1
|
Chaudhary MN, Li X, Yang S, Wang D, Luo L, Zeng L, Luo W. Microencapsulation Efficiency of Carboxymethylcellulose, Gelatin, Maltodextrin, and Acacia for Aroma Preservation in Jasmine Instant Tea. Gels 2024; 10:670. [PMID: 39451323 PMCID: PMC11507381 DOI: 10.3390/gels10100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Enhancing the sensory appeal of jasmine instant tea, particularly its aroma, poses a significant challenge due to the loss of volatile organic compounds during conventional processing. This study introduces a novel approach to address this issue through the application of microencapsulation techniques, aimed at preserving these key aromatic elements. Our investigation focused on the encapsulating agents gelatin, acacia gum, carboxymethylcellulose (CMC), and maltodextrin, chosen for their compatibility with the volatile organic compounds of tea. A statistical analysis was conducted on the analytical results through comprehensive analytical techniques like Principal Component Analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), and Variable Importance in Projection (VIP) analysis for microcapsule characterization. The statistical analysis revealed gelatin to be a particularly effective encapsulating medium, preserving an aroma profile more akin to fresh tea. The statistical analysis confirmed the reliability of these findings, highlighting the potential of microencapsulation in refining the quality of jasmine instant tea products. The results of this research suggest that microencapsulation could be instrumental in improving the sensory quality and shelf life of instant tea products, offering new opportunities for product enhancement in the beverage industry.
Collapse
Affiliation(s)
- Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Xiaolin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Siyue Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China;
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Wei Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Chen X, Lan W, Xie J. Natural phenolic compounds: Antimicrobial properties, antimicrobial mechanisms, and potential utilization in the preservation of aquatic products. Food Chem 2024; 440:138198. [PMID: 38128429 DOI: 10.1016/j.foodchem.2023.138198] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Natural antibacterials have stood out in the last decade due to the growing demand for reducing chemical preservatives in food. In particular, natural phenolic compounds are secondary metabolites produced by plants for numerous functions including antimicrobial defence. Polyphenol has significant antimicrobial activity, but its antimicrobial properties are affected by the cell structure difference of bacteria, the concentration, type, and extraction method of polyphenol, and the treatment time of bacteria exposed to polyphenol. Therefore, this paper analyzed the antibacterial activity and mechanism of polyphenol as an antimicrobial agent. However, there remained significant considerations, including the interaction of polyphenols and food matrix, environmental temperature, and the effect of color and odor of some polyphenols on sensory properties of aquatic products, and the additive amount of polyphenols. On this basis, the application strategies of polyphenols as the antimicrobial agent in aquatic products preservation were reviewed.
Collapse
Affiliation(s)
- Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
3
|
Indriyani NN, Al-Anshori J, Wahyudi T, Nurzaman M, Nurjanah S, Permadi N, Julaeha E. An optimized chitosan/alginate-based microencapsulation of lime peel essential oil and its application as an antibacterial textile. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:989-1007. [PMID: 38340314 DOI: 10.1080/09205063.2024.2313829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
A functional textile immobilized by microcapsules of the lime peel essential oils of C. aurantifolia (LPEO) was prepared and characterized. A varied amount of Chitosan/Alginate (CH/AG) ratios, followed by a mass of LPEO and concentration of sodium tripolyphosphate (STPP) crosslinker, was optimized sequentially to coacervate LPEO using a Tween 80 emulsifier. An antibacterial assay against both Gram-positive and Gram-negative bacteria was further evaluated for the embedded microcapsules. The LPEO (0.2 g) was effectively coacervated by CH/AG (5:3) crosslinked by 2% of STTP to give a yield, oil content (OC), and encapsulation efficiency (EE) of 53.45 ± 2.16%, 65.08 ± 2.60% and 85.04 ± 0.70% respectively. A rough spherical shape of LPEO microcapsules was homogeneously observed with an average particle size of 0.757 mm. An Avrami's kinetic model revealed the release mechanism of the core following zero-order kinetics (k = 1.11 ± 0.13 × 10-9 s-1, Ea = 70.21 kJ/mol). The LPEO microcapsules demonstrated good thermal stability up to 122 °C and maintained 38% OC at ambient temperature for four weeks. A 70.34 ± 4.16% of the LPEO microcapsules were successfully overlaid onto the gauze with citric acid binder and sodium phosphate catalyst. Overall, the immobilized microcapsules exhibited strong inhibition against S. aureus and moderate against S. epidermidis, E. coli, and K. pneumonia.
Collapse
Affiliation(s)
- Nastiti Nur Indriyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Jamaludin Al-Anshori
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Tatang Wahyudi
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Mohamad Nurzaman
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Sarifah Nurjanah
- Department of Agriculture of Engineering, Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
4
|
Romanini EB, Rodrigues LM, Stafussa AP, Cantuaria Chierrito TP, Teixeira AF, Corrêa RCG, Madrona GS. Bioactive Compounds from BRS Violet Grape Pomace: An Approach of Extraction and Microencapsulation, Stability Protection and Food Application. PLANTS (BASEL, SWITZERLAND) 2023; 12:3177. [PMID: 37765341 PMCID: PMC10537171 DOI: 10.3390/plants12183177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Microencapsulating phenolic compounds and anthocyanins from grape pomace, a by-product of the food industry, is attractive because of the many beneficial health effects associated with these compounds. At first, we evaluated the cultivar BRS Violeta using microencapsulation, indicating the degree of innovation in the present research. This study aims to microencapsulate grape pomace extract in a combination of maltodextrin and xanthan gum via lyophilization, and determine the protective effect of this microcapsule on the phenolic compounds and anthocyanins. Thus, the microcapsule stability was determined over 120 days, under different temperature conditions (4 and 25 °C) and in the presence or absence of light. Additionally, a gelatin application test was performed to investigate the effect of the microcapsule on color stability. When comparing the extract versus microcapsules, the microcapsule results were better both for total anthocyanins (1.69 to 1.54-fold) and total phenolic compounds (3.06 to 1.74-fold), indicating a longer half-life after encapsulation. The microcapsule application in gelatin demonstrated that the encapsulating matrix retained the color for 30 days. Thus, the encapsulation method can be recommended to preserve the bioactive compounds and the coloration in food products such as gelatin.
Collapse
Affiliation(s)
- Edilson Bruno Romanini
- Postgraduate Program in Food Science, Universidade Estadual de Maringá, Avenida Colombo 5790-Zona 7, Maringá 87020-900, PR, Brazil; (E.B.R.); (L.M.R.); (A.P.S.)
- Instituto Federal do Paraná, Campus Paranavaí, Avenida José Felipe Tequinha, 1400-Jardim das Nacoes, Paranavaí 87703-536, PR, Brazil;
| | - Leticia Misturini Rodrigues
- Postgraduate Program in Food Science, Universidade Estadual de Maringá, Avenida Colombo 5790-Zona 7, Maringá 87020-900, PR, Brazil; (E.B.R.); (L.M.R.); (A.P.S.)
| | - Ana Paula Stafussa
- Postgraduate Program in Food Science, Universidade Estadual de Maringá, Avenida Colombo 5790-Zona 7, Maringá 87020-900, PR, Brazil; (E.B.R.); (L.M.R.); (A.P.S.)
| | - Talita Perez Cantuaria Chierrito
- School of Pharmaceutical Sciences of Ribeirão Preto, University de São Paulo, Avenida do Café, Ribeirão Preto 14040-903, SP, Brazil;
| | - Aline Finger Teixeira
- Instituto Federal do Paraná, Campus Paranavaí, Avenida José Felipe Tequinha, 1400-Jardim das Nacoes, Paranavaí 87703-536, PR, Brazil;
| | - Rúbia Carvalho Gomes Corrêa
- Postgraduate Program in Clean Technologies, Cesumar University-UNICESUMAR, Maringá 87050-390, PR, Brazil;
- Cesumar Institute of Science, Technology and Innovation-ICETI, Maringá 87050-390, PR, Brazil
| | - Grasiele Scaramal Madrona
- Postgraduate Program in Food Science, Universidade Estadual de Maringá, Avenida Colombo 5790-Zona 7, Maringá 87020-900, PR, Brazil; (E.B.R.); (L.M.R.); (A.P.S.)
- Department of Food Engineering, State Universidade Estadual de Maringá, Avenida Colombo 5790-Zona 7, Maringá 87020-900, PR, Brazil
| |
Collapse
|
5
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
6
|
Diaz-Ramirez J, Basasoro S, González K, Eceiza A, Retegi A, Gabilondo N. Integral Valorization of Grape Pomace for Antioxidant Pickering Emulsions. Antioxidants (Basel) 2023; 12:antiox12051064. [PMID: 37237930 DOI: 10.3390/antiox12051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Full harnessing of grape pomace (GP) agricultural waste for the preparation of antioxidant Pickering emulsions is presented herein. Bacterial cellulose (BC) and polyphenolic extract (GPPE) were both prepared from GP. Rod-like BC nanocrystals up to 1.5 µm in length and 5-30 nm in width were obtained through enzymatic hydrolysis (EH). The GPPE obtained through ultrasound-assisted hydroalcoholic solvent extraction presented excellent antioxidant properties assessed using DPPH, ABTS and TPC assays. The BCNC-GPPE complex formation improved the colloidal stability of BCNC aqueous dispersions by decreasing the Z potential value up to -35 mV and prolonged the antioxidant half-life of GPPE up to 2.5 times. The antioxidant activity of the complex was demonstrated by the decrease in conjugate diene (CD) formation in olive oil-in-water emulsions, whereas the measured emulsification ratio (ER) and droplet mean size of hexadecane-in-water emulsions confirmed the physical stability improvement in all cases. The synergistic effect between nanocellulose and GPPE resulted in promising novel emulsions with prolonged physical and oxidative stability.
Collapse
Affiliation(s)
- Julen Diaz-Ramirez
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Senda Basasoro
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Kizkitza González
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Arantxa Eceiza
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Aloña Retegi
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Nagore Gabilondo
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
7
|
Villate A, San Nicolas M, Olivares M, Aizpurua-Olaizola O, Usobiaga A. Chitosan-Coated Alginate Microcapsules of a Full-Spectrum Cannabis Extract: Characterization, Long-Term Stability and In Vitro Bioaccessibility. Pharmaceutics 2023; 15:859. [PMID: 36986720 PMCID: PMC10058102 DOI: 10.3390/pharmaceutics15030859] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Cannabinoids present in Cannabis sativa are increasingly used in medicine due to their therapeutic potential. Moreover, the synergistic interaction between different cannabinoids and other plant constituents has led to the development of full-spectrum formulations for therapeutic treatments. In this work, the microencapsulation of a full-spectrum extract via vibration microencapsulation nozzle technique using chitosan-coated alginate is proposed to obtain an edible pharmaceutical-grade product. The suitability of microcapsules was assessed by their physicochemical characterization, long-term stability in three different storage conditions and in vitro gastrointestinal release. The synthetized microcapsules contained mainly ∆9-tetrahydrocannabinol (THC)-type and cannabinol (CBN)-type cannabinoids and had a mean size of 460 ± 260 µm and a mean sphericity of 0.5 ± 0.3. The stability assays revealed that capsules should be stored only at 4 °C in darkness to maintain their cannabinoid profile. In addition, based on the in vitro experiments, a fast intestinal release of cannabinoids ensures a medium-high bioaccessibility (57-77%) of therapeutically relevant compounds. The full characterization of microcapsules indicates that they could be used for the design of further full-spectrum cannabis oral formulations.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | - Markel San Nicolas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
- Sovereign Fields S.L., Larramendi Kalea 3, 20006 Donostia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | | | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| |
Collapse
|
8
|
Oleszek M, Kowalska I, Bertuzzi T, Oleszek W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules 2023; 28:342. [PMID: 36615534 PMCID: PMC9823944 DOI: 10.3390/molecules28010342] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023] Open
Abstract
Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-industrial residues as a source of high-value by-products is very important. The main objective of the paper is a review of the newest studies on biologically active compounds included in non-edible parts of crops with the highest amount of waste generated annually in the world. The review also provides the newest data on the chemical and biological properties, as well as the potential application of phytochemicals from such waste. The review shows that, in 2020, there were above 6 billion tonnes of residues only from the most popular crops. The greatest amount is generated during sugar, oil, and flour production. All described residues contain valuable phytochemicals that exhibit antioxidant, antimicrobial and very often anti-cancer activity. Many studies show interesting applications, mainly in pharmaceuticals and food production, but also in agriculture and wastewater remediation, as well as metal and steel industries.
Collapse
Affiliation(s)
- Marta Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Terenzio Bertuzzi
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
9
|
Sasikumar R, Sharma P, Jaiswal AK. Alginate and β-lactoglobulin matrix as wall materials for encapsulation of polyphenols to improve efficiency and stability. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
The present study aimed at developing novel encapsulate materials of calcium-alginate and β-lactoglobulin complex for polyphenols using the jet-flow nozzle vibration method. Encapsulated microbeads were characterized using SEM, FTIR, DSC, and MSI. The encapsulation efficiency of the microbeads varied depending upon the coating material in the range of 74.17–84.87%. Calcium-alginate-β-lactoglobulin microbeads (CABM) exhibited a smooth surface and uniform shape with an average particle size of 1053.73 nm. CABM also showed better thermal and storage stabilities as compared to calcium alginate microbeads. The CABM resulted in excellent target release of polyphenols (84%) in the intestine, which was more than 3-fold the bio-accessibility offered by free polyphenol powder. Further study on individual phenolic acids after simulated in-vitro digestion (SIVD), photo-oxidative and osmotic stress revealed that CABM significantly retained a higher amount of polyphenols and exhibited improved antioxidant capacity after SIVD environment, and may have high industrial application for nutraceutical production.
Collapse
Affiliation(s)
- Raju Sasikumar
- Department of Agribusiness Management and Food Technology , North-Eastern Hill University (NEHU), Tura Campus , Chasingre-794002 , Tura , WGH , Meghalaya , India
| | - Paras Sharma
- Department of Food Technology, Mizoram University , Aizawl-796004 , Mizoram , India
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health , Technological University Dublin–City Campus , Central Quad, Grangegorman , Dublin D07 ADY7 , Ireland
| |
Collapse
|
10
|
Chemical characterization and microencapsulation of extracellular fungal pigments. Appl Microbiol Biotechnol 2022; 106:8021-8034. [PMID: 36370157 DOI: 10.1007/s00253-022-12255-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
In this work, extracellular colored metabolites obtained from the filamentous fungi Talaromyces australis and Penicillium murcianum, isolated in the Andean-Patagonian native forests of Chile, were studied as prospect compounds to increase the sustainability of cosmetic products. The chemical and antioxidant properties of these natural pigments were characterized and strategies for their microencapsulation were also studied. UHPLC/MS-MS analyses indicated that the predominant metabolites detected in the cultures of P. murcianum were monascin (m/z = 411.15) and monashexenone (m/z = 319.10), while athrorosin H (m/z = 458.20) and damnacanthal (m/z = 281.05) were detected in cultures of T. australis. ORAC tests revealed that P. murcianum's metabolites had the greatest antioxidant properties with values higher than 2000 μmol of trolox equivalents/g. The fungal metabolites were successfully microencapsulated by ionic gelation into structures made of 1.3% sodium alginate, 0.2% chitosan, and 0.07% hyaluronic acid. The microencapsulation process generated structures of 543.57 ± 0.13 µm of mean diameter (d50) with an efficiency of 30% for P. murcianum, and 329.59 ± 0.15 µm of mean diameter (d50) and 40% efficiency, for T. australis. The chemical and biological characterization show the biotechnological potential of these fungal species to obtain pigments with antioxidant activity that could be useful in the cosmetic industry. The encapsulation process enables the production of easy-to-handle dry powder from the fungal metabolites, which could be potentially marketed as a functional cosmetic ingredient. KEY POINTS: • The predominant fungal pigments were of azaphilone and anthraquinoid classes. • The fungal pigments showed high antioxidant activity by ORAC assay. • Fungal pigment microcapsules obtained by ionic gelation were characterized.
Collapse
|
11
|
Tavlasoglu M, Ozkan G, Capanoglu E. Entrapment of Black Carrot Anthocyanins by Ionic Gelation: Preparation, Characterization, and Application as a Natural Colorant in Yoghurt. ACS OMEGA 2022; 7:32481-32488. [PMID: 36120039 PMCID: PMC9475623 DOI: 10.1021/acsomega.2c03962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Black carrot (BC) with its potential health benefits due to the greater amount of anthocyanins and the potent antioxidant activity could be utilized as a natural colorant. The objective of this study was the entrapment of BC anthocyanins by external ionic gelation technique within the biopolymer matrix including pectin, alginate, and the mixture of both. Beads were characterized in terms of entrapment efficiency (EE), morphology, total anthocyanin content, and antioxidant capacity measured by the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid assay. Furthermore, the color of the beads as well as yoghurt samples fortified with BC-containing beads were evaluated during storage at 4 °C for 4 weeks. While the EE for anthocyanins ranged between 47.3 and 96.6%, the antioxidant capacity changed from 50.4 to 97.7%. The maximum anthocyanin retention was found as 91.7% for 1% BC containing 1% pectin (P) + 1% alginate (A)-based beads after 4 weeks of storage. In addition, anthocyanin protection reached up to 62% and antioxidant capacity up to 55.6% in the fortified yoghurt samples containing A-based beads during storage. It is concluded that external ionic gelation could be a feasible method for BC anthocyanins due to its protective effect against acidic environment.
Collapse
|
12
|
In Vitro Release of Anthocyanins from Microencapsulated Natal Plum (Carissa macrocarpa) Phenolic Extract in Alginate/Psyllium Mucilage Beads. Foods 2022; 11:foods11172550. [PMID: 36076736 PMCID: PMC9455463 DOI: 10.3390/foods11172550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Natal plum (Carissa macrocarpa) contains anthocyanins, cyanidin 3-O-β-sambubioside (Cy-3-Sa), and cyanidin 3-O-glucoside (Cy-3-G) that possess great bioactive properties. During in vitro gastrointestinal digestion, Cy-3-Sa and Cy-3-G are highly sensitive to pH changes and have low bioaccessibility rates of 7.9% and 22%, respectively. This study aimed to therefore use microencapsulation techniques to improve the bioaccessibility of Cy-3-Sa and Cy-3-G. The crude anthocyanin-rich extract was extracted from freeze-dried Natal plum fruit using ultrasonic-assisted ethanol extraction. The anthocyanin-rich extract was encapsulated using the ionic gelation method. Four distinct carrier agents, namely sodium alginate, pectin, xanthan gum and psyllium mucilage were used to form the wall materials. Encapsulation efficiency was highest for alginate/psyllium mucilage beads (93.67%), while alginate showed the least efficiency (86.80%). Scanning Electron Microscopy revealed a cracked and porous structure for the Natal plum extract and a continuous smooth structure for all the beads. Fourier transform infrared spectroscopy showed peaks at 3300 and 1610 cm−1, confirming the presence of polyphenols and polysaccharides in all beads. Thermal stability was higher for the alginate/psyllium mucilage beads and the observed thermal transitions were due to the bonds formed between the polymers and the polyphenols. Alginate beads combined with xanthan gum, pectin, and psyllium mucilage showed a prolonged release of anthocyanins compared to alginate in vitro alone. The highest anthocyanin bioaccessibility was obtained from alginate/psyllium mucilage beads (85.42 ± 1.03%). The results showed the effectiveness of alginate/psyllium mucilage beads in improving stability and in vitro anthocyanin release.
Collapse
|
13
|
Corrêa-Filho LC, Santos DI, Brito L, Moldão-Martins M, Alves VD. Storage Stability and In Vitro Bioaccessibility of Microencapsulated Tomato (Solanum Lycopersicum L.) Pomace Extract. Bioengineering (Basel) 2022; 9:bioengineering9070311. [PMID: 35877362 PMCID: PMC9312032 DOI: 10.3390/bioengineering9070311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Tomato pomace is rich in carotenoids (mainly lycopene), which are related to important bioactive properties. In general, carotenoids are known to react easily under environmental conditions, which may create a barrier in producing stable functional components for food. This work intended to evaluate the storage stability and in vitro release of lycopene from encapsulated tomato pomace extract, and its bioaccessibility when encapsulates were incorporated in yogurt. Microencapsulation assays were carried out with tomato pomace extract as the core material and arabic gum or inulin (10 and 20 wt%) as wall materials by spray drying (160 and 200 °C). The storage stability results indicate that lycopene degradation was highly influenced by the presence of oxygen and light, even when encapsulated. In vitro release studies revealed that 63% of encapsulated lycopene was released from the arabic gum particles in simulated gastric fluid, whereas for the inulin particles, the release was only around 13%. The feed composition with 20% inulin showed the best protective ability and the one that enabled releasing the bioactives preferentially in the intestine. The bioaccessibility of the microencapsulated lycopene added to yogurt increased during simulated gastrointestinal digestion as compared to the microencapsulated lycopene alone. We anticipate a high potential for the inulin microparticles containing lycopene to be used in functional food formulations.
Collapse
|
14
|
de Moura SCSR, Schettini GN, Gallina DA, Dutra Alvim I. Microencapsulation of Hibiscus bioactives and its application in yogurt. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ultrasonic-assisted extraction, calcium alginate encapsulation and storage stability of mulberry pomace phenolics. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Chen Z, Farag MA, Zhong Z, Zhang C, Yang Y, Wang S, Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv Drug Deliv Rev 2021; 176:113870. [PMID: 34280511 DOI: 10.1016/j.addr.2021.113870] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, American University in Cairo AUC, Cairo, Egypt
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
17
|
Stachowiak N, Kowalonek J, Kozlowska J. Freeze-Dried Matrices Composed of Degradable Polymers with Surfactant-Loaded Microparticles Based on Pectin and Sodium Alginate. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3044. [PMID: 34204985 PMCID: PMC8199913 DOI: 10.3390/ma14113044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022]
Abstract
Gelatin/polyvinylpyrrolidone/hydroxyethyl cellulose/glycerol porous matrices with microspheres made of sodium alginate or pectin and sodium alginate were produced. A surfactant was loaded into these microparticles. The microspheres were characterized using optical microscopy, scanning electron microscopy SEM, and laser diffraction particle size analyzer. For the matrices, the density, porosity, swelling capacity, dissolution in phosphate saline buffer were determined and SEM, mechanical, and thermogravimetric studies were applied. The results showed that the size of the two-component microspheres was slightly larger than that of single-ingredient microparticles. The images confirmed the spherical shape of the microparticles. The prepared matrices had high water uptake ability and porosity due to the presence of hydrophilic polymers. The presence of microparticles in the matrices caused a decrease in these parameters. Degradation of the composites with the microspheres was significantly faster than the matrix without them. The addition of microparticles increased the stiffness and toughness of the prepared materials. The efficiency of the thermal decomposition main stage was reduced in the samples with microspheres, whereas a char residue increased in these composites.
Collapse
Affiliation(s)
- Natalia Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (J.K.); (J.K.)
| | | | | |
Collapse
|
18
|
Moro KIB, Bender ABB, da Silva LP, Penna NG. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02665-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Microencapsulation of jabuticaba extracts (Myrciaria cauliflora): Evaluation of their bioactive and thermal properties in cassava starch biscuits. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Colored Corn: An Up-Date on Metabolites Extraction, Health Implication, and Potential Use. Molecules 2021; 26:molecules26010199. [PMID: 33401767 PMCID: PMC7796034 DOI: 10.3390/molecules26010199] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Colored (orange, pink, red, purple, and blue) corn strongly attracted attention on its healthy properties mainly due to its anthocyanin and carotenoid composition which is also responsible for its pigmentation. The present review summarized the recent updates on the extraction and chemical characterization of the main plant secondary metabolites present in colored seeds, kernel, cob, husk, and silk. The main approaches used to stabilize the extracts have been discussed as well as their food and non-food uses. Both in vitro and in vivo (animal models) studies on the different effects (antibacterial, antimutagenic, antioxidant, and anti-inflammatory activities, effects on metabolic syndrome, diabetes, glucose and lipidic metabolism, and neuroprotection) of pigmented extracts on animal and human health have been summarized.
Collapse
|
21
|
Díaz-Galindo EP, Nesic A, Cabrera-Barjas G, Dublan-García O, Ventura-Aguilar RI, Vázquez-Armenta FJ, Aguilar-Montes de Oca S, Mardones C, Ayala-Zavala JF. Physico-Chemical and Antiadhesive Properties of Poly(Lactic Acid)/Grapevine Cane Extract Films against Food Pathogenic Microorganisms. Polymers (Basel) 2020; 12:polym12122967. [PMID: 33322661 PMCID: PMC7764811 DOI: 10.3390/polym12122967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was evaluation of the physico-chemical properties and adhesion of microorganisms on poly(lactic acid) (PLA)-based films loaded with grapevine cane extract (5-15 wt%). The films were processed in a compression molding machine and characterized by mechanical, thermal, water vapor barrier and microbiological tests. The best physical-chemical properties for PLA film containing 10 wt% of extract were obtained. The addition of 10 wt% of extract into PLA films led to decrease of tensile strength for 52% and increase in elongation at break for 30%. The water vapor barrier of this film formulation was enhanced for 55%. All films showed thermal stability up to 300 °C. The low release of the active compounds from films negatively influenced their antimicrobial and antifungal activity. Botrytis cinerea growth inhibition onto PLA containing extracts (PLA-E) films was in the range between 15 and 35%. On the other side, PLA/extract films exhibited the antiadhesive properties against Pseudomonas aeruginosa, Pectobacterium carotovorum, Saccharomyces pastorianus, and Listeria monocytogenes, which could imply their potential to be used as sustainable food packaging materials for preventing microbial contamination of food.
Collapse
Affiliation(s)
- Edaena Pamela Díaz-Galindo
- Facultad de Química, Universidad Autónoma del Estado de México, km 115 Car, Toluca-Ixtlahuaca, El Cerillo Piedras Blancas, Toluca 50295, Mexico; (E.P.D.-G.); (O.D.-G.)
| | - Aleksandra Nesic
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
- Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
- Correspondence: (G.C.-B.); (J.F.A.-Z.)
| | - Octavio Dublan-García
- Facultad de Química, Universidad Autónoma del Estado de México, km 115 Car, Toluca-Ixtlahuaca, El Cerillo Piedras Blancas, Toluca 50295, Mexico; (E.P.D.-G.); (O.D.-G.)
| | - Rosa Isela Ventura-Aguilar
- CONACYT-Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, San Isidro, Yautepec 62731, Morelos, Mexico;
| | - Francisco Javier Vázquez-Armenta
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico;
| | - Saúl Aguilar-Montes de Oca
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia (CIESA-FMVZ-UAEM), Autopista Toluca-Atlacomulco Km. 15.5, San Cayetano de Morelos, Toluca 50200, Estado de México, Mexico;
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Universidad de Concepción, Barrio Universitario s/n, Concepción P.O. Box 160-C, Concepción 4070386, Mexico;
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico;
- Correspondence: (G.C.-B.); (J.F.A.-Z.)
| |
Collapse
|
22
|
Pedrali D, Barbarito S, Lavelli V. Encapsulation of grape seed phenolics from winemaking byproducts in hydrogel microbeads – Impact of food matrix and processing on the inhibitory activity towards α-glucosidase. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Costa JR, Xavier M, Amado IR, Gonçalves C, Castro PM, Tonon RV, Cabral LMC, Pastrana L, Pintado ME. Polymeric nanoparticles as oral delivery systems for a grape pomace extract towards the improvement of biological activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111551. [PMID: 33321615 DOI: 10.1016/j.msec.2020.111551] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Grape pomace (GP) is a major by-product from the wine industry, known for its bioactive compounds and their impact upon gastrointestinal (GI) health. However, bioaccessibility is often poor due to their degradation during digestion. This work aimed to encapsulate bioactive GP extract (GPE) into chitosan (CS) and alginate (Alg) nanoparticles (NPs) to mitigate degradation in the GI tract. Alg and CS NPs were optimized using a rotatable central composite design and NPs were characterized for their size, polydispersity, zeta potential and total phenolics (TP) association efficiency. The best formulations showed sizes ranging 523-853 nm, polydispersity indexes of 0.11-0.36, zeta potential of -15.0-14.9 mV and TP association efficiencies of 68 and 65%. FTIR confirmed that there was no formation of new chemical groups after association of the polymers with GPE. Both formulations improved the bioaccessibility of different phenolics following in vitro GI digestion, leading to increased antioxidant and antimicrobial activities. Moreover, the permeability of bioactive compounds through a Caco-2/HT29-MTX co-culture was reduced, suggesting a higher residence time in the intestine. Cy5.5 was used for tracking the CS NPs, which did not affect the metabolic activity of Caco-2 and HT29-MTX cells. Confocal microscopy images confirmed the adsorption of NPs to the cellular layer and suggested a reduction of the tight junction protein occludin when cells were incubated with Cy5.5-CS in solution. This study suggests that encapsulation of GPE can offer protection against along the GI tract and improve its biological activity with significant impact for oral delivery applications, including functional foods.
Collapse
Affiliation(s)
- Joana R Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Miguel Xavier
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715 - 330 Braga, Portugal
| | - Isabel R Amado
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715 - 330 Braga, Portugal
| | - Catarina Gonçalves
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715 - 330 Braga, Portugal
| | - Pedro M Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Renata V Tonon
- Embrapa Agroindústria de Alimentos, Av. das Américas, 29501, 23020-470 Rio de Janeiro, RJ, Brazil
| | - Lourdes M C Cabral
- Embrapa Agroindústria de Alimentos, Av. das Américas, 29501, 23020-470 Rio de Janeiro, RJ, Brazil
| | - Lorenzo Pastrana
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715 - 330 Braga, Portugal
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
24
|
Acevedo-Fani A, Dave A, Singh H. Nature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods. Front Chem 2020; 8:564021. [PMID: 33102443 PMCID: PMC7546791 DOI: 10.3389/fchem.2020.564021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022] Open
Abstract
Consumers are demanding more natural, healthy, and high-quality products. The addition of health-promoting substances, such as bioactive compounds, to foods can boost their therapeutic effect. However, the incorporation of bioactive substances into food products involves several technological challenges. They may have low solubility in water or poor stability in the food environment and/or during digestion, resulting in a loss of their therapeutic properties. Over recent years, the encapsulation of bioactive compounds into laboratory-engineered colloidal structures has been successful in overcoming some of these hurdles. However, several nature-assembled colloidal structures could be employed for this purpose and may offer many advantages over laboratory-engineered colloidal structures. For example, the casein micelles and milk fat globules from milk and the oil bodies from seeds were designed by nature to deliver biological material or for storage purposes. These biological functional properties make them good candidates for the encapsulation of bioactive compounds to aid in their addition into foods. This review discusses the structure and biological function of different nature-assembled carriers, preparation/isolation methods, some of the advantages and challenges in their use as bioactive compound delivery systems, and their behavior during digestion.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Palmerston North, New Zealand
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Anant Dave
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
25
|
Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules 2020; 25:molecules25173801. [PMID: 32825580 PMCID: PMC7503870 DOI: 10.3390/molecules25173801] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/02/2023] Open
Abstract
Sea buckthorn (Hippophaë rhamnoides L.) juice with inulin, maltodextrin, and inulin:maltodextrin (1:2 and 2:1) were spray-, freeze- and vacuum-dried at 50, 70 and 90 °C. The study aimed to assess the impact of drying methods and carrier agents on physical properties (moisture content, water activity, true and bulk density, porosity, color parameters, browning index), chemical components (hydroxymethylfurfural and phenolic compounds) and antioxidant capacity of sea buckthorn juice powders. Storage of powders was carried out for six months. Inulin caused stronger water retention in powders than maltodextrin. Vacuum drying provided powders with the highest bulk density. Maltodextrin did not promote browning and HMF formation as strongly as inulin. More phenolic compounds were found in powders with maltodextrin. Storage increased the antioxidant capacity of powders. The results obtained will be useful in optimizing the powders production on an industrial scale, designing attractive food ingredients.
Collapse
|
26
|
Microencapsulation Delivery System in Food Industry—Challenge and the Way Forward. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/7531810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microencapsulation is a promising technique, which provides core materials with protective barrier, good stability, controlled release, and targeting delivery. Compared with the pharmaceutical, cosmetic, and textile industries, food processing has higher requirements for safety and hygiene and calls for quality and nutrition maintenance. This paper reviews the widely used polymers as microcapsule wall materials and the application in different food products, including plant-derived food, animal-derived food, and additives. Also, common preparation technologies (emphasizing advantages and disadvantages), including spray-drying, emulsification, freeze-drying, coacervation, layer-by-layer, extrusion, supercritical, fluidized bed coating, electrospray, solvent evaporation, nanocapsule preparation, and their correlation with selected wall materials in recent 10 years are presented. Personalized design and cheap, efficient, and eco-friendly preparation of microcapsules are urgently required to meet the needs of different processing or storage environments. Moreover, this review may provide a reference for the microencapsulation research interests and development on future exploration.
Collapse
|
27
|
Khorshidian N, Mahboubi A, Kalantari N, Hosseini H, Yousefi M, Arab M, da Cruz AG, Mortazavian AM, Mahdavi FS. Chitosan-Coated Alginate Microcapsules Loaded with Herbal galactagogue Extract: Formulation Optimization and Characterization. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1180-1195. [PMID: 32641931 PMCID: PMC6934978 DOI: 10.22037/ijpr.2019.1100776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many herbs and spices have been recommended traditionally as galactagogues and several commercial formulations prepared using herbs. Due to the presence of various compounds such as polyphenols, flavonoids, isoflavones, and terpenes, bitter and stringent taste is elicited that make the consumption of these herbal preparations unpleasant. Moreover, these compounds are unstable when exposed to environmental conditions. In this regard, different approaches are used for taste masking such as microencapsulation. In the present study, microcapsules containing herbal galactagogue extract were developed through emulsification/external gelation and Box-Behnken design was used to investigate the effects of independent variables (sodium alginate: 1-1.5%, calcium chloride: 0.2-1% and extract concentrations: 1-5%) on encapsulation efficiency (EE%). Following evaluation of the model, the optimum condition of encapsulation process was selected as 1.49% sodium alginate, 0.84 CaCl2, and 1.58% extract with EE% of 77.97%. Microcapsules had an acceptable spherical morphology and the results of Fourier transform-infrared spectroscopy (FTIR) revealed the presence of the extract within the microcapsules. The mean diameters of the uncoated and chitosan-coated microcapsules were 52 and 123 μm and encapsulation yield was 50.21 and 69.7%, respectively. The polydispersity index of 0.45 and 0.48 were an indicative of polydisperse nature of the microcapsules. The loss of flavonoids in microcapsules stored at two different temperatures was insignificant. The in-vitro release in simulated gastric fluid (SGF; pH 1.2) and simulated intestinal fluid (SIF; pH 7.4) were 48.1% and 80.11%, respectively during 24 h. The prepared extract-loaded microcapsules have potential to be used in matrices with neutral pH.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naser Kalantari
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Masoumeh Arab
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adriano Gomez da Cruz
- Department of Food Science and Technology, Federal Institute of Education of Rio de Janeiro, Maracan˜a, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
28
|
Rubio FTV, Haminiuk CWI, Martelli-Tosi M, da Silva MP, Makimori GYF, Favaro-Trindade CS. Utilization of grape pomaces and brewery waste Saccharomyces cerevisiae for the production of bio-based microencapsulated pigments. Food Res Int 2020; 136:109470. [PMID: 32846555 DOI: 10.1016/j.foodres.2020.109470] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
This research approaches the utilization of brewery waste yeast Saccharomyces cerevisiae as a vehicle for the encapsulation and protection of phenolic compounds from Cabernet Sauvignon and Bordeaux grape pomace extracts. The main purpose of this research was to enrich the biomass of yeast to investigate its potential as a novel vehicle for further application as pigment or functional ingredient. The obtained powders presented characteristics appropriated for storage, such as low water activity (<0.289), hygroscopicity (<13.71 g/100 g) and moisture (<7.10%) and particle sizes lower than the sensory perceptible (<11.45 µm). This work proved that yeasts were loaded after spray-drying, thus, they might be considered as biocapsules. Furthermore, the bioaccessibility of encapsulated phenolic compounds from Bordeaux and Cabernet Sauvignon extracts was 34.96% and 14.25% higher compared to their respective free extracts, proving that yeasts are not only biocapsules of easy application, but also a biological material capable of protecting and delivering the compounds during gastrointestinal digestion.
Collapse
Affiliation(s)
- Fernanda Thaís Vieira Rubio
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Charles Windson Isidoro Haminiuk
- Universidade Tecnológica Federal do Paraná, Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Sede Ecoville, Curitiba, PR, Brazil
| | - Milena Martelli-Tosi
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Marluci Palazzolli da Silva
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | | | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil.
| |
Collapse
|
29
|
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. An overview of microencapsulation in the food industry: opportunities, challenges, and innovations. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03496-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Tolun A, Artik N, Altintas Z. Effect of different microencapsulating materials and relative humidities on storage stability of microencapsulated grape pomace extract. Food Chem 2020; 302:125347. [PMID: 31430631 DOI: 10.1016/j.foodchem.2019.125347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Aysu Tolun
- Faculty of Engineering, Ankara University, 06830 Ankara, Turkey
| | - Nevzat Artik
- Faculty of Engineering, Ankara University, 06830 Ankara, Turkey
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
31
|
de Araújo JSF, de Souza EL, Oliveira JR, Gomes ACA, Kotzebue LRV, da Silva Agostini DL, de Oliveira DLV, Mazzetto SE, da Silva AL, Cavalcanti MT. Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. Int J Biol Macromol 2019; 143:991-999. [PMID: 31669659 DOI: 10.1016/j.ijbiomac.2019.09.160] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
Abstract
This study evaluated maltodextrin (MD) and gelatin (GEL) in different ratios (SO1, MD only; SO2, MD and GEL = 2:1; and SO3, MD and GEL = 1:1, respectively) as wall materials to microencapsulation of sweet orange essential oil (SOEO, 10% w/w). SOEO microspheres were obtained by emulsification/lyophilization and characterized regarding the microencapsulation yield and efficiency, infrared spectroscopy, ultrastructural aspects (scanning electron microscopy, SEM), thermogravimetric (TG), derivative thermogravimetry (DTG) and differential exploratory calorimetry (DSC) and bioactive properties. Yield and SOEO microencapsulation efficiency (MEE) was of up to 90.19 and 75.75%, respectively. SEM analysis showed SO1, SO2 and SO3 microspheres with irregular shapes. Although improvements in thermal stability of all formulated microspheres were observed, TG and DTG curves indicated slower rates of volatilization and degradation of SOEO in SO1. DSC curves indicated that SO1, SO2 and SO3 microsphere formulations were effective in protecting SOEO, especially in relation to improvements in oxidative stability. Antibacterial and antioxidant properties, as well as total phenolic content of SOEO, were maintained in all formulated microspheres. SOEO microspheres can be prepared using MD and GEL and lyophilization, resulting in high yields, MEE, stability and preservation of antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Jayuri Susy Fernandes de Araújo
- Graduation Program in Agroindustrial Systems, Center for Agro-Food Science and Technology, Federal University of Campina Grande, Pombal, Paraíba, Brazil.
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| | - Jéssica Ribeiro Oliveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana Cristina Alves Gomes
- Laboratory of Food Microbiology, Department of Nutrition, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Lloyd Ryan Viana Kotzebue
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Selma Elaine Mazzetto
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Leandro da Silva
- Center for Health and Rural Technology, Federal University of Campina Grande, Patos, Paraíba, Brazil
| | - Mônica Tejo Cavalcanti
- Graduation Program in Agroindustrial Systems, Center for Agro-Food Science and Technology, Federal University of Campina Grande, Pombal, Paraíba, Brazil
| |
Collapse
|
32
|
Microencapsulation of grape skin phenolics for pH controlled release of antiglycation agents. Food Res Int 2019; 119:822-828. [DOI: 10.1016/j.foodres.2018.10.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 02/01/2023]
|
33
|
Dragon's Blood Sap: Storage Stability and Antioxidant Activity. Molecules 2018; 23:molecules23102641. [PMID: 30326562 PMCID: PMC6222551 DOI: 10.3390/molecules23102641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Currently, consumers are demanding additive-free, fresher, and more-natural products. Dragon's Blood Sap (DBS), the deep red latex of the specie of tree Croton lechleri (Müll. Arg.), contains a high concentration of phenolic compounds of great interest for the food, pharmaceutical, and cosmetic industries. These chemical compounds are highly susceptible to degradation. Therefore, DBS storage stability and its photo-oxidation was studied by Fourier transform infrared spectroscopy (FT-IR) and UV-Vis spectrophotometry for 39 days at different temperatures (4⁻21 °C) and relative humidities (0⁻56%), as well as under UV light exposure. It was observed that the degradation of phenolic compounds was reduced at 0% relative humidity (RH), not showing a significant effect of temperature in the range studied. UV light irradiation degraded DBS in a 20%. DBS has an exceptional high and stable antioxidant content (≥93% inhibition percentage of DPPH), which makes it a unique property to consider the DBS as an antioxidant agent or ingredient for consumer products formulations.
Collapse
|
34
|
Study on process parameters and optimization of microencapsulation based on phase separation. Eur J Pharm Sci 2018; 122:273-280. [DOI: 10.1016/j.ejps.2018.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
|
35
|
Caleja C, Ribeiro A, Barreiro MF, Ferreira ICFR. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Curr Pharm Des 2018; 23:2787-2806. [PMID: 28025943 DOI: 10.2174/1381612822666161227153906] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nowadays, the functional foods represent one the most promising, interesting and innovative areas in the food industry. Various components are being added to foods in order to render them functional. METHODS One example of these components are plant naturally occurring phenolic compounds, which are associated with a high antioxidant capacity and thus with benefits in relation to human health. RESULTS However, despite the huge number of scientific studies and patents on this topic and their natural presence in foods, namely in the ones from plant origin, there are still few marketable products enriched with these compounds. The commercialization of this type of functional products needs to go through various regulations, proving that they are safe and present the ascribed health benefits, conquering the target audience. In this review the growing interest of industry and consumers' appetence for functional foods and nutraceuticals is highlighted, focusing especially on phenolic compounds. CONCLUSION Although several published works show the multitude of bioactive properties of these compounds, ensuring their use as bioactive ingredients in food, they present inherent stability issues needing to be solved. However, considerable research is presently ongoing to overcome this problem, making viable the development of new products to be launched in the market.
Collapse
Affiliation(s)
- Cristina Caleja
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| | - Andreia Ribeiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| |
Collapse
|
36
|
Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Res Int 2018; 107:227-247. [DOI: 10.1016/j.foodres.2018.02.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/15/2018] [Accepted: 02/11/2018] [Indexed: 12/27/2022]
|
37
|
Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Guo J, Giusti MM, Kaletunç G. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency. Food Res Int 2018; 107:414-422. [PMID: 29580503 DOI: 10.1016/j.foodres.2018.02.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
Purple corn (PC) and blueberry (BB) extracts were encapsulated in alginate-pectin hydrogel particles to protect anthocyanins (ACNs) from degradation. Combinations of alginate to pectin ratios at 82 to 18% and 43 to 57% and total gum concentrations (TGC) at 2.2% and 2.8% TGC were prepared to encapsulate both PC and BB ACN. The alginate-pectin hydrogel particles containing PC or BB extracts were produced by dripping solution into pH 1.2 buffer. Blueberry extract encapsulation efficiency was significantly higher than that of purple corn extract due to ACN chemical structure differences and the compatibility between the ACN structures and alginate-pectin hydrogel structure at the low pH environment. Effect of initial ACN concentration in droplets, particle shape, alginate to pectin ratio, TGC, ACN source, and curing bath conditions on encapsulation efficiency after curing (EEm) was investigated. The initial ACN concentration and particle shape didn't influence the EEm, while the alginate to pectin ratio, TGC, ACN source and the pH of the curing bath showed significant effect on the EEm. The EEm was improved from 26% to 65% for PC ACN and from 48% to 116% for BB ACN by augmenting curing bath with ACN at various concentrations. The ACN retention during storage (ARs) in hydrogel particles stored in pH 3.0 buffer was improved at low temperature and high particle weight to solution volume ratio. Higher amount of ACN was retained in the hydrogel particles when spherical particles were used. Encapsulation in hydrogel particles significantly reduced the anthocyanin photodegradation upon exposure to fluorescence light. The degradation of ACN was described with a first-order kinetics with half-life values of 630 h for encapsulated PC ACN and 58 h for PC ACN aqueous solution. Hydrogel production and subsequent storage conditions can be optimized to increase the anthocyanin delivered to human body using the low pH beverages such as fruit juices as a delivery vehicle.
Collapse
Affiliation(s)
- Jingxin Guo
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Columbus, OH, United States
| | - M Monica Giusti
- Department of Food Science and Technology, Ohio State University, Columbus, OH, United States
| | - Gönül Kaletunç
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
39
|
de Moura SC, Berling CL, Germer SP, Alvim ID, Hubinger MD. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chem 2018; 241:317-327. [DOI: 10.1016/j.foodchem.2017.08.095] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 10/19/2022]
|
40
|
Örnek A. Influences of different reaction mediums on the properties of high-voltage LiNiPO4@C cathode material in terms of dielectric heating efficiency. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Rasouli Ghahroudi F, Mizani M, Rezaei K, Bameni Moghadam M. Mixed extracts of green tea and orange peel encapsulated and impregnated on black tea bag paper to be used as a functional drink. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fatemeh Rasouli Ghahroudi
- Department of Food Science and Technology; College of Food Science and Technology; Tehran Science and Research Branch; Islamic Azad University; Tehran 1477893855 Iran
| | - Maryam Mizani
- Department of Food Science and Technology; College of Food Science and Technology; Tehran Science and Research Branch; Islamic Azad University; Tehran 1477893855 Iran
| | - Karamatollah Rezaei
- Department of Food Science, Engineering and Technology; University of Tehran 31587-77871; Karaj Iran
- Center of Excellence for Application of Modern Technologies for Producing Functional Foods and Drinks; University of Tehran; Karaj 31587-77871 Iran
| | | |
Collapse
|
42
|
Gabbay Alves TV, Silva da Costa R, Aliakbarian B, Casazza AA, Perego P, Carréra Silva Júnior JO, Ribeiro Costa RM, Converti A. Microencapsulation of Theobroma cacao L. waste extract: optimization using response surface methodology. J Microencapsul 2017; 34:111-120. [PMID: 28288552 DOI: 10.1080/02652048.2017.1296499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.
Collapse
Affiliation(s)
| | - Russany Silva da Costa
- b Laboratory R&D Pharmaceutical and Cosmetic , Federal University of Pará , Belém , PA , Brazil
| | - Bahar Aliakbarian
- c Department of Civil, Chemical and Environmental Engineering , University of Genoa , Genoa , Italy
| | | | - Patrizia Perego
- c Department of Civil, Chemical and Environmental Engineering , University of Genoa , Genoa , Italy
| | | | | | - Attilio Converti
- c Department of Civil, Chemical and Environmental Engineering , University of Genoa , Genoa , Italy
| |
Collapse
|
43
|
Jiménez-Salcedo M, Tena MT. Determination of cinnamaldehyde, carvacrol and thymol in feedstuff additives by pressurized liquid extraction followed by gas chromatography–mass spectrometry. J Chromatogr A 2017; 1487:14-21. [DOI: 10.1016/j.chroma.2017.01.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 11/26/2022]
|
44
|
Degradation kinetics of encapsulated grape skin phenolics and micronized grape skins in various water activity environments and criteria to develop wide-ranging and tailor-made food applications. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Ydjedd S, Bouriche S, López-Nicolás R, Sánchez-Moya T, Frontela-Saseta C, Ros-Berruezo G, Rezgui F, Louaileche H, Kati DE. Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:827-835. [PMID: 28094929 DOI: 10.1021/acs.jafc.6b05103] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To determine the effect of in vitro gastrointestinal digestion on the release and antioxidant capacity of encapsulated and nonencapsulated phenolics carob pulp extracts, unripe and ripe carob pulp extracts were microencapsulated with polycaprolactone via double emulsion/solvent evaporation technique. Microcapsules' characterization was performed using scanning electron microscopy and Fourier transform infrared spectrometry analysis. Total phenolics and flavonoids content and antioxidant activities (ORAC, DPPH, and FRAP) were evaluated after each digestion step. The release of phenolic acids and flavonoids was measured along the digestion process by HPLC-MS/MS analysis. The most important phenolics and flavonoids content as well as antioxidant activities were observed after gastric and intestinal phases for nonencapsulated and encapsulated extracts, respectively. The microencapsulation of carob polyphenols showed a protective effect against pH changes and enzymatic activities along digestion, thereby promoting a controlled release and targeted delivery of the encapsulated compound, which contributed to an increase in its bioaccessibility in the gut.
Collapse
Affiliation(s)
| | | | - Rubén López-Nicolás
- Department of Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia , Murcia 30071, Spain
| | - Teresa Sánchez-Moya
- Department of Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia , Murcia 30071, Spain
| | - Carmen Frontela-Saseta
- Department of Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia , Murcia 30071, Spain
| | - Gaspar Ros-Berruezo
- Department of Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia , Murcia 30071, Spain
| | | | | | | |
Collapse
|
46
|
Tolun A, Altintas Z, Artik N. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. J Biotechnol 2016; 239:23-33. [DOI: 10.1016/j.jbiotec.2016.10.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 01/27/2023]
|
47
|
Wang S, Amigo-Benavent M, Mateos R, Bravo L, Sarriá B. Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace. Int J Food Sci Nutr 2016; 68:188-200. [PMID: 27609024 DOI: 10.1080/09637486.2016.1228099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Red grape pomace (RGP) is a major winery by-product with interesting applications due to its high phenolic content and antioxidant capacity. Effects of in vitro gastrointestinal digestion and storage on the phenolic content and antioxidant capacity of RGP were studied. RGP polyphenols were stable under stomach-mimicking conditions and more sensitive to small intestine conditions, reducing anthocyanins and flavonols. After 3- and 6-month storage, at either 4 or 25 °C, there were no changes in the total phenolic and condensed tannin content, or antioxidant capacity (evaluated by ABTS, FRAP, ORAC assays); however, after 9 months these parameters decreased. Contrarily, chromatic b* values were higher, thus the samples had more intense red color, which may be related to the increased condensed tannin content. Storage time or temperature induced no changes in microbiological load. RGP preserves high antioxidant capacity after storage and in vitro digestion and thus presents potential as a functional ingredient or nutraceutical.
Collapse
Affiliation(s)
- Shenli Wang
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| | - Miryam Amigo-Benavent
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| | - Raquel Mateos
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| | - Laura Bravo
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| | - Beatriz Sarriá
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| |
Collapse
|
48
|
Motilva MJ, Macià A, Romero MP, Rubió L, Mercader M, González-Ferrero C. Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Wilkowska A, Ambroziak W, Adamiec J, Czyżowska A. Preservation of Antioxidant Activity and Polyphenols in Chokeberry Juice and Wine with the Use of Microencapsulation. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12924] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Agnieszka Wilkowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science; Lodz University of Technology; Wólczańska 171/173 Łódź 90-924 Poland
| | - Wojciech Ambroziak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science; Lodz University of Technology; Wólczańska 171/173 Łódź 90-924 Poland
| | - Janusz Adamiec
- Faculty of Process and Environmental Engineering; Lodz University of Technology; Łódź Poland
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science; Lodz University of Technology; Wólczańska 171/173 Łódź 90-924 Poland
| |
Collapse
|
50
|
Tolve R, Galgano F, Caruso MC, Tchuenbou-Magaia FL, Condelli N, Favati F, Zhang Z. Encapsulation of health-promoting ingredients: applications in foodstuffs. Int J Food Sci Nutr 2016; 67:888-918. [DOI: 10.1080/09637486.2016.1205552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|