1
|
Lee-Martínez SN, Luzardo-Ocampo I, Vergara-Castañeda HA, Vasco-Leal JF, Gaytán-Martínez M, Cuellar-Nuñez ML. Native corn (Zea mays L., cv. 'Elotes Occidentales') polyphenols extract reduced total cholesterol and triglycerides levels, and decreased lipid accumulation in mice fed a high-fat diet. Biomed Pharmacother 2024; 180:117610. [PMID: 39447534 DOI: 10.1016/j.biopha.2024.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Obesity is a complex disease with numerous molecular and metabolic implications that could be prevented through proper diet and lifestyle. Native corn is a promissory underutilized plant species containing bioactive compounds that could reduce the impact of obesity. This research aimed to characterize and evaluate the anti-obesogenic effect of a polyphenols-rich extract of native corn ('Elotes Occidentales') in HFD-fed mice. The powdered extract was administered using gelatins to C57BL/6 J mice randomly divided into four groups (n:8/group) for 13 weeks: standard diet (SD) group, HFD group, HFD+200 mg extract/kg body weight (BW), and HFD+400 mg extract/kg BW/day. Ellagic acid, chlorogenic acid, rutin, and kaempferol were the most abundant phenolics (2022.44-4028.43 µg/g). Among the HFD groups, the highest dose of the extracts promoted the lowest BW gain, and fasting triglycerides and cholesterol levels. Moreover, the HFD+400 mg/kg BW group showed the lowest epididymal and subcutaneous adipose tissue weight and adipocytes' diameter and area between the HFD-treated animals. The extract administration prevented hepatic lipid accumulation. Rutin demonstrated the highest in silico binding affinity with proteins from the AMPK pathway (ACACA, SIRT1, and SREBP1) (-6.70 to -8.70 kcal/mol). Results indicated beneficial effects in alleviating obesity-associated parameters in vivo due to bioactive compounds from native maize extracts.
Collapse
Affiliation(s)
- Sarah N Lee-Martínez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Ivan Luzardo-Ocampo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, 64700 N. L., Mexico; Tecnologico de Monterrey, School of Enginering and Sciences, Av. Gral. Ramon Corona 2514, Zapopan, 45201 Jal., Mexico.
| | - Haydé A Vergara-Castañeda
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Jose F Vasco-Leal
- Posgrado de Gestión Tecnológica e Innovación, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - M Liceth Cuellar-Nuñez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México.
| |
Collapse
|
2
|
Samukha V, Fantasma F, D’Urso G, Colarusso E, Schettino A, Marigliano N, Chini MG, Saviano G, De Felice V, Lauro G, Maione F, Bifulco G, Casapullo A, Iorizzi M. Chemical Profiling of Polar Lipids and the Polyphenolic Fraction of Commercial Italian Phaseolus Seeds by UHPLC-HRMS and Biological Evaluation. Biomolecules 2024; 14:1336. [PMID: 39456269 PMCID: PMC11505683 DOI: 10.3390/biom14101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The common bean (Phaseolus vulgaris L.) is one of the oldest food crops in the world. In this study, the ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) technique was used to characterize the polar lipid composition and polyphenolic fraction of five bean varieties commonly consumed in Italy: Cannellino (PVCA), Controne (PVCO), Borlotti (PVBO), Stregoni (PVST), and Vellutina (PVVE). Lipid content represents a minor fraction of the whole metabolome in dry beans, and little is known about their polar lipids, which could be potentially bioactive components. Thirty-three compounds were detected through UHPLC-MS/MS, including oxylipins, phospholipids, N-acyl glycerolipids, and several fatty acids. The dichloromethane extracts were subjected to principal component analysis (PCA), with the results showing greater differentiation for the Borlotti variety. Moreover, 27 components belonging to different polyphenol classes, such as phenolic acids, flavonoids, catechins, anthocyanins and their glycosides, and some saponins, were identified in the hydroalcoholic seed extracts. In addition, the mineral content of the beans was determined. Considering the high number of compounds in the five apolar seed extracts, all samples were examined to determine their in vitro inhibitory activity against the enzyme cyclooxygenase-2 (COX-2), which is inducible in inflammatory cells and mediates inflammatory responses. Only PVCO showed the best inhibition of the COX-2 enzyme with an IC50 = 31.15 ± 2.16 µg/mL. In light of these results, the potential anti-inflammatory properties of PVCO were evaluated in the LPS-stimulated murine macrophage cell line J774A.1. Herein, we demonstrate, for the first time, that PVCO at 30 µg/mL can significantly reduce the release of TNF-α, with a less significant anti-inflammatory effect being observed in terms of IL-6 release.
Collapse
Affiliation(s)
- Vadym Samukha
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Anna Schettino
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.S.); (N.M.); (F.M.)
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.S.); (N.M.); (F.M.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.S.); (N.M.); (F.M.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| |
Collapse
|
3
|
Mejía-Terán A, Blanco-Lizarazo CM, Leiva Mateus JE, Sotelo-Díaz I, Mejía Terán D, Geffroy E. Pretreatments and Particle Size on the Glycemic Index and Rheological and Functional Food Properties of Bean Flours. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6336837. [PMID: 38803398 PMCID: PMC11129911 DOI: 10.1155/2024/6336837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
The beans' protein and slow-digesting carbohydrate content make it an appealing choice for healthy food development. However, its properties are influenced by the flour extraction processes. This study is aimed at evaluating the effect of particle size and three pretreatments-drying (D), soaking + cooking + dehydrating 3 h (SCD3), and soaking + cooking + dehydrating 24 h (SCD24)-on the estimated glycemic index (eGI) compared with raw bean flour (R). The methodology covered water absorption (WAI), water solubility (WSI), amylose content, starch digestibility, eGI, phenolic quantification, and rheology. The results showed that WAI correlated negatively with WSI and amylose, varying among pretreatments and sizes. WAI increased as D < SCD24 < SCD3 < R. Glucose release (HI) differed between fine (125 μm) and coarse fractions (242 μm), with SCD24 and R showing the lowest eGI (22.8-24.2). SCD3 had the highest flavonoid concentration, while R and D had more quercetin-3-glucoside. SCD24 displayed higher elastic/viscous moduli than R. Bean flours from all treatments had low GI and contained bioactive polyphenols (catechin, epicatechin, ferulic acid, quercetin). The optimal treatment was SCD24, particularly in the coarse fraction, showing potential for functional food development and novel applications such as precision nutrition.
Collapse
Affiliation(s)
- Adriana Mejía-Terán
- Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, San Jose, Costa Rica
- Grupo Interinstitucional de Investigación en Ciencias Agropecuarias, Forestales y Agroindustriales del Trópico, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá, Colombia
| | | | - Jairo Eduardo Leiva Mateus
- Instituto de Investigaciones en Materiales (IIM), Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CDMX 4510, Mexico
| | - Indira Sotelo-Díaz
- Grupo de Alimentación, Gestión de Procesos y Servicio, Universidad de La Sabana, Chía, Colombia
| | - Darío Mejía Terán
- Grupo de Estudios Ambientales Aplicados, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá, Colombia
| | - Enrique Geffroy
- Instituto de Investigaciones en Materiales (IIM), Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CDMX 4510, Mexico
| |
Collapse
|
4
|
Montoya-Hernández D, Dufoo-Hurtado E, Cruz-Hernández A, Campos-Vega R. Spent coffee grounds and its antioxidant dietary fiber promote different colonic microbiome signatures: Benefits for subjects with chronodisruption. Microb Pathog 2023; 185:106431. [PMID: 37984489 DOI: 10.1016/j.micpath.2023.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Chronodisruption, commonly displayed by people living with obesity (PLO), is linked to colonic microbiota dysbiosis, and may increase the risk of many chronic non-communicable diseases, whereas dietary interventions-called chrononutrition may mitigate it. We evaluated the in vitro effects of spent coffee grounds (SCG), and their antioxidant dietary fiber (SCG-DF) on the colonic microbiota of an obese donor displaying dysbiosis and chronodisruption. Basal microbiota pattern was associated with an increased risk of non-communicable chronic diseases. Both samples decrease species richness and increase microbiota diversity (p < 0.05; Chao and Shannon index, respectively), positively enhancing Firmicutes/Bacteroidetes index (SCG, p < 0.04; SCG-DF, p < 0.02). SCG and SCG-DF modulated the microbiota, but SCG-DF induced greater changes, significantly increasing. p_Actonobacterias (SCG p < 0.04; SCG-DF, p < 0.02), and reducing g_Alistipes; s_putredinis, g_Prevotella;s_copri. The highest increase was displayed by p_Proteobacteria (f_Desulfovibrionaceae and f_Alcanigenaceae, p < 0.05), while g_Haemophilus; s_parainfluenzae decreased (p < 0.05). However, neither SCG nor SCG-DF modulated g_Alistipes (evening-type colonic microbial marker) beneficially. SCG and SCG-DF reduced (p < 0.05) g_Lachnospira, a microbial evening-type marker, among other microbial populations, of an obese donor displaying chronodisruption and dysbiosis. SCG and SCG-DF displayed a prebiotic effect with the potential to mitigate diseases linked to chronodisruption.
Collapse
Affiliation(s)
- Diego Montoya-Hernández
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| | - Elisa Dufoo-Hurtado
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| | - Andrés Cruz-Hernández
- Escuela de Agronomía, Universidad De La Salle Bajío Campus Campestre, Av. Universidad 602, Col. Lomas del Campestre, León, 37150, Mexico.
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| |
Collapse
|
5
|
Alfaro-Diaz A, Escobedo A, Luna-Vital DA, Castillo-Herrera G, Mojica L. Common beans as a source of food ingredients: Techno-functional and biological potential. Compr Rev Food Sci Food Saf 2023; 22:2910-2944. [PMID: 37182216 DOI: 10.1111/1541-4337.13166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Common beans are an inexpensive source of high-quality food ingredients. They are rich in proteins, slowly digestible starch, fiber, phenolic compounds, and other bioactive molecules that could be separated and processed to obtain value-added ingredients with techno-functional and biological potential. The use of common beans in the food industry is a promising alternative to add nutritional and functional ingredients with a low impact on overall consumer acceptance. Researchers are evaluating traditional and novel technologies to develop functionally enhanced common bean ingredients, such as flours, proteins, starch powders, and phenolic extracts that could be introduced as functional ingredient alternatives in the food industry. This review compiles recent information on processing, techno-functional properties, food applications, and the biological potential of common bean ingredients. The evidence shows that incorporating an adequate proportion of common bean ingredients into regular foods such as pasta, bread, or nutritional bars improves their fiber, protein, phenolic compounds, and glycemic index profile without considerably affecting their organoleptic properties. Additionally, common bean consumption has shown health benefits in the gut microbiome, weight control, and the reduction of the risk of developing noncommunicable diseases. However, food matrix interaction studies and comprehensive clinical trials are needed to develop common bean ingredient applications and validate the health benefits over time.
Collapse
Affiliation(s)
- Arturo Alfaro-Diaz
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Alejandro Escobedo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | - Gustavo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
6
|
Zdraveva E, Gaurina Srček V, Kraljić K, Škevin D, Slivac I, Obranović M. Agro-Industrial Plant Proteins in Electrospun Materials for Biomedical Application. Polymers (Basel) 2023; 15:2684. [PMID: 37376328 DOI: 10.3390/polym15122684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Plant proteins are receiving a lot of attention due to their abundance in nature, customizable properties, biodegradability, biocompatibility, and bioactivity. As a result of global sustainability concerns, the availability of novel plant protein sources is rapidly growing, while the extensively studied ones are derived from byproducts of major agro-industrial crops. Owing to their beneficial properties, a significant effort is being made to investigate plant proteins' application in biomedicine, such as making fibrous materials for wound healing, controlled drug release, and tissue regeneration. Electrospinning technology is a versatile platform for creating nanofibrous materials fabricated from biopolymers that can be modified and functionalized for various purposes. This review focuses on recent advancements and promising directions for further research of an electrospun plant protein-based system. The article highlights examples of zein, soy, and wheat proteins to illustrate their electrospinning feasibility and biomedical potential. Similar assessments with proteins from less-represented plant sources, such as canola, pea, taro, and amaranth, are also described.
Collapse
Affiliation(s)
- Emilija Zdraveva
- Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28, 10000 Zagreb, Croatia
| | - Višnja Gaurina Srček
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Klara Kraljić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Dubravka Škevin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Igor Slivac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marko Obranović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Quercetin and Its Fermented Extract as a Potential Inhibitor of Bisphenol A-Exposed HT-29 Colon Cancer Cells’ Viability. Int J Mol Sci 2023; 24:ijms24065604. [PMID: 36982678 PMCID: PMC10052295 DOI: 10.3390/ijms24065604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Bisphenol A (BPA) promotes colon cancer by altering the physiological functions of hormones. Quercetin (Q) can regulate signaling pathways through hormone receptors, inhibiting cancer cells. The antiproliferative effects of Q and its fermented extract (FEQ, obtained by Q gastrointestinal digestion and in vitro colonic fermentation) were analyzed in HT-29 cells exposed to BPA. Polyphenols were quantified in FEQ by HPLC and their antioxidant capacity by DPPH and ORAC. Q and 3,4-dihydroxyphenylacetic acid (DOPAC) were quantified in FEQ. Q and FEQ exhibited antioxidant capacity. Cell viability with Q+BPA and FEQ+BPA was 60% and 50%, respectively; less than 20% of dead cells were associated with the necrosis process (LDH). Treatments with Q and Q+BPA induced cell cycle arrest in the G0/G1 phase, and FEQ and FEQ+BPA in the S phase. Compared with other treatments, Q positively modulated ESR2 and GPR30 genes. Using a gene microarray of the p53 pathway, Q, Q+BPA, FEQ and FEQ+BPA positively modulated genes involved in apoptosis and cell cycle arrest; bisphenol inhibited the expression of pro-apoptotic and cell cycle repressor genes. In silico analyses demonstrated the binding affinity of Q > BPA > DOPAC molecules for ERα and ERβ. Further studies are needed to understand the role of disruptors in colon cancer.
Collapse
|
8
|
Lopez-Rodriguez NA, Sanchez-Ortiz LK, Reynoso-Camacho R, Riesgo-Escovar JR, Loarca-Piña G. Chronic Consumption of Moringa Leaf Powder ( Moringa oleifera) Concentration-Dependent Effects in a Drosophila melanogaster Type 2 Diabetes Model. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:285-294. [PMID: 35512766 DOI: 10.1080/07315724.2022.2034068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The metabolic effects of chronic consumption of food laced with different doses of moringa leaf powder (MLP) were assessed using a heteroallelic mutant of the sole insulin receptor gene of Drosophila melanogaster (InR), and the yellow,white (y,w) control stock. METHODS The MLP composition was partially determined. Both strains were raised in a standard diet (SD) or in a SD supplemented with different MLP doses (0.5, 1.5, 2.5, 4.0, and 5.5%) until 4-5 days of emergence. Afterward, the total carbohydrate, lipid, glucose, and triacylglyceride levels were measured in the flies. Additionally, survival and weight changes were reported. For metabolic tests, female and male virgin flies were evaluated separately. RESULTS Low MLP supplementation improved carbohydrate and glucose levels in the y,w strain. Additionally, the InR-mutant strain reported lower lipid content when subjected to the same regimes. Survival improved in both strains with low MLP doses, while chronic consumption of high MLP doses resulted in triacylglycerides increase, weight gain, and survival reduction. CONCLUSION Low doses of MLP supplementation improves some metabolic parameters that affect flies' survival, especially in the y,w strain. Furthermore, the same low doses of MLP treatments also resulted in metabolic improvements in the InR-mutant flies; however, MLP consumption levels should be carefully assessed. Supplemental data for this article is available online at.
Collapse
Affiliation(s)
- Norma A Lopez-Rodriguez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro, Qro, Mexico
| | - Laura K Sanchez-Ortiz
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro, Qro, Mexico
| | - Rosalía Reynoso-Camacho
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro, Qro, Mexico
| | - Juan R Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro, Qro, Mexico
| |
Collapse
|
9
|
Flours from popped grains: Physicochemical, thermal, rheological, and techno-functional properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Soto KM, Luzardo-Ocampo I, López-Romero JM, Mendoza S, Loarca-Piña G, Rivera-Muñoz EM, Manzano-Ramírez A. Gold Nanoparticles Synthesized with Common Mullein (Verbascum thapsus) and Castor Bean (Ricinus communis) Ethanolic Extracts Displayed Antiproliferative Effects and induced Caspase 3 Activity in Human HT29 and SW480 Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14102069. [PMID: 36297503 PMCID: PMC9609588 DOI: 10.3390/pharmaceutics14102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are promising nanomaterials exhibiting anti-cancer effects. Green AuNPs synthesis using plant extracts can be used to achieve stable and beneficial nanoparticles due to their content of bioactive compounds. This research aimed to synthesize and evaluate the antiproliferative and caspase-3 activity induction of green AuNPs synthesized with common mullein (V. thapsus) flowers (AuNPsME) and castor bean (R. communis) leaves (AuNPsCE) ethanolic extracts in human HT29 and SW480 colorectal cancer cells. Their effect was compared with chemically synthesized AuNPs (AuNPsCS). The extracts mainly contained p-coumaric acid (71.88–79.93 µg/g), ferulic acid (19.07–310.71 µg/g), and rutin (8.14–13.31 µg/g). The obtained nanoparticles presented typical FT-IR bands confirming the inclusion of polyphenols from V. thapsus and R. communis and spherical/quasi-spherical morphologies with diameters in the 20.06–37.14 nm range. The nanoparticles (20–200 µg/mL) showed antiproliferative effects in both cell lines, with AuNPsCE being the most potent (IC50 HT29: 110.10 and IC50SW480: 64.57 µg/mL). The AuNPsCS showed the lowest intracellular reactive oxygen species (ROS) generation in SW480 cells. All treatments induced caspase 3/7 activity to a similar or greater extent than 30 mM H2O2-treated cells. Results indicated the suitability of V. thapsus and R. communis extracts to synthesize AuNPs, displaying a stronger antiproliferative effect than AuNPsCS.
Collapse
Affiliation(s)
- Karen M. Soto
- Centro de Investigaciones y de Estudios Avanzados del I. P. N. Unidad Querétaro, Queretaro 76230, Mexico
- Correspondence: (K.M.S.); (A.M.-R.)
| | - Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM-Campus Juriquilla), Queretaro 76230, Mexico
| | - José M. López-Romero
- Centro de Investigaciones y de Estudios Avanzados del I. P. N. Unidad Querétaro, Queretaro 76230, Mexico
| | - Sandra Mendoza
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Queretaro 76010, Mexico
| | - Guadalupe Loarca-Piña
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Queretaro 76010, Mexico
| | - Eric M. Rivera-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM-Campus Juriquilla), Queretaro 76230, Mexico
| | - Alejandro Manzano-Ramírez
- Centro de Investigaciones y de Estudios Avanzados del I. P. N. Unidad Querétaro, Queretaro 76230, Mexico
- Correspondence: (K.M.S.); (A.M.-R.)
| |
Collapse
|
11
|
Arango-Varela SS, Luzardo-Ocampo I, Maldonado-Celis ME. Andean berry (Vaccinium meridionale Swartz) juice, in combination with Aspirin, displayed antiproliferative and pro-apoptotic mechanisms in vitro while exhibiting protective effects against AOM-induced colorectal cancer in vivo. Food Res Int 2022; 157:111244. [DOI: 10.1016/j.foodres.2022.111244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022]
|
12
|
Ramírez-Jiménez AK, Luzardo-Ocampo I, Cuellar-Nuñez ML, Anaya-Loyola MA, León-Galván MF, Loarca-Piña G. Daily Intake of a Phaseolus vulgaris L. Snack Bar Attenuates Hypertriglyceridemia and Improves Lipid Metabolism-Associated Plasma Proteins in Mexican Women: A Randomized Clinical Trial. Front Nutr 2022; 9:890136. [PMID: 35719139 PMCID: PMC9204147 DOI: 10.3389/fnut.2022.890136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Current efforts to prevent dyslipidemia are focused on the development of functional products as an alternative for hypertriglyceridemia management. This study assessed the metabolic effect of the daily consumption of a bean and oats snack bar (BOSB) on hypertriglyceridemia biomarkers among Mexican women. An 8-weeks randomized parallel clinical trial (ID: NCT0496694, https://clinicaltrials.gov/ct2/show/NCT04966494) was conducted with 26 hypertriglyceridemic women allocated to BOSB group (TG = 208.18 ± 56.97 mg/dL) and control group (TG = 182.28 ± 51.39 mg/dL). Only the BOSB group consumed 50 g of the product per day. Fasting blood samples were taken from women with an adherence ≥ 90%. A targeted proteomic analysis with plasma samples of control and BOSB groups were conducted using a human obesity antibody array kit and bioinformatic tools provided by the Ingenuity Pathways Analysis (IPA) software. Serum TG levels in the BOSB group decreased by 37.80% (132.04 ± 27.83 mg/dL) compared with the control group (178.87 ± 32.01 mg/dL); glucose levels decreased by 5.69% in the BOSB group (87.55 ± 3.36 mg/dL). A modest body weight (5%) reduction was also found. Forty proteins were differentially modulated by the BOSB consumption (fold change > 1.2). The proteomic analysis revealed the involvement of BOSB bioactives in prevention of monocytes recruitment and localized inflammatory response, inhibition of pre-adipocyte maturation and adipogenesis, inhibition of hepatic b-oxidation, and potential satiety regulation. These results are promising since the mere intervention with the BOSB reduced serum TG without diet restriction, giving insights for further research in prevention of hypertriglyceridemia.
Collapse
Affiliation(s)
| | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Queretaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | | | | | - Ma. Fabiola León-Galván
- Life Science Division, Graduate Program in Biosciences, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Mexico
- Life Science Division, Food Department, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Mexico
| | - Guadalupe Loarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Queretaro, Mexico
- *Correspondence: Guadalupe Loarca-Piña,
| |
Collapse
|
13
|
Burgos-Araiza AK, Gaytán-Martínez M, Ramírez-Jiménez AK, de la Luz Reyes-Vega M. Sensory and process optimization of a mango bagasse-based beverage with high fiber content and low glycemic index. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:606-614. [PMID: 35153309 PMCID: PMC8814141 DOI: 10.1007/s13197-021-05048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023]
Abstract
This research aimed to develop and optimize a mango bagasse (MB) powdered beverage with high fiber content and low glycemic index, acceptable by their potential consumers. The powdered beverage contained 40 g of mango bagasse (Manguifera indica L., var. Manila), xanthan gum (XG), carboxymethyl cellulose (CMC), and silicon dioxide (SDO). The amount of MB remained constant and, 0.5.%, 1.0%, and 2.0% of CMC, XG and SDO were added according to a factorial design 33. The independent variables evaluated were relative viscosity, sedimentation index, solids (ºBx), and color. Statistical optimization was carried out, looking for low values of viscosity and sedimentation index, obtaining the formulation, 0.5% XG, 0.5% CMC, and 0.5% SDO. A preference test was performed with this formulation using a commercial powdered beverage as a reference, 60 consumers participated. Data showed a preference similar to that of the commercial powered beverage, moreover, the MB beverage had a content of 40.90% of total fiber, from which 15.03% was soluble fiber. The beverage had a low glycemic index (45.99) and its postprandial glycemic curve was stable for 120 min, indicating that the beverage shows potential as a functional food.
Collapse
Affiliation(s)
- Alma Karen Burgos-Araiza
- Posgrado en Diseño e Innovación de Producto, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N Col. Cerro de Las Campanas, C.P. 76010 Santiago de Querétaro, Mexico
| | - Marcela Gaytán-Martínez
- Posgrado en Ciencia y Tecnología de Los Alimentos, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N Col. Cerro de Las Campanas, C.P. 76010 Santiago de Querétaro, Mexico
| | - Aurea Karina Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, C.P. 64849 N.L. Mexico
| | - María de la Luz Reyes-Vega
- Universidad Autónoma de Querétaro, Departamento de Investigación y Posgrados, C.P. 76010 Santiago de Querétaro, Mexico
| |
Collapse
|
14
|
CONTINI GK, SIMÕES DRS, LOS PR, KOTOVICZ V, BEDIN AC, MARTINS A, DEMIATE IM. High nutritional value muffins produced with wholemeal rye (Secale cereale L.) and wholemeal bean (Phaseolus vulgaris L.) flour mix. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.30022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Bento JAC, Bassinello PZ, Carvalho RN, Souza Neto MAD, Caliari M, Soares Júnior MS. Functional and pasting properties of colorful bean (
Phaseolus vulgaris
L) flours: Influence of the cooking method. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Márcio Caliari
- School of Agronomy Federal University of Goiás – UFG Goiânia Brazil
| | | |
Collapse
|
16
|
Physicochemical and morphological characterization of black bean (Phaseolus vulgaris L.) starch and potential application in nano-encapsulation by spray drying. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
López-Ibarra C, Ruiz-López FDJ, Bautista-Villarreal M, Báez-González JG, Rodríguez Romero BA, González-Martínez BE, López-Cabanillas Lomelí M, Vázquez-Rodríguez JA. Protein Concentrates on Tepary Bean ( Phaseolus acutifolius Gray) as a Functional Ingredient: In silico Docking of Tepary Bean Lectin to Peroxisome Proliferator-Activated Receptor Gamma. Front Nutr 2021; 8:661463. [PMID: 34136517 PMCID: PMC8200398 DOI: 10.3389/fnut.2021.661463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The tepary bean (Phaseolus acutifolius Gray) is a US-Mexico frontier native crop, produces high yields in agriculture, and needs to be reconsidered because of its nutritional and functional properties. This study aimed to determine the technological and nutritional properties of flours and protein concentrates of tepary bean, besides determining an in silico agonist effect of tepary bean lectin to peroxisome proliferator-activated receptor gamma (PPAR-γ). We evaluated the technological properties of raw samples (tepary flour and tepary protein concentrate) and cooked samples (tepary flour and tepary protein concentrate). The flours present a significant difference (p < 0.05) concerning protein concentrates in water absorption and oil absorption capacity. The raw samples' emulsifying capacity was higher than that reported in the literature for other legumes, but not the cooked samples. The samples' foaming capacity had no significant difference in treatments (p > 0.05), and cooked tepary bean protein concentrate presented complete gelation at a lower concentration (2%). Nutritionally, raw samples present a protein percentage of 23.46 ± 0.06 and 71.38 ± 0.44 and cooked samples present a protein percentage of 25.27 ± 0.04 and 62.69 ± 0.14; a chemical score of 72, 86, 82, and 72; in vitro protein digestibility (%) = 48.20 ± 0.31, 49.80 ± 0.80, 61.77 ± 1.70, and 63.61 ± 4.19; and C-PER = 0.86, 1.34, 1.93, and 1.81, respectively. All the samples showed methionine + cysteine as the limiting amino acid. All these nutritional data are very similar to the common bean (Phaseolus vulgaris). SDS-PAGE preserves the lectin fraction in both protein concentrates. The in silico study of tepary lectin (PDB: 6tt9) shows that there were seven peptides that presented values below -120 kcal/mol: PEW, VSVGF, PSQK, TTPW, ATSF, ITY, and TSF, with VSVGF, PSQK, and PEW having the highest affinity for active sites of the PAPRγ receptor (binding energies from -5.32 to -7.04 kcal/mol). These peptides could show antiadipogenic or antidiabetic activity based on the intermolecular bond energies and open an interesting research item.
Collapse
Affiliation(s)
- Cristina López-Ibarra
- Laboratorio de Alimentos, Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Felipe de Jesús Ruiz-López
- Laboratorio de Alimentos, Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Minerva Bautista-Villarreal
- Departamento de Alimentos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Juan Gabriel Báez-González
- Departamento de Alimentos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Beatriz Adriana Rodríguez Romero
- Centro de Investigación y Desarrollo en la Industria Alimentaria, Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Blanca Edelia González-Martínez
- Laboratorio de Alimentos, Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Manuel López-Cabanillas Lomelí
- Laboratorio de Alimentos, Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Jesús Alberto Vázquez-Rodríguez
- Laboratorio de Alimentos, Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
18
|
Dufoo-Hurtado E, Olvera-Bautista R, Wall-Medrano A, Loarca-Piña G, Campos-Vega R. In vitro gastrointestinal digestion and simulated colonic fermentation of pistachio nuts determine the bioaccessibility and biosynthesis of chronobiotics. Food Funct 2021; 12:4921-4934. [PMID: 34100470 DOI: 10.1039/d0fo02708a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronodisruption leads to obesity and other metabolic disorders that can be alleviated by food-derived potential chronobiotics, such as phytomelatonin (PMT), phenolic compounds (PCs) and dietary fiber rich pistachios. Pistachios with (PN + SC) or without (PN) the seed coat were investigated for their in vitro chronobiotic potential since they are one of the main reported PMT sources. Consequently we evaluated the bioaccessibility, permeability, and biosynthesis of pistachio chronobiotics, particularly PMT, during gastrointestinal and colonic fermentation. The maximum in vitro bioaccessibility and apparent permeability (efflux-prone) of PCs, flavonoids and PMT were sample-specific [∼1.3% (both), 27 and 3.4% (PN + SC)], but additional amounts (flavonoids > PCs > PMT) were released under simulated colonic conditions. Short-chain fatty acids (SCFAs; 38 mM; >50% butyrate, PN + SC > PN) and some metabolites (e.g., indole, benzaldehyde, phenolic acids, and aliphatic/aromatic hydrocarbons) were detected depending on the sample. The predominant pistachio butyrate production during in vitro colonic fermentation can improve chronodisruption and benefit obese individuals. Pistachio's digestion increases the bioaccessibility and intestinal permeability of potential chronobiotics (PMT and PCs) and the biosynthesis of colonic metabolites (SCFAs, among others) also with chronobiotic potential.
Collapse
Affiliation(s)
- Elisa Dufoo-Hurtado
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Qro, Querétaro 76010, Mexico.
| | | | | | | | | |
Collapse
|
19
|
Caicedo-Lopez LH, Cuellar-Nuñez ML, Luzardo-Ocampo I, Campos-Vega R, Lóarca-Piña G. Colonic metabolites from digested Moringa oleifera leaves induced HT-29 cell death via apoptosis, necrosis, and autophagy. Int J Food Sci Nutr 2020; 72:485-498. [PMID: 33302731 DOI: 10.1080/09637486.2020.1849039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Colorectal cancer is an important concern in modern society. Risk factors such as the diet indicate the need to find healthy food products displaying additional health benefits. This study aimed to characterise and evaluate the impact of the colonic metabolites from the fermented non-digestible fraction of Moringa oleifera (MO) leaves (FNFM) on cell death mechanisms from HT-29 cells. MO leaves were digested in vitro, and the 12 h-colonic extract was obtained. FNFM mainly contained morin and chlorogenic acids (41.97 and 25.33 µg/g sample). Butyric acid was ranked as the most important metabolite of FNFM. The FNFM exerted antiproliferative effect against HT-29 colorectal cancer cells (half lethal concentration, LC50: 5.9 mL/100 mL). Compared to untreated control, LC50 increased H2O2 production (149.43%); induced apoptosis (119.02%), autophagy (75.60%), and necrosis (87.72%). These results suggested that digested MO colonic metabolites exert antiproliferative effect against HT-29 cells, providing additional health benefits associated with MO consumption.
Collapse
Affiliation(s)
- Laura H Caicedo-Lopez
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico.,Biosystems Engineering Group, School of Engineering, Universidad Autonoma de Queretaro, Qro, Mexico
| | | | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| | - Rocio Campos-Vega
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| | - Guadalupe Lóarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Qro, Mexico
| |
Collapse
|
20
|
Arango-Varela SS, Luzardo-Ocampo I, Maldonado-Celis ME, Campos-Vega R. Andean berry (Vaccinium meridionale Swartz) juice in combination with Aspirin modulated anti-inflammatory markers on LPS-stimulated RAW 264.7 macrophages. Food Res Int 2020; 137:109541. [DOI: 10.1016/j.foodres.2020.109541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
|
21
|
Prediction of Phytochemical Composition, In Vitro Antioxidant Activity and Individual Phenolic Compounds of Common Beans Using MIR and NIR Spectroscopy. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02457-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Luzardo-Ocampo I, Ramírez-Jiménez AK, Cabrera-Ramírez ÁH, Rodríguez-Castillo N, Campos-Vega R, Loarca-Piña G, Gaytán-Martínez M. Impact of cooking and nixtamalization on the bioaccessibility and antioxidant capacity of phenolic compounds from two sorghum varieties. Food Chem 2019; 309:125684. [PMID: 31699552 DOI: 10.1016/j.foodchem.2019.125684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/28/2023]
Abstract
Sorghum (Sorghum bicolor L. Moench) has been sparsely used as human food due to certain anti-nutritional factors such as tannins that reduce its digestibility, although the grain is an important source of bioactive compounds such as phenolic compounds (PCs). This study aimed to assess the impact of cooking and alkaline cooking (nixtamalization) on the bioaccessibility and antioxidant capacity of PCs of two sorghum varieties (white/red). Nixtamalization was the most effective procedure for the reduction of tannins (74.3%). Gallic acid proved to be the most bioaccessible PC (6359 μg/g). The total phenolics and condensed tannins correlated with the antioxidant capacity (ABTS/DPPH; R2: 0.30-0.43, p < 0.05). These results confirm the potential of thermal procedures to significantly modify the bioaccessibility of sorghum compounds, enhancing their concentrations and reducing anti-nutritional factors (tannins) while improving their antioxidant capacity.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, Santiago de Querétaro, Querétaro C.P. 76010, Mexico
| | - Aurea K Ramírez-Jiménez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico
| | - Ángel H Cabrera-Ramírez
- Instituto Politécnico Nacional, CICATA-IPN Unidad Querétaro, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P.76090 Santiago de Querétaro, Querétaro, Mexico
| | - N Rodríguez-Castillo
- Facultad de Química, Universidad Autónoma de Querétaro. Centro Universitario, Cerro de las Campanas S/N, Santiago de Querétaro, Querétaro C.P. 76010, Mexico
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, Santiago de Querétaro, Querétaro C.P. 76010, Mexico
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, Santiago de Querétaro, Querétaro C.P. 76010, Mexico.
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, Santiago de Querétaro, Querétaro C.P. 76010, Mexico.
| |
Collapse
|
23
|
Aguillón-Osma J, Luzardo-Ocampo I, Cuellar-Nuñez ML, Maldonado-Celis ME, Loango-Chamorro N, Campos-Vega R. Impact of in vitro gastrointestinal digestion on the bioaccessibility and antioxidant capacity of bioactive compounds from Passion fruit (Passiflora edulis) leaves and juice extracts. J Food Biochem 2019; 43:e12879. [PMID: 31353739 DOI: 10.1111/jfbc.12879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/31/2019] [Accepted: 04/11/2019] [Indexed: 11/30/2022]
Abstract
The fruits consumption is highly associated with a lessening in the risk of the chronic noncommunicable diseases. Despite their content of bioactive compounds, physiological conditions might affect their bioaccessibility and biological potential. Hence, the purpose of this research was to evaluate the bioaccessibility and in vitro antioxidant capacity of bioactive compounds (polyphenols, ascorbic acid, and mono/oligosaccharides) from passion fruit (Passiflora edulis) juice and leaves extracts (PJE and PLE, respectively) during an in vitro gastrointestinal digestion. PLE exhibited the highest overall bioaccessibility of phenolics and mono/oligosaccharides. Ascorbic acid and kaempferol were the most bioaccessible (up to 12- and 13-fold, respectively) compounds and showed the highest net permeabilities (0.32-34.65 × 10-5 ). Chlorogenic acid, quercetin, and xylose showed the highest correlation with the antioxidant capacity (ABTS/DPPH methods). These results indicated the ability of digestion to improve bioaccessibility and antioxidant capacity of bioactives compounds from P. edulis extracts. PRACTICAL APPLICATIONS: Several international organizations, World Health Organization (WHO) among them, are actively encouraging an increase in the fruit and vegetable intake worldwide in response to the global rise in noncommunicable diseases, among other actions. Fruits and processed foods are increasingly used in the European food industry. Additionally, exotic and tropical fruits cannot be produced in the European Union, which opens up a variety of opportunities for our Colombian tropical fruits such as mango or exotic fruits such as passion fruit. Evaluating parameters such as bioaccessibility and intestinal permeability of these bioactives derived from both P. edulis juice and leaves extracts contributes with new evidence regarding their stability along the gastrointestinal tract and their consumption as a source of health-promoting compounds. The results of this research are an important achievement on the way to make the transition from basic to applied research. Informing the health benefits of this tropical fruit can stimulate its demand.
Collapse
Affiliation(s)
- Johanny Aguillón-Osma
- Grupo de Enfermedades Cardiovasculares y Metabólicas (GECAVYME), Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - Iván Luzardo-Ocampo
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| | - Mardey Liceth Cuellar-Nuñez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| | | | - Nelsy Loango-Chamorro
- Grupo de Enfermedades Cardiovasculares y Metabólicas (GECAVYME), Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia.,Programa de Biología. Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| |
Collapse
|
24
|
Fruit peels waste for the green synthesis of silver nanoparticles with antimicrobial activity against foodborne pathogens. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Caicedo-Lopez LH, Luzardo-Ocampo I, Cuellar-Nuñez ML, Campos-Vega R, Mendoza S, Loarca-Piña G. Effect of the in vitro gastrointestinal digestion on free-phenolic compounds and mono/oligosaccharides from Moringa oleifera leaves: Bioaccessibility, intestinal permeability and antioxidant capacity. Food Res Int 2018; 120:631-642. [PMID: 31000281 DOI: 10.1016/j.foodres.2018.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023]
Abstract
Moringa oleifera is a plant recognized for its compounds such as dietary fiber (oligosaccharides, amongst others) and polyphenols, with biological activities. These properties depend on bioactive compounds (BC) interactions with food matrix/digestion conditions, which have not been evaluated. Thus, the aim of this study was to evaluate the bioaccessibility, intestinal permeability and antioxidant capacity of BC (free-phenolic compounds (PC); and mono/oligosaccharides (MOS)) from Moringa oleifera leaves (ML) powder during in vitro gastrointestinal digestion. The gallic/caffeic acids, morin, kaempferol, mannose and stachyose showed the highest bioaccessibilities (~6-210%). The PC correlated with the antioxidant capacity (R2: 0.59-0.98, p < .05), whereas gallic/caffeic acids were the highest. The apparent permeability coefficients of bioactive compounds (0.62-36.65 × 10-4 cm/s) and water flux/glucose transport confirmed the model similarity to in vivo experiments. The results suggest that ML digestion dynamically modifies PC/MOS bioaccessibility/antioxidant capacity while most of them are not completely absorbed in the small intestine.
Collapse
Affiliation(s)
- L H Caicedo-Lopez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico
| | - I Luzardo-Ocampo
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico
| | - M L Cuellar-Nuñez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico
| | - R Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico
| | - S Mendoza
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico
| | - G Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico.
| |
Collapse
|
26
|
Ramírez-Jiménez AK, Rangel-Hernández J, Morales-Sánchez E, Loarca-Piña G, Gaytán-Martínez M. Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chem 2018; 276:57-62. [PMID: 30409634 DOI: 10.1016/j.foodchem.2018.09.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/23/2023]
Abstract
We studied the changes in the phytochemicals profile of two instant corn flours produced by different process: traditional nixtamalization process (TN) and by ohmic heating process (OH). The highest total phenolics content was found in the OH flours (OHF), which showed predominance of bound phenolics and free flavonoids compared with the TN flours (TNF). Ferulic acid measured by HPLC-DAD was the most abundant compound in its bound form in the OHF, but decreased by 57% in TNF. The insoluble fiber content was preserved by the OHF (17.49%) and the soluble fiber increased ∼65% compared with TNF. These data suggest that instant corn flours processed by OH preserves the phenolic profile and antioxidant profile similarly than flours processed by TN; furthermore, water waste was reduced significantly, and no effluents were produced in the ohmic heating process.
Collapse
Affiliation(s)
- Aurea K Ramírez-Jiménez
- Instituto Politécnico Nacional, CICATA-IPN Unidad Querétaro, Cerro Blanco No. 141, Col. Colinas del Cimatario, Santiago de Querétaro, Querétaro C.P. 76090, Mexico
| | - Jorge Rangel-Hernández
- Posgrado en Ciencia y Tecnología de los Alimentos, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro Qro C.P. 76010, Mexico
| | - Eduardo Morales-Sánchez
- Instituto Politécnico Nacional, CICATA-IPN Unidad Querétaro, Cerro Blanco No. 141, Col. Colinas del Cimatario, Santiago de Querétaro, Querétaro C.P. 76090, Mexico.
| | - Guadalupe Loarca-Piña
- Posgrado en Ciencia y Tecnología de los Alimentos, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro Qro C.P. 76010, Mexico.
| | - Marcela Gaytán-Martínez
- Posgrado en Ciencia y Tecnología de los Alimentos, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro Qro C.P. 76010, Mexico.
| |
Collapse
|
27
|
Extraction Optimization of Phenolic Extracts from Carioca Bean (Phaseolus vulgaris L.) Using Response Surface Methodology. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1347-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Agudelo CD, Luzardo-Ocampo I, Campos-Vega R, Loarca-Piña G, Maldonado-Celis ME. Bioaccessibility during In Vitro Digestion and Antiproliferative Effect of Bioactive Compounds from Andean Berry ( Vaccinium meridionale Swartz) Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7358-7366. [PMID: 29913068 DOI: 10.1021/acs.jafc.8b01604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Berry consumption is associated with colorectal-cancer chemoprevention, but digestive conditions can affect this property. The bioaccessibility and apparent permeability coefficients of bioactive compounds from Andean Berry Juice (ABJ) after in vitro gastrointestinal digestion and colonic fermentation were analyzed. The antiproliferative effect of the fermented nondigestible fraction was evaluated against SW480 colon-adenocarcinoma cells. Gallic acid displayed the highest bioaccessibility in the mouth, stomach, small intestine, and colon. However, chlorogenic acid exhibited the highest apparent permeability coefficients (up to 1.98 × 10-4 cm/s). The colonic-fermentation fraction showed an increase of ≥50% antiproliferative activity against SW480 cells (19.32%, v/v), equivalent to those of gallic acid (13.04 μg/g), chlorogenic acid (7.07 μg/g), caffeic acid (0.40 μg/g), ellagic acid (7.32 μg/g), rutin (6.50 μg/g), raffinose (0.14 mg/g), stachyose (0.70 mg/g), and xylose (9.41 mg/g). Bioactive compounds from ABJ are bioaccessible through the gastrointestinal tract and colon fermentation, resulting in antiproliferative activity.
Collapse
Affiliation(s)
- Carlos D Agudelo
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales , Universidad de Antioquia , Calle 67 #53-108 , Medellín AA 1226 , Colombia
| | - Ivan Luzardo-Ocampo
- Programa de Posgrado del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry , Universidad Autónoma de Querétaro , Santiago de Querétaro 76010 , México
| | - Rocio Campos-Vega
- Programa de Posgrado del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry , Universidad Autónoma de Querétaro , Santiago de Querétaro 76010 , México
| | - Guadalupe Loarca-Piña
- Programa de Posgrado del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry , Universidad Autónoma de Querétaro , Santiago de Querétaro 76010 , México
| | - María E Maldonado-Celis
- Escuela de Nutrición y Dietética , Universidad de Antioquia , Ciudadela de Robledo Carrera 75 # 65-87 , Medellín AA 1226 , Colombia
| |
Collapse
|
29
|
Vázquez-Sánchez K, Martinez-Saez N, Rebollo-Hernanz M, Del Castillo MD, Gaytán-Martínez M, Campos-Vega R. In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds. Food Chem 2018; 261:253-259. [PMID: 29739591 DOI: 10.1016/j.foodchem.2018.04.064] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 11/30/2022]
Abstract
Antioxidant dietary fiber extracted from spent coffee grounds (FSCG) was evaluated as a potential functional food ingredient when incorporated in a food model (biscuits), and digested in vitro under simulated human gastrointestinal conditions. FSCG added to biscuits increased its total dietary fiber, antioxidant capacity after in vitro digestion, bioaccessibility of phenolic compounds (gallic acid and catechin) and amino acids. Furthermore, advanced glycation end products (AGEs), involved in chronic diseases, decreased up to 6-folds in the biscuits containing FSCG when compared with the traditional biscuit. The digestible fraction of biscuits containing the highest amount of FSCG (5 g) displayed the higher inhibiting α-glucosidase activity, correlating with the bioaccessibility of ascorbic acid and catechin. Our study seems to indicate that anti-diabetic compounds may be released in the small intestine during FSCG digestion, where biscuits containing FSCG may be able to beneficially regulate sugar metabolism thereby helping in producing foods friendly for diabetes.
Collapse
Affiliation(s)
- Kenia Vázquez-Sánchez
- Programa en Alimentos del Centro de la Republica (PROPAC), Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico
| | - Nuria Martinez-Saez
- Institute of Food Science Research (CIAL, CSIC-UAM), Food Bioscience Group, Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, CSIC-UAM), Food Bioscience Group, Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Maria Dolores Del Castillo
- Institute of Food Science Research (CIAL, CSIC-UAM), Food Bioscience Group, Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Marcela Gaytán-Martínez
- Programa en Alimentos del Centro de la Republica (PROPAC), Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico
| | - Rocio Campos-Vega
- Programa en Alimentos del Centro de la Republica (PROPAC), Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico.
| |
Collapse
|
30
|
Ramírez-Jiménez AK, Gaytán-Martínez M, Morales-Sánchez E, Loarca-Piña G. Functional properties and sensory value of snack bars added with common bean flour as a source of bioactive compounds. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Los FGB, Zielinski AAF, Wojeicchowski JP, Nogueira A, Demiate IM. Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Santiago-Ramos D, Figueroa-Cárdenas JDD, Véles-Medina JJ, Salazar R. Physicochemical properties of nixtamalized black bean (Phaseolus vulgaris L.) flours. Food Chem 2018; 240:456-462. [DOI: 10.1016/j.foodchem.2017.07.156] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
|
33
|
Takahama U, Hirota S. Interactions of flavonoids with α-amylase and starch slowing down its digestion. Food Funct 2018; 9:677-687. [DOI: 10.1039/c7fo01539a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrophobic flavonoids can suppress starch digestion in the intestine by forming starch-flavonoid complexes.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Health and Nutritional Care
- Faculty of Allied Health Sciences
- University of East Asia
- Shimonoseki
- Japan
| | - Sachiko Hirota
- Department of Health and Nutritional Care
- Faculty of Allied Health Sciences
- University of East Asia
- Shimonoseki
- Japan
| |
Collapse
|
34
|
Cibelli F, Bevilacqua A, Raimondo ML, Campaniello D, Carlucci A, Ciccarone C, Sinigaglia M, Corbo MR. Evaluation of Fungal Growth on Olive-Mill Wastewaters Treated at High Temperature and by High-Pressure Homogenization. Front Microbiol 2017; 8:2515. [PMID: 29312216 PMCID: PMC5735108 DOI: 10.3389/fmicb.2017.02515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
Reuse of olive mill wastewaters (OMWWs) in agriculture represents a significant challenge for health and safety of our planet. Phytotoxic compounds in OMWW generally prohibit use of untreated OMWWs for agricultural irrigation or direct discharge into surface waters. However, pretreated OMWW can have positive effects on chemical and microbiological soil characteristics, to fight against fungal soil-borne pathogens. Low amounts of OMWW following thermal (TT-OMWW) and high-pressure homogenization (HPH-OMWW) pretreatments counteracted growth of some of 12 soil-borne and/or pathogenic fungi examined. With fungal growth measured as standardized change in time to half maximum colony diameter, Δτ, overall, HPH-OMWW showed increased bioactivity, as increased mean Δτ from 3.0 to 4.8 days. Principal component analysis highlighted two fungal groups: Colletotrichum gloeosporioides, Alternaria alternata, Sclerotium rolfsii, and Rosellinia necatrix, with growth strongly inhibited by the treated OMWWs; and Aspergillus ochraceus and Phaeoacremonium parasiticum, with stimulated growth by the treated OMWWs. As a non-thermal treatment, HPH-OMWW generally shows improved positive effects, which potentially arise from preservation of the phenols.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria R. Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| |
Collapse
|
35
|
Baked corn ( Zea mays L.) and bean ( Phaseolus vulgaris L.) snack consumption lowered serum lipids and differentiated liver gene expression in C57BL/6 mice fed a high-fat diet by inhibiting PPARγ and SREBF2. J Nutr Biochem 2017; 50:1-15. [DOI: 10.1016/j.jnutbio.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022]
|
36
|
Physicochemical and nutraceutical properties of moringa (Moringa oleifera) leaves and their effects in an in vivo AOM/DSS-induced colorectal carcinogenesis model. Food Res Int 2017; 105:159-168. [PMID: 29433203 DOI: 10.1016/j.foodres.2017.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/17/2022]
Abstract
Moringa (Moringa oleifera) is a plant that has generated great interest in recent years because of its attributed medicinal properties. The aim of this study was to characterize the bioactive compounds of moringa leaves (MO) and evaluate their effect on a colorectal carcinogenesis model. Twenty-four male CD-1 mice were divided into 4 groups: Group 1 fed with basal diet (negative control/NC); Group 2 received AOM/DSS (positive control); Groups 3 and 4 were fed with basal diet supplemented with moringa leaves (2.5% w/w and 5% w/w, respectively) for 12weeks. Moringa leaves exhibited a high content of dietary fiber (~18.75%) and insoluble dietary fiber (2.29%). There were identified 9 phenolic compounds whereas the chlorogenic and ρ-coumaric acid showed the higher contents (44.23-63.34μg/g and 180.45-707.42μg/g, respectively). Moringa leaves decreased the activity of harmful fecal enzymes (β-glucosidase, β-glucuronidase, tryptophanase and urease up to 40%, 43%, 103% and 266%, respectively) as well tumors incidence in male CD1-mice (~50% with 5% w/v of moringa dose). These findings suggest that the bioactive compounds of moringa such as total dietary fiber and phenolic compounds may have chemopreventive capacity. This is the first study of the suppressive effect of moringa leaves in an in vivo model of AOM/DSS-induced colorectal carcinogenesis.
Collapse
|
37
|
Padhi EM, Ramdath DD. A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Bioaccessibility and antioxidant activity of free phenolic compounds and oligosaccharides from corn ( Zea mays L.) and common bean ( Phaseolus vulgaris L.) chips during in vitro gastrointestinal digestion and simulated colonic fermentation. Food Res Int 2017; 100:304-311. [DOI: 10.1016/j.foodres.2017.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/14/2023]
|
39
|
Gaytán-Martínez M, Cabrera-Ramírez ÁH, Morales-Sánchez E, Ramírez-Jiménez AK, Cruz-Ramírez J, Campos-Vega R, Velazquez G, Loarca-Piña G, Mendoza S. Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Hernández-Arriaga AM, Dave Oomah B, Campos-Vega R. Microbiota source impact in vitro metabolite colonic production and anti-proliferative effect of spent coffee grounds on human colon cancer cells (HT-29). Food Res Int 2017; 97:191-198. [PMID: 28578041 DOI: 10.1016/j.foodres.2017.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022]
Abstract
Human gut flora-mediated non-digestible fraction of spent coffee grounds (hgf-NDSCG) was evaluated for its chemopreventive effect and molecular mechanisms involved on human colon adenocarcinoma HT-29 cell survival using two different microbiota source [lean (L) and overweight (OW)]. The source of human gut flora (hgf) (L or OW) affected the pH of hgf-NDSCG only minimally, but linearly reduced those of hgf-inulin. The variability between lean and overweight microbiota was characterized by the metabolism and/or bioaccessibility of different phenolic metabolites, their intermediate and end products as well as by variable time courses. Apoptosis of colon cancer HT-29 cells depended on the microbiota source with the lean microbiota expressing a low lethal concentration 50 (LC50/L-hgf-NDSCG=13.5%). We demonstrate that NDSCG and its colonic metabolite from lean microbiota induced HT-29 cell apoptosis by reducing catalase and 8-iso-prostaglandin F2α as biomarkers of in vivo oxidative stress as the primary mechanism underlying its overall chemoprotection against colon cancer.
Collapse
Affiliation(s)
- Angélica María Hernández-Arriaga
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Santiago de Querétaro, Qro, Mexico.
| | - B Dave Oomah
- Retired, formerly with the National Bioproducts and Bioprocesses Program, Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Santiago de Querétaro, Qro, Mexico.
| |
Collapse
|
41
|
García-Gutiérrez N, Maldonado-Celis ME, Rojas-López M, Loarca-Piña GF, Campos-Vega R. The fermented non-digestible fraction of spent coffee grounds induces apoptosis in human colon cancer cells (SW480). J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
42
|
Telles AC, Kupski L, Furlong EB. Phenolic compound in beans as protection against mycotoxins. Food Chem 2017; 214:293-299. [DOI: 10.1016/j.foodchem.2016.07.079] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/06/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023]
|
43
|
Guajardo-Flores D, Pérez-Carrillo E, Romo-López I, Ramírez-Valdez LE, Moreno-García BE, Gutiérrez-Uribe JA. Effect of Dehulling and Germination on Physicochemical and Pasting Properties of Black Beans (Phaseolus vulgarisL.). Cereal Chem 2017. [DOI: 10.1094/cchem-02-16-0017-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daniel Guajardo-Flores
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L. Mexico
| | - Esther Pérez-Carrillo
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L. Mexico
| | - Irasema Romo-López
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L. Mexico
| | - Liliana E. Ramírez-Valdez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L. Mexico
| | - Beatriz E. Moreno-García
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L. Mexico
| | - Janet A. Gutiérrez-Uribe
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L. Mexico
| |
Collapse
|
44
|
Herrera-Cazares LA, Hernández-Navarro F, Ramírez-Jiménez AK, Campos-Vega R, Reyes-Vega MDLL, Loarca-Piña G, Morales-Sánchez E, Wall-Medrano A, Gaytán-Martínez M. Mango-bagasse functional-confectionery: vehicle for enhancing bioaccessibility and permeability of phenolic compounds. Food Funct 2017; 8:3906-3916. [DOI: 10.1039/c7fo00873b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Study on bioaccessibility and absorption path of mango bagasse phenolics.
Collapse
Affiliation(s)
- Luz Abril Herrera-Cazares
- Facultad de Química
- Universidad Autónoma de Querétaro
- Centro Universitario Cerro de las Campanas S/N
- Santiago de Querétaro
- Mexico
| | | | | | - Rocío Campos-Vega
- Posgrado en Ciencia y Tecnología de los Alimentos
- Research and Graduate Studies in Food Science
- School of Chemistry
- Universidad Autónoma de Querétaro
- Santiago de Querétaro
| | | | - Guadalupe Loarca-Piña
- Posgrado en Ciencia y Tecnología de los Alimentos
- Research and Graduate Studies in Food Science
- School of Chemistry
- Universidad Autónoma de Querétaro
- Santiago de Querétaro
| | | | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas. Departamento de Ciencias Químico-Biológicas. Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo S/N
- Ciudad Juárez
- Mexico
| | - Marcela Gaytán-Martínez
- Posgrado en Ciencia y Tecnología de los Alimentos
- Research and Graduate Studies in Food Science
- School of Chemistry
- Universidad Autónoma de Querétaro
- Santiago de Querétaro
| |
Collapse
|
45
|
Orak H, Karamać M, Orak A, Amarowicz R. Antioxidant Potential and Phenolic Compounds of Some Widely Consumed Turkish White Bean (Phaseolus vulgaris L.) Varieties. POL J FOOD NUTR SCI 2016. [DOI: 10.1515/pjfns-2016-0022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
46
|
Treviño-Mejía D, Luna-Vital DA, Gaytán-Martínez M, Mendoza S, Loarca-Piña G. Fortification of Commercial Nixtamalized Maize (Zea maysL.) with Common Bean (Phaseolus vulgarisL.) Increased the Nutritional and Nutraceutical Content of Tortillas without Modifying Sensory Properties. J FOOD QUALITY 2016. [DOI: 10.1111/jfq.12251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Daniela Treviño-Mejía
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry; Universidad Autónoma de Querétaro; Querétaro Qro 76010 México
| | - Diego A. Luna-Vital
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry; Universidad Autónoma de Querétaro; Querétaro Qro 76010 México
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry; Universidad Autónoma de Querétaro; Querétaro Qro 76010 México
| | - Sandra Mendoza
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry; Universidad Autónoma de Querétaro; Querétaro Qro 76010 México
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry; Universidad Autónoma de Querétaro; Querétaro Qro 76010 México
| |
Collapse
|
47
|
López-Barrera DM, Vázquez-Sánchez K, Loarca-Piña MGF, Campos-Vega R. Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chem 2016; 212:282-90. [DOI: 10.1016/j.foodchem.2016.05.175] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/11/2016] [Accepted: 05/28/2016] [Indexed: 12/15/2022]
|
48
|
Shariati-Ievari S, Ryland D, Edel A, Nicholson T, Suh M, Aliani M. Sensory and Physicochemical Studies of Thermally Micronized Chickpea (Cicer arietinum) and Green Lentil (Lens culinaris) Flours as Binders in Low-Fat Beef Burgers. J Food Sci 2016; 81:S1230-42. [DOI: 10.1111/1750-3841.13273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/15/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | - Donna Ryland
- Dept. of Human Nutritional Sciences; Univ. of Manitoba; Winnipeg Canada
| | - Andrea Edel
- Dept. of Physiology and Pathophysiology; Univ. of Manitoba; Winnipeg Canada
| | - Tiffany Nicholson
- Dept. of Human Nutritional Sciences; Univ. of Manitoba; Winnipeg Canada
| | - Miyoung Suh
- Dept. of Human Nutritional Sciences; Univ. of Manitoba; Winnipeg Canada
| | - Michel Aliani
- Dept. of Human Nutritional Sciences; Univ. of Manitoba; Winnipeg Canada
- Canadian Centre for Agri-Food Research in Health and Medicine; St. Boniface Hospital Albrechtsen Research Centre; 351 Taché Ave. Winnipeg MB R2H 2A6 Canada
| |
Collapse
|
49
|
Chávez-Santoscoy RA, Lazo-Vélez MA, Serna-Sáldivar SO, Gutiérrez-Uribe JA. Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris) Seed Coats Incorporated into Whole Wheat Bread. Int J Mol Sci 2016; 17:222. [PMID: 26901186 PMCID: PMC4783954 DOI: 10.3390/ijms17020222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
Cereal-based products can be used as vehicles for the delivery of relevant bioactive compounds since they are staple foods for most cultures throughout the world. The health promoting benefits of flavonoids and saponins contained in black bean seed coats have been previously described. In the present work, the effect of adding flavonoids and saponins from black bean seed coat to the typical yeast-leavened whole wheat bread formulation in terms of bread features, organoleptic properties and phytochemical profile was studied. The retention of bioactive compounds was determined and the inhibitory effects of in vitro enzyme digested samples on two colon cancer cell lines (Caco-2 and HT29) was evaluated. The addition of bioactive compounds did not significantly affect baking properties or texture parameters. Among organoleptic properties of enriched breads, only crumb color was affected by the addition of bioactive compounds. However, the use of whole wheat flour partially masked the effect on color. More than 90% of added flavonoids and saponins and 80% of anthocyanins were retained in bread after baking. However, saponins were reduced more than 50% after the in vitro enzyme digestion. The black bean seed coat phytochemicals recovered after in vitro enzyme digestion of enriched breads significantly reduced by 20% the viability of colon cancer cells without affecting standard fibroblast cells (p < 0.05).
Collapse
Affiliation(s)
- Rocio A Chávez-Santoscoy
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California-Campus Tijuana, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, C.P. 22390 Tijuana, B.C., Mexico.
| | - Marco A Lazo-Vélez
- Tecnológico de Monterrey, Campus Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Sergio O Serna-Sáldivar
- Tecnológico de Monterrey, Campus Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Janet A Gutiérrez-Uribe
- Tecnológico de Monterrey, Campus Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| |
Collapse
|
50
|
Gamboa-Gómez CI, Muñoz-Martínez A, Rocha-Guzmán NE, Gallegos-Infante JA, Moreno-Jiménez MR, González-Herrera SM, Soto-Cruz O, González-Laredo RF. Changes in Phytochemical and Antioxidant Potential of Tempeh Common Bean Flour from Two Selected Cultivars Influenced by Temperature and Fermentation Time. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Claudia I. Gamboa-Gómez
- Chemical and Biochemical Engineering; Instituto Tecnológico de Durango; Felipe Pescador 1830 Ote. Durango 34080 Durango Mexico
| | - Abigail Muñoz-Martínez
- Chemical and Biochemical Engineering; Instituto Tecnológico de Durango; Felipe Pescador 1830 Ote. Durango 34080 Durango Mexico
| | - Nuria E. Rocha-Guzmán
- Chemical and Biochemical Engineering; Instituto Tecnológico de Durango; Felipe Pescador 1830 Ote. Durango 34080 Durango Mexico
| | - J. Alberto Gallegos-Infante
- Chemical and Biochemical Engineering; Instituto Tecnológico de Durango; Felipe Pescador 1830 Ote. Durango 34080 Durango Mexico
| | - Martha R. Moreno-Jiménez
- Chemical and Biochemical Engineering; Instituto Tecnológico de Durango; Felipe Pescador 1830 Ote. Durango 34080 Durango Mexico
| | - Silvia M. González-Herrera
- Chemical and Biochemical Engineering; Instituto Tecnológico de Durango; Felipe Pescador 1830 Ote. Durango 34080 Durango Mexico
| | - Oscar Soto-Cruz
- Chemical and Biochemical Engineering; Instituto Tecnológico de Durango; Felipe Pescador 1830 Ote. Durango 34080 Durango Mexico
| | - Rubén F. González-Laredo
- Chemical and Biochemical Engineering; Instituto Tecnológico de Durango; Felipe Pescador 1830 Ote. Durango 34080 Durango Mexico
| |
Collapse
|