1
|
Tan Y, Li S, Li C, Liu S. Self-assembly of coconut residue fiber with chitosan: Effect of three pre-treatments on the self-assembly process and bile salt adsorption. Food Chem 2024; 437:137857. [PMID: 37924767 DOI: 10.1016/j.foodchem.2023.137857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Self-assembly with chitosan is a promising method for improving bile salt (BS) adsorption by coconut residue fiber (CRF). To study the self-assembly process, three pre-treatments were performed and investigated using microrheological analysis. The effects of the pretreatments on the self-assembly of CRF and the BS adsorption were evaluated. During self-assembly, CRFs underwent Brownian-like motion, and the addition of chitosan facilitated the formation of inter-particle interactions between CRFs in the system. These interactions were small in extent, large in number, and slow to state change, in addition to relatively high strength and longer maintenance, all of which contributed to the binding to BS. The conventional pretreatments failed to effectively improve the BS adsorption of the self-assembled CRFs and weakened the inter-particle interactions in the system. These results suggest that chitosan assists in the adsorption of self-assembled CRF to BS through a combination of H-bonds and other weak intermolecular forces.
Collapse
Affiliation(s)
- Yaoyao Tan
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuxian Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China.
| | - Sixin Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China; School of Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Peesapati S, Roy D. Structural and spectroscopic details of polysaccharide-bile acid composites from molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:8782-8794. [PMID: 36310090 DOI: 10.1080/07391102.2022.2137242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
Abstract
Interactions of a prototypical bile acid (cholic acid, 'Ch') and its corresponding sodium salt (sodium cholate, 'NaCh') with a standard dietary β-glucan (β-G), bearing β-D-glucopyranose units having mixed 1-4/1-3 glycosidic linkages are studied using molecular dynamics simulation and density functional theory (DFT) calculations. Self-aggregation of the biliary components and their interaction with fifteen strands of the decameric mixed linkage β-glucan is elucidated by estimating varieties of physical properties like the coordination number, moment of inertia and shape anisotropy of the biggest cluster formed at different time instants. Small angle scattering profiles indicate formation of compact spheroidal aggregates. The simulated results of small angle scattering and 1H NMR chemical shifts are compared to spectroscopic data, wherever available. Density functional theory calculations and estimation of the 1H NMR chemical shifts of Ch-protons lying close to the β-G chains reveal change in chemical shift values from that in absence of the polysaccharide. Hydrogen bonding and non-bonding interactions, primarily short range van der Waals interactions and some extent of inter-molecular charge transfer are found to play significant role in stabilizing the complex soft assemblies of bile acid aggregates and β-G.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sruthi Peesapati
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| |
Collapse
|
3
|
Yu L, Gao Y, Ye Z, Duan H, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Interaction of beta-glucans with gut microbiota: Dietary origins, structures, degradation, metabolism, and beneficial function. Crit Rev Food Sci Nutr 2023; 64:9884-9909. [PMID: 37272431 DOI: 10.1080/10408398.2023.2217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beta-glucan (BG), a polysaccharide comprised of interfacing glucose monomers joined via beta-glycosidic linkages, can be defined as a type of dietary fiber with high specificity based on its interaction with the gut microbiota. It can induce similar interindividual microbiota responses, thereby having beneficial effects on the human body. In this paper, we review the four main sources of BG (cereals, fungi, algae, and bacteria) and their differences in structure and content. The interaction of BG with gut microbiota and the resulting health effects have been highlighted, including immune enhancement, regulation of serum cholesterol and insulin levels, alleviation of obesity and improvement of cognitive disorders. Finally, the application of BG in food products and its beneficial effects on the gut microbiota of consumers were discussed. Although some of the mechanisms of action remain unclear, revealing the beneficial functions of BG from the perspective of gut microbiota can help provide theoretical support for the development of diets that target the regulation of microbiota.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Wu X, Boulos S, Syryamina V, Nyström L, Yulikov M. Interaction of barley β-glucan with food dye molecules - An insight from pulse dipolar EPR spectroscopy. Carbohydr Polym 2023; 309:120698. [PMID: 36906364 DOI: 10.1016/j.carbpol.2023.120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The interactions between dietary fibers (DFs) and small molecules are of great interest to food chemistry and nutrition science. However, the corresponding interaction mechanisms and structural rearrangements of DFs at the molecular level are still opaque due to the usually weak binding and the lack of appropriate techniques to determine details of conformational distributions in such weakly organized systems. By combining our previously established methodology on stochastic spin-labelling of DFs with the appropriately revised set of pulse electron paramagnetic resonance techniques, we present here a toolkit to determine the interactions between DFs and small molecules, using barley β-glucan as an example for neutral DF and a selection of food dye molecules as examples for small molecules. The proposed here methodology allowed us to observe subtle conformational changes of β-glucan by detecting multiple details of the local environment of the spin labels. Substantial variations of binding propensities were detected for different food dyes.
Collapse
Affiliation(s)
- Xiaowen Wu
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Samy Boulos
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Victoria Syryamina
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia.
| | - Laura Nyström
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Guan S, Hua X, Wang Z, Yuan Y, Yang R. Performance of ultrahigh methoxylated pectin as the delivery material in the simulated in vitro digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Cao X, Ren S, Cai C, Ni Q, Li X, Meng Y, Meng Z, Shi Y, Chen H, Jiang R, Wu P, Ye Y. Dietary pectin caused great changes in bile acid profiles of Pelteobagrus fulvidraco. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2015-2025. [PMID: 34709495 DOI: 10.1007/s10695-021-01028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
To reveal the impact of dietary fiber (DF) on the bile acid (BA) profiles of fish, yellow catfish (Pelteobagrus fulvidraco) were fed a diet containing 300 g kg-1 dextrin (CON diet, control) or pectin (a type of soluble DF, PEC diet) for 7 days, and then the BA profiles were analyzed by UHPLC-MS/MS. A total of 26 individuals of BAs were detected in the fish body, with 8, 10, 14, and 22 individuals of BAs detected in the liver, serum, bile, and hindgut digesta, respectively. The conjugated BAs (CBAs) of fish were dominated by taurine CBAs (TCBAs). The concentrations of free BAs (FBAs) and the value of FBAs/CBAs in the bile of fish fed the PEC diet were nearly 5 and 7 times higher, respectively than those in fish fed the CON diet. The value of glycine CBAs/TCBAs in the liver, serum and bile of fish fed the PEC diet was significantly lower, and in the hindgut digesta was higher than that of fish fed the CON diet (P < 0.05). These results suggested that dietary pectin greatly changed the BA profiles of Pelteobagrus fulvidraco, attributed to inhibition of reabsorption of BAs. Therefore, attention should be paid to the impact on BA homeostasis when replacing fishmeal with DF-rich plant ingredients in the fish diet.
Collapse
Affiliation(s)
- Xiamin Cao
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Shengjie Ren
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Chunfang Cai
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Qin Ni
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xinyue Li
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yunhe Meng
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zijing Meng
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ye Shi
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Huangen Chen
- Jiangsu Fisheries Technology Promotion Center, Nanjing, 210036, People's Republic of China
| | - Rong Jiang
- Wuxi Sanzhi Biotech Co., Ltd, Wuxi, 214101, People's Republic of China
| | - Ping Wu
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yuantu Ye
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China
| |
Collapse
|
7
|
Li HT, Chen SQ, Bui AT, Xu B, Dhital S. Natural ‘capsule’ in food plants: Cell wall porosity controls starch digestion and fermentation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
β-glucan release from fungal and plant cell walls after simulated gastrointestinal digestion. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Mäkelä N, Rosa-Sibakov N, Wang YJ, Mattila O, Nordlund E, Sontag-Strohm T. Role of β-glucan content, molecular weight and phytate in the bile acid binding of oat β-glucan. Food Chem 2021; 358:129917. [PMID: 33933973 DOI: 10.1016/j.foodchem.2021.129917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022]
Abstract
There is controversy about the role of viscosity and co-migrating molecules on the bile acid binding of beta-glucan. Thus, this study aimed to investigate the impact of β-glucan molecular weight and the content of both β-glucan and phytate on the mobility of bile acids by modelling intestinal conditions in vitro. Two approaches were used to evaluate factors underlying this binding effect. The first studied bile acid binding capacity of soluble β-glucan using purified compounds. Viscosity of the β-glucan solution governed mainly the mobility of bile acid since both a decrease in β-glucan concentration and degradation of β-glucan by enzyme hydrolysis resulted in decreased binding. The second approach investigated the trapping of bile acids in the oat bran matrix. Results suggested trapping of bile acids by the β-glucan gel network. Additionally, hydrolysis of phytate was shown to increase bile acid binding, probably due to better extractability of β-glucan in this sample.
Collapse
Affiliation(s)
- Noora Mäkelä
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland.
| | - Natalia Rosa-Sibakov
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland.
| | - Yu-Jie Wang
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Outi Mattila
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland.
| | - Emilia Nordlund
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland.
| | - Tuula Sontag-Strohm
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland.
| |
Collapse
|
10
|
Fang XH, Zou MY, Chen FQ, Ni H, Nie SP, Yin JY. An overview on interactions between natural product-derived β-glucan and small-molecule compounds. Carbohydr Polym 2021; 261:117850. [PMID: 33766346 DOI: 10.1016/j.carbpol.2021.117850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/28/2022]
Abstract
β-Glucans are widely found in plants and microorganisms, which has a variety of functional activities. During production and application, interactions with other components have a great influence on the structure and functional properties of β-glucan. In this paper, interactions (including non-covalent interaction and free-radical reaction) between natural product derived β-glucan and ascorbic acid, polyphenols, bile acids/salts, metal ion or other compounds were summarized. Besides, the mechanism and influence factors of interactions between β-glucan and small-molecule compounds, and their effects on the functional properties of β-glucan were detailed. This review aims to develop an understanding and practical suggestions on interactions between β-glucan and small-molecule compounds, which is expected to provide a useful reference for processing and application.
Collapse
Affiliation(s)
- Xiao-Hui Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming-Yue Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Fu-Quan Chen
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Hui Ni
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
11
|
Naumann S, Haller D, Eisner P, Schweiggert-Weisz U. Mechanisms of Interactions between Bile Acids and Plant Compounds-A Review. Int J Mol Sci 2020; 21:E6495. [PMID: 32899482 PMCID: PMC7555273 DOI: 10.3390/ijms21186495] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Plant compounds are described to interact with bile acids during small intestinal digestion. This review will summarise mechanisms of interaction between bile acids and plant compounds, challenges in in vivo and in vitro analyses, and possible consequences on health. The main mechanisms of interaction assume that increased viscosity during digestion results in reduced micellar mobility of bile acids, or that bile acids and plant compounds are associated or complexed at the molecular level. Increasing viscosity during digestion due to specific dietary fibres is considered a central reason for bile acid retention. Furthermore, hydrophobic interactions are proposed to contribute to bile acid retention in the small intestine. Although frequently hypothesised, no mechanism of permanent binding of bile acids by dietary fibres or indigestible protein fractions has yet been demonstrated. Otherwise, various polyphenolic structures were recently associated with reduced micellar solubility and modification of steroid and bile acid excretion but underlying molecular mechanisms of interaction are not yet fully understood. Therefore, future research activities need to consider the complex composition and cell-wall structures as influenced by processing when investigating bile acid interactions. Furthermore, influences of bile acid interactions on gut microbiota need to be addressed to clarify their role in bile acid metabolism.
Collapse
Affiliation(s)
- Susanne Naumann
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
| | - Dirk Haller
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Chair of Nutrition and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
- Steinbeis-Hochschule, Faculty of Technology and Engineering, George-Bähr-Straße 20, 01069 Dresden, Germany
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
| |
Collapse
|
12
|
Stanley J, Patras A, Pendyala B, Vergne MJ, Bansode RR. Performance of a UV-A LED system for degradation of aflatoxins B 1 and M 1 in pure water : kinetics and cytotoxicity study. Sci Rep 2020; 10:13473. [PMID: 32778713 PMCID: PMC7417570 DOI: 10.1038/s41598-020-70370-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/22/2020] [Indexed: 01/02/2023] Open
Abstract
The efficacy of a UV-A light emitting diode system (LED) to reduce the concentrations of aflatoxin B1, aflatoxin M1 (AFB1, AFM1) in pure water was studied. This work investigates and reveals the kinetics and main mechanism(s) responsible for the destruction of aflatoxins in pure water and assesses the cytotoxicity in liver hepatocellular cells. Irradiation experiments were conducted using an LED system operating at 365 nm (monochromatic wave-length). Known concentrations of aflatoxins were spiked in water and irradiated at UV-A doses ranging from 0 to 1,200 mJ/cm2. The concentration of AFB1 and AFM1 was determined by HPLC with fluorescence detection. LC–MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB1 and AFM1. It was observed that UV-A irradiation significantly reduced aflatoxins in pure water. In comparison to control, at dose of 1,200 mJ/cm2 UV-A irradiation reduced AFB1 and AFM1 concentrations by 70 ± 0.27 and 84 ± 1.95%, respectively. We hypothesize that the formation of reactive species initiated by UV-A light may have caused photolysis of AFB1 and AFM1 molecules in water. In cell culture studies, our results demonstrated that the increase of UV-A dosage decreased the aflatoxins-induced cytotoxicity in HepG2 cells, and no significant aflatoxin-induced cytotoxicity was observed at UV-A dose of 1,200 mJ/cm2. Further results from this study will be used to compare aflatoxins detoxification kinetics and mechanisms involved in liquid foods such as milk and vegetable oils.
Collapse
Affiliation(s)
- Judy Stanley
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, 37209, USA
| | - Ankit Patras
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, 37209, USA.
| | - Brahmaiah Pendyala
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, 37209, USA.
| | - Matthew J Vergne
- Department of Pharmaceutical Sciences, Department of Chemistry and Biochemistry, Lipscomb University, Nashville, TN, 37204, USA
| | - Rishipal R Bansode
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, 28081, NC, USA
| |
Collapse
|
13
|
Holland C, Ryden P, Edwards CH, Grundy MML. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods 2020; 9:E201. [PMID: 32079083 PMCID: PMC7074226 DOI: 10.3390/foods9020201] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties. These properties dictate how the cell walls behave in the human gastrointestinal tract, and how amenable they are to digestion, thereby modulating nutrient release from the plant tissue. This short narrative review presents an overview of our current knowledge on cell walls and how they impact nutrient bioaccessibility and digestibility. Some of the most relevant methods currently used to characterize the food matrix and the cell walls are also described.
Collapse
Affiliation(s)
- Claire Holland
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| | - Peter Ryden
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Cathrina H. Edwards
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Myriam M.-L. Grundy
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| |
Collapse
|
14
|
Macierzanka A, Torcello-Gómez A, Jungnickel C, Maldonado-Valderrama J. Bile salts in digestion and transport of lipids. Adv Colloid Interface Sci 2019; 274:102045. [PMID: 31689682 DOI: 10.1016/j.cis.2019.102045] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022]
Abstract
Because of their unusual chemical structure, bile salts (BS) play a fundamental role in intestinal lipid digestion and transport. BS have a planar arrangement of hydrophobic and hydrophilic moieties, which enables the BS molecules to form peculiar self-assembled structures in aqueous solutions. This molecular arrangement also has an influence on specific interactions of BS with lipid molecules and other compounds of ingested food and digestive media. Those comprise the complex scenario in which lipolysis occurs. In this review, we discuss the BS synthesis, composition, bulk interactions and mode of action during lipid digestion and transport. We look specifically into surfactant-related functions of BS that affect lipolysis, such as interactions with dietary fibre and emulsifiers, the interfacial activity in facilitating lipase and colipase anchoring to the lipid substrate interface, and finally the role of BS in the intestinal transport of lipids. Unravelling the roles of BS in the processing of lipids in the gastrointestinal tract requires a detailed analysis of their interactions with different compounds. We provide an update on the most recent findings concerning two areas of BS involvement: lipolysis and intestinal transport. We first explore the interactions of BS with various dietary fibres and food emulsifiers in bulk and at interfaces, as these appear to be key aspects for understanding interactions with digestive media. Next, we explore the interactions of BS with components of the intestinal digestion environment, and the role of BS in displacing material from the oil-water interface and facilitating adsorption of lipase. We look into the process of desorption, solubilisation of lipolysis, products and formation of mixed micelles. Finally, the BS-driven interactions of colloidal particles with the small intestinal mucus layer are considered, providing new findings for the overall assessment of the role of BS in lipid digestion and intestinal transport. This review offers a unique compilation of well-established and most recent studies dealing with the interactions of BS with food emulsifiers, nanoparticles and dietary fibre, as well as with the luminal compounds of the gut, such as lipase-colipase, triglycerides and intestinal mucus. The combined analysis of these complex interactions may provide crucial information on the pattern and extent of lipid digestion. Such knowledge is important for controlling the uptake of dietary lipids or lipophilic pharmaceuticals in the gastrointestinal tract through the engineering of novel food structures or colloidal drug-delivery systems.
Collapse
|
15
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Gidley MJ, Yakubov GE. Functional categorisation of dietary fibre in foods: Beyond ‘soluble’ vs ‘insoluble’. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Chen Z, Li S, Fu Y, Li C, Chen D, Chen H. Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Aggregation and microstructure of cereal β-glucan and its association with other biomolecules. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Naso JN, Bellesi FA, Pizones Ruiz-Henestrosa VM, Pilosof AMR. Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential. Colloids Surf B Biointerfaces 2018; 174:493-500. [PMID: 30497011 DOI: 10.1016/j.colsurfb.2018.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
Abstract
During the last decade a special interest has been focused on studying the relationship between the composition and structure of emulsions and the extent of lipolysis, driven by the necessity of modulate lipid digestion to decrease or delay fats absorption or increase healthy fat nutrients bioavailability. Because bile salts (BS) play a crucial role in lipids metabolism, understanding how typical food emulsifiers affect the structures of BS under duodenal conditions, can aid to further understand how to control lipids digestion. In the present work the BS-binding capacity of three emulsifiers (Lecithin, Tween 80 and β-lactoglobulin) was studied under duodenal conditions. The combination of several techniques (DLS, TEM, ζ-potential and conductivity) allowed the characterization of molecular assemblies resulting from the interactions, as modulated by the relative amounts of BS and emulsifiers in solution.
Collapse
Affiliation(s)
- Julieta N Naso
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Fellowship Agencia Nacional de Promoción Científica y Tecnológica, Argentina
| | - Fernando A Bellesi
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Víctor M Pizones Ruiz-Henestrosa
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana M R Pilosof
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
20
|
Korompokis K, Nilsson L, Zielke C. The effect of in vitro gastrointestinal conditions on the structure and conformation of oat β-glucan. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Grundy MML, Fardet A, Tosh SM, Rich GT, Wilde PJ. Processing of oat: the impact on oat's cholesterol lowering effect. Food Funct 2018; 9:1328-1343. [PMID: 29431835 PMCID: PMC5885279 DOI: 10.1039/c7fo02006f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Epidemiological and interventional studies have clearly demonstrated the beneficial impact of consuming oat and oat-based products on serum cholesterol and other markers of cardiovascular disease. The cholesterol-lowering effect of oat is thought to be associated with the β-glucan it contains. However, not all food products containing β-glucan seem to lead to the same health outcome. Overall, highly processed β-glucan sources (where the oat tissue is highly disrupted) appear to be less effective at reducing serum cholesterol, but the reasons are not well understood. Therefore, the mechanisms involved still need further clarification. The purpose of this paper is to review current evidence of the cholesterol-lowering effect of oat in the context of the structure and complexity of the oat matrix. The possibility of a synergistic action and interaction between the oat constituents promoting hypocholesterolaemia is also discussed. A review of the literature suggested that for a similar dose of β-glucan, (1) liquid oat-based foods seem to give more consistent, but moderate reductions in cholesterol than semi-solid or solid foods where the results are more variable; (2) the quantity of β-glucan and the molecular weight at expected consumption levels (∼3 g day-1) play a role in cholesterol reduction; and (3) unrefined β-glucan-rich oat-based foods (where some of the plant tissue remains intact) often appear more efficient at lowering cholesterol than purified β-glucan added as an ingredient.
Collapse
Affiliation(s)
- Myriam M-L Grundy
- Food and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
| | - Anthony Fardet
- INRA, JRU 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand & Université de Clermont, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Susan M Tosh
- University of Ottawa, Université, Salle 118, Ottawa, ON K1N 6N5 Canada.
| | - Gillian T Rich
- Food and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
| | - Peter J Wilde
- Food and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
| |
Collapse
|
22
|
Bellesi FA, Ruiz-Henestrosa VMP, Maldonado-Valderrama J, Del Castillo Santaella T, Pilosof AM. Comparative interfacial in vitro digestion of protein and polysaccharide oil/water films. Colloids Surf B Biointerfaces 2018; 161:547-554. [DOI: 10.1016/j.colsurfb.2017.11.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
23
|
Cao Y, Sun Y, Zou S, Li M, Xu X. Orally Administered Baker's Yeast β-Glucan Promotes Glucose and Lipid Homeostasis in the Livers of Obesity and Diabetes Model Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9665-9674. [PMID: 29035040 DOI: 10.1021/acs.jafc.7b03782] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Baker's yeast glucan (BYG) has been reported to be an anti-diabetic agent. In the work described herein, further study on the effect of orally administered BYG on glucose and lipid homeostasis in the livers of ob/ob mice was performed. It was found that BYG decreased the blood glucose and the hepatic glucose and lipid disorders. Western blotting analysis revealed that BYG up-regulated p-AKT and p-AMPK, and down-regulated p-Acc in the liver. Furthermore, RNA-Seq analysis indicated that BYG down-regulated genes responsible for gluconeogenesis (G6pase and Got1), fatty acid biosynthesis (Acly, Acc, Fas, etc.), glycerolipid synthesis (Gpam and Lipin1/2), and cholesterol synthesis (Hmgcr, Fdps, etc.). Additionally, BYG decreased glucose transporters SGLT1 and GLUT2, fat emulsification, and adipogenic genes/proteins in the intestine to decrease glucose and lipid absorption. All these findings demonstrated that BYG is beneficial for regulating glucose and lipid homeostasis in diabetic mice, and thus has potential applications in anti-diabetic foods or drugs.
Collapse
Affiliation(s)
- Yan Cao
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Ying Sun
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Mengxia Li
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| |
Collapse
|
24
|
Abstract
The structure of oat tissue is an important factor for determining its influence on (in vitro) lipid digestion. β-glucan release from oat cell walls during digestion was not complete. Processing of oats affects the rate and extent of lipolysis. Viscosity is not the only factor affecting lipolysis.
Oat β-glucan has been shown to play a positive role in influencing lipid and cholesterol metabolism. However, the mechanisms behind these beneficial effects are not fully understood. The purpose of the current work was to investigate some of the possible mechanisms behind the cholesterol lowering effect of oat β-glucan, and how processing of oat modulates lipolysis. β-Glucan release, and the rate and extent of lipolysis measured in the presence of different sources of oat β-glucan, were investigated during gastrointestinal digestion. Only a fraction of the original β-glucan content was released during digestion. Oat flakes and flour appeared to have a more significant effect on lipolysis than purified β-glucan. These findings show that the positive action of β-glucan is likely to involve complex processes and interactions with the food matrix. This work also highlights the importance of considering the structure and physicochemical properties of foods, and not just the nutrient content.
Collapse
|
25
|
Pilosof AM. Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Pizones Ruiz-Henestrosa VM, Bellesi FA, Camino NA, Pilosof AM. The impact of HPMC structure in the modulation of in vitro lipolysis: The role of bile salts. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Grundy MML, Edwards CH, Mackie AR, Gidley MJ, Butterworth PJ, Ellis PR. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br J Nutr 2016; 116:816-33. [PMID: 27385119 PMCID: PMC4983777 DOI: 10.1017/s0007114516002610] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The positive effects of dietary fibre on health are now widely recognised; however, our understanding of the mechanisms involved in producing such benefits remains unclear. There are even uncertainties about how dietary fibre in plant foods should be defined and analysed. This review attempts to clarify the confusion regarding the mechanisms of action of dietary fibre and deals with current knowledge on the wide variety of dietary fibre materials, comprising mainly of NSP that are not digested by enzymes of the gastrointestinal (GI) tract. These non-digestible materials range from intact cell walls of plant tissues to individual polysaccharide solutions often used in mechanistic studies. We discuss how the structure and properties of fibre are affected during food processing and how this can impact on nutrient digestibility. Dietary fibre can have multiple effects on GI function, including GI transit time and increased digesta viscosity, thereby affecting flow and mixing behaviour. Moreover, cell wall encapsulation influences macronutrient digestibility through limited access to digestive enzymes and/or substrate and product release. Moreover, encapsulation of starch can limit the extent of gelatinisation during hydrothermal processing of plant foods. Emphasis is placed on the effects of diverse forms of fibre on rates and extents of starch and lipid digestion, and how it is important that a better understanding of such interactions with respect to the physiology and biochemistry of digestion is needed. In conclusion, we point to areas of further investigation that are expected to contribute to realisation of the full potential of dietary fibre on health and well-being of humans.
Collapse
Affiliation(s)
- Myriam M.-L. Grundy
- Biopolymers Group, Diabetes and Nutritional Sciences Division, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Cathrina H. Edwards
- Biopolymers Group, Diabetes and Nutritional Sciences Division, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Alan R. Mackie
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Michael J. Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072, Qsd, Australia
| | - Peter J. Butterworth
- Biopolymers Group, Diabetes and Nutritional Sciences Division, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Peter R. Ellis
- Biopolymers Group, Diabetes and Nutritional Sciences Division, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
28
|
Qin D, Yang X, Gao S, Yao J, McClements DJ. Influence of Hydrocolloids (Dietary Fibers) on Lipid Digestion of Protein-Stabilized Emulsions: Comparison of Neutral, Anionic, and Cationic Polysaccharides. J Food Sci 2016; 81:C1636-45. [DOI: 10.1111/1750-3841.13361] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/28/2016] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Dingkui Qin
- Dept. of Animal Science and Technology; Northwest A&F Univ; Yangling Shaanxi 712100 China
- Biopolymer and Colloids Research Laboratory, Dept. of Food Science; Univ. of Massachusetts; Amherst Mass. 01003 U.S.A
| | - Xiaojun Yang
- Dept. of Animal Science and Technology; Northwest A&F Univ; Yangling Shaanxi 712100 China
| | - Songran Gao
- Biopolymer and Colloids Research Laboratory, Dept. of Food Science; Univ. of Massachusetts; Amherst Mass. 01003 U.S.A
| | - Junhu Yao
- Dept. of Animal Science and Technology; Northwest A&F Univ; Yangling Shaanxi 712100 China
| | - David Julian McClements
- Biopolymer and Colloids Research Laboratory, Dept. of Food Science; Univ. of Massachusetts; Amherst Mass. 01003 U.S.A
- Dept. of Biochemistry, Faculty of Science; King Abdulaziz Univ; P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
29
|
Gunness P, Williams BA, Gerrits WJ, Bird AR, Kravchuk O, Gidley MJ. Circulating triglycerides and bile acids are reduced by a soluble wheat arabinoxylan via modulation of bile concentration and lipid digestion rates in a pig model. Mol Nutr Food Res 2016; 60:642-51. [DOI: 10.1002/mnfr.201500686] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Purnima Gunness
- ARC Centre of Excellence in Plant Cell Walls; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; The University of Queensland
| | - Barbara A. Williams
- ARC Centre of Excellence in Plant Cell Walls; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; The University of Queensland
| | | | | | - Olena Kravchuk
- Biometry Hub, School of Agriculture, Food and Wine; University of Adelaide; Australia
| | - Michael J. Gidley
- ARC Centre of Excellence in Plant Cell Walls; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; The University of Queensland
| |
Collapse
|