1
|
Zhao D, Wang Y, Yu P, Kang Y, Xiao Z, Niu Y, Wang Y. Mussel-inspired chitosan and its applications in the biomedical field. Carbohydr Polym 2024; 342:122388. [PMID: 39048196 DOI: 10.1016/j.carbpol.2024.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Chitosan (CS) has physicochemical properties including solubility, crystallinity, swellability, viscosity, and cohesion, along with biological properties like biocompatibility, biodegradation, antioxidant, antibacterial, and antitumor effects. However, these characteristics of CS are greatly affected by its degree of deacetylation, molecular weight, pH and other factors, which limits the application of CS in biomedicine. The modification of CS with catechol-containing substances inspired by mussels can not only improve these properties of CS, but also endow it with self-healing property, providing an environmentally friendly and sustainable way to promote the application of CS in biomedicine. In this paper, the properties of CS and its limitation in the biomedical filed are introduced in detail. Then, the modification methods and properties of substances with catechol groups inspired by mussels on CS are reviewed. Finally, the applications of modified CS in the biomedical field of wound healing, drug delivery, anticancer therapy, biosensor and 3D printing are further discussed. This review can provide valuable information for the design and exploitation of mussel-inspired CS in the biomedical field.
Collapse
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yizhuo Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Yamei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
2
|
Chaulagain D, Shamabadi NS, Leslie SA, Karig DK. From Natural Microbe Screening to Sustained Chitinase Activity in Exogenous Hosts. ACS Synth Biol 2024; 13:1165-1176. [PMID: 38587290 DOI: 10.1021/acssynbio.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Genetic parts and hosts can be sourced from nature to realize new functions for synthetic biology or to improve performance in a particular application environment. Here, we proceed from the discovery and characterization of new parts to stable expression in new hosts with a particular focus on achieving sustained chitinase activity. Chitinase is a key enzyme for various industrial applications that require the breakdown of chitin, the second most abundant biopolymer on the earth. Diverse microbes exhibit chitinase activity, but for applications, the environmental conditions for optimal enzyme activity and microbe fitness must align with the application context. Achieving sustained chitinase activity under broad conditions in heterologous hosts has also proven difficult due to toxic side effects. Toward addressing these challenges, we first screen ocean water samples to identify microbes with chitinase activity. Next, we perform whole genome sequencing and analysis and select a chitinase gene for heterologous expression. Then, we optimize transformation methods for target hosts and introduce chitinase. Finally, to achieve robust function, we optimize ribosome binding sites and discover a beneficial promoter that upregulates chitinase expression in the presence of colloidal chitin in a sense-and-respond fashion. We demonstrate chitinase activity for >21 days in standard (Escherichia coli) and nonstandard (Roseobacter denitrificans) hosts. Besides enhancing chitinase applications, our pipeline is extendable to other functions, identifies natural microbes that can be used directly in non-GMO contexts, generates new parts for synthetic biology, and achieves weeks of stable activity in heterologous hosts.
Collapse
Affiliation(s)
- Diptee Chaulagain
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Narges S Shamabadi
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Skylar A Leslie
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - David K Karig
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Wang Q, Zhou X, Liu Y, Han Y, Zuo J, Deng J, Yuan L, Gao L, Bai W. Mixed oligosaccharides-induced changes in bacterial assembly during cucumber ( Cucumis sativus L.) growth. Front Microbiol 2023; 14:1195096. [PMID: 37492253 PMCID: PMC10364802 DOI: 10.3389/fmicb.2023.1195096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
The application of oligosaccharides can promote plant growth by increasing photosynthesis or inducing plant innate immunity. However, the mechanisms by which oligosaccharides affect bacterial community diversity and abundance remain unclear. In this study, a mixed oligosaccharide was applied to the growth of cucumbers. The findings of the present study suggest that the application of MixOS has significant effects on the bacterial communities in the phyllosphere, rhizosphere, and bulk soil of cucumber plants. The treatment with MixOS resulted in delayed senescence of leaves, well-developed roots, and higher fruit production. The bacterial diversity and composition varied among the different ecological niches, and MixOS application caused significant shifts in the bacterial microbiome composition, particularly in the phyllosphere. Moreover, mixed oligosaccharides increased the abundance of potential growth-promoting bacteria such as Methylorubrum spp. and Lechevalieria spp., and more zOTUs were shared between the WM and MixOS treatments. Furthermore, the bacterial co-occurrence network analysis suggested that the modularity of the phyllosphere networks was the highest among all samples. The bacterial co-occurrence networks were altered because of the application of MixOS, indicating a greater complexity of the bacterial interactions in the rhizosphere and bulk soil. These findings suggest that mixed oligosaccharides has the potential to improve plant growth and yield by modulating the bacterial communities within and outside the plants and could provide a theoretical basis for future agricultural production.
Collapse
Affiliation(s)
- Qiushui Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Yan Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Zuo
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Jie Deng
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Liyan Yuan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Lijuan Gao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Chen Y, Liu Y, Dong Q, Xu C, Deng S, Kang Y, Fan M, Li L. Application of functionalized chitosan in food: A review. Int J Biol Macromol 2023; 235:123716. [PMID: 36801297 DOI: 10.1016/j.ijbiomac.2023.123716] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Environmental and sustainability issues have received increasing attention in recent years. As a natural biopolymer, chitosan has been developed as a sustainable alternative to traditional chemicals such as food preservation, food processing, food packaging, and food additives due to its abundant functional groups and excellent biological functions. This review analyzes and summarizes the unique properties of chitosan, with a particular focus on the mechanism of action for its antibacterial and antioxidant properties. This provides a lot of information for the preparation and application of chitosan-based antibacterial and antioxidant composites. In addition, chitosan is modified by physical, chemical and biological modifications to obtain a variety of functionalized chitosan-based materials. The modification not only improves the physicochemical properties of chitosan, but also enables it to have different functions and effects, showing promising applications in multifunctional fields such as food processing, food packaging, and food ingredients. In the current review, applications, challenges, and future perspectives of functionalized chitosan in food will be discussed.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Yong Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, Zhejiang, China
| | - Yongfeng Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Natural antimicrobial oligosaccharides in the food industry. Int J Food Microbiol 2023; 386:110021. [PMID: 36462348 DOI: 10.1016/j.ijfoodmicro.2022.110021] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
An increase in the number of antibiotic resistance genes burdens the environment and affects human health. Additionally, people have developed a cautious attitude toward chemical preservatives. This attitude has promoted the search for new natural antimicrobial substances. Oligosaccharides from various sources have been studied for their antimicrobial and prebiotic effects. Antimicrobial oligosaccharides have several advantages such as being produced from renewable resources and showing antimicrobial properties similar to those of chemical preservatives. Their excellent broad-spectrum antibacterial properties are primarily because of various synergistic effects, including destruction of pathogen cell wall. Additionally, the adhesion of harmful microorganisms and the role of harmful factors may be reduced by oligosaccharides. Some natural oligosaccharides were also shown to stimulate the growth probiotic organisms. Therefore, antimicrobial oligosaccharides have the potential to meet food processing industry requirements in the future. The latest progress in research on the antimicrobial activity of different oligosaccharides is demonstrated in this review. The possible mechanism of action of these antimicrobial oligosaccharides is summarized with respect to their direct and indirect effects. Finally, the extended applications of oligosaccharides from the food source industry to food processing are discussed.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Sauvaitre T, Van Herreweghen F, Delbaere K, Durif C, Van Landuyt J, Fadhlaoui K, Huille S, Chaucheyras-Durand F, Etienne-Mesmin L, Blanquet-Diot S, Van de Wiele T. Lentils and Yeast Fibers: A New Strategy to Mitigate Enterotoxigenic Escherichia coli (ETEC) Strain H10407 Virulence? Nutrients 2022; 14:nu14102146. [PMID: 35631287 PMCID: PMC9144138 DOI: 10.3390/nu14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Dietary fibers exhibit well-known beneficial effects on human health, but their anti-infectious properties against enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is a major food-borne pathogen that causes acute traveler’s diarrhea. Its virulence traits mainly rely on adhesion to an epithelial surface, mucus degradation, and the secretion of two enterotoxins associated with intestinal inflammation. With the increasing burden of antibiotic resistance worldwide, there is an imperious need to develop novel alternative strategies to control ETEC infections. This study aimed to investigate, using complementary in vitro approaches, the inhibitory potential of two dietary-fiber-containing products (a lentil extract and yeast cell walls) against the human ETEC reference strain H10407. We showed that the lentil extract decreased toxin production in a dose-dependent manner, reduced pro-inflammatory interleukin-8 production, and modulated mucus-related gene induction in ETEC-infected mucus-secreting intestinal cells. We also report that the yeast product reduced ETEC adhesion to mucin and Caco-2/HT29-MTX cells. Both fiber-containing products strengthened intestinal barrier function and modulated toxin-related gene expression. In a complex human gut microbial background, both products did not elicit a significant effect on ETEC colonization. These pioneering data demonstrate the promising role of dietary fibers in controlling different stages of the ETEC infection process.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Florence Van Herreweghen
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Karen Delbaere
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Claude Durif
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Khaled Fadhlaoui
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | | | - Frédérique Chaucheyras-Durand
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France
| | - Lucie Etienne-Mesmin
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Correspondence: ; Tel.: +33-(0)4-73-17-83-90
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| |
Collapse
|
7
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
8
|
Preparation of water-soluble dialdehyde cellulose enhanced chitosan coating and its application on the preservation of mandarin fruit. Int J Biol Macromol 2022; 203:184-194. [PMID: 35016973 DOI: 10.1016/j.ijbiomac.2022.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023]
Abstract
Biopolymers, e.g., polysaccharides and protein, have been employed as edible coatings for the preservation of fruits for many years and are the promising candidates for resolving the problems caused by the extensive using of synthesized polymers in recent years. Chitosan, a kind of polysaccharide with excellent antibacterial and coatings forming properties, has attracted a lot of research interests in being applied as an edible coating for the preservation of postharvest fruits. However, the applying of chitosan is restricted by its poor stability. In this study, we introduce the water-soluble dialdehyde cellulose (DAC) as the crosslinking agent for chitosan to enhance its stability. Fourier transform-infrared spectroscopy is applied to prove the happening of crosslinking and the detection of swelling ratio in water and mechanical properties of DAC-crosslinked chitosan (DAC/CS) confirms the enhanced stability. Furthermore, scanning electron microscope, thermogravimetric analysis, water contact angle, mechanical and gas barrier properties are performed to characterize DAC/CS films with different DAC contents. Finally, DAC/CS is employed as a coating agent to study the effect on the storage of mandarin fruit at room temperature. Chitosan, with enhanced stability by biopolymer, would be a promising candidate applied as a green edible coating in the preservation of fruits.
Collapse
|
9
|
Zhang N, Zhou Q, Zhao Y, Fan D, Xiao J, Chen F, Cheng KW, Wang M. Chitosan and flavonoid glycosides are promising combination partners for enhanced inhibition of heterocyclic amine formation in roast beef. Food Chem 2021; 375:131859. [PMID: 34933234 DOI: 10.1016/j.foodchem.2021.131859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
The effects of different kinds of chitosan, oligomer (ChiO) and monomer (Gluco), and the combinations of polymer (Chi) or ChiO with flavonoid aglycones and glycosides against the formation of major HAs were investigated to find out potential combination partners for enhanced suppression of HA formation. Results in roast beef patties showed ChiO and Gluco significantly inhibited PhIP and MeIQx formation by 43-80% and 31-57%, respectively. Of which, ChiO was the most effective. In combinations with flavonoid glycosides (phloridzin, rutin and hesperidzin, respectively), Chi, but not ChiO, generated enhanced inhibitory effects. Further analysis showed Chi and phloridzin combined at a ratio of 1:1 was the most promising, especially in inhibiting PhIP, and the mechanism behind involved: 1) water retention by Chi, and 2) reduction of phenylalanine availability by phloridzin. These findings suggest that appropriate combination of Chi and flavonoid glycosides contributes to significant improvement in the safety of meat products.
Collapse
Affiliation(s)
- Nana Zhang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China.
| | - Qian Zhou
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Daming Fan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang 212013, China; Department of Analytical Chemistry and Food Science, University of Vigo, Vigo 36310, Spain.
| | - Feng Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Ka-Wing Cheng
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Sharma S, Kaur N, Kaur R, Kaur R. A review on valorization of chitinous waste. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02759-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Matias MN, Osvaldo S, Rodrigo LJ, Liliana SG, Josue HM. Sclerotium oryzae biocontrol in flooded rice fields with floating microcarrier technology: The effect of chitosan molecular weight. PEST MANAGEMENT SCIENCE 2021; 77:5228-5235. [PMID: 34310020 DOI: 10.1002/ps.6564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Biocontrol strategies are of significant concern for their application in crops. Various green practices have been designed, but almost all of them had delivery constraints. In particular, to design biocontrol strategies against Sclerotium oryzae in flooded rice fields, the active agent should be retained on the plant leaves by spreading application, nevertheless the direct application onto the water produces the biocontrol agent dilution. An effective delivery model was needed. This work aimed to evaluate the effects of chitosan molecular weight on the formation of positively charged Pseudomonas fluorescens-chitosan complex as a floating microcarrier against Sclerotium oryzae. To this end, three different sizes of chitosan [molecular weights (MWs) 20 000, 250 000, and 1 250 000 g mol-1 ] at different pH values (4, 6, and 7) were tested. The electrostatic interaction was analyzed through ζ-potential measurement. An adjustment of the experimental values was carried out for making predictions. The bacteria antifungal activity into the carrier with different chitosan MWs was analyzed. RESULTS Our results suggest that it is possible to form a bacteria-chitosan complex with a net positive charge under condition that improve bacteria incorporation to the microcarrier technology without harming bacteria viability and antifungal activity. Thus, high chitosan MW (1 250 000 g mol-1 ) at pH 6 is preferable for microcarrier technology. CONCLUSION Our findings provide relevant information about bacteria-chitosan interaction and may be useful in biocontrol programs that involved these two components as well as situations in which bacteria adsorption to an anionic carrier or anionic surface is desirable.
Collapse
Affiliation(s)
- Morelli N Matias
- Instituto de Desarrollo Tecnológico para la Industria Química, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral, Santa Fe, Argentina
- Grupo de Innovación en Ingeniería de Bioprocesos - Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Ciudad Universitaria (Paraje El Pozo), Santa Fe, Argentina
| | - Sponton Osvaldo
- Área de Biocoloides y Nanotecnología, Facultad de Ingeniería Química - Universidad Nacional del Litoral, Santa Fe, Argentina
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química de la Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Leonardi J Rodrigo
- Instituto de Desarrollo Tecnológico para la Industria Química, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral, Santa Fe, Argentina
- Grupo de Innovación en Ingeniería de Bioprocesos - Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Ciudad Universitaria (Paraje El Pozo), Santa Fe, Argentina
| | - Santiago G Liliana
- Área de Biocoloides y Nanotecnología, Facultad de Ingeniería Química - Universidad Nacional del Litoral, Santa Fe, Argentina
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química de la Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Heinrich M Josue
- Grupo de Innovación en Ingeniería de Bioprocesos - Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Ciudad Universitaria (Paraje El Pozo), Santa Fe, Argentina
| |
Collapse
|
12
|
Sauvaitre T, Durif C, Sivignon A, Chalancon S, Van de Wiele T, Etienne-Mesmin L, Blanquet-Diot S. In Vitro Evaluation of Dietary Fiber Anti-Infectious Properties against Food-Borne Enterotoxigenic Escherichia coli. Nutrients 2021; 13:nu13093188. [PMID: 34579065 PMCID: PMC8471546 DOI: 10.3390/nu13093188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 09/11/2021] [Indexed: 01/19/2023] Open
Abstract
Dietary fibers have well-known beneficial effects on human health, but their anti-infectious properties against human enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is the main agent of travelers’ diarrhea, against which targeted preventive strategies are currently lacking. ETEC pathogenesis relies on multiple virulence factors allowing interactions with the intestinal mucosal layer and toxins triggering the onset of diarrheal symptoms. Here, we used complementary in vitro assays to study the antagonistic properties of eight fiber-containing products from cereals, legumes or microbes against the prototypical human ETEC strain H10407. Inhibitory effects of these products on the pathogen were tested through growth, toxin production and mucus/cell adhesion inhibition assays. None of the tested compounds inhibited ETEC strain H10407 growth, while lentil extract was able to decrease heat labile toxin (LT) concentration in culture media. Lentil extract and specific yeast cell walls also interfered with ETEC strain H10407 adhesion to mucin beads and human intestinal cells. These results constitute a first step in the use of dietary fibers as a nutritional strategy to prevent ETEC infection. Further work will be dedicated to the study of fiber/ETEC interactions within a complex gut microbial background.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (T.S.); (C.D.); (S.C.); (L.E.-M.)
- Faculty of Bioscience Engineering Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium;
| | - Claude Durif
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (T.S.); (C.D.); (S.C.); (L.E.-M.)
| | - Adeline Sivignon
- UMR 1071 UCA Inserm USC-INRAE 2018 Microbes Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Sandrine Chalancon
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (T.S.); (C.D.); (S.C.); (L.E.-M.)
| | - Tom Van de Wiele
- Faculty of Bioscience Engineering Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium;
| | - Lucie Etienne-Mesmin
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (T.S.); (C.D.); (S.C.); (L.E.-M.)
| | - Stéphanie Blanquet-Diot
- UMR 454 UCA-INRAE Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (T.S.); (C.D.); (S.C.); (L.E.-M.)
- Correspondence: ; Tel.: +33-473-178-390
| |
Collapse
|
13
|
Sauvaitre T, Etienne-Mesmin L, Sivignon A, Mosoni P, Courtin CM, Van de Wiele T, Blanquet-Diot S. Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: towards preventive strategies against enteric infections. FEMS Microbiol Rev 2021; 45:5918835. [PMID: 33026073 DOI: 10.1093/femsre/fuaa052] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The human gut is inhabited by a large variety of microorganims involved in many physiological processes and collectively referred as to gut microbiota. Disrupted microbiome has been associated with negative health outcomes and especially could promote the onset of enteric infections. To sustain their growth and persistence within the human digestive tract, gut microbes and enteric pathogens rely on two main polysaccharide compartments, namely dietary fibers and mucus carbohydrates. Several evidences suggest that the three-way relationship between gut microbiota, dietary fibers and mucus layer could unravel the capacity of enteric pathogens to colonise the human digestive tract and ultimately lead to infection. The review starts by shedding light on similarities and differences between dietary fibers and mucus carbohydrates structures and functions. Next, we provide an overview of the interactions of these two components with the third partner, namely, the gut microbiota, under health and disease situations. The review will then provide insights into the relevance of using dietary fibers interventions to prevent enteric infections with a focus on gut microbial imbalance and impaired-mucus integrity. Facing the numerous challenges in studying microbiota-pathogen-dietary fiber-mucus interactions, we lastly describe the characteristics and potentialities of currently available in vitro models of the human gut.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France.,Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France
| | - Adeline Sivignon
- Université Clermont Auvergne, UMR 1071 Inserm, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Pascale Mosoni
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France
| | - Christophe M Courtin
- KU Leuven, Faculty of Bioscience Engineering, Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, Belgium
| | - Tom Van de Wiele
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France
| |
Collapse
|
14
|
Shi H, Dong C, Yang Y, Han Y, Wang F, Wang C, Men J. Preparation of sulfonate chitosan microspheres and study on its adsorption properties for methylene blue. Int J Biol Macromol 2020; 163:2334-2345. [DOI: 10.1016/j.ijbiomac.2020.09.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
|
15
|
Chang SH, Hsieh PL, Tsai GJ. Chitosan Inhibits Helicobacter pylori Growth and Urease Production and Prevents Its Infection of Human Gastric Carcinoma Cells. Mar Drugs 2020; 18:md18110542. [PMID: 33138146 PMCID: PMC7692773 DOI: 10.3390/md18110542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
This study investigated the effects of shrimp chitosan with 95% degree of deacetylation (DD95) in combination with clinical antibiotics on the growth and urease production of Helicobacter pylori. The inhibitory effect of DD95 on the adherence of H. pylori to the human intestinal carcinoma cells (TSGH9201) was also investigated. Five strains of H. pylori, including three standard strains and two strains of clinical isolates were used as the test strains. The inhibitory effects of DD95 on growth and urease production of various strains of H. pylori increased with increasing DD95 concentration and decreasing pH values from pH 6.0 to pH 2.0. Urease activity of H. pylori at pH 2.0 in the presence of 4000 μg/mL of DD95 decreased by 37.86% to 46.53%. In the presence of 50 μg/mL antibiotics of amoxicillin, tetracycline, or metronidazole at pH 6.0 and pH 2.0, H. pylori counts were decreased by 1.51–3.19, and 1.47–2.82 Log CFU/mL, respectively. Following the addition of 4000 μg/mL DD95 into the 50 μg/mL antibiotic-containing culture medium with pH 6.0 and pH 2.0, overall H. pylori counts were strongly decreased by 3.67–7.61 and 6.61–6.70 Log CFU/mL, respectively. Further, DD95 could inhibit the adherence of H. pylori on TSGH 9201 cells, as evidenced by fluorescent microscopy and thus may potentially protect against H. pylori infection.
Collapse
Affiliation(s)
- Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Pei-Ling Hsieh
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Center for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 5150); Fax: +886-2-2462-7954
| |
Collapse
|
16
|
Li T, Zhang Y, Xu M, Liu Y, Zhang C, Zhang Y, Peng X, Li Z, Qin S, Xing K. Novel antifungal mechanism of oligochitosan by triggering apoptosis through a metacaspase-dependent mitochondrial pathway in Ceratocystis fimbriata. Carbohydr Polym 2020; 245:116574. [PMID: 32718651 DOI: 10.1016/j.carbpol.2020.116574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
The antifungal effects of oligochitosan (OCS) against Ceratocystis fimbriata that causes black rot disease in sweet potato and its apoptosis mechanism were evaluated. OCS restrained the mycelial growth and spores germination of C. fimbriata, and decreased the ergosterol content of cell membrane. Transmission electron microscopy observation and flow cytometry analysis revealed that OCS induced morphology changes with smaller size and increased granularity of C. fimbriata, which was the typical feature of apoptosis. To clarify the apoptosis mechanism induced by OCS, a series of apoptosis-related parameters were analyzed. Results showed that OCS induced reactive oxygen species accumulation, Ca2+ homeostasis dysregulation, mitochondrial dysfunction and metacaspase activation, coupled with hallmarks of apoptosis including phosphatidylserine externalization, DNA fragmentation, and nuclear condensation. In summary, OCS triggered apoptosis through a metacaspase-dependent mitochondrial pathway in C. fimbriata. These findings have important implications for the application of OCS to control pathogens in food and agriculture.
Collapse
Affiliation(s)
- Tengjie Li
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Yu Zhang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Mingjie Xu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Yuanfang Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China; Caoqiao Middle School of Suzhou, Suzhou, 215008, Jiangsu, PR China.
| | - Chunmei Zhang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Yanhua Zhang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Xue Peng
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Zongyun Li
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Sheng Qin
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Ke Xing
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| |
Collapse
|
17
|
The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat Sci 2020; 162:107961. [DOI: 10.1016/j.meatsci.2019.107961] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
|
18
|
Kabanov VL, Novinyuk LV. CHITOSAN APPLICATION IN FOOD TECHNOLOGY: A REVIEW OF RESCENT ADVANCES. ACTA ACUST UNITED AC 2020. [DOI: 10.21323/2618-9771-2020-3-1-10-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- V. L. Kabanov
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| | - L. V. Novinyuk
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| |
Collapse
|
19
|
Effect of Chitosan–Tomato Plant Extract Edible Coating on the Quality, Shelf Life, and Antioxidant Capacity of Pork during Refrigerated Storage. COATINGS 2019. [DOI: 10.3390/coatings9120827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this study was to evaluate the effectiveness of chitosan–tomato plant extract (C-TPE) edible coating (EC) on the physicochemical, microbiological, sensory, and antioxidant capacity changes of pork during storage. Edible coatings prepared with chitosan 1%, acetic acid 1%, glycerol, and TPE (0.1% and 0.3%) were tested. Slices of pork were submerged in different treatments (T1: C 1%; T2: C 1% + TPE 0.1%; T3: C 1% + TPE 0.3%; T4: control) and stored at 4 °C. The different treatments showed the best results in physicochemical and microbiological analyses, with reduced microbial population relative to the control. The highest antioxidant capacity and total phenolic content were shown in T3, and the overall acceptance was better in T2. The results show that the application of C with the addition of natural extracts, such as the tomato plant with antioxidant and antimicrobial properties, can be an alternative method for preserving pork.
Collapse
|
20
|
Mirsadeghi H, Alishahi A, Ojagh M, Pourashouri P. The effect of different kinds of chitosans and cooking methods on the formation of heterocyclic aromatic amines in huso (
Huso huso
) fillet. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hojat Mirsadeghi
- Department of fisheries Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Alireza Alishahi
- Department of fisheries Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Mahdi Ojagh
- Department of fisheries Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Parastoo Pourashouri
- Department of fisheries Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
21
|
Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural Polysaccharide Nanomaterials: An Overview of Their Immunological Properties. Int J Mol Sci 2019; 20:E5092. [PMID: 31615111 PMCID: PMC6834193 DOI: 10.3390/ijms20205092] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022] Open
Abstract
Natural occurring polymers, or biopolymers, represent a huge part of our planet biomass. They are formed by long chains of monomers of the same type or a combination of different ones. Polysaccharides are biopolymers characterized by complex secondary structures performing several roles in plants, animals, and microorganisms. Because of their versatility and biodegradability, some of them are extensively used for packaging, food, pharmaceutical, and biomedical industries as sustainable and renewable materials. In the recent years, their manipulation at the nanometric scale enormously increased the range of potential applications, boosting an interdisciplinary research attempt to exploit all the potential advantages of nanostructured polysaccharides. Biomedical investigation mainly focused on nano-objects aimed at drug delivery, tissue repair, and vaccine adjuvants. The achievement of all these applications requires the deep knowledge of polysaccharide nanomaterials' interactions with the immune system, which orchestrates the biological response to any foreign substance entering the body. In the present manuscript we focused on natural polysaccharides of high commercial importance, namely, starch, cellulose, chitin, and its deacetylated form chitosan, as well as the seaweed-derived carrageenan and alginate. We reviewed the available information on their biocompatibility, highlighting the importance of their physicochemical feature at the nanoscale for the modulation of the immune system.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, Lima 32, Peru.
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, Lima 32, Peru.
| | - Anissa Pisani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31,16146 Genova, Italy.
| | - Francesca Gatto
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
22
|
Evaluation of quaternary ammonium chitosan derivatives differing in the length of alkyl side-chain: Synthesis and antifungal activity. Int J Biol Macromol 2019; 129:1127-1132. [DOI: 10.1016/j.ijbiomac.2018.09.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 01/31/2023]
|
23
|
Wang J, Fang J, Wei L, Zhang Y, Deng H, Guo Y, Hu C, Meng Y. Decrease of microbial community diversity, biogenic amines formation, and lipid oxidation by phloretin in Atlantic salmon fillets. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
FORMATION OF CONSUMPTION PROPERTIES OF SWEET PEPPER (CAPSICUM ANNUUM L.) SAUCE. EUREKA: LIFE SCIENCES 2018. [DOI: 10.21303/2504-5695.2018.00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the study is to form consumption properties of a green sweet pepper sauce with a balanced content of macro- and microelements. Due to the use of Xanthium strumarium and chitosan a new product has high organoleptic properties that attract a consumer and increase its competitiveness at the market.
Sweet green pepper that relates to most valuable vegetable cultures as to food value and taste was chosen as a main component of a sauce. For giving it a necessary consistence and for decreasing a time of thermal processing, there was used chitosan. According to results of the conducted studies, it was established, that among studied types of chitosan, advantages as to forming a consistence belongs to food acid-soluble chitosan with particle sizes up to 0,5 mm in amount 0,5 %.For preserving the natural green color, pepper fruits were preliminarily processed in 1 % decoction of Xanthium strumarium at temperature 75ºС during 15 min. For increasing its food value, the recipe was added with spicy-aromatic vegetable raw materials: garlic, dill, parsley, celery.
The sauce quality was formed by mathematical modeling using general criteria of optimization of organoleptic parameters. There were also determined specific criteria of optimization of the recipe composition taking into account their daily need. As a result of the conducted studies the composition of recipe components for the sauce was optimized: sweet pepper 80 %, garlic leaves – 5 %, parsley leaves,dill – 5 %, celery leaves – 5 %, salt – 1,5 %, sugar – 0,5 %, chitosan – 0,5 %.
There were studied organoleptic parameters of the developed sauce, characterized by a pleasant bright-green color, homogenous paste-like consistence, pleasant taste and smell. The used stabilizing factors allowed to get the sauce with the increased content of essential factors of nutrition. They participate in the increase of protective forces of the organism, so allow to recommend them in prophylactic, child and dietary nutrition.
Collapse
|
25
|
He T, Wang H, Chen Z, Liu S, Li J, Li S. Natural Quercetin AIEgen Composite Film with Antibacterial and Antioxidant Properties for in Situ Sensing of Al3+ Residues in Food, Detecting Food Spoilage, and Extending Food Storage Times. ACS APPLIED BIO MATERIALS 2018; 1:636-642. [DOI: 10.1021/acsabm.8b00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting He
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, People’s Republic of China
| | - Hui Wang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, People’s Republic of China
- Key Laboratory of Wood Science and Technology, Zhejiang Agriculture and Forestry University, Wusu Road 666, Hangzhou 311300, People’s Republic of China
| | - Zhijun Chen
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, People’s Republic of China
| | - Shouxin Liu
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, People’s Republic of China
| | - Jian Li
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, People’s Republic of China
| | - Shujun Li
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, People’s Republic of China
| |
Collapse
|
26
|
Liang S, Sun Y, Dai X. A Review of the Preparation, Analysis and Biological Functions of Chitooligosaccharide. Int J Mol Sci 2018; 19:ijms19082197. [PMID: 30060500 PMCID: PMC6121578 DOI: 10.3390/ijms19082197] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Chitooligosaccharide (COS), which is acknowledged for possessing multiple functions, is a kind of low-molecular-weight polymer prepared by degrading chitosan via enzymatic, chemical methods, etc. COS has comprehensive applications in various fields including food, agriculture, pharmacy, clinical therapy, and environmental industries. Besides having excellent properties such as biodegradability, biocompatibility, adsorptive abilities and non-toxicity like chitin and chitosan, COS has better solubility. In addition, COS has strong biological functions including anti-inflammatory, antitumor, immunomodulatory, neuroprotective effects, etc. The present paper has summarized the preparation methods, analytical techniques and biological functions to provide an overall understanding of the application of COS.
Collapse
Affiliation(s)
- Shuang Liang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Yaxuan Sun
- Department of Food Sciences, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| |
Collapse
|
27
|
Synthesis, Characterization, and the Antifungal Property of Aminoethyl Chitosan Quaternary Ammonium Salts. STARCH-STARKE 2018. [DOI: 10.1002/star.201700266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Hamdi M, Hajji S, Affes S, Taktak W, Maâlej H, Nasri M, Nasri R. Development of a controlled bioconversion process for the recovery of chitosan from blue crab (Portunus segnis) exoskeleton. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Han M, Clausen MP, Christensen M, Vossen E, Van Hecke T, Bertram HC. Enhancing the health potential of processed meat: the effect of chitosan or carboxymethyl cellulose enrichment on inherent microstructure, water mobility and oxidation in a meat-based food matrix. Food Funct 2018; 9:4017-4027. [DOI: 10.1039/c8fo00835c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of dietary fibers can alleviate the deteriorated textural properties and water binding capacity (WBC) that may occur when the fat content is lowered directly in the formulas of comminuted meat products.
Collapse
Affiliation(s)
- Minyi Han
- Jiangsu Collaborative Innovation Center of Meat Production and Processing
- Quality and Safety Control
- China
- College of Food Science and Technology
- Nanjing Agricultural University
| | - Mathias P. Clausen
- Department of Chemical Engineering
- Biotechnology and Environmental Technology
- University of Southern Denmark
- Odense M
- Denmark
| | - Morten Christensen
- Department of Chemical Engineering
- Biotechnology and Environmental Technology
- University of Southern Denmark
- Odense M
- Denmark
| | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product Quality
- Department of Animal Production
- Ghent University
- Ghent 9000
- Belgium
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality
- Department of Animal Production
- Ghent University
- Ghent 9000
- Belgium
| | | |
Collapse
|
30
|
Wang M, Ma Y, Sun Y, Hong SY, Lee SK, Yoon B, Chen L, Ci L, Nam JD, Chen X, Suhr J. Hierarchical Porous Chitosan Sponges as Robust and Recyclable Adsorbents for Anionic Dye Adsorption. Sci Rep 2017; 7:18054. [PMID: 29273810 PMCID: PMC5741733 DOI: 10.1038/s41598-017-18302-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Biomass waste treatment and detrimental dye adsorption are two of the crucial environmental issues nowadays. In this study, we investigate to simultaneously resolve the aforementioned issues by synthesizing chitosan sponges as adsorbents toward rose bengal (RB) dye adsorption. Through a temperature-controlled freeze-casting process, robust and recyclable chitosan sponges are fabricated with hierarchical porosities resulted from the control of concentrations of chitosan solutions. Tested as the adsorbents for RB, to the best of our knowledge, the as-prepared chitosan sponge in this work reports the highest adsorption capacity of RB (601.5 mg/g) ever. The adsorption mechanism, isotherm, kinetics, and thermodynamics are comprehensively studied by employing statistical analysis. Importantly and desirably, the sponge type of chitosan adsorbents exceedingly facilitates the retrieving and elution of chitosan sponges for recyclable uses. Therefore, the chitosan sponge adsorbent is demonstrated to possess dramatically squeezable capability with durability for 10,000 cycles and recyclable adsorption for at least 10 cycles, which provides an efficient and economical way for both biomass treatment and water purification.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Yifei Ma
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yan Sun
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Sung Yong Hong
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Stephanie K Lee
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Bumyong Yoon
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Long Chen
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Lijie Ci
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Jae-Do Nam
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, South Korea
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Xuyuan Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Department of Micro- and Nanosystem Technology, Faculty of Technology and Maritime Sciences, University College of Southeast Norway, 3184, Borre, Norway
| | - Jonghwan Suhr
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, South Korea.
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea.
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
31
|
Belluco S, Gallocchio F, Losasso C, Ricci A. State of art of nanotechnology applications in the meat chain: A qualitative synthesis. Crit Rev Food Sci Nutr 2017; 58:1084-1096. [PMID: 27736191 DOI: 10.1080/10408398.2016.1237468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nanotechnology is a promising area in industry with a broad range of applications including in the agri-food sector. Several studies have investigated the potential benefits deriving from use of nanomaterials in the context of the whole food chain drawing scenarios of benefits but also potential for concerns. Among the agri-food sector, animal production has potential for nanomaterial application but also for safety concerns due to the possibility of nanomaterial accumulation along the farm-to-fork path. Scope and Approach: The aim of this work was to define the state of the art of nanomaterial applications in the animal production sector by assessing data belonging to recently publishes studies. To do this, a qualitative synthesis approach was applied to build a fit-for-purpose framework and to summarise relevant themes in the context of effectiveness, feasibility and health concerns. Key findings and conclusions: Nanomaterials have potential for use in a wide range of applications from feed production and farming to food packaging, including several detection tools designed for the benefit of consumer protection. The current high degree of variability in nanomaterials tested and in study designs impairs external validation of research results. Further research is required to clearly define which safe nanomaterial applications have the potential to reach the market.
Collapse
Affiliation(s)
- Simone Belluco
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy.,b Department of Animal Medicine, Production and Health , University of Padua , Legnaro (PD) , Italy
| | - Federica Gallocchio
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy
| | - Carmen Losasso
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy
| | - Antonia Ricci
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy
| |
Collapse
|
32
|
Ceylan Z, Sengor GFU, Yilmaz MT. A Novel Approach to Limit Chemical Deterioration of Gilthead Sea Bream (Sparus aurata) Fillets: Coating with Electrospun Nanofibers as Characterized by Molecular, Thermal, and Microstructural Properties. J Food Sci 2017; 82:1163-1170. [DOI: 10.1111/1750-3841.13688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Zafer Ceylan
- Dept. of Seafood Processing Technology; Istanbul Univ., Faculty of Fisheries; İstanbul Turkey
| | - Gulgun F. Unal Sengor
- Dept. of Seafood Processing Technology; Istanbul Univ., Faculty of Fisheries; İstanbul Turkey
| | - Mustafa Tahsin Yilmaz
- Dept. of Food Engineering; Yıldız Technical Univ., Chemical and Metallurgical Engineering Faculty; 34210 İstanbul Turkey
| |
Collapse
|
33
|
Polysaccharide-Based Edible Coatings Containing Cellulase for Improved Preservation of Meat Quality during Storage. Molecules 2017; 22:molecules22030390. [PMID: 28257118 PMCID: PMC6155409 DOI: 10.3390/molecules22030390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022] Open
Abstract
The objectives of this study were to optimize the composition of edible food coatings and to extend the shelf-life of pork meat. Initially, nine meat samples were coated with solutions containing chitosan and hydroxypropyl methylcellulose at various cellulase concentrations: 0%, 0.05%, and 0.1%, stored for 0, 7, and 14 days. Uncoated meat served as the controls. The samples were tested for pH, water activity (aw), total number of microorganisms (TNM), psychrotrophs (P), number of yeast and molds (NYM), colour, and thiobarbituric acid-reactive substances (TBARS). The pH and aw values varied from 5.42 to 5.54 and 0.919 to 0.926, respectively. The reductions in the TNM, P, and NYM after 14 days of storage were approximately 2.71 log cycles, 1.46 log cycles, and 0.78 log cycles, respectively. The enzyme addition improved the stability of the red colour. Significant reduction in TBARS was noted with the inclusion of cellulase in the coating material. Overall, this study provides a promising alternative method for the preservation of pork meat in industry.
Collapse
|
34
|
Wang W, Li C, Du G, Zhang X, Zhang H. Characteristics and Rheological Properties of Polysaccharide Nanoparticles from Edible Mushrooms (Flammulina velutipes). J Food Sci 2017; 82:687-693. [DOI: 10.1111/1750-3841.13626] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
- Engineering Research Center of Food Biotechnology, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
- Limerick Pulp and Paper Centre, Dept. of Chemical Engineering; Univ. of New Brunswick; Fredericton NB E3B5A3 Canada
| | - Cong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
| | - Guanhua Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
| | - Xiuling Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
| | - Hongjie Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
- Engineering Research Center of Food Biotechnology, Ministry of Education; Tianjin Univ. of Science and Technology; Tianjin 300457 China
| |
Collapse
|
35
|
Tan W, Li Q, Dong F, Wei L, Guo Z. Synthesis, characterization, and antifungal property of chitosan ammonium salts with halogens. Int J Biol Macromol 2016; 92:293-298. [DOI: 10.1016/j.ijbiomac.2016.07.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 01/22/2023]
|
36
|
Aloui H, Khwaldia K. Natural Antimicrobial Edible Coatings for Microbial Safety and Food Quality Enhancement. Compr Rev Food Sci Food Saf 2016; 15:1080-1103. [DOI: 10.1111/1541-4337.12226] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Hajer Aloui
- Laboratoire des Substances Naturelles (LSN, LR10 INRAP02), Inst. Natl. de Recherche et d'Analyse Physico-chimique (INRAP); Pôle Technologique de Sidi Thabet; 2020 Sidi Thabet Tunisia
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles (LSN, LR10 INRAP02), Inst. Natl. de Recherche et d'Analyse Physico-chimique (INRAP); Pôle Technologique de Sidi Thabet; 2020 Sidi Thabet Tunisia
| |
Collapse
|
37
|
Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Sci Rep 2016; 6:26144. [PMID: 27189192 PMCID: PMC4870575 DOI: 10.1038/srep26144] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/27/2016] [Indexed: 12/17/2022] Open
Abstract
Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.
Collapse
|
38
|
B.S. Albuquerque P, C.B.B. Coelho L, A. Teixeira J, G. Carneiro-da-Cunha M. Approaches in biotechnological applications of natural polymers. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.386] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
39
|
Effect of chitosan nanoparticles loaded with cinnamon essential oil on the quality of chilled pork. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.049] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
|
41
|
Chang SH, Lin HTV, Wu GJ, Tsai GJ. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym 2015; 134:74-81. [PMID: 26428102 DOI: 10.1016/j.carbpol.2015.07.072] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022]
Abstract
Six chitosans with molecular weights (MWs) of 300, 156, 72.1, 29.2, 7.1, and 3.3 kDa were prepared by cellulase degradation of chitosan (300 kDa) and ultrafiltration techniques. We examined the correlation between activity against Escherichia coli and Staphylococcus aureus and chitosan MW, and provided the underlying explanation. In acidic pH conditions, the chitosan activity increased with increasing MW, irrespective of the temperature and bacteria tested. However, at neutral pH, chitosan activity increased as the MW decreased, and little activity was observed for chitosans with MW >29.2 kDa. At pH 5.0 and 6.0, chitosans exhibited good water solubility and zeta potential (ZP) decreased with the MW, whereas the solubility and ZP of the chitosans decreased with increasing MW at pH 7.0. Particularly, low solubility and negative ZP values were determined for chitosans with MW >29.2 kDa, which may explain the loss of their antibacterial activity at pH 7.0.
Collapse
Affiliation(s)
- Shun-Hsien Chang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Guan-James Wu
- Department of Food Science, National Penghu University of Science and Technology, Penghu, Taiwan, ROC
| | - Guo Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC.
| |
Collapse
|
42
|
Zargar V, Asghari M, Dashti A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400025] [Citation(s) in RCA: 470] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Dyeing Properties and Color Fastness of Chitosan Treated Cotton Fabrics with Thian King Leaves Extract. ACTA ACUST UNITED AC 2015. [DOI: 10.4028/www.scientific.net/amm.749.89] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan, a naturally available biopolymer, was used as finishing agent to increase dye uptake and color fastness of cotton fabrics. Thian King leaves extract a natural dye was applied on cotton fabrics after chitosan treatment. The whiteness index and tensile strength of samples were measured to study the effect of chitosan application. The color of dyed samples was investigated in term of the colorimetric parameters (L*, a*, b*, ∆E) and K/S values. The color fastness to washing, rubbing and light of dyed samples was determined according to AATCC test method. The results showed that the chitosan concentration enhances the whiteness index and tensile strength of the treated cotton fabrics. Chitosan treatment showed increase dye uptake of cotton fabrics. Fastness properties of these to washing, rubbing and light have also been discussed.
Collapse
|