1
|
Qiu J, Gu H, Wang S, Ji F, He C, Jiang C, Shi J, Liu X, Shen G, Lee YW, Xu J. A diverse Fusarium community is responsible for contamination of rice with a variety of Fusarium toxins. Food Res Int 2024; 195:114987. [PMID: 39277249 DOI: 10.1016/j.foodres.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Rice plays an important role in the daily diet in China and therefore its quality and safety have been of great concern. However, few systematic studies have investigated Fusarium community and toxins in rice grains. Here, we collected 1381 rice samples from Jiangsu Province in eastern China and found a higher frequency of zearalenone (ZEN), deoxynivalenol (DON), fumonisins (FBs), and beauvericin (BEA). The positive samples were individually contaminated with a minimum of one and a maximum of ten toxins. Fusarium was isolated and identified as the major fungus, which exhibited temporal and geographical distribution. The most prevalent species complexes within this genus were Fusarium incarnatum-equiseti species complex (FIESC), Fusarium fujikuroi species complex (FFSC), and Fusarium sambucinum species complex (FSAMSC). Nevertheless, the amplicon sequence analysis revealed a low relative abundance of Fusarium in the rice panicles, and the fungal community exhibited an irregular change along with the symptom's emergence. In vitro toxigenic profiles of Fusarium strains showed significant complexity and specificity depending on the type and content. FIESC strains were non-pathogenic to wheat heads and weakly pathogenic to maize ears, respectively, accumulating lower amounts of toxins than F. asiaticum and F. fujikuroi. There was no significant variation in the ability to cause panicle blight in rice among the various species tested. Our study provides detailed information about the contamination of Fusarium toxins and community in rice after harvest. This information is valuable for understanding the relationship between Fusarium and rice and for developing effective control strategies.
Collapse
Affiliation(s)
- Jianbo Qiu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hui Gu
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shufang Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Ji
- College of Tea and Food Science and Technology, Jiangsu Vocational College Agriculture and Forestry, Zhenjiang 212400, China
| | - Can He
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Can Jiang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianrong Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanghui Shen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yin-Won Lee
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Wang Y, Liu X, Yuan B, Chen X, Zhao H, Ali Q, Zheng M, Tan Z, Yao H, Zheng S, Wu J, Xu J, Shi J, Wu H, Gao X, Gu Q. Fusarium graminearum rapid alkalinization factor peptide negatively regulates plant immunity and cell growth via the FERONIA receptor kinase. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1800-1811. [PMID: 38344883 PMCID: PMC11182587 DOI: 10.1111/pbi.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 06/19/2024]
Abstract
The plant rapid alkalinization factor (RALF) peptides function as key regulators in cell growth and immune responses through the receptor kinase FERONIA (FER). In this study, we report that the transcription factor FgPacC binds directly to the promoter of FgRALF gene, which encodes a functional homologue of the plant RALF peptides from the wheat head blight fungus Fusarium graminearum (FgRALF). More importantly, FgPacC promotes fungal infection via host immune suppression by activating the expression of FgRALF. The FgRALF peptide also exhibited typical activities of plant RALF functions, such as inducing plant alkalinization and inhibiting cell growth, including wheat (Triticum aestivum), tomato (Solanum lycopersicum) and Arabidopsis thaliana. We further identified the wheat receptor kinase FERONIA (TaFER), which is capable of restoring the defects of the A. thaliana FER mutant. In addition, we found that FgRALF peptide binds to the extracellular malectin-like domain (ECD) of TaFER (TaFERECD) to suppress the PAMP-triggered immunity (PTI) and cell growth. Overexpression of TaFERECD in A. thaliana confers plant resistance to F. graminearum and protects from FgRALF-induced cell growth inhibition. Collectively, our results demonstrate that the fungal pathogen-secreted RALF mimic suppresses host immunity and inhibits cell growth via plant FER receptor. This establishes a novel pathway for the development of disease-resistant crops in the future without compromising their yield potential.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Xin Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
- Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Xue Chen
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Hanxi Zhao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Qurban Ali
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Minghong Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Zheng Tan
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Hemin Yao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Shuqing Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Jingni Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Jianhong Xu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
- Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jianrong Shi
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
- Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Huijun Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Qin Gu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| |
Collapse
|
3
|
Ma Z, He Y, Li Y, Wang Q, Fang M, Yang Q, Gong Z, Xu L. Effects of Deoxynivalenol and Its Acetylated Derivatives on Lipid Metabolism in Human Normal Hepatocytes. Toxins (Basel) 2024; 16:294. [PMID: 39057934 PMCID: PMC11281666 DOI: 10.3390/toxins16070294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) belong to type B trichothecenes that are widely detected in agricultural products as one of the most common classes of mycotoxins. In the present study, we aimed to characterize the alteration of lipid metabolism in normal human hepatocytes by poisoning with DON and its acetylated derivatives. After verifying the hepatotoxicity of the three toxins, DON, 15-ADON, and 3-ADON, the mRNA expression was determined by transcriptomics, and the results showed that DON and 15-ADON had a significant regulatory effect on the transcriptome, in which glycerophospholipid metabolism pathway and phospholipase D signaling pathways have not been reported in studies of DON and its acetylated derivatives. For further validation, we explored lipid metabolism in depth and found that PC (15:0/16:0), PC (16:1/18:3), PC (18:1/22:6), PC (16:0/16:0), PC (16:0/16:1), PC (16:1/18:1), PC (14:0/18:2), PE (14:0/16:0) and PE (18:1/18:3) were downregulated for all nine lipids. Combined with the transcriptome results, we found that hepatic steatosis induced by the three toxins, DON, 15-ADON and 3-ADON, was associated with altered expression of genes related to lipid oxidation, lipogenesis and lipolysis, and their effects on lipid metabolism in L-02 cells were mainly realized through the PC-PE cycle.
Collapse
Affiliation(s)
- Zhaoqing Ma
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuyun He
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuzhi Li
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
| | - Qiao Wang
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Min Fang
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Qing Yang
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Zhiyong Gong
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Lin Xu
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| |
Collapse
|
4
|
Zheng Z, Liu H, Luo X, Liu R, Joe AD, Li H, Sun H, Lin Y, Li Y, Wang Y. Comparative transcriptome analysis provides insights into the resistance regulation mechanism and inhibitory effect of fungicide phenamacril in Fusarium asiaticum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105848. [PMID: 38685210 DOI: 10.1016/j.pestbp.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024]
Abstract
Fusarium asiaticum is a destructive phytopathogenic fungus that causes Fusarium head blight of wheat (FHB), leading to serious yield and economic losses to cereal crops worldwide. Our previous studies indicated that target-site mutations (K216R/E, S217P/L, or E420K/G/D) of Type I myosin FaMyo5 conferred high resistance to phenamacril. Here, we first constructed one sensitive strain H1S and three point mutation resistant strains HA, HC and H1R. Then we conducted comparative transcriptome analysis of these F. asiaticum strains after 1 and 10 μg·mL-1 phenamacril treatment. Results indicated that 2135 genes were differentially expressed (DEGs) among the sensitive and resistant strains. The DEGs encoding ammonium transporter MEP1/MEP2, nitrate reductase, copper amine oxidase 1, 4-aminobutyrate aminotransferase, amino-acid permease inda1, succinate-semialdehyde dehydrogenase, 2, 3-dihydroxybenzoic acid decarboxylase, etc., were significantly up-regulated in all the phenamacril-resistant strains. Compared to the control group, a total of 1778 and 2097 DEGs were identified in these strains after 1 and 10 μg·mL-1 phenamacril treatment, respectively. These DEGs involved in 4-aminobutyrate aminotransferase, chitin synthase 1, multiprotein-bridging factor 1, transcriptional regulatory protein pro-1, amino-acid permease inda1, ATP-dependent RNA helicase DED1, acetyl-coenzyme A synthetase, sarcoplasmic/endoplasmic reticulum calcium ATPase 2, etc., showed significantly down-regulated expression in phenamacril-sensitive strain but not in resistant strains after phenamacril treatment. In addition, cyanide hydratase, mating-type protein MAT-1, putative purine nucleoside permease, plasma membrane protein yro2, etc., showed significantly co-down-regulated expression in all the strains after phenamacril treatment. Taken together, This study provides deep insights into the resistance regulation mechanism and the inhibitory effect of fungicide phenamacril and these new annotated proteins or enzymes are worth for the discovery of new fungicide targets.
Collapse
Affiliation(s)
- Zhitian Zheng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Huaqi Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiao Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Runze Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Alexander Dumbi Joe
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Haolin Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjng 210014, China
| | - Yanling Lin
- Jiangsu GOOD HARVEST-WEIEN Agrochemical Co., Ltd, Beijing 101318, China
| | - Yanzhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yunpeng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
5
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Li L, Li P, Wu Y, Ye J, Li Z, Wang S. A Study of a New Certified Reference Material for Accurate Determination of the Main Fusarium Mycotoxins in Whole-Wheat Flour. Foods 2023; 12:4358. [PMID: 38231842 DOI: 10.3390/foods12234358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Matrix certified reference materials (CRMs) play a critical role in analytical method validation and the assurance of reliable measurement results. A certified reference material (GBW(E)100813) for whole-wheat flour was developed to ensure an accurate and reliable measurement of the main Fusarium mycotoxins (deoxynivalenol (DON), nivalenol (NIV), deoxynivalenol-3-glucoside (DON-3G), and zearalenone (ZEN)). CRM candidates were prepared using sun-drying, grinding, sieving, homogenising, packaging, and gamma irradiation. The final produced CRM was packaged at 50 g per unit and stored at 20 °C. Certification was performed using isotope dilution-liquid chromatography-tandem mass spectrometry. CRM characterization was performed in eight laboratories in accordance with the requirements of ISO Guide 35. The certified values and expanded uncertainties (at a confidence of 95%, k = 2) for DON, NIV, DON-3G, and ZEN were determined to be 0.98 ± 0.12 mg/kg, 1.37 ± 0.20 mg/kg, 242 ± 35 μg/g, and 382 ± 50 μg/g. The CRM was sufficiently homogeneous between and within bottles, and remained stable for up to 12 months at 20 °C and 9 days below 40 °C for transportation. Thus, CRM can be used for quality control and method validation to ensure the accurate and reliable quantification of the main Fusarium mycotoxins in whole-wheat flour.
Collapse
Affiliation(s)
- Li Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Peng Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Wu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Zongwang Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
7
|
Meng D, Dong X, He X, Pan R, Sun M, Chu Y, Tong Z, Yi X, Fan H, Gao T, Duan J. Effects of wheat varieties, fungicides and application time on Fusarium head blight and deoxynivalenol contamination control in wheat. PEST MANAGEMENT SCIENCE 2023; 79:4784-4794. [PMID: 37471098 DOI: 10.1002/ps.7674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/11/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Yield loss and toxin contamination caused by wheat Fusarium head blight (FHB) have always been a worldwide concern. Cultivating disease-resistant varieties and fungicide application are effective measures to control FHB. The comprehensive control technology system for FHB and toxin contamination of wheat in Anhui Province needs further improvement. This study compared the control efficacy of different wheat varieties, fungicides and application times on wheat FHB and deoxynivalenol (DON) contamination, and the dynamic change of DON accumulation after application. RESULTS Among the 93 main wheat varieties in Anhui Province, the disease-resistant and low-toxic wheat variety "Ningmai 26" was more suitable for planting in the central part of Anhui Province. At the same time, "Yangmai 22" was used for subsequent experiments. The field efficacy trials of different fungicides showed that 30% prothioconazole oil dispersion (OD) had the highest control efficacy on FHB and DON contamination, reaching 94.33 and 77.49%, respectively. The study on the optimum application time of prothioconazole showed that the 0-20% flowering stage was the key point of DON control. The survey of the dynamic changes of DON accumulation showed that prothioconazole could significantly reduce the level of DON accumulation while inhibiting the accumulation rate of DON. At the same time, the control fungicide carbendazim increased the level of DON contamination. CONCLUSION This study will provide excellent germplasm resources for cultivating disease-resistant and low-toxic wheat varieties, and provide a theoretical reference for establishing a collaborative prevention and control system of disease control and toxin reduction. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- DanDan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - XianFang He
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Rui Pan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - MingNa Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - XiaoTong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - Hui Fan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - TongChun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| | - JinSheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei, China
| |
Collapse
|
8
|
Meng J, Li R, Huang Q, Guo D, Fan K, Zhang J, Zhu X, Wang M, Chen X, Nie D, Cao C, Zhao Z, Han Z. Survey and toxigenic abilities of Aspergillus, Fusarium, and Alternaria fungi from wheat and paddy grains in Shanghai, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1202738. [PMID: 37560029 PMCID: PMC10407302 DOI: 10.3389/fpls.2023.1202738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
A systematic study was carried out on 638 wheat and paddy grains (including fresh and stored samples) collected in 2021 from Shanghai, China, to identify the major mycobiota and their toxigenic abilities. A total of 349 fungi, namely, 252 Fusarium, 53 Aspergillus, and 44 Alternaria, were characterized by morphological and molecular identification. Fusarium and Aspergillus were more frequently isolated in paddy with Fusarium sambucinum species complex and Aspergillus section flavi as the predominant species, respectively. The genus Alternaria was the most frequently isolated fungal species in wheat. The toxin-producing potentials of the identified fungi were further evaluated in vitro. Deoxynevalenol (DON) was produced by 34.5% of Fusarium isolates and zearalenone (ZEN) was produced by 47.6% of them, and one isolate also processed the abilities for fumonisin B1 (FB1), B2 (FB2), and B3 (FB3) productions. Aflatoxin B1 (AFB1), B2 (AFB2), and G1 (AFG1) were only generated by Aspergillus section flavi, with the production rate of 65.5%, 27.6%, and 13.8%, respectively. Alternariol (AOH) was the most prevalent Alternaria toxin, which could be produced by 95.5% of the isolates, followed by alternariol monomethyl ether (AME) (72.7%), altenuene (ALT) (52.3%), tenuazonic acid (TeA) (45.5%), tentoxin (TEN) (29.5%), and altenusin (ALS) (4.5%). A combinational analysis of mycobiota and toxigenic ability allowed us to provide comprehensive information about the production mechanisms of mycotoxins in wheat and paddy in a specific geographic area, and will be helpful for developing efficient prevention and control programs.
Collapse
Affiliation(s)
- Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ruijiao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dehua Guo
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jingya Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xueting Zhu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Min Wang
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Xinyue Chen
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chen Cao
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Ji X, Jin C, Xiao Y, Deng M, Wang W, Lyu W, Chen J, Li R, Li Y, Yang H. Natural Occurrence of Regulated and Emerging Mycotoxins in Wheat Grains and Assessment of the Risks from Dietary Mycotoxins Exposure in China. Toxins (Basel) 2023; 15:389. [PMID: 37368690 DOI: 10.3390/toxins15060389] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Wheat grains are susceptible to contamination with various natural mycotoxins including regulated and emerging mycotoxins. This study surveyed the natural presence of regulated mycotoxins, such as deoxynivalenol (DON) and zearalenone (ZEN), and emerging mycotoxins such as beauvericin (BEA), enniatins (ENNs such as ENA, ENA1, ENB, ENB1) and Alternaria mycotoxins (i.e., alternariol monomethyl ether (AME), alternariol (AOH), tenuazonic acid (TeA), tentoxin (TEN), and altenuene (ALT)) in wheat grains randomly collected from eight provinces across China in 2021. The results revealed that each wheat grain sample was detected with at least one type of mycotoxin. The detection rates of these mycotoxins ranged from 7.1% to 100%, with the average occurrence level ranging from 1.11 to 921.8 µg/kg. DON and TeA were the predominant mycotoxins with respect to both prevalence and concentration. Approximately 99.7% of samples were found to contain more than one toxin, and the co-occurrence of ten toxins (DON + ZEN + ENA + ENA1 + ENB + ENB1 + AME + AOH + TeA + TEN) was the most frequently detected combination. The dietary exposure to different mycotoxins among Chinese consumers aged 4-70 years was as follows: 0.592-0.992 µg/kg b.w./day for DON, 0.007-0.012 µg/kg b.w./day for ZEN, 0.0003-0.007 µg/kg b.w./day for BEA and ENNs, 0.223-0.373 µg/kg b.w./day for TeA, and 0.025-0.041 µg/kg b.w./day for TEN, which were lower than the health-based guidance values for each mycotoxin, with the corresponding hazard quotient (HQ) being far lower than 1, implying a tolerable health risk for Chinese consumers. However, the estimated dietary exposure to AME and AOH was in the range of 0.003-0.007 µg/kg b.w./day, exceeding the Threshold of Toxicological Concern (TTC) value of 0.0025 µg/kg b.w./day, demonstrating potential dietary risks for Chinese consumers. Therefore, developing practical control and management strategies is essential for controlling mycotoxins contamination in the agricultural systems, thereby ensuring public health.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Canghong Jin
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meihua Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiapeng Chen
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Rui Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
10
|
Lai H, Ming P, Wu M, Wang S, Sun D, Zhai H. An electrochemical aptasensor based on P-Ce-MOF@MWCNTs as signal amplification strategy for highly sensitive detection of zearalenone. Food Chem 2023; 423:136331. [PMID: 37182496 DOI: 10.1016/j.foodchem.2023.136331] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
In this research, a signal-off electrochemical aptasensor with high sensitivity was constructed for trace detection of zearalenone (ZEN). Specifically, Ce-based metal-organic framework and multi-walled carbon nanotubes nanocomposite was functionalized with polyethyleneimine (P-Ce-MOF@MWCNTs) and served as sensing platform for its high surface area and excellent electrochemical active. Subsequently, toluidine blue (TB) was electrodeposited as the signal probe, and platinum@gold nanoparticles (Pt@Au) were dropped for the attachment of aptamer (ZEA). In the presence of ZEN, the ZEA would specifically recognize and combine with the target, causing a decrease of electrochemical signal from TB. Under the optimal conditions, the aptasensor exhibited good linear relationship for ZEN in a concentration range from 5.0 × 10-5 to 50.0 ng/mL, while the limit of detection (LOD, S/N = 3) and limit of quantitation (LOQ, S/N = 10) were 1.0 × 10-5 ng/mL and 2.9 × 10-5 ng/mL, respectively. Ultimately, the aptasensor was successfully applied into ZEN detection in semen coicis real samples.
Collapse
Affiliation(s)
- Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Maoqiang Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Zhang J, Tang X, Cai Y, Zhou WW. Mycotoxin Contamination Status of Cereals in China and Potential Microbial Decontamination Methods. Metabolites 2023; 13:metabo13040551. [PMID: 37110209 PMCID: PMC10143121 DOI: 10.3390/metabo13040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The presence of mycotoxins in cereals can pose a significant health risk to animals and humans. China is one of the countries that is facing cereal contamination by mycotoxins. Treating mycotoxin-contaminated cereals with established physical and chemical methods can lead to negative effects, such as the loss of nutrients, chemical residues, and high energy consumption. Therefore, microbial detoxification techniques are being considered for reducing and treating mycotoxins in cereals. This paper reviews the contamination of aflatoxins, zearalenone, deoxynivalenol, fumonisins, and ochratoxin A in major cereals (rice, wheat, and maize). Our discussion is based on 8700 samples from 30 provincial areas in China between 2005 and 2021. Previous research suggests that the temperature and humidity in the highly contaminated Chinese cereal-growing regions match the growth conditions of potential antagonists. Therefore, this review takes biological detoxification as the starting point and summarizes the methods of microbial detoxification, microbial active substance detoxification, and other microbial inhibition methods for treating contaminated cereals. Furthermore, their respective mechanisms are systematically analyzed, and a series of strategies for combining the above methods with the treatment of contaminated cereals in China are proposed. It is hoped that this review will provide a reference for subsequent solutions to cereal contamination problems and for the development of safer and more efficient methods of biological detoxification.
Collapse
Affiliation(s)
- Jing Zhang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xi Tang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yifan Cai
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Ji X, Tang Z, Zhang F, Zhou F, Wu Y, Wu D. Dietary taurine supplementation counteracts deoxynivalenol-induced liver injury via alleviating oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114705. [PMID: 36863159 DOI: 10.1016/j.ecoenv.2023.114705] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON), as a widespread Fusarium mycotoxin in cereals, food products, and animal feed, is detrimental to both human and animal health. The liver is not only the primary organ responsible for DON metabolism but also the principal organ affected by DON toxicity. Taurine is well known to display various physiological and pharmacological functions due to its antioxidant and anti-inflammatory properties. However, the information regarding taurine supplementation counteracting DON-induced liver injury in piglets is still unclear. In our work, twenty-four weaned piglets were subjected to four groups for a 24-day period, including the BD group (a basal diet), the DON group (3 mg/kg DON-contaminated diet), the DON+LT group (3 mg/kg DON-contaminated diet + 0.3% taurine), and the DON+HT group (3 mg/kg DON-contaminated diet + 0.6% taurine). Our findings indicated that taurine supplementation improved growth performance and alleviated DON-induced liver injury, as evidenced by the reduced pathological and serum biochemical changes (ALT, AST, ALP, and LDH), especially in the group with the 0.3% taurine. Taurine could counteract hepatic oxidative stress in piglets exposed to DON, as it reduced ROS, 8-OHdG, and MDA concentrations and improved the activity of antioxidant enzymes. Concurrently, taurine was observed to upregulate the expression of key factors involved in mitochondrial function and the Nrf2 signaling pathway. Furthermore, taurine treatment effectively attenuated DON-induced hepatocyte apoptosis, as verified through the decreased proportion of TUNEL-positive cells and regulation of the mitochondria-mediated apoptosis pathway. Finally, the administration of taurine was able to reduce liver inflammation due to DON, by inactivating the NF-κB signaling pathway and declining the production of pro-inflammatory cytokines. In summary, our results implied that taurine effectively improved DON-induced liver injury. The underlying mechanism should be that taurine restored mitochondrial normal function and antagonized oxidative stress, thereby reducing apoptosis and inflammatory responses in the liver of weaned piglets.
Collapse
Affiliation(s)
- Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Zhongqi Tang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China; Fengyang Xiaogang Minyi Land Shares Cooperatives, Chuzhou 233100, China
| | - Fen Zhou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yijing Wu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Dong Wu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230001, China.
| |
Collapse
|
13
|
Wang J, Zhang F, Yao T, Li Y, Wei N. Risk assessment of mycotoxins, the identification and environmental influence on toxin-producing ability of Alternaria alternate in the main Tibetan Plateau Triticeae crops. Front Microbiol 2023; 13:1115592. [PMID: 36824588 PMCID: PMC9942522 DOI: 10.3389/fmicb.2022.1115592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/30/2022] [Indexed: 02/10/2023] Open
Abstract
In order to find out the contamination of mycotoxins in Triticeae crops of Qinghai-Tibet Plateau, a total of 153 Triticeae crop fruits were collected as target samples, and 22 mycotoxins were tested. High detection rate was found in the Alternaria mycotoxins, including tentoxin (TEN), tenuazonic acid (TEA) and alternariol (AOH) toxins. To further clarify the production rules of Alternaria mycotoxins. A number of 9 high yield toxic strains were selected from 65 bacterial strains and the gene sequences of each were determined. The nine selected Alternaria alternate were cultured under specific pH of the culture medium, temperature and ultraviolet (UV) irradiation, and their growth and toxicity were analyzed. The results showed that the toxic capacity of most A. alternate increased with the increase of culture environment temperature and decreased with the increase of UV irradiation. However, the production of some toxins did not meet this principle, or even met the principle of relativity. In the culture experiments, a total of five Alternaria toxins were detected as positive, which were TEN, AOH, alternariol monomethyl ether (AME), TEA, and Alternaria (ALT). The altenusin (ALS) toxin was not detected in the metabolites of the nine Alternaria strains. It indicated that the TEN, AOH, AME, TEA, and ALT toxins should be particularly valued in the future risk assessments. This finding provided comprehensive information of mycotoxins contamination in the Tibetan Plateau Triticeae crops, it pointed out a direction to the Tibetan Plateau food crops' quality control.
Collapse
Affiliation(s)
- Jun Wang
- Zhang Zhong-jing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
| | - Feilong Zhang
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ting Yao
- Zhang Zhong-jing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
| | - Ying Li
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Na Wei
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China,*Correspondence: Na Wei, ✉
| |
Collapse
|
14
|
Liu X, Wang S, Fan Z, Wu J, Wang L, He D, Mohamed SR, Dawood DH, Shi J, Gao T, Xu J. Antifungal activities of metconazole against the emerging wheat pathogen Fusarium pseudograminearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105298. [PMID: 36740330 DOI: 10.1016/j.pestbp.2022.105298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/18/2023]
Abstract
Fusarium crown rot of wheat is a serious fungal disease that occurs worldwide. The disease has been emerging in the major wheat-growing areas in China since 2010. Fusarium pseudogramineaum is the predominant causative pathogen of crown rot of wheat in China. The 14α-demethylation inhibitor (DMI) fungicide metconazole has been shown to be effective against Fusarium spp., but little is known about its specific activity against F. pseudogramineaum. Metconazole exhibited strong antifungal activities against all thirty-nine F. pseudogramineaum strains collected from the major wheat-growing areas in China. Metconazole inhibited mycelial growth and conidial germ tube elongation of F. pseudograminearum. Metconazole treatment significantly reduced the production of major toxins and the expression levels of toxin biosynthesis genes. Genome-wide transcriptional profiling of F. pseudograminearum in response to metconazole indicated that the expression of genes involved in ergosterol biosynthesis, including fungicide target genes (cyp51 genes), was significantly induced by metconazole. Nine ATP-binding cassette (ABC) transporter-encoding genes were significantly expressed in response to metconazole treatment. Reduced ergosterol production and antioxidant enzyme activities were observed after metconazole treatment. Greenhouse experiments indicated a significant reduction in crown rot occurrence in wheat after seed treatment with metconazole. This study evaluated the potential of metconazole to manage wheat crown rot and provides information to understand its antifungal activities and mechanism of action against F. pseudograminearum.
Collapse
Affiliation(s)
- Xin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Shuang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Zhongyue Fan
- College of Life Science, Sanquan College of Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Jiawen Wu
- Jiangsu Plant Protection and Plant Quarantine Station, Nanjing 210036, Jiangsu, PR China
| | - Liwen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Dan He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Sherif Ramzy Mohamed
- Food Toxicology and Contaminants Dept., National Research Centre, Egypt, Giza 12411, Egypt
| | - Dawood H Dawood
- Department of Agriculture Chemistry, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Jianrong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China.
| | - Jianhong Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China.
| |
Collapse
|
15
|
Moraes WB, Madden LV, Gillespie J, Paul PA. Environment, Grain Development, and Harvesting Strategy Effects on Zearalenone Contamination of Grain from Fusarium Head Blight-Affected Wheat Spikes. PHYTOPATHOLOGY 2023; 113:225-238. [PMID: 35994731 DOI: 10.1094/phyto-05-22-0190-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fusarium head blight (FHB), caused by the fungus Fusarium graminearum, is associated with grain contamination with mycotoxins such as deoxynivalenol (DON) and zearalenone (ZEA). Unlike DON, less is known about factors affecting ZEA production during FHB epidemics. The objective of this study was to quantify ZEA contamination of wheat grain as influenced by temperature, relative humidity, FHB index (IND), grain maturation, simulated late-season rainfall, and harvest timing. Mean ZEA concentrations were low (<1.1 ppm) during the early stages of grain development (25 to 31 days after anthesis [DAA]) but rapidly increased 35 to 51 DAA in field experiments, particularly under rainy conditions. Five or ten consecutive days with simulated rainfall shortly before harvest greatly increased ZEA contamination. Similarly, extremely high levels of ZEA (51.8 to 468.6 ppm) were observed in grain from spikes exposed to 100% relative humidity (RH) at all tested temperatures and mean IND levels under controlled conditions. Interestingly, at RH ≤ 90%, ZEA concentrations were very low (0.1 to 3.6 ppm) at all tested temperatures, even at IND above 90%. At 100% RH, mean ZEA contamination was significantly higher at 20 and 25°C (235.1 and 278.2 ppm) than at 30°C (104.7 ppm). Grain harvested early and not exposed to rainfall had lower mean ZEA than grain harvested late and/or subjected to preharvest rainfall. This study was the first to associate ZEA contamination of grain from FHB-affected wheat spikes with temperature and moisture and show through designed experiments that early harvest could be a useful strategy for reducing ZEA contamination.
Collapse
Affiliation(s)
- Wanderson Bucker Moraes
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Laurence V Madden
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - James Gillespie
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
| | - Pierce A Paul
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
16
|
Gab-Allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins (Basel) 2023; 15:85. [PMID: 36828399 PMCID: PMC9963506 DOI: 10.3390/toxins15020085] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.
Collapse
Affiliation(s)
- Mohamed A. Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Reference Materials Lab, National Institute of Standards, P.O. Box 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
17
|
Tu Q, Wang L, An Q, Shuai J, Xia X, Dong Y, Zhang X, Li G, He Y. Comparative transcriptomics identifies the key in planta-expressed genes of Fusarium graminearum during infection of wheat varieties. Front Genet 2023; 14:1166832. [PMID: 37144121 PMCID: PMC10151574 DOI: 10.3389/fgene.2023.1166832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Fusarium head blight (FHB), caused mainly by the fungus Fusarium graminearum, is one of the most devastating diseases in wheat, which reduces the yield and quality of grain. Fusarium graminearum infection of wheat cells triggers dynamic changes of gene expression in both F. graminearum and wheat, leading to molecular interactions between pathogen and host. The wheat plant in turn activates immune signaling or host defense pathways against FHB. However, the mechanisms by which F. graminearum infects wheat varieties with different levels of host resistance are largely limited. In this study, we conducted a comparative analysis of the F. graminearum transcriptome in planta during the infection of susceptible and resistant wheat varieties at three timepoints. A total of 6,106 F. graminearum genes including those functioning in cell wall degradation, synthesis of secondary metabolites, virulence, and pathogenicity were identified during the infection of different hosts, which were regulated by hosts with different genetic backgrounds. Genes enriched with metabolism of host cell wall components and defense response processes were specifically dynamic during the infection with different hosts. Our study also identified F. graminearum genes that were specifically suppressed by signals derived from the resistant plant host. These genes may represent direct targets of the plant defense against infection by this fungus. Briefly, we generated databases of in planta-expressed genes of F. graminearum during infection of two different FHB resistance level wheat varieties, highlighted their dynamic expression patterns and functions of virulence, invasion, defense response, metabolism, and effector signaling, providing valuable insight into the interactions between F. graminearum and susceptible/resistant wheat varieties.
Collapse
Affiliation(s)
- Qiang Tu
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Lirong Wang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Qi An
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jie Shuai
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaobo Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yifan Dong
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Gang Li, ; Yi He,
| | - Yi He
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Gang Li, ; Yi He,
| |
Collapse
|
18
|
Li F, Duan X, Zhang L, Jiang D, Zhao X, Meng E, Yi R, Liu C, Li Y, Wang JS, Zhao X, Li W, Zhou J. Mycotoxin surveillance on wheats in Shandong province, China, reveals non-negligible probabilistic health risk of chronic gastrointestinal diseases posed by deoxynivalenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71826-71839. [PMID: 35604603 DOI: 10.1007/s11356-022-20812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Abnormal climate changes have resulted in over-precipitation in many regions. The occurrence and contamination levels of mycotoxins in crops and cereals have been elevated largely. From 2017 to 2019, we did investigation targeting 15 mycotoxins shown in the wheat samples collected from Shandong, a region suffering over-precipitation in China. We found that deoxynivalenol (DON) was the dominant mycotoxin contaminating wheats, with detection rates 304/340 in 2017 (89.41%), 303/330 in 2018 (91.82%), and 303/340 in 2019 (89.12%). The ranges of DON levels were < 4 to 580 μg/kg in 2017, < 4 to 3070 μg/kg in 2018, and < 4 to 1540 μg/kg in 2019. The exposure levels were highly correlated with local precipitation. Male exposure levels were generally higher than female's, with significant difference found in 2017 (1.89-fold, p = 0.023). Rural exposure levels were higher than that of cities but not statistically significant (1.41-fold, p = 0.13). Estimated daily intake (EDI) and margin of exposure (MoE) approaches revealed that 8 prefecture cities have probabilistically extra adverse health effects (vomiting or diarrhea) cases > 100 patients in 100,000 residents attributable to DON exposure. As a prominent wheat-growing area, Dezhou city reached ~ 300/100,000 extra cases while being considered as a major regional contributor to DON contamination. Our study suggests that more effort should be given to the prevention and control of DON contamination in major wheat-growing areas, particularly during heavy precipitation year. The mechanistic association between DON and chronic intestinal disorder/diseases should be further investigated.
Collapse
Affiliation(s)
- Fenghua Li
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xinglan Duan
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Liwen Zhang
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Dafeng Jiang
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - En Meng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ran Yi
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yirui Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Wei Li
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
19
|
Yu H, Zhang J, Chen Y, Zhu J. Zearalenone and Its Masked Forms in Cereals and Cereal-Derived Products: A Review of the Characteristics, Incidence, and Fate in Food Processing. J Fungi (Basel) 2022; 8:976. [PMID: 36135701 PMCID: PMC9501528 DOI: 10.3390/jof8090976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Zearalenone (ZEA) is known as a Fusarium-produced mycotoxin, representing a risk to cereal food safety with repercussions for economies and worldwide trade. Recent studies have reported the co-occurrence of ZEA and masked ZEA in a variety of cereals and cereal-based products, which may exert adverse effects on public health due to additive/synergistic interactions. However, the co-contamination of ZEA and masked ZEA has received little attention. In order to minimize the threats of co-contamination by ZEA and masked ZEA, it is necessary to recognize the occurrence and formation of ZEA and masked ZEA. This review focuses on the characteristics, incidence, and detection of ZEA and its masked forms. Additionally, the fate of ZEA and masked ZEA during the processing of bread, cake, biscuits, pasta, and beer, as well as the ZEA limit, are discussed. The incidence of masked ZEA is lower than that of ZEA, and the mean level of masked ZEA varies greatly between cereal samples. Published data showed a considerable degree of heterogeneity in the destiny of ZEA during cereal-based food processing, mostly as a result of the varying contamination levels and complicated food processing methods. Knowledge of the fate of ZEA and masked ZEA throughout cereal-based food processing may reduce the likelihood of severe detrimental market and trade ramifications. The revision of legislative limits of masked ZEA may become a challenge in the future.
Collapse
Affiliation(s)
| | | | | | - Jiajin Zhu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
20
|
Deoxynivalenol Degradation by Various Microbial Communities and Its Impacts on Different Bacterial Flora. Toxins (Basel) 2022; 14:toxins14080537. [PMID: 36006199 PMCID: PMC9413130 DOI: 10.3390/toxins14080537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Deoxynivalenol, a mycotoxin that may present in almost all cereal products, can cause huge economic losses in the agriculture industry and seriously endanger food safety and human health. Microbial detoxifications using microbial consortia may provide a safe and effective strategy for DON mitigation. In order to study the interactions involving DON degradation and change in microbial flora, four samples from different natural niches, including a chicken stable (expJ), a sheep stable (expY), a wheat field (expT) and a horse stable (expM) were collected and reacted with purified DON. After being co-incubated at 30 °C with 130 rpm shaking for 96 h, DON was reduced by 74.5%, 43.0%, 46.7%, and 86.0% by expJ, expY, expT, and expM, respectively. After DON (0.8 mL of 100 μg/mL) was co-cultivated with 0.2 mL of the supernatant of each sample (i.e., suspensions of microbial communities) at 30 °C for 96 h, DON was reduced by 98.9%, 99.8%, 79.5%, and 78.9% in expJ, expY, expT, and expM, respectively, and was completely degraded after 8 days by all samples except of expM. DON was confirmed being transformed into de-epoxy DON (DOM-1) by the microbial community of expM. The bacterial flora of the samples was compared through 16S rDNA flux sequencing pre- and post the addition of DON. The results indicated that the diversities of bacterial flora were affected by DON. After DON treatment, the most abundant bacteria belong to Galbibacter (16.1%) and Pedobacter (8.2%) in expJ; Flavobacterium (5.9%) and Pedobacter (5.5%) in expY; f_Microscillaceae (13.5%), B1-7BS (13.4%), and RB41 (10.5%) in expT; and Acinetobacter (24.1%), Massilia (8.8%), and Arthrobacter (7.6%) in expM. This first study on the interactions between DON and natural microbial flora provides useful information and a methodology for further development of microbial consortia for mycotoxin detoxifications.
Collapse
|
21
|
Duan N, Li C, Song M, Ren K, Wang Z, Wu S. Deoxynivalenol fluorescence aptasensor based on AuCu bimetallic nanoclusters and MoS 2. Mikrochim Acta 2022; 189:296. [PMID: 35900604 DOI: 10.1007/s00604-022-05385-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/19/2022] [Indexed: 01/12/2023]
Abstract
Aptamers against deoxynivalenol (DON) were selected through capture-systematic evolution of ligands by exponential enrichment. Through isothermal titration calorimetry and fluorimetric assay, aptamer candidate DN-2 demonstrated good affinity to DON with Kd value of 40.36 ± 6.32 nM. Accordingly, a Forster resonance energy transfer aptasensor was fabricated by using the aptamer DN-2 combined with AuCu bimetallic nanoclusters as energy donor and MoS2 nanosheets as energy acceptor. Under the optimal conditions, the fluorescence response was utilized for DON quantitative determination ranging from 5 to 100 ng/mL with a detection limit of 1.87 ng/mL. The practical application of this method was verified in maize flour samples and demonstrated a satisfied recovery of 94.6 ~ 103.1%. The obtained aptamers and their application in DON determination provide a new tool for DON monitoring in various foodstuff.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingqian Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kexin Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
22
|
Mycotoxins in livestock feed in China - Current status and future challenges. Toxicon 2022; 214:112-120. [DOI: 10.1016/j.toxicon.2022.05.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/18/2022]
|
23
|
Niazi S, Khan IM, Yue L, Ye H, Lai B, Sameh A K, Mohsin A, Rehman A, Zhang Y, Wang Z. Nanomaterial-based optical and electrochemical aptasensors: A reinforced approach for selective recognition of zearalenone. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Natural occurrence of deoxynivalenol, nivalenol and deoxynivalenol-3-glucoside in cereal-derived products from Egypt. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Bai J, Zhou Y, Luo X, Hai J, Si X, Li J, Fu H, Dai Z, Yang Y, Wu Z. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Compr Rev Food Sci Food Saf 2022; 21:3326-3345. [PMID: 35751400 DOI: 10.1111/1541-4337.12974] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jia Hai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.,Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing, P. R. China
| |
Collapse
|
26
|
Yan Z, Chen W, van der Lee T, Waalwijk C, van Diepeningen AD, Feng J, Zhang H, Liu T. Evaluation of Fusarium Head Blight Resistance in 410 Chinese Wheat Cultivars Selected for Their Climate Conditions and Ecological Niche Using Natural Infection Across Three Distinct Experimental Sites. FRONTIERS IN PLANT SCIENCE 2022; 13:916282. [PMID: 35712562 PMCID: PMC9195592 DOI: 10.3389/fpls.2022.916282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Exploiting wheat cultivars with stable resistance to Fusarium Head blight (FHB) and toxin accumulation is a cost-effective and environmentally friendly strategy to reduce the risk of yield losses and contamination with mycotoxins. To facilitate the deployment of stable cultivar resistance, we evaluated FHB resistance and resistance to mycotoxin accumulation in 410 wheat lines bred by local breeders from four major wheat growing regions in China after natural infection at three distinct locations (Hefei, Yangzhou and Nanping). Significant differences in disease index were observed among the three locations. The disease indexes (DI's) in Nanping were the highest, followed by Yangzhou and Hefei. The distribution of DI's in Yangzhou showed the best discrimination of FHB resistance in cultivars. Growing region and cultivar had significant effect on DI and mycotoxins. Among the climate factors, relative humidity and rainfall were the key factors resulting in the severe disease. Even though most cultivars were still susceptible to FHB under the strongly conducive conditions applied, the ratio of resistant lines increased in the Upper region of the Yangtze River (UYR) and the Middle and Lower Region of the Yangtze River (MLYR) between 2015 and 2019. Deoxynivalenol (DON) was the dominant mycotoxin found in Hefei and Yangzhou, while NIV was predominant in Nanping. Disease indexes were significantly correlated with DON content in wheat grain.
Collapse
Affiliation(s)
- Zhen Yan
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Wanquan Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, China
| | - Theo van der Lee
- Wageningen University and Research Center, Wageningen, Netherlands
| | - Cees Waalwijk
- Wageningen University and Research Center, Wageningen, Netherlands
| | | | - Jie Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, China
| |
Collapse
|
27
|
Study on Contamination with Some Mycotoxins in Maize and Maize-Derived Foods. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crops can be contaminated by fungi which produce mycotoxins. Many fungal strains are responsible for producing varied mycotoxins. The research carried out so far has described over 400 different mycotoxins. They have chemical and physical properties that significantly differ, and they are produced by several different existing fungi. The intake of mycotoxins through food can be achieved directly, by feeding on contaminated food, or indirectly from foods of animal origin. The mycotoxin contamination of food and food products for certain animals is a phenomenon studied worldwide, in countries in Europe but also in Asia, Africa and America. The purpose of this study is to develop an evaluation of the mycotoxins prevalent in corn and corn-derived products produced in Romania. A total of 38 maize samples and 19 corn-derivative samples were investigated for the presence of mycotoxins specific to these products, such as deoxynivalenol, zearalenone and fumonisins. Fumonisins had the highest presence and zearalenone had the lowest. The limits determined for the three mycotoxins were always in accordance with legal regulations.
Collapse
|
28
|
Fang X, Dong F, Wang S, Wang G, Wu D, Lee YW, Ramzy Mohamed S, Goda AAK, Xu J, Shi J, Liu X. The FaFlbA mutant of Fusarium asiaticum is significantly increased in nivalenol production. J Appl Microbiol 2021; 132:3028-3037. [PMID: 34865297 DOI: 10.1111/jam.15404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 01/12/2023]
Abstract
AIMS Cereals contaminated with type B trichothecene nivalenol (NIV) and its acetylated derivative 4-acetyl-nivalenol (4-AcNIV) are a global mycotoxicological problem threatening the health of humans and livestock. Toxicological studies, quantitative determinations and screening for biodegrading micro-organisms require massive amounts of pure toxins. However, the low yield from fungal cultures and high prices of NIV and 4-AcNIV limit research progress in these areas. This work aimed to select Fusarium asiaticum mutant strains with enhanced production of NIV and 4-AcNIV. METHODS AND RESULTS A total of 62 NIV-producing F. asiaticum strains were isolated and compared regarding their ability to produce NIV. Strain RR108 had the highest yield of NIV among 62 field isolates surveyed and was then genetically modified for higher production. Targeted deletion of the FaFlbA gene, encoding a regulator of G protein signalling protein, resulted in a significant increase in NIV and 4-AcNIV production in the FaFlbA deletion mutant ΔFaFlbA. The expression of three TRI genes involved in the trichothecene biosynthetic pathway was upregulated in ΔFaFlbA. ΔFaFlbA produced the highest amount of NIV and 4-AcNIV when cultured in brown long-grain rice for 21 days, and the yields were 2.07 and 2.84 g kg-1 , respectively. The mutant showed reduced fitness, including reduced conidiation, loss of perithecial development and decreased virulence on wheat heads, which makes it biologically safe for large-scale preparation and purification of NIV and 4-AcNIV. CONCLUSIONS The F. asiaticum mutant strain ΔFaFlbA presented improved production of NIV and 4-AcNIV with reduced fitness and virulence in plants. SIGNIFICANCE AND IMPACT OF THE STUDY Targeted deletion of the FaFlbA gene resulted in increased NIV and 4-AcNIV production. Our results provide a practical approach using genetic modification for large-scale mycotoxin production.
Collapse
Affiliation(s)
- Xin Fang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shuang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Deliang Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sherif Ramzy Mohamed
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt, Giza, Egypt
| | - Amira Abdel-Karim Goda
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt, Giza, Egypt
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
29
|
Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Yu C, Liu X, Zhang X, Zhang M, Gu Y, Ali Q, Mohamed MSR, Xu J, Shi J, Gao X, Wu H, Gu Q. Mycosubtilin Produced by Bacillus subtilis ATCC6633 Inhibits Growth and Mycotoxin Biosynthesis of Fusarium graminearum and Fusarium verticillioides. Toxins (Basel) 2021; 13:791. [PMID: 34822575 PMCID: PMC8620035 DOI: 10.3390/toxins13110791] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Fusarium graminearum and Fusarium verticillioides are fungal pathogens that cause diseases in cereal crops, such as Fusarium head blight (FHB), seedling blight, and stalk rot. They also produce a variety of mycotoxins that reduce crop yields and threaten human and animal health. Several strategies for controlling these diseases have been developed. However, due to a lack of resistant cultivars and the hazards of chemical fungicides, efforts are now focused on the biocontrol of plant diseases, which is a more sustainable and environmentally friendly approach. In the present study, the lipopeptide mycosubtilin purified from Bacillus subtilis ATCC6633 significantly suppressed the growth of F. graminearum PH-1 and F. verticillioides 7600 in vitro. Mycosubtilin caused the destruction and deformation of plasma membranes and cell walls in F. graminearum hyphae. Additionally, mycosubtilin inhibited conidial spore formation and germination of both fungi in a dose-dependent manner. In planta experiments demonstrated the ability of mycosubtilin to control the adverse effects caused by F. graminearum and F. verticillioides on wheat heads and maize kernels, respectively. Mycosubtilin significantly decreased the production of deoxynivalenol (DON) and B-series fumonisins (FB1, FB2 and FB3) in infected grains, with inhibition rates of 48.92, 48.48, 52.42, and 59.44%, respectively. The qRT-PCR analysis showed that mycosubtilin significantly downregulated genes involved in mycotoxin biosynthesis. In conclusion, mycosubtilin produced by B. subtilis ATCC6633 was shown to have potential as a biological agent to control plant diseases and Fusarium toxin contamination caused by F. graminearum and F. verticillioides.
Collapse
Affiliation(s)
- Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (X.L.); (J.X.); (J.S.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyue Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Mengxuan Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Yiying Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - M. Sherif Ramzy Mohamed
- Department of Food Toxicology and Contaminant, National Research Centre of Egypt, Giza 12411, Egypt;
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (X.L.); (J.X.); (J.S.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianrong Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (X.L.); (J.X.); (J.S.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| |
Collapse
|
31
|
Leslie JF, Moretti A, Mesterházy Á, Ameye M, Audenaert K, Singh PK, Richard-Forget F, Chulze SN, Ponte EMD, Chala A, Battilani P, Logrieco AF. Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins (Basel) 2021; 13:725. [PMID: 34679018 PMCID: PMC8541216 DOI: 10.3390/toxins13100725] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains.
Collapse
Affiliation(s)
- John F. Leslie
- Throckmorton Plant Sciences Center, Department of Plant Pathology, 1712 Claflin Avenue, Kansas State University, Manhattan, KS 66506, USA;
| | - Antonio Moretti
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| | - Ákos Mesterházy
- Cereal Research Non-Profit Ltd., Alsókikötő sor 9, H-6726 Szeged, Hungary;
| | - Maarten Ameye
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Kris Audenaert
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico 06600, DF, Mexico;
| | | | - Sofía N. Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), 5800 Río Cuarto, Córdoba, Argentina;
| | - Emerson M. Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, P.O. Box 5, Hawassa 1000, Ethiopia;
| | - Paola Battilani
- Department of Sustainable Crop Production, Faculty of Agriculture, Food and Environmental Sciences, Universitá Cattolica del Sacro Cuore, via E. Parmense, 84-29122 Piacenza, Italy;
| | - Antonio F. Logrieco
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| |
Collapse
|
32
|
Liu X, Fang X, Wang S, Wu D, Gao T, Lee YW, Mohamed SR, Ji F, Xu J, Shi J. The antioxidant methyl gallate inhibits fungal growth and deoxynivalenol production in Fusarium graminearum. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Production of the Fusarium toxin deoxynivalenol (DON) is associated with oxidative stress and has been indicated to be part of an adaptive response to oxidative stress in the important wheat fungus Fusarium graminearum. In this study, we found that the antioxidant methyl gallate (MG) displays inhibitory effects against mycelial growth, conidial formation and germination, and DON biosynthesis in F. graminearum in a dose-dependent manner. Treatment with 0.05% (w/v) MG resulted in an abnormal swollen conidial morphology. The expression of the TRI genes involved in DON biosynthesis was significantly reduced, and the induction of Tri1-GFP green fluorescence signals in the spherical and crescent-shaped toxisomes was abolished in the MG-treated mycelium. RNA-Seq analysis of MG-treated F. graminearum showed that 0.5% (w/v) MG inhibited DON production by possibly altering membrane functions and oxidoreductase activities. Coupled with the observations that MG treatment decreases catalase, POD and SOD activity in F. graminearum. The results of this study indicated that MG displays antifungal activity against DON production by modulating its oxidative response. Taken together, the current study revealed the potential of MG in inhibiting mycotoxins in F. graminearum.
Graphical abstract
Collapse
|
33
|
Li L, Zhang T, Ren X, Li B, Wang S. Male reproductive toxicity of zearalenone-meta-analysis with mechanism review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112457. [PMID: 34175827 DOI: 10.1016/j.ecoenv.2021.112457] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) is an oestrogen-like mycotoxin produced by Fusarium fungi, which has a considerable impact on human and animal health and results in substantial economic losses worldwide. This study aimed to demonstrate the reproductive injury induced by ZEA in rodents. We conducted a rigorous meta-analysis of the related literature via PubMed, Embase, and Web of Science. The scope of the study includes the following: development of reproductive organs, serum testosterone, oestradiol, and luteinizing hormone (LH) levels; parameters of Leydig cells; and parameters of semen. In total, 19 articles were reviewed. Compared with the control group, the increased relative epididymis weight, increased serum oestradiol level, and decreased LH levels in the prenatally exposed group were observed. In pubertal and adult rodents, the relative testicular weight, serum oestradiol level, Leydig cell number, and percentage of ST (+) Leydig cells decreased under ZEA exposure. In rodents at all ages, decreased serum testosterone level, sperm concentration, sperm motility rate, and increased serum deformity rate were observed in exposed groups compared with control groups. Although subgroup analysis failed to identify a clear dose-response relationship between ZEA exposure and reproductive system damage in male rodents, we still managed to confirm that zearalenone could decrease the serum testosterone level at the dosage of 50 mg/kg*day, 1.4 mg/kg*day, and 84 mg/kg*day, of prenatal, pubertal, and mature rodents respectively; pubertal zearalenone exposure impairs the quality and quantity of sperms of rodents at the dosage of 1.4 mg/kg*day and mature zearalenone exposure has the same effect at the dosage of 84 mg/kg*day. In conclusion, we found that ZEA exposure can cause considerable damage to the reproductive system of rodents of all ages. While the exact underlying mechanism of ZEA-induced toxicity in the reproductive system remains largely unknown, the theories of oestrogen-like effects and oxidative stress damage are promising.
Collapse
Affiliation(s)
- Lin Li
- Nanjing Medical University, Nanjing 211166, China
| | - Tongtong Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Xiaohan Ren
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Bingxin Li
- Nanjing Medical University, Nanjing 211166, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
34
|
Zhou Y, Qi S, Meng X, Lin X, Duan N, Zhang Y, Yuan W, Wu S, Wang Z. Deoxynivalenol photocatalytic detoxification products alleviate intestinal barrier damage and gut flora disorder in BLAB/c mice. Food Chem Toxicol 2021; 156:112510. [PMID: 34390814 DOI: 10.1016/j.fct.2021.112510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin, is one of the most globally prevalent mycotoxins mainly produced by Fusarium species. DON exposure can cause spectrum of symptoms such as nausea, vomiting, gastroenteritis, growth retardation, immunosuppression, and intestinal flora disorders in humans and animals. Therefore, the implication of DON degradation technology is of great significance for food safety. Recently, photocatalytic degradation technology has been applied for DON control. However, the toxicity of the intermediates identified in the degradation process was often ignored. In this work, based on previous successful degradation of DON and evaluation of the in vitro toxicity of DON photocatalytic detoxification products (DPDPs), we further studied the in vivo toxicity of DPDPs and mainly explored their effects on intestinal barrier function and intestinal flora in mice. The results demonstrated that the DPDPs treated with photocatalyst for 120 min effectively increased the expression of intestinal tight junction proteins and improved the disorder of gut flora. Meanwhile, compared with DON-exposed mice, the DPDPs reduced the level of inflammation and oxidative stress of intestinal tissue, and improved growth performance, enterohepatic circulation, energy metabolism, and autonomic activity. All the results indicated that the toxicity of the DPDPs irradiated for 120 min was much lower than that of DON or even nontoxic. Therefore, we hope that this photocatalytic degradation technology can be used as a promising tool for the detoxification of mycotoxins.
Collapse
Affiliation(s)
- You Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Xiangyi Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Wenbo Yuan
- Division of Clinical Pharmacology, The Affiliated Wuxi Maternity and Child Healthcare Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
35
|
Thapa A, Horgan KA, White B, Walls D. Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? Toxins (Basel) 2021; 13:toxins13080561. [PMID: 34437432 PMCID: PMC8402399 DOI: 10.3390/toxins13080561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies.
Collapse
Affiliation(s)
- Asmita Thapa
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
| | | | - Blánaid White
- School of Chemical Sciences, National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| | - Dermot Walls
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| |
Collapse
|
36
|
Bekalu ZE, Dionisio G, Madsen CK, Etzerodt T, Fomsgaard IS, Brinch-Pedersen H. Barley Nepenthesin-Like Aspartic Protease HvNEP-1 Degrades Fusarium Phytase, Impairs Toxin Production, and Suppresses the Fungal Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:702557. [PMID: 34394154 PMCID: PMC8358834 DOI: 10.3389/fpls.2021.702557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Nepenthesins are categorized under the subfamily of the nepenthesin-like plant aspartic proteases (PAPs) that form a distinct group of atypical PAPs. This study describes the effect of nepenthesin 1 (HvNEP-1) protease from barley (Hordeum vulgare L.) on fungal histidine acid phosphatase (HAP) phytase activity. Signal peptide lacking HvNEP-1 was expressed in Pichia pastoris and biochemically characterized. Recombinant HvNEP-1 (rHvNEP-1) strongly inhibited the activity of Aspergillus and Fusarium phytases, which are enzymes that release inorganic phosphorous from phytic acid. Moreover, rHvNEP-1 suppressed in vitro fungal growth and strongly reduced the production of mycotoxin, 15-acetyldeoxynivalenol (15-ADON), from Fusarium graminearum. The quantitative PCR analysis of trichothecene biosynthesis genes (TRI) confirmed that rHvNEP-1 strongly repressed the expression of TRI4, TRI5, TRI6, and TRI12 in F. graminearum. The co-incubation of rHvNEP-1 with recombinant F. graminearum (rFgPHY1) and Fusarium culmorum (FcPHY1) phytases induced substantial degradation of both Fusarium phytases, indicating that HvNEP-1-mediated proteolysis of the fungal phytases contributes to the HvNEP-1-based suppression of Fusarium.
Collapse
|
37
|
Gab-Allah MA, Mekete KG, Choi K, Kim B. Occurrence of major type-B trichothecenes and deoxynivalenol-3-glucoside in cereal-based products from Korea. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103851] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
The impact of wheat-based food processing on the level of trichothecenes and their modified forms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Surface-enhanced Raman spectroscopywith gold nanorods modified by sodium citrate and liquid-liquid interface self-extraction for detection of deoxynivalenol in Fusarium head blight-infected wheat kernels coupled with a fully convolution network. Food Chem 2021; 359:129847. [PMID: 33964656 DOI: 10.1016/j.foodchem.2021.129847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/28/2021] [Accepted: 04/10/2021] [Indexed: 12/20/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) and deep learning network were adopted to develop a detection method for deoxynivalenol (DON) residues in Fusarium head blight (FHB)-infected wheat kernels. First, the liquid-liquid interface self-extraction was conducted for the rapid separation of DON in samples. Then, the gold nanorods modified with sodium citrate (Cit-AuNRs) were prepared as substrate for a gigantic enhancement of SERS signal. Results showed that the spectral characteristic peaks for DON residues of 99.5-0.5 mg/L were discernible with the relative standard deviation of 4.2%, with the limit of detection of 0.11 mg/L. Meanwhile, the fully convolutional network for the spectra of matrix input form was developed and obtained the optimal quantitative performance, with a root-mean-square error of prediction of 4.41 mg/L and coefficient of determination of prediction of 0.9827. Thus, the proposed method provides a simple, sensitive, and intelligent detection for DON in FHB-infected wheat kernels.
Collapse
|
40
|
He Y, Yin X, Dong J, Yang Q, Wu Y, Gong Z. Transcriptome Analysis of Caco-2 Cells upon the Exposure of Mycotoxin Deoxynivalenol and Its Acetylated Derivatives. Toxins (Basel) 2021; 13:167. [PMID: 33671637 PMCID: PMC7927021 DOI: 10.3390/toxins13020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) are type B trichothecenes; one of the major pollutants in food and feed products. Although the toxicity of DON has been well documented, information on the toxicity of its acetylated derivative remains incomplete. To acquire more detailed insight into 3-ADON and 15-ADON, Caco-2 cells under 0.5 µM DON, 3-ADON and 15-ADON treatment for 24 h were subjected to RNA-seq analysis. In the present study, 2656, 3132 and 2425 differentially expressed genes (DEGs) were selected, respectively, and were enriched utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) database. The upregulation of ataxia-telangiectasia mutated kinase (ATM), WEE1 homolog 2 (WEE2) and downregulation of proliferating cell nuclear antigen (PCNA), minichromosome maintenance (MCMs), cyclin dependent kinase (CDKs), and E2Fs indicate that the three toxins induced DNA damage, inhibition of DNA replication and cell cycle arrest in Caco-2 cells. Additionally, the upregulation of sestrin (SENEs) and NEIL1 implied that the reason for DNA damage may be attributable to oxidative stress. Our study provides insight into the toxic mechanism of 3-ADON and 15-ADON.
Collapse
Affiliation(s)
- Yuyun He
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Xiaoyao Yin
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Jingjing Dong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, Beijing 100000, China;
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| |
Collapse
|
41
|
Huang Q, Jiang K, Tang Z, Fan K, Meng J, Nie D, Zhao Z, Wu Y, Han Z. Exposure Assessment of Multiple Mycotoxins and Cumulative Health Risk Assessment: A Biomonitoring-Based Study in the Yangtze River Delta, China. Toxins (Basel) 2021; 13:103. [PMID: 33535530 PMCID: PMC7912756 DOI: 10.3390/toxins13020103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
The extensive exposure to multiple mycotoxins has been demonstrated in many countries; however, realistic assessments of the risks related to cumulative exposure are limited. This biomonitoring study was conducted to investigate exposure to 23 mycotoxins/metabolites and their determinants in 227 adults (aged 20-88 years) in the Yangtze River Delta, China. Eight mycotoxins were detected in 110 urine samples, and multiple mycotoxins co-occurred in 51/227 (22.47%) of urine samples, with deoxynivalenol (DON), fumonisin B1 (FB1), and zearalenone (ZEN) being the most frequently occurring. For single mycotoxin risk assessment, FB1, ZEN, aflatoxin B1 (AFB1), and ochratoxin A (OTA) all showed potential adverse effects. However, for the 12 samples containing DON and ZEN, in which none had a hazard risk, the combination of both mycotoxins in two samples was considered to pose potential endocrine disrupting risks to humans by hazard index (HI) method. The combined margin of exposure (MOET) for AFB1 and FB1 could constitute a potential health concern, and AFB1 was the main contributor. Our approach provides a blueprint for evaluating the cumulative risks related to different types of mycotoxins and opens a new horizon for the accurate interpretation of epidemiological health outcomes related to multi-mycotoxin exposure.
Collapse
Affiliation(s)
- Qingwen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Q.H.); (K.J.)
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Keqiu Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Q.H.); (K.J.)
| | - Zhanmin Tang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Kai Fan
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Jiajia Meng
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Dongxia Nie
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Q.H.); (K.J.)
| | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| |
Collapse
|
42
|
Mahato DK, Devi S, Pandhi S, Sharma B, Maurya KK, Mishra S, Dhawan K, Selvakumar R, Kamle M, Mishra AK, Kumar P. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins (Basel) 2021; 13:92. [PMID: 33530606 PMCID: PMC7912641 DOI: 10.3390/toxins13020092] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India;
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kamlesh Kumar Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144411, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| |
Collapse
|
43
|
Polak-Śliwińska M, Paszczyk B. Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: A Systematic Review. Molecules 2021; 26:454. [PMID: 33467103 PMCID: PMC7830705 DOI: 10.3390/molecules26020454] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023] Open
Abstract
Trichothecene mycotoxins are sesquiterpenoid compounds primarily produced by fungi in taxonomical genera such as Fusarium, Myrothecium, Stachybotrys, Trichothecium, and others, under specific climatic conditions on a worldwide basis. Fusarium mold is a major plant pathogen and produces a number of trichothecene mycotoxins including deoxynivalenol (or vomitoxin), nivalenol, diacetoxyscirpenol, and T-2 toxin, HT-2 toxin. Monogastrics are sensitive to vomitoxin, while poultry and ruminants appear to be less sensitive to some trichothecenes through microbial metabolism of trichothecenes in the gastrointestinal tract. Trichothecene mycotoxins occur worldwide however both total concentrations and the particular mix of toxins present vary with environmental conditions. Proper agricultural practices such as avoiding late harvests, removing overwintered stubble from fields, and avoiding a corn/wheat rotation that favors Fusarium growth in residue can reduce trichothecene contamination of grains. Due to the vague nature of toxic effects attributed to low concentrations of trichothecenes, a solid link between low level exposure and a specific trichothecene is difficult to establish. Multiple factors, such as nutrition, management, and environmental conditions impact animal health and need to be evaluated with the knowledge of the mycotoxin and concentrations known to cause adverse health effects. Future research evaluating the impact of low-level exposure on livestock may clarify the potential impact on immunity. Trichothecenes are rapidly excreted from animals, and residues in edible tissues, milk, or eggs are likely negligible. In chronic exposures to trichothecenes, once the contaminated feed is removed and exposure stopped, animals generally have an excellent prognosis for recovery. This review shows the occurrence of trichothecenes in food and feed in 2011-2020 and their toxic effects and provides a summary of the discussions on the potential public health concerns specifically related to trichothecenes residues in foods associated with the exposure of farm animals to mycotoxin-contaminated feeds and impact to human health. Moreover, the article discusses the methods of their detection.
Collapse
Affiliation(s)
- Magdalena Polak-Śliwińska
- Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland;
| | | |
Collapse
|
44
|
Gao T, He D, Liu X, Ji F, Xu J, Shi J. The pyruvate dehydrogenase kinase 2 (PDK2) is associated with conidiation, mycelial growth, and pathogenicity in Fusarium graminearum. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Pyruvate dehydrogenase kinase (PDK) is a mitochondrial enzyme in a variety of eukaryotes, including the plant pathogen Fusarium graminearum. This enzyme can reduce the oxidation of glucose to acetyl-coA by phosphorylation and selectively inhibits the activity of pyruvate dehydrogenase (PDH), which is a kind of pyruvate dehydrogenase complex (PDC). In this study, we investigated the F. graminearum pyruvate dehydrogenase kinase encoded by FgPDK2, which is a homologue of Neurospora crassa PDK2. The disruption of the FgPDK2 gene led to several phenotypic defects including effects on mycelial growth, conidiation, pigmentation, and pathogenicity. The mutants also showed decreased resistance to osmotic stress and cell membrane/wall-damaging agents. The FgPDK2 deletion mutant exhibited reduced virulence. All of these defects were restored by genetic complementation of the mutant with the complete FgPDK2 gene. Overall, the results demonstrated that FgPDK2 is crucial for the growth of F. graminearum and can be exploited as a potential molecular target for novel fungicides to control Fusarium head blight caused by F. graminearum.
Graphical abstract
Collapse
|
45
|
Etching of halloysite nanotubes hollow imprinted materials as adsorbent for extracting of Zearalenone from grain samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Ge L, Lin Z, Le G, Hou L, Mao X, Liu S, Liu D, Gan F, Huang K. Nontoxic-dose deoxynivalenol aggravates lipopolysaccharides-induced inflammation and tight junction disorder in IPEC-J2 cells through activation of NF-κB and LC3B. Food Chem Toxicol 2020; 145:111712. [PMID: 32877744 PMCID: PMC7456579 DOI: 10.1016/j.fct.2020.111712] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS) is the key factor in various intestinal inflammation which could disrupt the epithelial barrier function. Deoxynivalenol (DON), a well-known mycotoxin, can induce intestinal injury. However, the combined enterotoxicity of LPS and DON has rarely been studied. In this study, IPEC-J2 cell monolayers were exposed to LPS and nontoxic-dose DON for 12 and 24 h to investigate the effects of DON on LPS-induced inflammatory response and tight junction variation, and specific inhibitor and CRISPR-Cas9 were used to explore the underlying mechanisms. Our results showed that nontoxic-dose DON aggravated LPS-induced cellular inflammatory response, reflecting on more significant changes of inflammatory cytokines mRNA expression, higher protein expression of NOD-like receptor protein 3 (NLRP3) and procaspase-1. Moreover, nontoxic-dose DON aggravated LPS-induced mRNA and protein expression decreased, and distribution confused of tight junction proteins. We found that DON further enhanced LPS-induced phosphorylation and nucleus translocation of p65, and expression of LC3B-Ⅱ. NF-κB inhibitor and CRISPR-Cas9-mediated knockout of LC3B attenuated the effects of combination which indicated nontoxic-dose DON aggravated LPS-induced intestinal inflammation and tight junction disorder through activating NF-κB signaling pathway and autophagy-related protein LC3B. It further warns that ingesting low doses of mycotoxins may exacerbate the effects of intestinal pathogens on the body. Nontoxic-dose DON aggravates LPS-induced cellular inflammatory response in IPEC-J2 cell monolayers. Nontoxic-dose DON aggravates LPS-induced decrease and distribution disorder of tight junction in IPEC-J2 cell monolayers. Nontoxic-dose DON aggravates LPS-induced inflammatory response and tight junction disorder by activating NF-κB and LC3B.
Collapse
Affiliation(s)
- Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
47
|
The ADP-ribosylation factor-like small GTPase FgArl1 participates in growth, pathogenicity and DON production in Fusarium graminearum. Fungal Biol 2020; 124:969-980. [PMID: 33059848 DOI: 10.1016/j.funbio.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023]
Abstract
Fusarium graminearum is the main pathogen of Fusarium head blight (FHB) in wheat and related species, which causes serious production decreases and economic losses and produces toxins such as deoxynivalenol (DON), which endangers the health of humans and livestock. Vesicle transport is a basic physiological process required for cell survival in eukaryotes. Many regulators of vesicle transport are reported to be involved in the pathogenicity of fungi. In yeast and mammalian cells, the ADP-ribosylation factor-like small GTPase Arl1 and its orthologs are involved in regulating vesicular trafficking, cytoskeletal reorganization and other significant biological processes. However, the role of Arl1 in F. graminearum is not well understood. In this study, we characterized the Arl1-homologous protein FgArl1 in F. graminearum and showed that FgArl1 is located in the trans-Golgi apparatus. The deletion of FgARL1 resulted in a significant decrease in vegetative growth and pathogenicity. Further analyses of the ΔFgarl1 mutant revealed defects in the production of DON. Taken together, these results indicate that FgArl1 is important in the development and pathogenicity of F. graminearum.
Collapse
|
48
|
Risk assessment and spatial analysis of deoxynivalenol exposure in Chinese population. Mycotoxin Res 2020; 36:419-427. [PMID: 32829468 DOI: 10.1007/s12550-020-00406-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Deoxynivalenol (DON) is one of the most commonly found mycotoxins across the world, and it mainly contaminates staple food crops. This study aims to evaluate the dietary exposure of DON and to provide a geographical profile of DON exposure in China. The concentrations of DON and its acetylated derivatives in 15,004 cereal samples (10,192 wheat flour, 1750 maize meal, 892 oat flakes, and 2170 polished rice) were collected from 30 provinces, autonomous regions, or municipalities across China during 2010-2017, through a national food safety risk surveillance system. The consumption data for cereals were obtained from China National Nutrition and Health Survey in 2002, and 67,923 respondents from the same 30 regions were included in the analysis. Among all the cereals considered, the concentration was the highest in wheat flour, with the mean concentration of 250.8 μg/kg. Applying a worst-case scenario, some individuals were possibly at risk, but the probability of acute effects was low. The mean and median exposure for the entire population was 0.61 and 0.36 μg/kg bw/day, respectively, below the (PM) TDI, indicating an acceptable overall health risk in Chinese population. Wheat contributed to 86% of the total DON exposure. Significant discrepancy was observed between the exposure and the contamination of DON. The high-exposure cluster area was in northern China, whilst the most seriously contaminated regions were all located in the southeast, which formed a seriously contaminated area.
Collapse
|
49
|
Iqbal SZ, Usman S, Razis AFA, Basheir Ali N, Saif T, Asi MR. Assessment of Deoxynivalenol in Wheat, Corn and Its Products and Estimation of Dietary Intake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5602. [PMID: 32756472 PMCID: PMC7432857 DOI: 10.3390/ijerph17155602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/23/2023]
Abstract
The main goal of the present research was to explore the seasonal variation of deoxynivalenol (DON) in wheat, corn, and their products, collected during 2018-2019. Samples of 449 of wheat and products and 270 samples of corn and their products were examined using reverse-phase liquid chromatography with a UV detector. The findings of the present work showed that 104 (44.8%) samples of wheat and products from the summer season, and 91 (41.9%) samples from winter season were contaminated with DON (concentration limit of detections (LOD) to 2145 µg/kg and LOD to 2050 µg/kg), from summer and winter seasons, respectively. In corn and products, 87 (61.2%) samples from summer and 57 (44.5%) samples from winter season were polluted with DON with levels ranging from LOD to 2967 µg/kg and LOD to 2490 µg/kg, from the summer and winter season, respectively. The highest dietary intake of DON was determined in wheat flour 8.84 µg/kg body weight/day from the summer season, and 7.21 µg/kg body weight/day from the winter season. The findings of the work argued the need to implement stringent guidelines and create awareness among farmers, stakeholders, and traders of the harmful effect of DON. It is mostly observed that cereal crops are transported and stockpiled in jute bags, which may absorb moisture from the environment and produce favorable conditions for fungal growth. Therefore, these crops must store in polyethylene bags during transportation and storage, and moisture should be controlled. It is highly desirable to use those varieties that are more resistant to fungi attack. Humidity and moisture levels need to be controlled during storage and transportation.
Collapse
Affiliation(s)
- Shahzad Zafar Iqbal
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Sunusi Usman
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Tahmina Saif
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | | |
Collapse
|
50
|
Gao T, Bian R, Joseph S, Taherymoosavi S, Mitchell DRG, Munroe P, Xu J, Shi J. Wheat straw vinegar: A more cost-effective solution than chemical fungicides for sustainable wheat plant protection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138359. [PMID: 32278180 DOI: 10.1016/j.scitotenv.2020.138359] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Fusarium head blight (FHB), caused by the fungal pathogen Fusarium graminearum, is a destructive and widespread wheat disease. Chemical fungicides are becoming less effective at reducing the disease severity of FHB, and there is a need to find a more effective, low-cost natural product. A by-product of the pyrolysis of wheat straw is a condensate known as wheat straw vinegar, which was hypothesized to be an effective F. graminearum inhibitor in wheat. The organic and mineral compositions of wheat straw vinegar were analyzed. The results of GC-MS indicated that the major organic compounds in wheat straw vinegar are phenolics and acetic acid. The main inorganic elements in the liquid were K, Ca, S and Mg. A bio-test of wheat straw vinegar showed strong antifungal activity on F. graminearum growth and production of deoxynivalenol (DON) with an EC50 (concentration for 50% of maximal effect) value of 3.1 μl ml-1. Field tests showed that the application of wheat straw vinegar diluted 200-fold significantly decreased the wheat FHB infection rate and DON content by 66% and 69%, respectively. The control efficacy of wheat straw vinegar at a dilution of 200-fold was similar to that of typical chemical fungicide applications. The use of wheat straw vinegar may increase farmers' income by reducing the net fungicide costs. Therefore, wheat straw vinegar has high potential as a natural fungicide for the control of FHB and can reduce the dependence on synthetic fungicides.
Collapse
Affiliation(s)
- Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Rongjun Bian
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Stephen Joseph
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Sarasadat Taherymoosavi
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - David R G Mitchell
- Electron Microscopy Centre, AIIM Building, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2517, Australia
| | - Paul Munroe
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| |
Collapse
|