1
|
Wei M, Yuan Y, Chen D, Pan L, Tong W, Lu W. A systematic review on electrochemical sensors for the detection of acetaminophen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6134-6155. [PMID: 39207184 DOI: 10.1039/d4ay01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Considerable progress has been made in the electrochemical determination of acetaminophen (AP) over the past few decades. Nanomaterials or enzymes as electrode modifiers greatly improve the performance of AP electrochemical sensors. This review focuses on the development potential, detection principles and techniques for the electrochemical analysis of AP. In particular, the design and construction of AP electrochemical sensors are discussed from the perspective of non-enzyme materials (such as nanomaterials, including precious metals, transition metals and non-metals) and enzyme substances (such as aryl acylamidase, polyphenol oxidase and horseradish peroxidase). Moreover, the influencing factors for AP electrochemical sensors and the simultaneous detection of AP and other targets are summarized, and the future prospective of AP electrochemical sensors is outlined. This review provides a reference and guidance for the development and application of electrochemical sensors for AP detection.
Collapse
Affiliation(s)
- Ming Wei
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Yikai Yuan
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Dongsheng Chen
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Lin Pan
- Department of Laboratory Medicine, Tianjin Peace District Obstetrics and Gynecology Hospital, Tianjin, 300020, China
| | - Wenting Tong
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
2
|
Qu G, Liu G, Zhao C, Yuan Z, Yang Y, Xiang K. Detection and treatment of mono and polycyclic aromatic hydrocarbon pollutants in aqueous environments based on electrochemical technology: recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23334-23362. [PMID: 38436845 DOI: 10.1007/s11356-024-32640-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Guojun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Zheng Yuan
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Keyi Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
3
|
Rahimizadeh K, Zahra QUA, Chen S, Le BT, Ullah I, Veedu RN. Nanoparticles-assisted aptamer biosensing for the detection of environmental pathogens. ENVIRONMENTAL RESEARCH 2023; 238:117123. [PMID: 37717803 DOI: 10.1016/j.envres.2023.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Given the importance of public health, it is crucial to develop quick, targeted, highly sensitive, and accurate technologies to monitor pathogenic microbes in response to the growing concerns of food and environmental safety. Although conventional approaches for microbiological detection are available, they are laborious, and often skill demanding. Therefore, such approaches are incompetent in the on-site or high-throughput assessment of pathogenic microbes. Numerous efforts have been made to develop biosensors that use nucleic acid aptamer as the biorecognition element, which would avoid the abovementioned limitations. Incorporating nanomaterials (NMs) into aptamer-based biosensors (aptasensors) improves their sensitivity and specificity, opening exciting possibilities for various applications, such as bioanalysis of food and environmental samples. Over the last decade, nanomaterial-conjugated aptasensors have seen a steadily rising demand. To this end, the main goal of this study is to demonstrate the novelty in the design of nanomaterial-conjugated aptasensors and how they can be used to detect different pathogenic microbes in water and food. The intent of this paper is to evaluate the cutting-edge techniques that have appeared in nano-aptasensors throughout the past few years, such as manufacturing procedures, analytical credibility, and sensing mechanisms. Additionally, the fundamental performance parameters of aptasensing techniques (such as detection limits, and sensing ranges response) were also used to evaluate their practical applicability. Finally, it is anticipated that this study will inspire innovative ideas and techniques for the construction and use of aptasensors for monitoring pathogenic microorganisms in food, drinks, recreational water, and wastewater.
Collapse
Affiliation(s)
- Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Ismat Ullah
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, PR China.
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
4
|
Dourandish Z, Sheikhshoaie I, Maghsoudi S. Synthesis of NiRu-metal organic framework nanosheets: as active catalyst for the fabrication of rapid and simple electrochemical sensor for the determination of sudan I in presence of bisphenol A. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Emambakhsh F, Asadollahzadeh H, Rastakhiz N, Mohammadi SZ. Highly sensitive determination of Bisphenol A in water and milk samples by using magnetic activated carbon – Cobalt nanocomposite-screen printed electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Polyoxometalates-graphene nanocomposites modified electrode for electro-sensing detection of Sudan I in food. Food Chem Toxicol 2022; 166:113222. [PMID: 35690185 DOI: 10.1016/j.fct.2022.113222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Sudan I, a lipophilic azo dye -dye, is desirable and urgent to be accurate detected due to its increasing levels and high toxicity in food and environmental monitoring and analysis. Herein, a sensitive electrochemical sensor for Sudan I was established based on a new K10P2W18Fe4(H2O)2O68 functionalized carbon nanomaterials (Fe4P2W18-GNPS). The electrode modified nanocomposite, Fe4P2W18-GNPS, was successfully fabricated and characterized by FTIR, SEM and UV-vis. The effective combination of Fe4P2W18 and graphene exhibited high electrocatalytic activity towards the oxidation of Sudan I, promote charge transfer, and more sensing sites. Under optimized experimental conditions, the proposed differential pulse voltammetry (DPV) showed excellent analytical performances for Sudan I with the limit of detection (LOD) of 5 nM (S/N = 3), the sensitivity of 13.10 μA·μM-1cm-2 at the 0.005-2 μM and 0.39 μA·μM-1cm-2 at 10-200 μM. The stability and reproducibility make the electrochemical sensor suitable for detecting the Sudan I in food.
Collapse
|
7
|
Shen Y, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. Electrochemical detection of Sudan red series azo dyes: Bibliometrics based analysis. Food Chem Toxicol 2022; 163:112960. [PMID: 35346746 DOI: 10.1016/j.fct.2022.112960] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Sudan red azo dyes are banned from food because of their carcinogenic properties. It is necessary to establish a method for the detection of Sudan azo dyes in food. Among them, electrochemical sensing technology has become a very potential analytical method for food detection because of its fast, sensitive and low price. In this paper, we analyze the electrochemical detection of Sudan red azo dyes by bibliometric method. A total of 161 articles were analyzed from 2007 to 2021. The geographical and institutional distribution of these papers is used to understand the form of collaboration on this topic. Keyword analysis in these papers is used to understand the different directions in which the topic is studied at different stages. The results show that the topic reached its peak in 2015. The development of novel materials with excellent electrochemical activity has promoted the research on this topic. As detection limits continue to be lowered and sensors continue to be optimized, this topic currently does not continue to attract much attention.
Collapse
Affiliation(s)
- Yin Shen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
8
|
Electroanalytical Determination of Sudan I Using Gold Nanoparticle/Graphene Nanoribbons-Modified Glassy Carbon Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00721-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Liu G, Yang X, Ye W, Zhu J, Xie K, Fu L. Application of Solid-state Electrochemical Analysis in Ancient Ceramic
Identification and Characterization: A Review. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200806155426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Ceramics can reflect ancient technology and art, therefore, it has a very important position in
archaeology. However, it is far from enough just to study the shape of pottery and porcelain. It is necessary to use advanced
scientific and technological means to conduct a comprehensive analysis of pottery and porcelain, so as to study the
information hidden deep in the remains of ceramic objects.
Methods:
The solid voltammetric method can be used to obtain information about the composition of materials used in
ancient ceramics. This new method can be applied to insoluble solids for example, providing qualitative and quantitative
information and structural information with little soluble solids. The method requires only ng-μg sample.
Results:
In this review, we first describe the development of solid-state voltammetric method and our work in this field.
Then, we describe in detail the application of this method in archaeology, especially in the analysis of ceramics. Finally, we
describe the analytical applications of other electrochemical techniques for ceramics analysis.
Conclusion:
Due to the low demand for samples and the high-cost performance of analytical instruments, this method has
been widely studied in Europe. To sum up, we propose to establish a microsampling method for ancient ceramics. A new
method for the protection of fine ancient ceramics by the suitable carrier and the fixation on the surface of the electrode.
These improvements can enable solid-state electroanalytical chemistry technology to achieve more comprehensive and
accurate quantitative analysis of ancient ceramics particles. We also propose the current challenges and future directions of
solid-state electroanalytical chemistry.
Collapse
Affiliation(s)
- Guangfu Liu
- Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University, Pingdingshan
Henan, 467000 P.R. China
| | - Xinghua Yang
- Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University, Pingdingshan
Henan, 467000 P.R. China
| | - Weiting Ye
- College of Materials and Environmental Engineering, Hangzhou Dianzi University,
Hangzhou 310018, P.R. China
| | - Jiangwei Zhu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, (Nanjing Forestry University), Nanjing 210037,China
| | - Kefeng Xie
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070,China
| | - Li Fu
- Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University, Pingdingshan
Henan, 467000 P.R. China
| |
Collapse
|
10
|
Mousazadeh F, Mohammadi SZ, Akbari S, Mofidinasab N, Aflatoonian MR, Shokooh-Saljooghi A. Recent Advantages of Mediator Based Chemically Modified Electrodes;
Powerful Approach in Electroanalytical Chemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999201224124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes have advanced from the initial studies aimed at understanding
electron transfer in films to applications in areas such as energy production and analytical
chemistry. This review emphasizes the major classes of modified electrodes with mediators
that are being explored for improving analytical methodology. Chemically modified electrodes
(CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in
bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been
extensively employed to engineer adapted electrode surfaces for the detection of different compounds.
Also, the characteristics of the materials that improve the electrocatalytic activity of the
modified surfaces are discussed.
Objective:
Improvement and promotion of pragmatic CMEs have generated a diversity of novel
and probable strong detection prospects for electroanalysis. While the capability of handling the
chemical nature of the electrode/solution interface accurately and creatively increases , it is predictable
that different mediators-based CMEs could be developed with electrocatalytic activity and
completely new applications be advanced.
Collapse
Affiliation(s)
| | | | - Sedighe Akbari
- Islamic Azad University, Shahrbabak Branch, Shahrbabak,Iran
| | | | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | | |
Collapse
|
11
|
Beitollahi H, Shahsavari M, Sheikhshoaie I, Tajik S, Jahani PM, Mohammadi SZ, Afshar AA. Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A. Food Chem Toxicol 2022; 161:112824. [DOI: 10.1016/j.fct.2022.112824] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
|
12
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
13
|
Baghbaderani SS, Mokarian P, Moazzam P. A Review on Electrochemical Sensing of Cancer Biomarkers Based on
Nanomaterial - Modified Systems. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200917161657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diagnosis of cancer in the early stages can help treat efficiently and reduce cancerrelated
death. Cancer biomarkers can respond to the presence of cancer in body fluids before the
appearance of any other symptoms of cancer. The integration of nanomaterials into biosensors as
electrochemical platforms offer rapid, sensitive detection for cancer biomarkers. The use of surface-
modified electrodes by carbon nanomaterials and metal nanoparticles enhances the performance
of electrochemical analysis in biosensing systems through the increase of bioreceptors loading
capacity on the surface. In this review, novel approaches based on nanomaterial-modified systems
in the point of care diagnostics are highlighted.
Collapse
Affiliation(s)
- Sorour Salehi Baghbaderani
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441,Iran
| | - Parastou Mokarian
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14676-86831,Iran
| | - Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052,Australia
| |
Collapse
|
14
|
Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Sun Y, Guo Y, Ren J, Ji L, Zhang Q. Electromagnetic dispersive solid-phase extraction based on polyaniline-coated magnetite/silica materials for the determination of Sudan red I in drinks. J Sep Sci 2021; 44:3279-3286. [PMID: 34223701 DOI: 10.1002/jssc.202100222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/16/2022]
Abstract
By replacing the permanent magnet with an electromagnet, traditional magnetic solid-phase extraction was developed into electromagnetic dispersive solid-phase extraction. A simple operation of power on and off can realize the separation of adsorbents from solutions easily. The improvement makes it possible for the automation of the determination of Sudan Red I by high-performance liquid chromatography. After series of optimization, a trace amount of Sudan red I was well-determined, and excellent linearity was achieved in the range of 0.005 to 1 mg/L with the correlation coefficient (R2 ) = 0.997. The limit of detection with a signal-to-noise ratio of 3 was found to be 0.001 mg/L. The spiked recoveries of Sudan red I for the samples ranged from 93.6 to 104.9%. Moreover, the adsorbent could be recycled at least ten times. The results show that the electromagnetic dispersive solid-phase extraction combined with high-performance liquid chromatography is a rapid, eco-friendly, effective, and sensitive determination method with fascinating automation potential and high practical applicability.
Collapse
Affiliation(s)
- Youqing Sun
- School of Material Science and Engineering, Tiangong University, Tianjin, P. R. China.,School of Chemical Engineering and Technology, Tiangong University, Tianjin, P. R. China
| | - Yugao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, P. R. China.,School of Chemical Engineering and Technology, Tiangong University, Tianjin, P. R. China
| | - Jianpo Ren
- Sinochem Hebei Co. Ltd., Shijiazhuang, P. R. China
| | - Lieyi Ji
- Sinochem Hebei Co. Ltd., Shijiazhuang, P. R. China
| | - Qingyin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, P. R. China.,School of Chemical Engineering and Technology, Tiangong University, Tianjin, P. R. China
| |
Collapse
|
16
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
17
|
Tajik S, Orooji Y, Ghazanfari Z, Karimi F, Beitollahi H, Varma RS, Jang HW, Shokouhimehr M. Nanomaterials modified electrodes for electrochemical detection of Sudan I in food. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00955-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Eftekhari A, Dalili M, Karimi Z, Rouhani S, Hasanzadeh A, Rostamnia S, Khaksar S, Idris AO, Karimi-Maleh H, Yola ML, Msagati TAM. Sensitive and selective electrochemical detection of bisphenol A based on SBA-15 like Cu-PMO modified glassy carbon electrode. Food Chem 2021; 358:129763. [PMID: 34000688 DOI: 10.1016/j.foodchem.2021.129763] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 01/29/2023]
Abstract
This work reports the electrochemical detection of bisphenol A (BPA) using a novel and sensitive electrochemical sensor based on the Cu functionalized SBA-15 like periodic mesoporous organosilica-ionic liquid composite modified glassy carbon electrode (Cu@TU-PMO/IL/GCE). The structural morphology of Cu@TU-PMO is characterized by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), Field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET). The catalytic activity of the modified electrode toward oxidation of BPA was interrogated with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in phosphate buffer solution (pH 7.0) using the fabricated sensor. The electrochemical detection of the analyte was carried out at a neutral pH and the scan rate studies revealed that the sensor was stable. Under the optimal conditions, a linear range from 5.0 nM to 2.0 µM and 4.0 to 500 µM for detecting BPA was observed with a detection limit of 1.5 nM (S/N = 3). The sensor was applied to detect BPA in tap and seawater samples, and the accuracy of the results was validated by high-performance liquid chromatography (HPLC). The proposed method provides a powerful tool for the rapid and sensitive detection of BPA in environmental samples.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Maragheh University of Medical Sciences, PO Box: 78151-55158, Maragheh, Iran.
| | - Maryam Dalili
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO BOX 55181-83111, Maragheh, Iran
| | - Ziba Karimi
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO BOX 55181-83111, Maragheh, Iran
| | - Shamila Rouhani
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Amir Hasanzadeh
- Maragheh University of Medical Sciences, PO Box: 78151-55158, Maragheh, Iran.
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran; Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO BOX 55181-83111, Maragheh, Iran.
| | - Samad Khaksar
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Azeez Olayiwola Idris
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028 Johannesburg, South Africa.
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
19
|
Moghadam FH, Taher MA, Karimi-Maleh H. A sensitive and fast approach for voltammetric analysis of bisphenol a as a toxic compound in food products using a Pt-SWCNTs/ionic liquid modified sensor. Food Chem Toxicol 2021; 152:112166. [PMID: 33819550 DOI: 10.1016/j.fct.2021.112166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022]
Abstract
A sensitive and fast approach has been introduced for the voltammetric sensing of bisphenol A based on modification of a paste electrode with Pt-SWCNTs and 1-ethyl-3-methylimidazolium n-butylsulfate as a highly conductive binder. The new sensor was used to determine the concentration of bisphenol A in food products in I-V mode. The Pt-SWCNTs nanocomposite was synthesized through the polyol method and its morphology was evaluated by field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. The determining factors influencing the sensing performance, i.e., pH and mediators used in the modification process were optimized in the first step and the results showed that at a pH of 7.0, a modified paste containing 9% (w:w) nanocomposite and 20% (v:v) 1-ethyl-3-methylimidazolium n-butylsulfate formed catalytic properties enhancing the oxidation signal of bisphenol A by 5.9 folds. Current density investigation clearly confirmed the conductivity of Pt-SWCNTs and 1-ethyl-3-methylimidazolium n-butylsulfate in the paste matrix. In addition, fabricated sensor showed considerable sensing behavior for bisphenol A in the concentration range of 0.5 nM-180 μM with a detection limit of 0.2 nM. In the final step, using standard addition technique, the ability of fabricated sensor for sensing bisphenol A in food products was evaluated, and the results confirmed improved performance of the modified electrodes.
Collapse
Affiliation(s)
| | - Mohammad A Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P.O. Box 611731, Chengdu, People's Republic of China; Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Islamic Republic of Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa.
| |
Collapse
|
20
|
Beitollahi H, Tajik S, Garkani Nejad F, Safaei M. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J Mater Chem B 2021; 8:5826-5844. [PMID: 32542277 DOI: 10.1039/d0tb00569j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructured metal oxides, such as zinc oxide (ZnO), are considered as excellent materials for the fabrication of highly sensitive and selective electrochemical sensors and biosensors due to their good properties, including a high specific surface area, high catalytic efficiency, strong adsorption ability, high isoelectric point (IEP, 9.5), wide band gap (3.2 eV), biocompatibility and high electron communication features. Thus, ZnO nanostructures are widely used to fabricate efficient electrochemical sensors and biosensors for the detection of various analytes. In this review, we have discussed the synthesis of ZnO nanostructures and the advances in various ZnO nanostructure-based electrochemical sensors and biosensors for medical diagnosis, pharmaceutical analysis, food safety, and environmental pollution monitoring.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | | | | | | |
Collapse
|
21
|
Primožič M, Knez Ž, Leitgeb M. (Bio)nanotechnology in Food Science-Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:292. [PMID: 33499415 PMCID: PMC7911006 DOI: 10.3390/nano11020292] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/10/2023]
Abstract
Background: Bionanotechnology, as a tool for incorporation of biological molecules into nanoartifacts, is gaining more and more importance in the field of food packaging. It offers an advanced expectation of food packaging that can ensure longer shelf life of products and safer packaging with improved food quality and traceability. Scope and approach: This review recent focuses on advances in food nanopackaging, including bio-based, improved, active, and smart packaging. Special emphasis is placed on bio-based packaging, including biodegradable packaging and biocompatible packaging, which presents an alternative to most commonly used non-degradable polymer materials. Safety and environmental concerns of (bio)nanotechnology implementation in food packaging were also discussed including new EU directives. Conclusions: The use of nanoparticles and nanocomposites in food packaging increases the mechanical strength and properties of the water and oxygen barrier of packaging and may provide other benefits such as antimicrobial activity and light-blocking properties. Concerns about the migration of nanoparticles from packaging to food have been expressed, but migration tests and risk assessment are unclear. Presumed toxicity, lack of additional data from clinical trials and risk assessment studies limit the use of nanomaterials in the food packaging sector. Therefore, an assessment of benefits and risks must be defined.
Collapse
Affiliation(s)
- Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
22
|
Molybdenum trioxide incorporated in a carbon paste as a sensitive device for bisphenol A monitoring. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Khan WA, Arain MB, Soylak M. Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food Chem Toxicol 2020; 145:111704. [DOI: 10.1016/j.fct.2020.111704] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
|
24
|
Shabani-Nooshabadi M, Roostaee M, Tahernejad-Javazmi F. Graphene oxide/NiO nanoparticle composite-ionic liquid modified carbon paste electrode for selective sensing of 4-chlorophenol in the presence of nitrite. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Oxidase-mimicking activity of ultrathin MnO2 nanosheets in a colorimetric assay of chlorothalonil in food samples. Food Chem 2020; 331:127090. [DOI: 10.1016/j.foodchem.2020.127090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
|
26
|
Li X, Sun X, Li M. Detection of Sudan I in Foods by a MOF‐5/MWCNT Modified Electrode. ChemistrySelect 2020. [DOI: 10.1002/slct.202003559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xueyan Li
- Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 P.R. China
| | - Xiuxiu Sun
- Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 P.R. China
| | - Maoguo Li
- Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 P.R. China
| |
Collapse
|
27
|
Karimi F, Zakariae N, Esmaeili R, Alizadeh M, Tamadon AM. Carbon Nanotubes for Amplification of Electrochemical Signal in Drug and Food Analysis; A Mini Review. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212711906666200224110404] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
Electrochemical sensors are widely used for the determination of drugs and
food compounds. In recent years, the amplification of electrochemical signals with nanomaterials, especially
Carbon Nanotubes (CNTs) has created a major revolution in electrochemistry.
Objective:
The present mini-review paper focused on studying the role of CNTs as conductive mediators
for the fabrication of highly sensitive electrochemical sensors. CNTs, with high conductivity and
good ability for modification with other materials, are interesting candidates for improving the sensitivity
of electrochemical sensors. CNTs or their derivatives are suggested for different applications in
electrochemistry and especially analytical biosensors. This review is aimed to discuss the conductivity
feature of CNTs in electrochemical sensors.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marzieh Alizadeh
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Ali-Mohammad Tamadon
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| |
Collapse
|
28
|
Tajik S, Beitollahi H, Nejad FG, Zhang K, Le QV, Jang HW, Kim SY, Shokouhimehr M. Recent Advances in Electrochemical Sensors and Biosensors for Detecting Bisphenol A. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3364. [PMID: 32545829 PMCID: PMC7349560 DOI: 10.3390/s20123364] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
In recent years, several studies have focused on environmental pollutants. Bisphenol A (BPA) is one prominent industrial raw material, and its extensive utilization and release into the environment constitute an environmental hazard. BPA is considered as to be an endocrine disruptor which mimics hormones, and has a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to BPA. Experts in the field have published general electrochemical procedures for detecting BPA. The present timely review critically evaluates diverse chemically modified electrodes using various substances that have been reported in numerous studies in the recent decade for use in electrochemical sensors and biosensors to detect BPA. Additionally, the essential contributions of these substances for the design of electrochemical sensors are presented. It has been predicted that chemically modified electrode-based sensing systems will be possible options for the monitoring of detrimental pollutants.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran;
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran;
| | - Kaiqiang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Ho Won Jang
- Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-roSeongbuk-gu, Seoul 02841, Korea
| | - Mohammadreza Shokouhimehr
- Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
29
|
Rapid conjunction of 1D carbon nanotubes and 2D graphitic carbon nitride with ZnO for improved optoelectronic properties. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01474-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Abstract
Chemical contaminants should not be present in beverages for human consumption, but could eventually be ingested by consumers as they may appear naturally from the environment or be produced by anthropogenic sources. These contaminants could belong to many different chemical sources, including heavy metals, amines, bisphenols, phthalates, pesticides, perfluorinated compounds, inks, ethyl carbamate, and others. It is well known that these hazardous chemicals in beverages can represent a severe threat by the potential risk of generating diseases to humans if no strict quality control is applied during beverages processing. This review compiles the most updated knowledge of the presence of potential contaminants in various types of beverages (both alcoholic and non-alcoholic), as well as in their containers, to prevent undesired migration. Special attention is given to the extraction and pre-concentration techniques applied to these samples, as well as to the analytical techniques necessary for the determination of chemicals with a potential contaminant effect. Finally, an overview of the current legislation is carried out, as well as future trends of research in this field.
Collapse
|
31
|
Kuyuldar E, Polat SS, Burhan H, Mustafov SD, Iyidogan A, Sen F. Monodisperse thiourea functionalized graphene oxide-based PtRu nanocatalysts for alcohol oxidation. Sci Rep 2020; 10:7811. [PMID: 32385358 PMCID: PMC7210875 DOI: 10.1038/s41598-020-64885-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
Addressed herein, thiourea functionalized graphene oxide-based PtRu nanocatalysts (PtRu@T/GO) has been synthesized and characterized by several techniques and performed for methanol oxidation reactions as novel catalysts. In this study, graphene oxide (GO) was functionalized with thiourea (T/GO) in order to obtain monothiol functionalized graphene and increase the stability and activity of the nanocatalysts. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), TEM (transmission electron microscopy) and high-resolution transmission electron microscopy (HR-TEM) were used for characterization of the prepared nanocatalysts. The results obtained from these techniques showed that the prepared nanocatalysts were in a highly crystalline form, well dispersed on T/GO, very small in size and colloidally stable. The average size of the synthesized nanocatalysts determined by TEM analysis was found to be 3.86 ± 0.59 nm. With HR-TEM analysis, the atomic lattice fringes of the nanocatalysts were calculated to be 0.23 nm. After the full characterization of the prepared nanocatalysts, they were tried for the methanol oxidation reaction (MOR) and it was observed that 97.3% of the initial performance was maintained even after 1000 cycles while exhibiting great catalytic activity and stability with the help of T/GO. Thus, the arranged nanocatalysts displayed great heterogeneous catalyst characteristics for the methanol oxidation response.
Collapse
Affiliation(s)
- Esra Kuyuldar
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Su Selda Polat
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Hakan Burhan
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Sibel Demiroglu Mustafov
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Aysegul Iyidogan
- Department of Chemistry, Faculty of Science and Arts, Gaziantep University, Gaziantep, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
32
|
Jemmeli D, Marcoccio E, Moscone D, Dridi C, Arduini F. Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta 2020; 216:120924. [PMID: 32456933 DOI: 10.1016/j.talanta.2020.120924] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/26/2022]
Abstract
Bisphenol A is one the most relevant endocrine disruptors for its toxicity and ubiquity in the environment, being largely employed as raw material for manufacturing processes of a wide number of compounds. Furthermore, bisphenol A is released in the drinking water when plastic-based bottles are incorrectly transported under sunlight, delivering contaminated drinking water. For the health of human beings and the environment, rapid and on site detection of bisphenol A in drinking water is an important issue. Herein, we report a novel and cost-effective printed electrochemical sensor for an enzymatic-free bisphenol A detection. This sensor encompasses the entire electrochemical cell printed on filter paper and the reagents for the measurement loaded in the cellulose fiber network, for delivering a reagent-free analytical tool. The working electrode was printed using ink modified with carbon black, a cost effective nanomaterial for sensitive and sustainable bisphenol A determination. Several parameters including pH, frequency, and amplitude were optimized allowing for a detection limit of 0.03 μM with two linear ranges 0.1-0.9 μM and 1 μM-50 μM, using square wave voltammetry as electrochemical technique. The satisfactory recovery values found in river and drinking water samples demonstrated the suitability of this sensor for screening analyses in water samples. These results revealed the attractiveness of this paper-based device thanks to the synergic combination of paper and carbon black as cost-effective materials.
Collapse
Affiliation(s)
- Dhouha Jemmeli
- NANOMISENE Laboratory LR16CRMN01, Center for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, B.P334, 4054, Sahloul Sousse, Tunisia
| | - Eleonora Marcoccio
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Cherif Dridi
- NANOMISENE Laboratory LR16CRMN01, Center for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, B.P334, 4054, Sahloul Sousse, Tunisia
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED via Renato Rascel 30, 00128, Rome, Italy.
| |
Collapse
|
33
|
Shafiq M, Anjum S, Hano C, Anjum I, Abbasi BH. An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry. Foods 2020; 9:E148. [PMID: 32028580 PMCID: PMC7074443 DOI: 10.3390/foods9020148] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
The efficient progress in nanotechnology has transformed many aspects of food science and the food industry with enhanced investment and market share. Recent advances in nanomaterials and nanodevices such as nanosensors, nano-emulsions, nanopesticides or nanocapsules are intended to bring about innovative applications in the food industry. In this review, the current applications of nanotechnology for packaging, processing, and the enhancement of the nutritional value and shelf life of foods are targeted. In addition, the functionality and applicability of food-related nanotechnologies are also highlighted and critically discussed in order to provide an insight into the development and evaluation of the safety of nanotechnology in the food industry.
Collapse
Affiliation(s)
- Mehwish Shafiq
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France;
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
34
|
Bavandpour R, Rajabi M, Karimi-Maleh H. Ultrasensitive electroanalytical sulfisoxazole sensors amplified with Pd-doped ZnO nanoparticles and modified with 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide. NEW J CHEM 2020. [DOI: 10.1039/d0nj01461c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, an electrochemical sensor has been introduced by incorporating Pd-doped ZnO nanoparticles (ZnO–Pd/NPs) into a carbon paste (CP) matrix amplified by a conductive binder (1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (1H3MIBTMSI), in this case) to determine the concentration of the sulfisoxazole (SFX) drug in urine, tablet, and pharmaceutical wastewater samples.
Collapse
Affiliation(s)
| | - Maryam Rajabi
- Department of Chemistry
- Semnan University
- Semnan 35195-363
- Iran
| | - Hassan Karimi-Maleh
- Nanostructure Based Biosensors Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
35
|
Sobhan A, Muthukumarappan K, Cen Z, Wei L. Characterization of nanocellulose and activated carbon nanocomposite films’ biosensing properties for smart packaging. Carbohydr Polym 2019; 225:115189. [DOI: 10.1016/j.carbpol.2019.115189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
36
|
Shahamirifard SA, Ghaedi M. A new electrochemical sensor for simultaneous determination of arbutin and vitamin C based on hydroxyapatite-ZnO-Pd nanoparticles modified carbon paste electrode. Biosens Bioelectron 2019; 141:111474. [DOI: 10.1016/j.bios.2019.111474] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 11/30/2022]
|
37
|
Rahimi‐Mohseni M, Raoof JB, Aghajanzadeh TA, Ojani R. Rapid Determination of Phenolic Compounds in Water Samples: Development of a Paper‐based Nanobiosensor Modified with Functionalized Silica Nanoparticles and Potato Tissue. ELECTROANAL 2019. [DOI: 10.1002/elan.201800780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohadeseh Rahimi‐Mohseni
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar Iran
| | | | - Reza Ojani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar Iran
| |
Collapse
|
38
|
Karimi-Maleh H, Karimi F, Rezapour M, Bijad M, Farsi M, Beheshti A, Shahidi SA. Carbon Paste Modified Electrode as Powerful Sensor Approach Determination of Food Contaminants, Drug Ingredients, and Environmental Pollutants: A Review. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666181026100037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Application of electrochemical sensors for analysis of food, biological and
water polluting compounds helps to speed up their analysis in the real samples. Electrochemical sensors
with low cost, fast response and portable ability are a better choice compared to traditional
methods for analysis of electro-active compounds such as HPLC. Therefore, in recent years, many
analytical scientists have suggested this type of analytical method for analysis of food, biological
compounds and water pollutants.
Objective:
Due to low cost, easy modification and low non-faradic current, the carbon paste electrode
is a suitable choice as a working electrode in the electrochemical and especially voltammetric analysis.
On the other hand, modification of carbon paste electrode can improve the quality of the sensor
for the analysis of electroactive compounds at nanomolar level.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Morteza Rezapour
- IP Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran, Iran
| | - Majede Bijad
- Department of Food Science, Sari Branch, Islamic Azad University, Sari, Iran
| | - Mohammad Farsi
- Department of Food Science, Sari Branch, Islamic Azad University, Sari, Iran
| | - Aliasghar Beheshti
- Department of Water Resources Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
39
|
Habibi-Kool-Gheshlaghi M, Faridbod F, Mosammam MK, Ganjali MR. Electroanalysis of Tricyclic Psychotropic Drugs using Modified Electrodes. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180917112548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background:
Tricyclic psychotropic drugs are defined as a tricyclic rings of the dibenzazepine
group with the presence of sulfur and nitrogen atoms. They have been prescribed for antidepressive
therapy over the years. Due to their medical importance, many analytical methods have
been developed for their monitoring. However, benefits of electrochemical techniques such as costeffectiveness,
fast, easy operation and non-destructiveness make them appropriate analytical methods
for drug assays. Electrochemical determinations of pharmaceuticals require suitable working electrodes.
During years, many electrodes are modified by a variety of modifiers and several sensors
were developed based on them. In this regard, nanomaterials, due to their remarkable properties, are
one of the most important choices.
Objective:
Here, the application of electroanalytical methods in the determination of electroactive tricyclic
psychotropic drugs will be reviewed and the nanomaterials which are used for improvements
of the working electrodes will be considered.
Collapse
Affiliation(s)
- Mona Habibi-Kool-Gheshlaghi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mahya Karami Mosammam
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Mosammam MK, Ganjali MR, Habibi-Kool-Gheshlaghi M, Faridbod F. Electroanalysis of Catecholamine Drugs using Graphene Modified Electrodes. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180917113206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
Catecholamine drugs are a family of electroactive pharmaceutics, which are
widely analyzed through electrochemical methods. However, for low level online determination and
monitoring of these compounds, which is very important for clinical and biological studies, modified
electrodes having high signal to noise ratios are needed. Numerous materials including nanomaterials
have been widely used as electrode modifies for these families during the years. Among them, graphene
and its family, due to their remarkable properties in electrochemistry, were extensively used in
modification of electrochemical sensors.
Objective:
In this review, working electrodes which have been modified with graphene and its derivatives
and applied for electroanalyses of some important catecholamine drugs are considered.
Collapse
Affiliation(s)
- Mahya Karami Mosammam
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mona Habibi-Kool-Gheshlaghi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
41
|
Determination of ferulic acid in the presence of butylated hydroxytoluene as two phenolic antioxidants using a highly conductive food nanostructure electrochemical sensor. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00793-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Sidwaba U, Ntshongontshi N, Feleni U, Wilson L, Waryo T, Iwuoha EI. Manganese Peroxidase-Based Electro-Oxidation of Bisphenol A at Hydrogellic Polyaniline-Titania Nanocomposite-Modified Glassy Carbon Electrode. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-0510-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Yola ML. Development of Novel Nanocomposites Based on Graphene/Graphene Oxide and Electrochemical Sensor Applications. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180320111246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Until now, several methods such as spectroscopic methods and chromatographic
techniques have been developed for the determination of biomolecules, drug or heavy metals.
Nevertheless, the crucial interference problems are present in these methods. Due to these reasons,
more sensitive, favorable portability, low-cost, simple and selective sensors based on nanocomposites
are needed in terms of health safety. In the development of electrochemical nanosensor, the nanomaterials
such as graphene/graphene oxide, carbon and carbon nitride nanotubes are utilized to improve
the sensitivity.
Objective:
The nanomaterials such as graphene/graphene oxide, carbon and carbon nitride nanotubes
have important advantages such as high surface area, electrical conductivity, thermal and mechanical
stability. Hence, we presented the highly selective methods for sensitive sensor applications by molecular
imprinting technology in literature. This technology is a polymerization method around target
molecule. This method provides the specific cavities to analyte molecule on the polymer surface.
Hence, the selective sensor is easily created for biomedical and other applications. Novel electrochemical
sensors based on nanocomposite whose surface is coated with Molecular Imprinting Polymer
(MIP) are developed and then applied to the selective and sensitive detection in this study. Until now,
we have presented several reports about nanocomposite based sensor with MIP.
Collapse
Affiliation(s)
- Mehmet Lütfi Yola
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, Turkey
| |
Collapse
|
44
|
Abstract
Background:
Graphene and its derivatives, as most promising carbonic nanomaterials have
been widely used in design and making electrochemical sensors and biosensors. Graphene quantum dots
are one of the members of this family which have been mostly known as fluorescent nanomaterials and
found extensive applications due to their remarkable optical properties. Quantum confinement and edge
effects in their structures also cause extraordinary electrochemical properties.
Objective:
Recently, graphene quantum dots besides graphene oxides and reduced graphene oxides have
been applied for modification of the electrodes too and exposed notable effects in electrochemical responses.
Here, we are going to consider these significant effects through reviewing some of the recent
published works.
Collapse
Affiliation(s)
- Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Afsaneh L. Sanati
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Beigizadeh H, Ganjali MR, Norouzi P. Voltammetric Sensors Based on Various Nanomaterials for the Determination of Sulfonamides. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180313114313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The widespread applications of sulphonamides, as antibacterial or antimicrobial
agents, and their mechanism of actions in the body, have changed their determination to an important
issue in the area of human health.
Objective:
Here, history of developing voltammetric sensors based on nanomaterials for the detection of
sulfonamides including sulfadiazine, sulfamethoxazole, sulfacetamide, sulfadimethoxine, sulfathiazole,
sulfamethiazole and sulfamerazine is reviewed. Modified electrodes based on various nanomaterials
(carbonaceous nanomaterials, Metallic Nanoparticles (MNPs), conducting nanopolymers) have been
reported, and studies showed that nanomaterials have been mostly used to overcome problems like the
poor sensitivity and selectivity of bare electrodes. The study covers the properties of each sensor in
detail, and reports and compares the linear ranges, Limits of Detection (LODs), reproducibility, and
reusability of the electrodes reported so far.
Collapse
Affiliation(s)
- Hana Beigizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
46
|
Karimi-Maleh H, Karimi F, FallahShojaei A, Tabatabaeian K, Arshadi M, Rezapour M. Metal-based Nanoparticles as Conductive Mediators in Electrochemical Sensors: A Mini Review. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180319152126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes are a new approach to improving the characteristics of the
electrochemical sensors. The high conductivity and low charge transfer resistance are the major properties
of new mediators for improving electrochemical sensors. Metal-based nanoparticles showed good
electrical conductivity and can be selected as the suitbale mediator for modified electrodes.
Objective:
Recently, metal-based nanoparticles, such as Au nanoparticle, TiO2 nanoparticle, Fe3O4 nanoparticle
and etc. were suggested as the suitable mediator for modification of solid electrodes. The
high surface area and low charge transfer resistance of metal-based nanoparticles, suggested the exceptional
intermediate in the electrochemical sensors. Here, we tried to consider these exceptional effects
through reviewing some of the recently published works.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Abdollah FallahShojaei
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 1914, Rasht, Iran
| | - Khalil Tabatabaeian
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 1914, Rasht, Iran
| | - Mohammad Arshadi
- Department of Food Science, Cornell University 243 Stocking Hall Ithaca, NY 14853, United States
| | - Morteza Rezapour
- IP Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran, Iran
| |
Collapse
|
47
|
Karimi F, Bijad M, Farsi M, Vahid A, Asari-Bami H, Wen Y, Ganjali MR. A New Nanostructure Square Wave Voltammetric Platform for Determination of Tert-butylhydroxyanisole in Food Samples. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180320114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Antioxidants are one of the important additives in food samples due to their
role in protecting human cells against the effects of free radicals. The analysis of antioxidants is
essential due to the role of antioxidants in improving body health.
Objective:
A square wave voltammetric sensor was fabricated for the determination of tert-butylhydroxyanisole
(TBHA) based on the application of CdO/SWCNTs and 1-methyl-3-butylimidazolium
chloride as mediators for the modification of carbon paste electrode (MBCl/CdO/SWCNTs/CPE). The
MBCl/CdO/SWCNTs/CPE improved the sensitivity of TBHA ~ 6.7 times and showed a linear dynamic
range 0.07-600 µM with detection limit 0.02 µA for the analysis of TBHA. The pH investigation confirmed
that electro-oxidation of TBHA occurred by exchanging two electrons and two protons. In addition,
the MBCl/CdO/SWCNTs/CPE was used for determination of TBHA in food samples.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Majede Bijad
- Department of Agriculture, Sari Branch, Islamic Azad University, Sari, Iran
| | - Mohammad Farsi
- Department of Agriculture, Sari Branch, Islamic Azad University, Sari, Iran
| | - Amir Vahid
- Research Institute of Petroleum Industry, Tehran, Iran
| | - Hesam Asari-Bami
- Department of Agriculture, Sari Branch, Islamic Azad University, Sari, Iran
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
48
|
EL-SHAL MA, HENDAWY HAM. Highly Sensitive Voltammetric Sensor Using Carbon Nanotube and an Ionic Liquid Composite Electrode for Xylazine Hydrochloride. ANAL SCI 2019; 35:189-194. [DOI: 10.2116/analsci.18p368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Zhang H, Luo F, Wang P, Guo L, Qiu B, Lin Z. Signal-on electrochemiluminescence aptasensor for bisphenol A based on hybridization chain reaction and electrically heated electrode. Biosens Bioelectron 2019; 129:36-41. [PMID: 30682687 DOI: 10.1016/j.bios.2019.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/25/2023]
Abstract
A simple and sensitive electrochemiluminescence (ECL) aptasensor has been developed for bisphenol A (BPA) detection. The capture DNA (CDNA) was modified on the heated indium-tin-oxide (ITO) working electrode surface firstly and then hybridized with BPA aptamer to form double strand DNA (dsDNA). The presence of target can cause the releasing of aptamer from the electrode surface since the aptamer prefers to switch its configuration to combine with BPA. Subsequently, the free CDNA will induce hybridization chain reaction (HCR) to produce long dsDNA on the electrode surface. Ru(phen)32+ can integrate into the grooves of dsDNA to act as an ECL reagent, thus enhanced ECL signal can be detected. The temperature control during the processes of target recognition and HCR were realized through the heated electrode instead of the bulk solution heating. Furthermore, the performance of the ECL aptasensor can be further enhanced at elevated electrode temperature. Under the optimized conditions, the ECL intensity of the system has a linear relationship with the logarithm of BPA concentration in the range of 2.0 pM-50 nM. The limit of detection (LOD) at 55 °C (electrode surface temperature) was calculated to be 1.5 pM, which was approximately 6.5-fold lower than that at 25 °C. The proposed biosensor has been applied to detect the BPA in drink samples with satisfactory results.
Collapse
Affiliation(s)
- Huifang Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, P.R. China
| | - Fang Luo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Peilong Wang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing 100081, P.R. China.
| | - Longhua Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
50
|
|