stable formulation was the zein-based nanoparticles prepared with TC1 and stabilized with maltodextrins, which exhibit droplet size, polydispersity index, ζ-potential, and encapsulation efficiency of 74.7 nm, 0.14, 38.7 mV, and 99.66%, respectively. This formulation led also to an improvement in the resulting antioxidant (60.69 µg/mg vs. 57.67 µg/mg for non-encapsulated TC1) and antibacterial (inhibition diameters varying between 12 and 33 mm vs. a range between 12 and 28 mm for non-encapsulated TC1) activities of EO. This formulation offers a promising option for the effective use of natural antibacterial bioactive molecules in the food industry against pathogenic and spoilage bacteria.
Collapse
Affiliation(s)
- Asma Jayari
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: ; Tel.: +39-089-964-135
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| |
Collapse
|
34
|
Caruso C, Eletto D, Tosco A, Pannetta M, Scarinci F, Troisi M, Porta A. Comparative Evaluation of Antimicrobial, Antiamoebic, and Antiviral Efficacy of Ophthalmic Formulations. Microorganisms 2022; 10:microorganisms10061156. [PMID: 35744674 PMCID: PMC9229167 DOI: 10.3390/microorganisms10061156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
The extensive use of ophthalmic antibiotics is contributing to the appearance of resistant bacterial strains, which require prolonged and massive treatments with consequent detrimental outcomes and adverse effects. In addition to these issues, antibiotics are not effective against parasites and viruses. In this context, antiseptics could be valuable alternatives. They have nonselective mechanisms of action preventing bacterial resistance and a broad spectrum of action and are also effective against parasites and viruses. Here, we compare the in vitro antibacterial, antiameobic, and antiviral activities of six ophthalmic formulations containing antiseptics such as povidone-iodine, chlorhexidine, and thymol against Gram-positive and Gram-negative bacteria, the amoeba Acanthamoeba castellanii, and two respiratory viruses, HAdV-2 and HCoV-OC43. The results suggest that, among all the tested formulations, Dropsept, consisting of Vitamin E TPGS-based (tocopheryl polyethylene glycol succinate) in combination with the antiseptic chlorhexidine, is the one with the highest range of activities, as it works efficiently against bacteria, amoeba, and viruses. On the other hand, the solution containing PVA (polyvinyl alcohol) and thymol showed a promising inhibitory effect on Pseudomonas aeruginosa, which causes severe keratitis. Given its high efficiency, Dropsept might represent a valuable alternative to the widely used antibiotics for the treatment of ocular infections. In addition to this commercial eye drop solution, thymol-based solutions might be enrolled for their natural antimicrobial and antiamoebic effect.
Collapse
Affiliation(s)
- Ciro Caruso
- Corneal Transplant Centre, Pellegrini Hospital, 80134 Naples, Italy;
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.T.); (M.P.)
- Correspondence: (D.E.); (A.P.); Tel.: +39-089-969-421 (D.E.); +39-089-969-455 (A.P.)
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.T.); (M.P.)
| | - Martina Pannetta
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.T.); (M.P.)
| | - Fabio Scarinci
- Department of Ophthalmology, IRCCS Fondazione, Bietti, Via Livenza, 3, 00198 Roma, Italy;
| | - Mario Troisi
- Department of Neurosciences, Reproductive Sciences and Dentistry, Eye Clinic, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.T.); (M.P.)
- Correspondence: (D.E.); (A.P.); Tel.: +39-089-969-421 (D.E.); +39-089-969-455 (A.P.)
| |
Collapse
|
35
|
Chen X, Wu YC, Gong PX, Zhang YH, Li HJ. Chondroitin sulfate deposited on foxtail millet prolamin/caseinate nanoparticles to improve physicochemical properties and enhance cancer therapeutic effects. Food Funct 2022; 13:5343-5352. [PMID: 35466985 DOI: 10.1039/d2fo00572g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, curcumin (Cur)-loaded chondroitin sulfate (CS)-sodium caseinate (NaCas)-stabilized foxtail millet prolamin (FP) composite nanoparticles (NPs) were fabricated via a one-pot process. FP is capable of self-assembly via liquid antisolvent precipitation under neutral and alkaline conditions (pH 7.0-11.0). Under this condition, the microstructures of hydrophobic FP cores, amphiphilic NaCas and hydrophilic CS shells were fabricated readily by a one-pot method. With an optimal FP/NaCas/CS weight ratio of 3 : 2 : 4, FP-NaCas-CS NPs shared globular microstructures at about 145 nm, and hydrophobic interactions, electrostatic forces, and hydrogen bonds were the main driving forces for the formation and maintenance of stable FP-NaCas-CS NPs. CS coating enhanced the pH stability but reduced the ionic strength stability. The formed NPs were stable over a wide pH range from 2.0 to 8.0 and elevated salt concentrations from 0 to 3 mol L-1 NaCl. FP-NaCas-CS NPs exhibited a higher Cur encapsulation efficiency of 93.4% and re-dispersion capability after lyophilization. Moreover, CS coating promoted selective accumulation in CD44-overexpressing HepG2 cells, resulting in higher inhibition of tumor growth compared to free Cur and FP-NaCas NP-encapsulated Cur. As for comparison, encapsulated Cur exhibited reduced cytotoxicity on normal liver cells L-O2. This preclinical study suggests that FP-NaCas-CS NPs could be very beneficial in terms of encapsulating hydrophobic drugs, improving the effectiveness of cancer therapies and reducing side effects on normal tissues.
Collapse
Affiliation(s)
- Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| | - Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| | - Yu-He Zhang
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| |
Collapse
|
36
|
Kasaai MR. Bio-nano-composites containing at least two components, chitosan and zein, for food packaging applications: A review of the nano-composites in comparison with the conventional counterparts. Carbohydr Polym 2022; 280:119027. [PMID: 35027129 DOI: 10.1016/j.carbpol.2021.119027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Both chitosan and zein are safe industrial biopolymers for the 21St century, respecting environmentally concerns. This review mainly is focused on preparations, properties and applications of a promising food packaging material, chitosan-zein nano-composite (NC). The properties and applications of the NCs were compared with their conventional counterparts. The structure of chitosan- zein composites was proposed. A procedure for preparations of conventional and nano zein-chitosan composites was proposed. The sizes of composites depend on molecular weight of chitosan and zein, the ratio of chitosan/zein, and pH of chitosan-zein solutions. The NCs had superior mechanical, antimicrobial, antioxidant, and barrier properties compared with the conventional ones. The properties of the composites were further improved by introduction of bioactive compounds, fillers or plasticizers. The composites have potential to employ as coatings/packaging materials to protect mushroom, meats, and fresh fruits and vegetables.
Collapse
Affiliation(s)
- Mohammad Reza Kasaai
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, Km. 9, P.O. Box, 578, Sari, Mazandaran, Iran.
| |
Collapse
|
37
|
Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils. Antibiotics (Basel) 2022; 11:antibiotics11010108. [PMID: 35052985 PMCID: PMC8773333 DOI: 10.3390/antibiotics11010108] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.
Collapse
|
39
|
Gharaghie TP, Beiranvand S, Riahi A, Badmasti F, Shirin NJ, Mirzaie A, Elahianfar Y, Ghahari S, Ghahari S, Pasban K, Hajrasoliha S. Fabrication and characterization of thymol-loaded chitosan nanogels: improved antibacterial and anti-biofilm activities with negligible cytotoxicity. Chem Biodivers 2022; 19:e202100426. [PMID: 34989129 DOI: 10.1002/cbdv.202100426] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
Thymol is a monoterpene phenolic derivative extracted from the Thymus vulgaris which has antimicrobial effects. In the present study, thymol-loaded chitosan nanogels were prepared and their physicochemical properties were characterized. The encapsulation efficiency of thymol into chitosan and its stability were determined. The in-vitro antimicrobial and anti-biofilm activities of thymol-loaded chitosan nanogel (Ty-CsNG), free thymol (Ty), and free chitosan nanogel (CsNG) were evaluated against both Gram-negative and Gram-positive multidrug-resistant (MDR) bacteria including Staphylococcus aureus , Acinetobacter baumanii , and Pseudomonas aeruginosa strains using the broth microdilution and crystal violet assay, respectively. After treatment of MDR strains with sub-minimum inhibitory concentration (Sub-MIC) of Ty-CsNG, free Ty and CsNG, biofilm gene expression analysis was studied. Moreover, cytotoxicity of Ty-CsNG, free Ty, and CsNG against HEK-293 normal cell line was determined using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) method. The average size of Ty-CsNG was 82.71±9.6 nm, encapsulation efficiency was 76.54 ± 0.62% with stability up to 60 days at 4 o C. Antibacterial activity test revealed that Ty-CsNG reduced the MIC by 4-6 times in comparison to free thymol. In addition, the expression of biofilm-related genes including ompA , and pgaB were significantly down-regulated after treatment of strains with Ty-CsNG ( p <0.05). In addition, free CsNG displayed negligible cytotoxicity against HEK-293 normal cell line and presented a biocompatible nanoscale delivery system. Based on the results, it can be concluded that Ty-CsNG can be considered a promising candidate for enhancing antimicrobial and anti-biofilm activities.
Collapse
Affiliation(s)
- Tohid Piri Gharaghie
- Islamic Azad University Shahrekord Branch, Biology, Vakil, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Sheida Beiranvand
- Islamic Azad University Shahrekord Branch, Biology, Entezam, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Anali Riahi
- Shahrekord University, Biology, Heravi, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Farzad Badmasti
- Pasteur Institute of Iran, Microbiology, 12 Farvardin, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Neda Jegargoshe Shirin
- Islamic Azad University Damghan Branch, Biology, Entezam, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Amir Mirzaie
- Islamic Azad University Parand Branch, Biology, Heravi, 009821, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Yalda Elahianfar
- Iran University of Medical Sciences, Biology, Milad, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Somayeh Ghahari
- Sari Agricultural Sciences and Natural Resources University, Agriculture, Yaghin, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Sajjad Ghahari
- Shahid Chamran University of Ahvaz, Biology, Alikhani, Ahvaz, IRAN (ISLAMIC REPUBLIC OF)
| | - Kamal Pasban
- Islamic Azad University Zanjan, Genetic, 92, Zanjan, IRAN (ISLAMIC REPUBLIC OF)
| | - Shadi Hajrasoliha
- Islamic Azad University Tehran Medical Sciences, Biology, 26, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| |
Collapse
|
40
|
Tortorella S, Maturi M, Vetri Buratti V, Vozzolo G, Locatelli E, Sambri L, Comes Franchini M. Zein as a versatile biopolymer: different shapes for different biomedical applications. RSC Adv 2021; 11:39004-39026. [PMID: 35492476 PMCID: PMC9044754 DOI: 10.1039/d1ra07424e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022] Open
Abstract
In recent years, the interest regarding the use of proteins as renewable resources has deeply intensified. The strongest impact of these biomaterials is clear in the field of smart medicines and biomedical engineering. Zein, a vegetal protein extracted from corn, is a suitable biomaterial for all the above-mentioned purposes due to its biodegradability and biocompatibility. The controlled drug delivery of small molecules, fabrication of bioactive membranes, and 3D assembly of scaffold for tissue regeneration are just some of the topics now being extensively investigated and reported in the literature. Herein, we review the recent literature on zein as a biopolymer and its applications in the biomedical world, focusing on the different shapes and sizes through which it can be manipulated. Zein a versatile biomaterial in the biomedical field. Easy to chemically functionalize with good emulsification properties, can be employed in drug delivery, fabrication of bioactive membranes and 3D scaffolds for tissue regeneration.![]()
Collapse
Affiliation(s)
- Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy .,Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore" (IEOS), Consiglio Nazionale delle Ricerche (CNR) Via S. Pansini 5 80131 Naples Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Giulia Vozzolo
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
41
|
Wu W, Wu Y, Lin Y, Shao P. Facile fabrication of multifunctional citrus pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible fungi. Food Chem 2021; 374:131763. [PMID: 34896953 DOI: 10.1016/j.foodchem.2021.131763] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
Citrus pectin was used as a precursor and cellulose nanofibers as a reinforcing agent, a mixed aerogel with enhanced structural properties was prepared. Pickering emulsion was a template for aerogel formation, embedding thymol. Its potential application in humidity regulating packaging has been investigated. Results showed that emulsion gel containing cellulose nanofibers has slightly larger droplet diameter, better viscoelasticity and emulsification. Composite aerogel has larger pore size and thinner pore wall. Additionally, its tensile and compressive properties have been significantly improved. Moisture absorption was close to 100% of its own weight, thymol was released slowly. Compared with Escherichia coli, aerogel has better resistance to Staphylococcus aureus. When applied on fresh Agaricus bisporus. It was found that relative humidity in package can be stabilized at about 97%. Hardness, color, total phenol content, cell membrane integrity and total antioxidant capacity of Agaricus bisporus were maintained and fresh-keeping period was extended to 5 days.
Collapse
Affiliation(s)
- Weina Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Yingying Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| |
Collapse
|
42
|
Chen G, Jiao H, Chen Y, Zhang Z. Incorporation of antibacterial zein/thymol nanoparticles dispersed using nanobubble technology improves the functional performance of gelatin films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Hua L, Deng J, Wang Z, Wang Y, Chen B, Ma Y, Li X, Xu B. Improving the functionality of chitosan-based packaging films by crosslinking with nanoencapsulated clove essential oil. Int J Biol Macromol 2021; 192:627-634. [PMID: 34626727 DOI: 10.1016/j.ijbiomac.2021.09.197] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/20/2023]
Abstract
The study aimed to obtain chitosan composite films with gratifying physical and functional properties. First, we developed a Pickering emulsion containing clove essential oil (CEO)-loaded nanoparticles with 1:2 (w/w) zein and sodium caseinate (NaCas). We found that in this ratio, the CEO-loaded zein-NaCas (C/ZN) nanoparticles had smaller particle size, proper polydispersity index (PDI) and zeta potential as well as higher encapsulation efficiency. Then, the acquired C/ZN nanoparticles were incorporated into chitosan film at three levels (0.2%, 0.4% and 0.6%), reducing the water vapor permeability to 4.62 × 10-6 g·s-1·m-1·Pa. Also, the tensile strength and break elongation of chitosan films were increased, reaching 38.67 MPa and 1.56%, respectively. The infrared spectroscopy verified that the intermolecular hydrogen bonds exist between chitosan and C/ZN nanoparticles. The chitosan composite films showed a controlled-release property of CEO in 96 h. Finally, the chitosan composite films showed the improved antibacterial property by creating larger inhibition zones against Escherichia coli (3.29 mm) and Staphylococcus aureus (6.15 mm). In general, we improved the water resistance, light blocking, mechanical strength, controlled-release and antibacterial properties of chitosan film with C/ZN nanoparticles. The current edible antibacterial films have great potential on applications for food preservation and food delivery system.
Collapse
Affiliation(s)
- Lu Hua
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jieying Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Ying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bo Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xiaomin Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
44
|
A Novel Zein-Based Composite Nanoparticles for Improving Bioaccessibility and Anti-Inflammatory Activity of Resveratrol. Foods 2021; 10:foods10112773. [PMID: 34829054 PMCID: PMC8624517 DOI: 10.3390/foods10112773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
A microbial transglutaminase-induced cross-linked sodium caseinate (MSC) was used to stabilize zein nanoparticles, and the study was to investigate whether zein-MSC nanoparticles (zein-MSC NPs) can be used as an encapsulation carrier for resveratrol. A group of resveratrol-loaded zein-MSC nanoparticles (Res-zein-MSC NPs) with varying zein to Res mass ratios was first prepared. The particle sizes and zeta-potentials were in the ranges from 215.00 to 225.00 nm and from −29.00 to −31.00 mV. The encapsulation efficiency (EE) of Res was also influenced by the zein to Res mass ratio, and the encapsulated Res existed in an amorphous form. The major interactions between Res and zein-MSC NPs were hydrogen bonding and hydrophobic interaction. Furthermore, compared with free Res, the photo-stability and bioaccessibility of Res-zein-MSC NPs were significantly improved. The cellular studies also showed that Res-zein-MSC NPs exhibited lower cytotoxicity and desirable anti-inflammatory activity.
Collapse
|
45
|
Physicochemical properties and bioavailability comparison of two quercetin loading zein nanoparticles with outer shell of caseinate and chitosan. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106959] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Ruan YT, Wang WJ, Zheng GD, Yin ZP, Chen JG, Li JE, Chen LL, Zhang QF. In vivo and in vitro comparison of three astilbin encapsulated zein nanoparticles with different outer shells. Food Funct 2021; 12:9784-9792. [PMID: 34533153 DOI: 10.1039/d1fo01522b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three shell materials, lecithin (ZNP-L), chitosan (ZNP-CH) and sodium caseinate (ZNP-SC), were used to prepare core-shell zein nanoparticles. Astilbin was encapsulated as a model flavonoid to compare the influence of the shell materials on zein nanoparticles both in vitro and in vivo. The particle size was moderately increased by lecithin and sodium caseinate, but notably increased by chitosan. All the shell materials provided good redispersibility for the nanoparticles and significantly improved the colloidal stability. Chitosan and sodium caseinate significantly delayed and decreased the feces excretion of astilbin in rats, while lecithin exhibited a very weak effect. The results may be attributed to the difference in mucoadhesive properties between the shell materials. As a consequence, the bioavailability values of astilbin in rats were 18.2, 9.3 and 1.89 times increased through ZNP-CH, ZNP-SC and ZNP-L compared with that of free astilbin, respectively.
Collapse
Affiliation(s)
- Yi-Ting Ruan
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Guo-Dong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Ling-Li Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
47
|
Gong S, Wang D, Tao S, Hu X, Wang C, Sun Y, Zhao B, Li Y. Facile encapsulation of thymol within deamidated zein nanoparticles for enhanced stability and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Zhang Z, Qiu C, Li X, McClements DJ, Jiao A, Wang J, Jin Z. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Bioaccessibility of different types of phenolic compounds co-encapsulated in alginate/chitosan-coated zein nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|