1
|
Zia H, Murray H, Hofsommer M, Barreto AM, Pavon-Vargas D, Puzovic A, Gędas A, Rincon S, Gössinger M, Slatnar A. Comparing the impact of conventional and non-conventional processing technologies on water-soluble vitamins and color in strawberry nectar - a pilot scale study. Food Chem 2025; 463:141078. [PMID: 39243612 DOI: 10.1016/j.foodchem.2024.141078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
A comprehensive comparison was conducted on the effect of conventional thermal processing (TT), high-pressure processing (HP), pulse electric field (PF), and ohmic heating (OH) on water-soluble vitamins and color retention in strawberry nectar. The ascorbic acid (AA) content increased by 15- and 9-fold after TT and OH treatment, respectively, due to rupturing of cells under heat stress and release of intracellular AA. Dehydroascorbic acid (DHA) content did not change considerably after TT and PF treatment but significantly decreased after HP and OH treatment. TT treatment offered the highest total vitamin C retention. The B vitamins remained largely unchanged after processing, with the highest loss of 34 % for riboflavin in OH-treated samples. All the technologies resulted in similar color retention after processing. The study concludes with a standardized comparison of mainstream preservation technologies using pilot-scale equipment. Such an approach significantly increases the applicability of the results presented in the study.
Collapse
Affiliation(s)
- Hassan Zia
- GfL Gesellschaft für Lebensmittel-Forschung mbH, Landgrafenstrasse 16, 10787 Berlin, Germany; University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia.
| | - Helen Murray
- Federal College and Institute for Viticulture and Pomology, A-3400, Klosterneuburg, Austria
| | - Mikko Hofsommer
- GfL Gesellschaft für Lebensmittel-Forschung mbH, Landgrafenstrasse 16, 10787 Berlin, Germany
| | | | - Darío Pavon-Vargas
- University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy.; CFT S.P.A, Via Paradigna, 94/a, 43122 Parma, Italy
| | - Alema Puzovic
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia
| | - Astrid Gędas
- University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Sebastian Rincon
- INRAE, Avignon University, UMR408 SQPOV, F-84000, Avignon, France
| | - Manfred Gössinger
- Federal College and Institute for Viticulture and Pomology, A-3400, Klosterneuburg, Austria
| | - Ana Slatnar
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Goraya RK, Singla M, Kaura R, Singh CB, Singh A. Exploring the impact of high pressure processing on the characteristics of processed fruit and vegetable products: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 38957008 DOI: 10.1080/10408398.2024.2373390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Consumers are increasingly interested in additive-free products with a fresh taste, leading to a growing trend in high pressure processing (HPP) as an alternative to thermal processing. This review explores the impact of HPP on the properties of juices, smoothies, and purees, as well as its practical applications in the food industry. Research findings have explained that HPP is a most promising technology in comparison to thermal processing, in two ways i.e., for ensuring microbial safety and maximum retention of micro and macro nutrients and functional components. HPP preserves natural color and eliminates the need for artificial coloring. The review also emphasizes its potential for enhancing flavor in the beverage industry. The review also discusses how HPP indirectly affects plant enzymes that cause off-flavors and suggests potential hurdle approaches for enzyme inactivation based on research investigations. Scientific studies regarding the improved quality insights on commercially operated high pressure mechanisms concerning nutrient retention have paved the way for upscaling and boosted the market demand for HPP equipment. In future research, the clear focus should be on scientific parameters and sensory attributes related to consumer acceptability and perception for better clarity of the HPP effect on juice and smoothies/purees.
Collapse
Affiliation(s)
- Rajpreet Kaur Goraya
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Mohit Singla
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, India
| | - Robin Kaura
- Dairy Engineering Division, ICAR-NDRI, Karnal, India
| | - Chandra B Singh
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Bebek Markovinović A, Bosiljkov T, Janči T, Kostić M, Dedović N, Lučić E, Bavrka K, Pavlić B, Bursać Kovačević D. Characterization of Antioxidant Bioactive Compounds and Rheological, Color and Sensory Properties in 3D-Printed Fruit Snacks. Foods 2024; 13:1623. [PMID: 38890852 PMCID: PMC11172405 DOI: 10.3390/foods13111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The influence of wheat starch (6%, 8% and 10%, w/w) and a 3D printing program (program 1 vs. program 2) on the content of bioactive compounds, antioxidant capacity, color parameters and rheological and sensory properties was investigated in 3D strawberry and strawberry tree fruit snacks. Increasing the starch content led to a decrease in the content of almost all the bioactive compounds, while it had no effect on the antioxidant capacity. The printing program had no significant effect on the bioactive compounds (except hydroxycinnamic acids), antioxidant capacity and color parameters. A higher starch content improved the strength of the sample but had no effect on the mechanical properties. Smaller particles with a higher starch content improved the stability of the sample. In contrast to the programs, varying the starch content had a significant effect on all the color parameters except the a* values. Eight different sweeteners in two different concentrations were used for the sensory evaluation of the 3D-printed snacks. The variations in sweetener content only affected the sweet and harmonious taste. In summary, this study confirms the great potential of fruit bases for the production of 3D-printed snacks with excellent biological and rheological properties, which can be a step toward personalized food with the addition of sweeteners.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tomislav Bosiljkov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tibor Janči
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marko Kostić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21102 Novi Sad, Serbia
| | - Nebojša Dedović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21102 Novi Sad, Serbia
| | - Ela Lučić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Katarina Bavrka
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Yu XX, Wang XH, Zhang SA, Zhang YH, Zhang HL, Yin YQ. Study on potential antigenicity and functional properties of whey protein treated by high hydrostatic pressure based on structural analysis. Food Res Int 2023; 173:113218. [PMID: 37803536 DOI: 10.1016/j.foodres.2023.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/08/2023]
Abstract
High hydrostatic pressure (HHP) is extensively utilized in the field of food processing due to its remarkable ability to preserve the freshness of food. The potential antigenicity of β-lactoglobulin (β-LG) in whey protein isolate (WPI, 3%) treated by HHP was detected by enzyme linked immunosorbent assay (ELISA) using monoclonal antibodies. Furthermore, the impact of pressure-induced structural alterations on the emulsification properties and antioxidant activity of WPI was investigated. The findings revealed that pressures exceeding 300 MPa resulted in molecular aggregation, the formation of inter-molecular disulfide bonds, and an increase in surface hydrophobicity (H0). The percentage of β-sheet decreased along with the pressure. The results showed the increment of α-helix and β-turn with pressure. ELISA demonstrated a significant reduction in the antigenicity of β-LG following HHP treatment (100-600 MPa), with a slight recovery observed at 300 MPa. These spatial structural modifications led to the unfolding of the β-LG molecule, thereby enhancing its digestibility. Moreover, HHP treatment substantially improved the antioxidant properties, with the exposure to hydrophobic amino acids contributing to increased antioxidant properties and emulsion stability.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Hui Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Sheng-Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China; National Center of Technology Innovation for Dairy, Hohhot 010020, PR China.
| | - Han-Lin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Qi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
5
|
Sargautis D, Kince T, Gramatina I. Characterisation of the Enzymatically Extracted Oat Protein Concentrate after Defatting and Its Applicability for Wet Extrusion. Foods 2023; 12:2333. [PMID: 37372544 DOI: 10.3390/foods12122333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
An oat protein concentrate (OC1) was isolated from oat flour through starch enzymatic hydrolysis, by subsequent defatting by ethanol and supercritical fluid extraction (SFE) reaching protein concentrations of 78% and 77% by weight in dry matter, respectively. The protein characterisation and functional properties of the defatted oat protein concentrates were evaluated, compared and discussed. The solubility of defatted oat protein was minor in all ranges of measured pH (3-9), and foamability reached up to 27%. Further, an oat protein concentrate defatted by ethanol (ODE1) was extruded by a single screw extruder. The obtained extrudate was evaluated by scanning electron microscope (SEM), texture and colour analysers. The extrudate's surface was well formed, smooth, and lacking a tendency to form a fibrillar structure. Textural analysis revealed a non-unform structure (fracturability 8.8-20.9 kg, hardness 26.3-44.1 kg) of the oat protein extrudate.
Collapse
Affiliation(s)
- Darius Sargautis
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Tatjana Kince
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Ilze Gramatina
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| |
Collapse
|
6
|
Li Q, Putra NR, Rizkiyah DN, Abdul Aziz AH, Irianto I, Qomariyah L. Orange Pomace and Peel Extraction Processes towards Sustainable Utilization: A Short Review. Molecules 2023; 28:molecules28083550. [PMID: 37110784 PMCID: PMC10145211 DOI: 10.3390/molecules28083550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
More than 58 million metric tonnes of oranges were produced in 2021, and the peels, which account for around one-fifth of the fruit weight, are often discarded as waste in the orange juice industry. Orange pomace and peels as wastes are used as a sustainable raw material to make valuable products for nutraceuticals. The orange peels and pomace contain pectin, phenolics, and limonene, which have been linked to various health benefits. Various green extraction methods, including supercritical carbon dioxide (ScCO2) extraction, subcritical water extraction (SWE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), are applied to valorize the orange peels and pomace. Therefore, this short review will give insight into the valorization of orange peels/pomace extraction using different extraction methods for health and wellness. This review extracts information from articles written in English and published from 2004 to 2022. The review also discusses orange production, bioactive compounds in orange peels/pomaces, green extractions, and potential uses in the food industry. Based on this review, the valorization of orange peels and pomaces can be carried out using green extraction methods with high quantities and qualities of extracts. Therefore, the extract can be used for health and wellness products.
Collapse
Affiliation(s)
- Qingxiao Li
- College of Grain Engineering, Henan Industry and Trade Vocational College, Zhengzhou 451191, China
| | - Nicky Rahmana Putra
- Centre of Lipid Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Dwila Nur Rizkiyah
- Centre of Lipid Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Ahmad Hazim Abdul Aziz
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Irianto Irianto
- Department General Education, Faculty of Resilience, Rabdan Academy, Abu Dhabi 114646, United Arab Emirates
| | - Lailatul Qomariyah
- Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| |
Collapse
|
7
|
New Insight on Phenolic Composition and Evaluation of the Vitamin C and Nutritional Value of Smoothies Sold on the Spanish Market. Molecules 2022; 27:molecules27238229. [PMID: 36500319 PMCID: PMC9739094 DOI: 10.3390/molecules27238229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Fruits and vegetables are a source of a wide range of nutrients, including bioactive compounds. These compounds have great biological activity and have been linked to the prevention of chronic non-communicable diseases. Currently, the food industry is developing new products to introduce these compounds, whereby smoothies are becoming more popular among consumers. The aim of this study was to evaluate the nutritional quality and the polyphenol and vitamin C content of smoothies available on the Spanish market. An evaluation of the nutritional information and ingredients was carried out. The phenolic compounds were determined by HPLC-ESI-TOF-MS; the vitamin C content was quantified using HPLC-UV/VIS; and the antioxidant activity was analyzed by DPPH and FRAP. Among all of the ingredients of the smoothies, coconut and banana have shown a negative impact on the polyphenol content of the smoothies. In contrast, ingredients such as orange, mango, and passion fruit had a positive correlation with the vitamin C content. Moreover, apple and red fruits showed the highest positive correlations with most of the phenolic acids, flavonoids, total phenolic compounds, and antioxidant activities. In addition, a clustering analysis was performed, and four groups were clearly defined according to the bioactive composition determined here. This research is a precious step for the formulation of new smoothies and to increase their polyphenol quality.
Collapse
|
8
|
Ravichandran C, Jayachandran LE, Kothakota A, Pandiselvam R, Balasubramaniam V. Influence of high pressure pasteurization on nutritional, functional and rheological characteristics of fruit and vegetable juices and purees-an updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Wonisch W, Stanger O, Tatzber F, Lindschinger M, Murkovic M, Cvirn G. Stability of bioactive components in smoothies within an extended period of one year. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Melon-based smoothies: process optimization and effect of processing and preservation on the quality attributes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Kidoń M, Uwineza PA. New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules 2022; 27:molecules27103049. [PMID: 35630528 PMCID: PMC9146844 DOI: 10.3390/molecules27103049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Smoothies are fruit- and/or vegetable-based products in form of beverages that are typically semi-liquid, thick in consistency, and mainly consist of purees and juices. Other ingredients, such as yogurt, milk, ice cream, sugar, honey, or simply water may also be added. The present study aimed to elaborate smoothie products based on bananas, pumpkins, and purple carrots. These fruits and vegetables were chosen due to their high bioactive compounds content, potential health benefits, and availability to industry. Five smoothie formulations were produced and analyzed for pH, soluble solids, total phenolic content, anthocyanins, carotenoids, vitamin C, antioxidant activity, instrumental color, and sensory features. From the analysis, the result showed that the obtained smoothies were a good source of total phenolic content (39.1 to 55.9 mg/100 g) and anthocyanin (7.1 to 11.1 mg cyanidin-3-glucoside/100 g), and that they possessed high antioxidant activity (4.3 to 6.2 µM Trolox/g). From sensory evaluation, all the produced smoothies were desirable, but the formulations with banana were scored higher compared to the pumpkin. In conclusion, smoothies composed of pumpkin, banana, and purple carrot can be a good new food product that incorporates nutritional compounds into the human diet.
Collapse
Affiliation(s)
- Marcin Kidoń
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, 60-624 Poznan, Poland
- Correspondence:
| | | |
Collapse
|
12
|
Salar FJ, Domínguez-Perles R, García-Viguera C, Fernández PS. Ifs and buts of non-thermal processing technologies for plant-based drinks' bioactive compounds. FOOD SCI TECHNOL INT 2022:10820132221094724. [PMID: 35440183 DOI: 10.1177/10820132221094724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vegetables and fruits contain a variety of bioactive nutrients and non-nutrients that are associated with health promotion. Consumers currently demand foods with high contents of healthy compounds, as well as preserved natural taste and flavour, minimally processed without using artificial additives. Processing alternatives to be applied on plant-based foodstuffs to obtain beverages are mainly referred to as classical thermal treatments that although are effective treatments to ensure safety and extended shelf-life, also cause undesirable changes in the sensory profiles and phytochemical properties of beverages, thus affecting the overall quality and acceptance by consumers. As a result of these limitations, new non-thermal technologies have been developed for plant-based foods/beverages to enhance the overall quality of these products regarding microbiological safety, sensory traits, and content of bioactive nutrients and non-nutrients during the shelf-life of the product, thus allowing to obtain enhanced health-promoting beverages. Accordingly, the present article attempts to review critically the principal benefits and downsides of the main non-thermal processing alternatives (High hydrostatic pressure, pulsed electric fields, ultraviolet light, and ultrasound) to set up sound comparisons with conventional thermal treatments, providing a vision about their practical application that allows identifying the best choice for the sectoral industry in non-alcoholic fruit and vegetable-based beverages.
Collapse
Affiliation(s)
- Francisco J Salar
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| | - Pablo S Fernández
- Department of Ingeniería Agrónomica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| |
Collapse
|
13
|
Does Plant Breeding for Antioxidant-Rich Foods Have an Impact on Human Health? Antioxidants (Basel) 2022; 11:antiox11040794. [PMID: 35453479 PMCID: PMC9024522 DOI: 10.3390/antiox11040794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important components of the human diet, thus, they are the main targets for functional food development by exploitation of genetic resources and metabolic engineering. In this review, we focus on the impact of antioxidants-rich cereal and Solanaceae derived foods on human health by analyzing natural biodiversity and biotechnological strategies aiming at increasing the antioxidant level of grains and fruits, the impact of agronomic practices and food processing on antioxidant properties combined with a focus on the current state of pre-clinical and clinical studies. Despite the strong evidence in in vitro and animal studies supporting the beneficial effects of antioxidants-rich diets in preventing diseases, clinical studies are still not sufficient to prove the impact of antioxidant rich cereal and Solanaceae derived foods on human
Collapse
|
14
|
Romano R, De Luca L, Aiello A, Rossi D, Pizzolongo F, Masi P. Bioactive compounds extracted by liquid and supercritical carbon dioxide from citrus peels. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Raffaele Romano
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Lucia De Luca
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Alessandra Aiello
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Danilo Rossi
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Paolo Masi
- CAISIAL University of Naples Federico II Via Università 133 Portici 80055 Italy
| |
Collapse
|
15
|
Hossain A, Dave D, Shahidi F. Effect of High-Pressure Processing (HPP) on Phenolics of North Atlantic Sea Cucumber ( Cucumaria frondosa). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3489-3501. [PMID: 35286101 DOI: 10.1021/acs.jafc.2c00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sea cucumber contains a wide range of bioactive compounds, including phenolics. This study investigated the free, esterified, and insoluble-bound phenolics of sea cucumber body wall as affected by high-pressure processing (HPP) pretreatment. Sea cucumber body wall was subjected to HPP (200, 400, and 600 MPa for 5, 10, and 15 min), followed by the extraction of phenolics. The contents of total phenolics and antioxidant activity were monitored. Compared to untreated samples, those treated with HPP exhibited significantly higher total phenolics, flavonoids, and antioxidant activities. Treatment of 600 MPa for 10 min offered the optimal results. The highest amount of phenolics was observed in the free phenolic fraction, followed by esterified and insoluble-bound phenolic fractions. Moreover, phenolic extracts showed inhibitory effects against cupric ion-induced low-density lipoprotein (LDL)-cholesterol oxidation, peroxyl and hydroxyl radical-induced DNA scission, α-glucosidase activity, and formation of advanced glycation end products (AGEs). Ultra-high-performance liquid chromatography equipped with a quadrupole time of fight and mass spectrometer (UHPLC-QTOF-MS/MS) identified 20 phenolic compounds, mainly phenolic acids and flavonoids, from the body wall of this species for the first time. Thus, sea cucumber may lead to the production of a multitude of value-added products.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Marine Institute, Memorial University, St. John's, NL A1B 3X9, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
16
|
Dey G, Ghosh A, Tangirala RK. “Technological convergence” of preventive nutrition with non‐thermal processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gargi Dey
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
- GUT LEBEN INC. San Diego California USA
| | - Annesha Ghosh
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
| | - Rajendra K Tangirala
- GUT LEBEN INC. San Diego California USA
- Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
17
|
Hossain A, Yeo J, Dave D, Shahidi F. Phenolic Compounds and Antioxidant Capacity of Sea Cucumber (Cucumaria frondosa) Processing Discards as Affected by High-Pressure Processing (HPP). Antioxidants (Basel) 2022; 11:antiox11020337. [PMID: 35204219 PMCID: PMC8868223 DOI: 10.3390/antiox11020337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023] Open
Abstract
Sea cucumber processing discards, which include mainly internal organs, represent up to 50% of the sea cucumber biomass, and are a rich source of bioactive compounds, including phenolics. This work aimed to extract free, esterified, and insoluble-bound phenolics from the internal organs of the Atlantic sea cucumber (C. frondosa) using high-pressure processing (HPP) pre-treatment. The sea cucumber internal organs were subjected to HPP (6000 bar for 10 min), followed by the extraction and characterization of phenolics. Samples were evaluated for their total contents of phenolics and flavonoids, as well as several in vitro methods of antioxidant activities, namely, free radical scavenging and metal chelation activities. Moreover, anti-tyrosinase and antiglycation properties, as well as inhibitory activities against LDL cholesterol oxidation and DNA damage, were examined. The results demonstrated that HPP pre-treatment had a significant effect on the extraction of phenolics, antioxidant properties, and other bioactivities. The phenolics in sea cucumber internal organs existed mainly in the free form, followed by the insoluble-bound and esterified fractions. Additionally, UHPLC-QTOF-MS/MS analysis identified and quantified 23 phenolic compounds from HPP-treated samples, mostly phenolic acids and flavonoids. Hence, this investigation provides fundamental information that helps to design the full utilization of the Atlantic sea cucumber species and the production of a multitude of value-added products.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.H.); (J.Y.)
| | - JuDong Yeo
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.H.); (J.Y.)
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.H.); (J.Y.)
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Marine Institute, Memorial University, St. John’s, NL A1C 5R3, Canada
- Correspondence: (D.D.); (F.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.H.); (J.Y.)
- Correspondence: (D.D.); (F.S.)
| |
Collapse
|
18
|
Pallarés N, Sebastià A, Martínez-Lucas V, Queirós R, Barba FJ, Berrada H, Ferrer E. High Pressure Processing Impact on Emerging Mycotoxins (ENNA, ENNA1, ENNB, ENNB1) Mitigation in Different Juice and Juice-Milk Matrices. Foods 2022; 11:190. [PMID: 35053922 PMCID: PMC8774803 DOI: 10.3390/foods11020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to investigate the potential of high-pressure processing (HPP) (600 MPa during 5 min) on emerging mycotoxins, enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1) reduction in different juice/milk models, and to compare it with the effect of a traditional thermal treatment (HT) (90 °C during 21 s). For this purpose, different juice models (orange juice, orange juice/milk beverage, strawberry juice, strawberry juice/milk beverage, grape juice and grape juice/milk beverage) were prepared and spiked individually with ENNA, ENNA1, ENNB and ENNB1 at a concentration of 100 µg/L. After HPP and HT treatments, ENNs were extracted from treated samples and controls employing dispersive liquid-liquid microextraction methodology (DLLME) and determined by liquid chromatography coupled to ion-trap tandem mass spectrometry (HPLC-MS/MS-IT). The results obtained revealed higher reduction percentages (11% to 75.4%) when the samples were treated under HPP technology. Thermal treatment allowed reduction percentages varying from 2.6% to 24.3%, at best, being ENNA1 the only enniatin that was reduced in all juice models. In general, no significant differences (p > 0.05) were observed when the reductions obtained for each enniatin were evaluated according to the kind of juice model, so no matrix effects were observed for most cases. HPP technology can constitute an effective tool in mycotoxins removal from juices.
Collapse
Affiliation(s)
- Noelia Pallarés
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Albert Sebastià
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Vicente Martínez-Lucas
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Rui Queirós
- Hiperbaric, S.A., C/Condado de Treviño, 6, 09001 Burgos, Spain;
| | - Francisco J. Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Emilia Ferrer
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| |
Collapse
|
19
|
Kinetic study of microbial inhibition by dimethyl dicarbonate and quality attributes of pomegranate juice during cold storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Jafari S, Rungroj N, Worobo RW, Assatarakul K. Kinetic study of selected microorganisms and quality attributes during cold storage of mango and passion fruit smoothie subjected to dimethyl dicarbonate. Int J Food Microbiol 2021; 358:109404. [PMID: 34563882 DOI: 10.1016/j.ijfoodmicro.2021.109404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The objectives of this research were to study the effect of DMDC (0-250 ppm) on quality and shelf life of mango and passion fruit smoothie during cold storage. The correlation between microbial population (total microorganisms, yeast and mold, E. coli and S. aureus) and DMDC concentration using zero-order kinetic and first-order kinetic was also determined. In addition, the effect of DMDC compared with pasteurization (90 °C, 100 s) on quality of mixed mango and passion fruit smoothie during the cold storage (4 °C) was studied. The results showed that microbial inactivation was best-described by first-order kinetic model due to a higher coefficient of determination (R2). In addition, DMDC did not affect the decreasing trend of total soluble solid, color difference (∆E*) and total phenolic compound as compared to control during the cold storage. DMDC also hindered the increasing trend in microbial population and prevented the loss of antioxidant activity (DPPH and FRAP assays) and total flavonoid content and decreased the PPO activity as compared with the control during the cold storage. In summary, DMDC showed the potential to maintain the quality and to extend the shelf life of mango and passion fruit smoothie during cold storage.
Collapse
Affiliation(s)
- Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nateekarn Rungroj
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Randy W Worobo
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853-5701, USA
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
21
|
Bleoanca I, Patrașcu L, Borda D. Quality and Stability Equivalence of High Pressure and/or Thermal Treatments in Peach-Strawberry Puree. A Multicriteria Study. Foods 2021; 10:foods10112580. [PMID: 34828860 PMCID: PMC8622699 DOI: 10.3390/foods10112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/23/2022] Open
Abstract
A bottom-up approach identifying equivalent effects of high-pressure processing (HPP—600 MPa, 20 °C, 10 min), thermal treatment (TT—70 °C, 15 min) and high pressure-mild thermal processing (HPMT—600 MPa, 50 °C, 10 min) on quality and stability of peach–strawberry puree was applied during refrigerated storage. TT and HPP ensured 3-log aerobic bacteria inactivation at first, while HPMT reduction was below the detection limit. After 21 days all samples had equivalent microbiological stability. A 2.6-fold increase in the residual activity of PPO and POD was found in the HPP sample compared to TT and HPMT samples (1st day); after 21 days PPO, POD and TPC were equivalent for TT and HPP peach–strawberry purees. Equivalent volatile profile and rheology behavior was observed after 21 days of all samples’ storage. Meanwhile, the color of the HPP, TT and HMPT samples remained significantly different (p < 0.05) throughout the whole storage period, with the lowest browning index registered for HPP samples.
Collapse
Affiliation(s)
- Iulia Bleoanca
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Str., 800201 Galati, Romania
| | - Livia Patrașcu
- Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Str., 800201 Galati, Romania
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Str., 800201 Galati, Romania
| |
Collapse
|
22
|
High-Pressure Processing on Whole and Peeled Potatoes: Influence on Polyphenol Oxidase, Antioxidants, and Glycaemic Indices. Foods 2021; 10:foods10102425. [PMID: 34681473 PMCID: PMC8535207 DOI: 10.3390/foods10102425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphenol oxidase (PPO) inactivation in five whole and peeled Irish potato cultivars was investigated using high-pressure processing (HPP) at 400 MPa and 600 MPa for 3 min. PPO activity was significantly lower in most of the HPP-treated samples, while the highest PPO inactivation was observed after HPP at 600 MPa. No significant (p > 0.05) changes were observed on the total phenolic content and antioxidant activity of all the HPP-treated potatoes. Regarding individual phenolic acids, chlorogenic acid was decreased significantly (p < 0.05) in all studied varieties with a concomitant increase (p < 0.05) in caffeic and quinic acid. Similarly, ferulic acid was also increased (p < 0.05) in all studied varieties after the HPP treatment, while there was a variation in rutin and 4-coumaric acid levels depending on the cultivar and the sample type. Anthocyanins in the coloured whole potato varieties (i.e., Kerr’s Pink and Rooster), tentatively identified as pelargonidin-O-ferulorylrutinoside-O-hexoside and pelargonidin-O-rutinoside-O-hexoside, also exhibited significantly (p < 0.05) higher levels in the HPP-treated samples as opposed to those untreated. Glycaemic indices of the potatoes treated with HPP did not differ with the corresponding untreated cultivars.
Collapse
|
23
|
Salar FJ, Periago PM, Agulló V, García-Viguera C, Fernández PS. High Hydrostatic Pressure vs. Thermal Pasteurization: The Effect on the Bioactive Compound Profile of a Citrus Maqui Beverage. Foods 2021; 10:2416. [PMID: 34681464 PMCID: PMC8535227 DOI: 10.3390/foods10102416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
The effects of high hydrostatic pressure (HHP) compared to thermal pasteurization (TP) were studied in healthy citrus-maqui beverages. The impact of the processing technologies on the microbiological and phytochemical profile was assessed by applying two HHP treatments at 450 and 600 MPa for 180 s and TP at 85 °C for 15 s. The shelf life under refrigeration (4 °C) and room temperature (20 °C) was monitored for 90 days. All treatments ensured microbiological stability at both storage temperatures. Aside from that, the physicochemical parameters were not significantly different after processing or throughout the storage period. Regarding color parameters, an increase in the reddish coloration was observed during storage for those beverages treated by HHP. In general, phenolic compounds were little affected by the processing technique, even when treatment under HHP was more stable than by TP during storage. On the other hand, vitamin C showed great degradation after processing under any condition. It can be concluded that HHP is an effective alternative to thermal treatments, achieving effective microbial inactivation and extending the shelf life of the juices by contributing to a better preservation of color and bioactive compounds.
Collapse
Affiliation(s)
- Francisco J. Salar
- Phytochemistry and Healthy Foods Lab (LabFAS), Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain; (F.J.S.); (V.A.)
| | - Paula M. Periago
- Agronomic Engineering Department, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (P.M.P.); (P.S.F.)
- Associated Unit of Food Quality and Risk Assessment CEBAS-CSIC/UPCT, 30100 Murcia, Spain
| | - Vicente Agulló
- Phytochemistry and Healthy Foods Lab (LabFAS), Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain; (F.J.S.); (V.A.)
| | - Cristina García-Viguera
- Phytochemistry and Healthy Foods Lab (LabFAS), Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain; (F.J.S.); (V.A.)
- Associated Unit of Food Quality and Risk Assessment CEBAS-CSIC/UPCT, 30100 Murcia, Spain
| | - Pablo S. Fernández
- Agronomic Engineering Department, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (P.M.P.); (P.S.F.)
- Associated Unit of Food Quality and Risk Assessment CEBAS-CSIC/UPCT, 30100 Murcia, Spain
| |
Collapse
|
24
|
Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Li M, Liu Q, Zhang W, Zhang L, Zhou L, Cai S, Hu X, Yi J. Evaluation of quality changes of differently formulated cloudy mixed juices during refrigerated storage after high pressure processing. Curr Res Food Sci 2021; 4:627-635. [PMID: 34557679 PMCID: PMC8445842 DOI: 10.1016/j.crfs.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Cloudy fruit and vegetable mixed juice (MJ) pasteurized by high pressure processing (HPP) showed an increasing market demand. However, browning, sedimentation, and flavor changes of HPP juice during storage have been a great challenge for the beverage industry. The aim of this work was to investigate quality changes of HPP MJs during storage and to explore the potential to create the shelf-stable MJs with fresh-like organoleptic quality through HPP. In the work, commercial MJ1 (orange, mango, and kiwifruit) and MJ2 (carrot and pineapple) were formulated and their quality changes during storage were investigated. The results indicated no visible color changes and sedimentation were observed in MJ1 and MJ2 during refrigerated storage (90 days). However, sucrose decreased as glucose and fructose increased; a large number of aldehydes and alcohols decreased but some terpenoids increased during storage. In general, blending proper fruit and vegetable to produce MJs combing with HPP could maintain high cloud and color stability, but sugars and volatiles clearly changed during storage. HPP mixed juice showed high color and cloud stability during chilled storage. Aldehydes and alcohols decreased but terpenoids increased during storage. Sucrose decreased with glucose and fructose increasing during storage. Carrot-pinapple mixed juice showed high quality stability during storgae.
Collapse
Affiliation(s)
- Minbo Li
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qihui Liu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Wanzhen Zhang
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Litao Zhang
- Yunnan Inja U-fresh Supply Chain Co., Ltd., Kunming, 650500, Yunnan, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
26
|
Pérez-Lamela C, Franco I, Falqué E. Impact of High-Pressure Processing on Antioxidant Activity during Storage of Fruits and Fruit Products: A Review. Molecules 2021; 26:5265. [PMID: 34500700 PMCID: PMC8434123 DOI: 10.3390/molecules26175265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Fruits and fruit products are an essential part of the human diet. Their health benefits are directly related to their content of valuable bioactive compounds, such as polyphenols, anthocyanins, or vitamins. Heat treatments allow the production of stable and safe products; however, their sensory quality and chemical composition are subject to significant negative changes. The use of emerging non-thermal technologies, such as HPP (High Pressure Processing), has the potential to inactivate the microbial load while exerting minimal effects on the nutritional and organoleptic properties of food products. HPP is an adequate alternative to heat treatments and simultaneously achieves the purposes of preservation and maintenance of freshness characteristics and health benefits of the final products. However, compounds responsible for antioxidant activity can be significantly affected during treatment and storage of HPP-processed products. Therefore, this article reviews the effect of HPP treatment and subsequent storage on the antioxidant activity (oxygen radical absorbance capacity (ORAC) assay), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, ferric reducing antioxidant power (FRAP) assay, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assay or Trolox equivalent antioxidant capacity (TEAC) assay), and on the total phenolic, flavonoid, carotenoid, anthocyanin and vitamin contents of fruits and different processed fruit-based products.
Collapse
Affiliation(s)
- Concepción Pérez-Lamela
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Inmaculada Franco
- Food Technology Area, Faculty of Sciences, University of Vigo—Ourense Campus, E32004 Ourense, Spain;
| | - Elena Falqué
- Analytical Chemistry Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo–Ourense Campus, E32004 Ourense, Spain;
| |
Collapse
|
27
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
28
|
Asaithambi N, Singh SK, Singha P. Current status of non-thermal processing of probiotic foods: A review. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Škegro M, Putnik P, Bursać Kovačević D, Kovač AP, Salkić L, Čanak I, Frece J, Zavadlav S, Ježek D. Chemometric Comparison of High-Pressure Processing and Thermal Pasteurization: The Nutritive, Sensory, and Microbial Quality of Smoothies. Foods 2021; 10:1167. [PMID: 34071017 PMCID: PMC8224750 DOI: 10.3390/foods10061167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
This study investigated the status of bioactive compounds (phenolic compounds, carotenoids, and vitamin C), changes in color performance, and microbiological quality in smoothies preserved by high-pressure processing (HP) and thermal pasteurization (P) during cold storage at 4 °C for 21 days. Chemometric tools were used to select relevant variables that represent the most useful information for the fast and accurate quality assessment of smoothies. HP was performed at 350 and 450 MPa for 5 and 15 min at room temperature, respectively, while P was performed at 85 °C for 7 min. Smoothies were prepared by blending juices of apple (50%, v/v), carrot (20%, v/v), chokeberry (5%, v/v), Indian banana puree (10%, w/v), and almond drink (15%, v/v). The results obtained indicated that lower pressures with a shorter duration of HP showed higher levels of bioactive compounds in the smoothies, compared to the control samples. Compared to P, the HP samples exhibited a greater stability of bioactive compounds during shelf life. HP was found to be highly effective in reducing the native microflora of the smoothies, without subsequent microbial activation during storage. This study demonstrated the usefulness of the chemometric approach in interpreting complex datasets for the effective quality assessment of smoothies treated with different preservation technologies.
Collapse
Affiliation(s)
- Marko Škegro
- Department of Process Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.Š.); (D.J.)
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Danijela Bursać Kovačević
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.P.K.); (L.S.)
| | - Ana Petra Kovač
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.P.K.); (L.S.)
| | - Lidija Salkić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.P.K.); (L.S.)
| | - Iva Čanak
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.Č.); (J.F.)
| | - Jadranka Frece
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.Č.); (J.F.)
| | - Sandra Zavadlav
- Department of Food Technology, Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47000 Karlovac, Croatia;
| | - Damir Ježek
- Department of Process Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.Š.); (D.J.)
| |
Collapse
|
30
|
High-Pressure Processing and Ultrasonication of Minimally Processed Potatoes: Effect on the Colour, Microbial Counts, and Bioactive Compounds. Molecules 2021; 26:molecules26092614. [PMID: 33947110 PMCID: PMC8124339 DOI: 10.3390/molecules26092614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
HPP at 600 MPa alone, and in combination with US at 20 kHz (200 W), was applied to minimally processed potatoes of two commonly grown cultivars in Ireland. Changes in colour and microbial load (Enterobacteriaceae, total aerobic count, Salmonella, yeasts, and moulds) were monitored in vacuum-packaged potatoes during 14 days of storage at 4 °C. HPP and HPP/US significantly (p < 0.05) affected the colour parameters a*, b*, L*, and ΔE of minimally processed potatoes compared to the controls. Microbial growth was delayed in most of the treated samples with respect to those untreated (controls), while HPP completely inactivated Enterobacteriaceae in both cultivars. Total phenolic content and antioxidant activities were not altered in the treated samples of both varieties when compared to the controls. The levels of chlorogenic acid, ferulic acid, and caffeic acid were decreased after both treatments, with a significant (p < 0.05) increase in quinic acid in the treated samples as opposed to those untreated. A significant (p < 0.05) decrease in the levels of glycoalkaloids, namely α-chaconine and α-solanine, in HPP- and HPP/US-treated potatoes was also observed. These findings suggest that HPP and US can extend the shelf-life of minimally processed potatoes with a negligible impact on their antioxidant activity and phenolic content.
Collapse
|
31
|
Managa MG, Akinola SA, Remize F, Garcia C, Sivakumar D. Physicochemical Parameters and Bioaccessibility of Lactic Acid Bacteria Fermented Chayote Leaf ( Sechium edule) and Pineapple ( Ananas comosus) Smoothies. Front Nutr 2021; 8:649189. [PMID: 33898502 PMCID: PMC8058202 DOI: 10.3389/fnut.2021.649189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, popularly consumed traditional chayote leaves and locally produced pineapple fruit were used to develop a fermented smoothie using lactic acid bacteria (LAB) strains: Lactobacillus plantarum (L75), Weissella cibaria (W64), and their combination (LW64 + 75). The physicochemical parameters [pH, total soluble solids (TSS), and color], total phenols, and carotenoid contents of the smoothies fermented for 48 h and stored for 7 days at 4°C were compared with the unfermented (control) smoothies. Results indicated that LAB fermentation reduced the pH from 3.56 to 2.50 after 48 h (day 2) compared with the non-fermented smoothie at day 2 (pH 3.37). LAB strain L75 significantly reduced the TSS content of the smoothies to 13.06°Bx after 2 days of fermentation. Smoothies fermented by L75 showed overall acceptability after 7 days of storage compared with the non-fermented puree on day 0. The LW64 + 75 significantly reduced the color change (ΔE), which was similar to the control. L75 increased the phenolic content, and W64 enhanced the total carotenoid content of the smoothies after 2 days of fermentation compared with other treatments. The use of an in vitro model simulating gastrointestinal (GI) digestion showed that fermentation with L75 improved the total phenol recovery by 65.96% during the intestinal phase compared with the control. The dialysis phase mimicked an epithelial barrier, and 53.58% of the recovered free soluble are bioavailable from the L75 fermented smoothies compared with the control. The antioxidant capacity of dialyzable fraction of the L75 fermented smoothie was significantly higher than that of the control and smoothies fermented with W64 or LW64 + 75.
Collapse
Affiliation(s)
- Millicent G Managa
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Stephen A Akinola
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Fabienne Remize
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Cyrielle Garcia
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
32
|
Galanakis CM. Functionality of Food Components and Emerging Technologies. Foods 2021; 10:128. [PMID: 33435589 PMCID: PMC7826514 DOI: 10.3390/foods10010128] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
This review article introduces nutrition and functional food ingredients, explaining the widely cited terms of bioactivity, bioaccessibility, and bioavailability. The factors affecting these critical properties of food components are analyzed together with their interaction and preservation during processing. Ultimately, the effect of emerging (non-thermal) technologies on different food components (proteins, carbohydrates, lipids, minerals, vitamins, polyphenols, glucosinolates, polyphenols, aroma compounds, and enzymes) is discussed in spite of preserving their functional properties. Non-thermal technologies can maintain the bioavailability of food components, improve their functional and technological properties, and increase the recovery yields from agricultural products. However, the optimization of operational parameters is vital to avoid degradation of macromolecules and the oxidation of labile compounds.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, P.C. 73131 Chania, Greece;
- Food Waste Recovery Group, ISEKI Food Association, P.C. 1190 Vienna, Austria
| |
Collapse
|
33
|
Matrix- and Technology-Dependent Stability and Bioaccessibility of Strawberry Anthocyanins during Storage. Antioxidants (Basel) 2020; 10:antiox10010030. [PMID: 33396664 PMCID: PMC7824345 DOI: 10.3390/antiox10010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Anthocyanins are often associated with health benefits. They readily degrade during processing and storage but are also dependent on the matrix conditions. This study investigated how strawberry anthocyanins are affected by preservation technologies and a relatively protein-rich kale juice addition during storage. A strawberry–kale mix was compared to a strawberry–water mix (1:2 wt; pH 4), untreated, thermally, pulsed electric fields (PEF) and high-pressure processing (HPP) treated, and evaluated for anthocyanin stability and bioaccessibility during refrigerated storage. The degradation of strawberry anthocyanins during storage followed first-order kinetics and was dependent on the juice system, preservation technology and anthocyanin structure. Generally, the degradation rate was higher for the strawberry–kale mix compared to the strawberry–water mix. The untreated sample showed the highest degradation rate, followed by HPP, PEF and, then thermal. The relative anthocyanin bioaccessibility after gastric digestion was 10% higher for the thermally and PEF treated samples. Anthocyanin bioaccessibility after intestinal digestion was low due to instability at a neutral pH, especially for the strawberry–kale mix, and after thermal treatment. The storage period did not influence the relative bioaccessibility; yet, the absolute content of bioaccessible anthocyanins was decreased after storage. This research further presents that processing and formulation strongly affect the stability and bioaccessibility of anthocyanins during storage.
Collapse
|
34
|
Villa-Rivera MG, Ochoa-Alejo N. Chili Pepper Carotenoids: Nutraceutical Properties and Mechanisms of Action. Molecules 2020; 25:E5573. [PMID: 33260997 PMCID: PMC7729576 DOI: 10.3390/molecules25235573] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Chili pepper is a prominent cultivated horticultural crop that is traditionally used for food seasoning and is applied for the treatment and prevention of multiple diseases. Its beneficial health properties are due to its abundance and variety of bioactive components, such as carotenoids, capsaicinoids, and vitamins. In particular, carotenoids have important nutraceutical properties, and several studies have focused on their potential in the prevention and treatment of human diseases. In this article, we reviewed the state of knowledge of general aspects of chili pepper carotenoids (biosynthesis pathway, types and content in Capsicum spp., and the effects of processing on carotenoid content) and recent findings on the effects of carotenoid nutraceuticals, such as antioxidant, cancer preventive, anti-inflammatory, cardiovascular disorder preventive, and anti-obesity effects.
Collapse
Affiliation(s)
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato 36824, Mexico;
| |
Collapse
|
35
|
Bi X, Zhou Z, Qin T, Wang X, Ma Y, Xing Y, Che Z. Effects of high pressure processing (HPP) on microorganisms and the quality of mango smoothies during storage. RSC Adv 2020; 10:31333-31341. [PMID: 35520660 PMCID: PMC9056382 DOI: 10.1039/d0ra05181k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 11/21/2022] Open
Abstract
The objective of this study is to investigate the effects of high pressure processing (HPP) on the quality of mango smoothies and the inactivation of microorganisms therein, with heat treatments used as the control. Comparative analysis was conducted on the microbiological changes in the mango smoothies subjected to HPP at 400-600 MPa for 0-15 min. The total plate count (TPC) and the yeast and mold (YM) counts were found to be significantly inactivated through increases in the pressure and treatment time (p < 0.05). Conditions of 90 °C/20 min (HT), 500 MPa/8 min (HPP-500) and 600 MPa/5 min (HPP-600) were, thus, selected as the subsequent treatment for a storage study at 4 °C for 15 days, since these conditions had similar inactivation effects on TPC and YM. After 15 days of storage, the TPC was found to have increased by 3.87, 3.54 and 3.36 log10 cycles in the mango smoothies treated by HT, HPP-500 and HPP-600, respectively, while the YM counts remained at less than 1 log10 cycle in all samples. During storage, compared to the HT and HPP-600 samples, both the color and viscosity at 100 s-1 of samples treated by HPP-500 were found to be better maintained. Carotene content was better retained in storage after the HPP process than after the HT process. However, the different treatments had no effect on the pH nor on the total soluble solids (TSS) in the samples. The study ascertained that HPP-500 is able to ensure both the microbial safety and the quality of mango smoothies more effectively than HT and HPP-600.
Collapse
Affiliation(s)
- Xiufang Bi
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University 999 Jinzhou Road, Jinniu District Chengdu 610039 People's Republic of China +86-28-87720552
| | - Zhongyu Zhou
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University 999 Jinzhou Road, Jinniu District Chengdu 610039 People's Republic of China +86-28-87720552
| | - Tingting Qin
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute Yibin 644004 China
| | - Xiaoqiong Wang
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University 999 Jinzhou Road, Jinniu District Chengdu 610039 People's Republic of China +86-28-87720552
| | - Yuan Ma
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University 999 Jinzhou Road, Jinniu District Chengdu 610039 People's Republic of China +86-28-87720552
| | - Yage Xing
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University 999 Jinzhou Road, Jinniu District Chengdu 610039 People's Republic of China +86-28-87720552
| | - Zhenming Che
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University 999 Jinzhou Road, Jinniu District Chengdu 610039 People's Republic of China +86-28-87720552
| |
Collapse
|
36
|
Balamurugan S, Gemmell C, Lau ATY, Arvaj L, Strange P, Gao A, Barbut S. High pressure processing during drying of fermented sausages can enhance safety and reduce time required to produce a dry fermented product. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Baipong S, Apichartsrangkoon A, Worametrachanon S, Tiampakdee A, Sriwattana S, Phimolsiripol Y, Kreungngern D, Sintuya P. Effects of germinated and nongerminated rice grains on storage stability of pressurized purple rice beverages with
Lactobacillus casei
01 supplement. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sasitorn Baipong
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai Thailand
| | | | | | | | | | | | - Danchai Kreungngern
- Division of Food Science and Technology Faculty of Science and Technology Kamphaeng Phet Rajabhat University Kamphaeng Phet Thailand
| | - Panlop Sintuya
- Institute of Product Quality and Standardization Maejo University Chiang Mai Thailand
| |
Collapse
|
38
|
Optimizing High Pressure Processing Parameters to Produce Milkshakes Using Chokeberry Pomace. Foods 2020; 9:foods9040405. [PMID: 32244662 PMCID: PMC7230439 DOI: 10.3390/foods9040405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
High hydrostatic pressure is a non-thermal treatment of great interest because of its importance for producing food with additional or enhanced benefits above their nutritional value. In the present study, the effect of high hydrostatic pressure processing parameters (200–500 MPa; 1–10 min) is investigated through response surface methodology (RSM) to optimize the treatment conditions, maximizing the phenol content and antioxidant capacity while minimizing microbiological survival, in milkshakes prepared with chokeberry pomace (2.5–10%). The measurement of fluorescence intensity of the samples was used as an indicator of total phenolic content and antioxidant capacity. The results showed that the intensity of the treatments had different effects on the milkshakes. The RSM described that the greatest retention of phenolic compounds and antioxidant capacity with minimum microbiological survival were found at 500 MPa for 10 min and 10% (w/v) chokeberry pomace. Therefore, this study offers the opportunity to develop microbiologically safe novel dairy products of high nutritional quality.
Collapse
|
39
|
Jahangir Chughtai MF, Pasha I, Zahoor T, Khaliq A, Ahsan S, Wu Z, Nadeem M, Mehmood T, Amir RM, Yasmin I, Liaqat A, Tanweer S. Nutritional and therapeutic perspectives of Stevia rebaudiana as emerging sweetener; a way forward for sweetener industry. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1721562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Imran Pasha
- National Institute of Food Science & Technology, Faculty of Food Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tahir Zahoor
- National Institute of Food Science & Technology, Faculty of Food Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Adnan Khaliq
- Department of Food Science & Technology, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Samreen Ahsan
- Department of Food Science & Technology, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Zhengzhong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Punjab, Pakistan
| | - Tariq Mehmood
- Department of Food Science & Technology, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Iqra Yasmin
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
- Barani Agricultural Research Institute, Chakwal, Pakistan
| | - Atif Liaqat
- Department of Food Science & Technology, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Saira Tanweer
- Department of Food Science and Technology, University College of Agricultural and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
40
|
Fernández MV, Denoya GI, Agüero MV, Vaudagna SR, Jagus RJ. Quality preservation and safety ensurement of a vegetable smoothie by high‐pressure processing. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M. V. Fernández
- Facultad de Ingeniería, Departamento de Ingeniería Química Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnologías y Ciencias de la Ingeniería Buenos Aires Argentina
- CONICET Buenos Aires Argentina
| | - G. I. Denoya
- CONICET Buenos Aires Argentina
- Instituto Tecnología de Alimentos Centro de Investigación de Agroindustria, Instituto Nacional de Tecnología Agropecuaria Buenos Aires Argentina
| | - M. V. Agüero
- Facultad de Ingeniería, Departamento de Ingeniería Química Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnologías y Ciencias de la Ingeniería Buenos Aires Argentina
- CONICET Buenos Aires Argentina
| | - S. R. Vaudagna
- CONICET Buenos Aires Argentina
- Instituto Tecnología de Alimentos Centro de Investigación de Agroindustria, Instituto Nacional de Tecnología Agropecuaria Buenos Aires Argentina
| | - R. J. Jagus
- Facultad de Ingeniería, Departamento de Ingeniería Química Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnologías y Ciencias de la Ingeniería Buenos Aires Argentina
| |
Collapse
|
41
|
Shkolnikov H, Belochvostov V, Okun Z, Shpigelman A. The effect of pressure on the kinetics of polyphenolics degradation – Implications to hyperbaric storage using Epigallocatechin-gallate as a model. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Influence of high hydrostatic pressure processing on physicochemical characteristics of a fermented pomegranate (Punica granatum L.) beverage. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Azeem M, Mu TH, Zhang M. Effects of high hydrostatic pressure and soaking solution on proximate composition, polyphenols, anthocyanins, β-carotene, and antioxidant activity of white, orange, and purple fleshed sweet potato flour. FOOD SCI TECHNOL INT 2019; 26:388-402. [PMID: 31870191 DOI: 10.1177/1082013219892716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effects of high hydrostatic pressure (100, 200, and 400 MPa) and soaking solution (citric acid, calcium chloride, ascorbic acid, and distilled water) on proximate composition, polyphenols, anthocyanins, β-carotene, and antioxidant activity of white, orange, and purple fleshed sweet potato flour were investigated. Total polyphenol content was increased in sweet potato flour of Jishu 98 (white) at 200 MPa with ascorbic acid and Pushu 32 (orange) at 0.1 MPa with ascorbic acid treatment (0.51 and 0.83 mg gallic acid equivalent/g dry weight, respectively), but was decreased in Xuzishu No. 3 (purple) in both high hydrostatic pressure and soaking solution treatments. Total anthocyanin content was declined in all treated sweet potato flour. Nevertheless, high hydrostatic pressure with citric acid, calcium chloride, and distilled water significantly increased the β-carotene content in Pushu 32. Correlation analysis between total polyphenol content, total anthocyanin content, and antioxidant activity suggested that polyphenols are the most pivotal antioxidant in sweet potato flour. High hydrostatic pressure and soaking solution treated sweet potato flour could be potentially utilized in food with acceptable nutritional values.
Collapse
Affiliation(s)
- Muhammad Azeem
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Being, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tai-Hua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Being, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Miao Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Being, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
44
|
Tsikrika K, O'Brien N, Rai DK. The Effect of High Pressure Processing on Polyphenol Oxidase Activity, Phytochemicals and Proximate Composition of Irish Potato Cultivars. Foods 2019; 8:E517. [PMID: 31635033 PMCID: PMC6835228 DOI: 10.3390/foods8100517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022] Open
Abstract
Polyphenol oxidase (PPO) activity, proximate composition, and phytochemicals were determined in four common Irish potato cultivars following a high pressure processing (HPP) at 600 MPa for 3 min. PPO activity was significantly (p < 0.05) lower in all HPP treated samples, while the overall proximate composition was not affected. The total phenolic content was significantly higher in the HPP treated samples. Chlorogenic acid levels significantly decreased with simultaneous increase of caffeic acid and p-coumaric acid levels upon HPP treatment. No significant changes were observed in rutin and ferulic acid levels, although their levels varied, depending on the potato cultivars, while the levels of cytotoxic glycoalkaloids (α-solanine and α-chaconine) remained unaltered.
Collapse
Affiliation(s)
- Konstantina Tsikrika
- Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland.
| | - Nora O'Brien
- School of Food & Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland.
| | - Dilip K Rai
- Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland.
| |
Collapse
|
45
|
Identification of Microfluidization Processing Conditions for Quality Retention of Sugarcane Juice Using Genetic Algorithm. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Iqbal A, Murtaza A, Hu W, Ahmad I, Ahmed A, Xu X. Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Enhancement of anti-inflammatory and antioxidant activities of prickly pear fruits by high hydrostatic pressure: A chemical and microstructural approach. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Kourouma V, Mu TH, Zhang M, Sun HN. Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Optimization of thermosonication conditions for cloudy strawberry nectar with using of critical quality parameters. Food Chem 2019; 276:494-502. [PMID: 30409624 DOI: 10.1016/j.foodchem.2018.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022]
Abstract
The optimum thermosonication parameters, temperature and ultrasound energy density (UED), determined by using response surface methodology to inactivate polyphenol oxidase (PPO) and protecting the quality parameters, especially color of strawberry nectar. The PPO inactivation was successfully achieved by thermosonication treatment. Increasing of temperature resulted with decreasing of browning index and increasing of hydroxymethyl furfural. High temperature-low UED combination can be applied to obtain minimum change in ΔE∗ and maximum protection of ascorbic acid. Thermosonication at mild temperature (∼50 °C) and UED (∼230 J/g) ensured the maximum levels of total monomeric anthocyanin and total phenolic content. The combination of 59 °C and 455 J/g was the conditions of optimum thermosonication to minimize quality parameters which cause undesirable changes like color degradation in nectar and maximize desirable ones which have beneficial effects on characteristics of nectar or on human health like phenolic content of nectar.
Collapse
|
50
|
Meng L, Zhang W, Zhou X, Wu Z, Hui A, He Y, Gao H, Chen P. Effect of high hydrostatic pressure on the bioactive compounds, antioxidant activity and in vitro digestibility of cooked black rice during refrigerated storage. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|