1
|
Zhang H, Ju M, Hamid N, Ma Q, Shang D, Jia C, Xiao Y, Jiang S, Qiu H, Luan W, Sun A. Exploring the effects of whey protein components on the interaction and stability of cyanidin-3-O-glucoside. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39179519 DOI: 10.1002/jsfa.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Anthocyanins are susceptible to degradation due to external factors. Despite the potential for improved anthocyanin stability with whey protein isolate (WPI), the specific effects of individual components within WPI on the stability of anthocyanins have yet to be studied extensively. This study investigated the interaction of WPI, β-lactoglobulin (β-Lg), bovine serum albumin (BSA), and lactoferrin (LF) with cyanidin-3-O-glucoside (C3G), and also considered their effects on stability. RESULTS Fluorescence analysis revealed static quenching effects between C3G and WPI, β-Lg, BSA, and LF. The binding constants were 1.923 × 103 L · mol⁻¹ for WPI, 24.55 × 103 L · mol⁻¹ for β-Lg, 57.25 × 103 L · mol⁻¹ for BSA, and 1.280 × 103 L · mol⁻¹ for LF. Hydrogen bonds, van der Waals forces, and electrostatic attraction were the predominant forces in the interactions between C3G and WPI and between C3G and BSA. Hydrophobic interaction was the main binding force in the interaction between C3G and β-Lg and between C3G and LF. The binding of C3G with WPI, β-Lg, BSA, and LF was driven by different thermodynamic parameters. Enthalpy changes (∆H) were -38.76 kJ · mol⁻¹ for WPI, -17.59 kJ · mol⁻¹ for β-Lg, -16.09 kJ · mol⁻¹ for BSA, and 39.50 kJ · mol⁻¹ for LF. Entropy changes (∆S) were -67.21 J · mol⁻¹·K⁻¹ for WPI, 3.72 J · mol⁻¹·K⁻¹ for β-Lg, 37.09 J · mol⁻¹·K⁻¹ for BSA, and 192.04 J · mol⁻¹·K⁻¹ for LF. The addition of C3G influenced the secondary structure of the proteins. The decrease in the α-helix content suggested a disruption and loosening of the hydrogen bond network structure. The presence of proteins enhanced the light stability and thermal stability (stability in the presence of light and heat) of C3G. In vitro simulated digestion experiments demonstrated that the addition of proteins led to a delayed degradation of C3G and to improved antioxidant capacity. CONCLUSION The presence of WPI and its components enhanced the thermal stability, light stability, and oxidation stability of C3G. Preheated proteins exhibited a more pronounced effect than unheated proteins. These findings highlight the potential of preheating protein at appropriate temperatures to preserve C3G stability and bioactivity during food processing. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Mengmeng Ju
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Nazimah Hamid
- Department of Food Science, Auckland University of Technology, Auckland, New Zealand
| | - Qianli Ma
- Department of Food Science, Auckland University of Technology, Auckland, New Zealand
| | - Dansen Shang
- SINOPEC (Beijing) Research Institute of Chemical Industry, Beijing, China
| | - Chengli Jia
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yuhang Xiao
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Shijing Jiang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Haoqin Qiu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Wenli Luan
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Aidong Sun
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Wang X, Cheng J, Zhu Y, Li T, Wang Y, Gao X. Intermolecular copigmentation of anthocyanins with phenolic compounds improves color stability in the model and real blueberry fermented beverage. Food Res Int 2024; 190:114632. [PMID: 38945622 DOI: 10.1016/j.foodres.2024.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
To improve the color stability of anthocyanins (ACNs) in blueberry fermented beverage, the intermolecular copigmentation between ACNs and 3 different phenolic compounds, including (-)-epigallocatechin gallate (EGCG), ferulic acid (FA), and gallic acid (GA) as copigments, was compared in the model and the real blueberry fermented beverage, respectively. The copigmented ACNs by EGCG presented a high absorbance (0.34 a.u.) and redness (27.09 ± 0.17) in the model blueberry fermented beverage. The copigmentation by the participation of the 3 different phenolic compounds showed all a spontaneous exothermic reaction, and the Gibbs free energy (ΔG°) of the system was lowest (-5.90 kJ/mol) using EGCG as copigment. Furthermore, the molecular docking model verified that binary complexes formed between ACNs and copigments by hydrogen bonds and π-π stacking. There was a high absorbance (1.02 a.u.), percentage polymeric color (PC%, 68.3 %), and good color saturation (C*ab, 43.28) in the real blueberry fermented beverage aged for 90 days, and more malvidin-3-O-glucoside had been preserved in the wine using EGCG as copigment. This finding may guide future industrial production of blueberry fermented beverage with improved color.
Collapse
Affiliation(s)
- Xiaohan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jingjing Cheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yue Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xueling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
3
|
Zhang H, Jia C, Xiao Y, Zhang J, Yu J, Li X, Hamid N, Sun A. Enhanced stability and bioavailability of mulberry anthocyanins through the development of sodium caseinate-konjac glucomannan nanoparticles. Food Chem 2024; 439:138150. [PMID: 38100879 DOI: 10.1016/j.foodchem.2023.138150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
This study was carried out to improve the stability of anthocyanins (ACNs) by developing MA-SC-KGM nanoparticles using a self-assembly method that involved the combination of sodium caseinate (SC) and konjac glucomannan (KGM) with mulberry anthocyanin extract (MA). Atomic force microscopy (AFM) analysis showed SC encapsulated MA successfully. Multispectral techniques demonstrated the presence of hydrogen bonds and hydrophobic interactions in the nanoparticles. MA-SC-KGM ternary mixture improved storage stability, color stability and anthocyanin retention better compared to the MA-SC binary mixture. Notably, MA-SC-KGM nanoparticles significantly inhibited the thermal degradation of ACNs, improved pH stability, and showed stability and a slow-release effect in gastrointestinal digestion experiments. In addition, MA-SC-KGM nanoparticles were effective in scavenging DPPH· and ABTS+ free radicals, with enhanced stability and antioxidant capacity even during the heating process. This study successfully developed a novel MA-SC-KGM protein-polysaccharide composite material that effectively stabilized natural ACNs, expanding the application of ACNs in various industries.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Chengli Jia
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Yuhang Xiao
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Jingyue Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Jingwen Yu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Xinran Li
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Nazimah Hamid
- Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Aidong Sun
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China.
| |
Collapse
|
4
|
Xu Y, Wang J, Wu Z, Huang J, Li Z, Xu J, Long D, Ye T, Wang G, Yin J, Luo Z, Xu Y. The role of glutathione in stabilizing aromatic volatile organic compounds in Rougui Oolong tea: A comprehensive study from content to mechanisms. Food Chem 2024; 437:137802. [PMID: 37866345 DOI: 10.1016/j.foodchem.2023.137802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Chinese Oolong tea is widely known for its intricate aroma. However, the degradation of volatile organic compounds (VOCs) poses significant challenges for the tea products. In this study, glutathione (GSH) has an excellent preservation effect on VOCs in both the VOCs extract and the tea infusion during storage, specifically slowing the degradation of hexanal (by 66.39% and 35.09%) and heptanal (by 67.46% and 63.50%). Additionally, the addition of GSH maintained higher levels of active ingredients in tea infusion, including epigallocatechin, procyanidin B1, glutamic acid, and L-(+)-arginine, with respective increases of 184.09, 2.92, 4.10, and 6.35 times. The sulfhydryl group of GSH formed a covalent bond with hexanal and 2-methylbutanal, therefore improving the stability of VOCs. These findings provided a valuable insight for developing effective VOC preservation techniques for water-based tea products.
Collapse
Affiliation(s)
- Yanqun Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, People's Republic of China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Jieqiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, People's Republic of China
| | - Ziqing Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiayi Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Dan Long
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Tian Ye
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Gennv Wang
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Junfeng Yin
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Yongquan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, People's Republic of China.
| |
Collapse
|
5
|
Xiang H, Chen X, Gao X, Li S, Zhu Z, Guo Z, Cheng S. Fabrication of ammonia and acetic acid-responsive intelligent films based on grape skin anthocyanin via adjusting the pH of film-forming solution. Int J Biol Macromol 2024; 258:128787. [PMID: 38103661 DOI: 10.1016/j.ijbiomac.2023.128787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
pH-responsive intelligent films for food freshness monitoring have attracted great attentions recently. In this study, several intelligent films based on chitosan (CS), polyvinyl alcohol (PVA), and grape skin anthocyanin (GSA) were prepared, and the effect of film-forming solution pH on the properties of intelligent films was investigated. The results of SEM, FTIR, XRD and TGA displayed that the hydrogen bond between CS and GSA was strong at strong acidic conditions (2.0-2.5), and it weakened at weak acidic conditions (3.0-4.5). Meanwhile, the hydrogen bond between PVA and GSA was negligible under strong acidic conditions, and it appeared under weak acidic conditions. Consequently, the films fabricated under weak acidic conditions displayed lower water solubility, lower water vapor permeability, and higher elongation at break. The tensile strength of films increased firstly and subsequently decreased with pH increasing, reaching a maximum value of 31.44 MPa at pH 3.5. Additionally, the films prepared at pH 2.5 and 4.0 showed the best color responsiveness to ammonia and acetic acid, respectively. Overall, the intelligent films prepared under variant pH have the potential to realize the goal of monitoring the freshness of different types of food, thereby expanding the application subject of anthocyanins-based intelligent films.
Collapse
Affiliation(s)
- Hongxia Xiang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, Wuhan 430023, PR China
| | - Xu Chen
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, Wuhan 430023, PR China.
| | - Xiaomei Gao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, Wuhan 430023, PR China
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, Wuhan 430023, PR China.
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, Wuhan 430023, PR China
| | - Ziqi Guo
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, Wuhan 430023, PR China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, Wuhan 430023, PR China
| |
Collapse
|
6
|
Cruz-Molina AVDL, Gonçalves C, Neto MD, Pastrana L, Jauregi P, Amado IR. Whey-pectin microcapsules improve the stability of grape marc phenolics during digestion. J Food Sci 2023; 88:4892-4906. [PMID: 37905716 DOI: 10.1111/1750-3841.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Grape marc (GM) is an agri-food residue from the wine industry valuable for its high content of phenolic compounds. This study aimed to develop an encapsulation system for GM extract (GME) using food-grade biopolymers resistant to gastric conditions for its potential use as a nutraceutical. For this purpose, a hydroalcoholic GME was prepared with a total phenolics content of 219.62 ± 11.50 mg gallic acid equivalents (GAE)/g dry extract and 1389.71 ± 97.33 µmol Trolox equivalents/g dry extract antioxidant capacity, assessed through ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay. Moreover, the extract effectively neutralized reactive oxygen species in Caco-2 cells, demonstrating an intracellular antioxidant capacity comparable to Trolox. The GME was encapsulated using whey protein isolate and pectin through nano spray drying (73% yield), resulting in spherical microparticles with an average size of 1 ± 0.5 µm and a polydispersity of 0.717. The encapsulation system protected the microcapsules from simulated gastrointestinal digestion (GID), where at the end of the intestinal phase, 82% of the initial phenolics were bioaccessible compared to 54% in the free GME. Besides, the encapsulated GME displayed a higher antioxidant activity by the ferric reducing antioxidant power assay than the free extract after GID. These results show the potential of this encapsulation system for applying GME as a nutraceutical with a high antioxidant capacity and protective effect against cellular oxidation.
Collapse
Affiliation(s)
| | | | - Mafalda D Neto
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Lorenzo Pastrana
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK
| | - Isabel R Amado
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
7
|
Zhang S, Deng G, Wang F, Xu H, Li J, Liu J, Wu D, Lan S. Effect of Preheating Whey Protein Concentrate on the Stability of Purple Sweet Potato Anthocyanins. Polymers (Basel) 2023; 15:3315. [PMID: 37571210 PMCID: PMC10422442 DOI: 10.3390/polym15153315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Anthocyanins (ANs) have strong antioxidant activities and can inhibit chronic diseases, but the instability of ANs limits their applications. The conservation of preheating whey protein concentrate (WPC) on the stability of purple sweet potato ANs was investigated. The retention of ANs in WPC-ANs was 85.88% after storage at 25 °C for 5 h. WPC-ANs had higher retention of ANs in heating treatment. The retention rates of ANs in WPC-ANs exposed to light and UV lamps for 6 h were 78.72% and 85.76%, respectively. When the concentration of H2O2 was 0.50%, the retention rate of ANs in the complexes was 62.04%. WPC-ANs' stability and antioxidant activity were improved in simulated digestive juice. The WPC-ANs connection was static quenching, and the binding force between them was a hydrophobic interaction at one binding site, according to the fluorescence quenching spectroscopy. UV-visible absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR) analysis further indicated that the secondary structure and microenvironment of amino acid residues in WPC can be impacted by the preheating temperature and preheating times of WPC. In conclusion, preheating WPC can successfully preserve the stability of purple sweet potato ANs by binding to them through a non-covalent interaction.
Collapse
Affiliation(s)
- Shuo Zhang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Guowei Deng
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Fang Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China;
| | - Jiagen Li
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Jialei Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dengfeng Wu
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Shitao Lan
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| |
Collapse
|
8
|
Tan C, Sun Y, Yao X, Zhu Y, Jafari SM, Sun B, Wang J. Stabilization of anthocyanins by simultaneous encapsulation-copigmentation via protein-polysaccharide polyelectrolyte complexes. Food Chem 2023; 416:135732. [PMID: 36878116 DOI: 10.1016/j.foodchem.2023.135732] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
This study prepared a series of polyelectrolyte complexes (PECs) composed of heated whey protein isolate (HWPI) and different polysaccharides for simultaneous encapsulation and copigmentation of anthocyanins (ATC) and their ultimate stabilization. Four polysaccharides including chondroitin sulfate, dextran sulfate, gum arabic, and pectin were chosen due to their abilities to simultaneously complex with HWPI and copigment ATC. At pH 4.0, these PECs were formed with an average particle size of 120-360 nm, the ATC encapsulation efficiency of 62-80%, and the production yield of 47-68%, depending on the type of polysaccharides. The PECs effectively inhibited the degradation of ATC during storage and when exposed to neutral pH, ascorbic acid, and heat. Pectin had the best protection, followed by gum arabic, chondroitin sulfate, and dextran sulfate. The stabilizing effects were associated with the hydrogen bonding, hydrophobic and electrostatic interactions between HWPI and polysaccharides, conferring dense internal network and hydrophobic microenvironment in the complexes.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yan Sun
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xueqing Yao
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuqian Zhu
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
9
|
Effects of α-casein on the excretion of blueberry anthocyanins via urine and feces: Analysis of their bioavailability. Food Chem 2023; 413:135565. [PMID: 36773360 DOI: 10.1016/j.foodchem.2023.135565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Anthocyanins are bioactive compounds found in blueberries. However, their poor bioavailability restricts their functional activities in vivo, which is a challenging issue in the application of blueberry anthocyanins. Our current study utilized α-casein as a carrier and analyzed its influence on the excretion of blueberry anthocyanins in urine and feces in a rat model to reflect the enhanced bioavailability of blueberry anthocyanins by α-casein in vivo. The results showed that α-casein suppressed the excretive content of blueberry anthocyanins (malvidin-3-O-galacoside (M3G), cyanidin-3-O-glucoside (C3G), and delphinidin-3-O-glucoside (D3G)), increased the content of metabolites in urine (syringic acid, ferulic acid, 4-hydroxybenzoic acid, and vanillic acid), and reduced metabolite content in feces (syringic acid, ferulic acid, and gallic acid), indicating that α-casein was effective in controlling the excretion of blueberry anthocyanins and their metabolites. In summary, these results provided sufficient evidence for the positive effects of α-casein on the bioavailability of blueberry anthocyanins.
Collapse
|
10
|
Cheng Y, Chen X, Yang T, Wang Z, Chen Q, Zeng M, Qin F, Chen J, He Z. Effects of whey protein isolate and ferulic acid/phloridzin/naringin/cysteine on the thermal stability of mulberry anthocyanin extract at neutral pH. Food Chem 2023; 425:136494. [PMID: 37270886 DOI: 10.1016/j.foodchem.2023.136494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
In this study, the effects of whey protein isolate (WPI) and four copigments, including ferulic acid (FA), phloridzin, naringin, and cysteine (Cys), on the thermal stability (80 °C/2h) of mulberry anthocyanin extract (MAE) pigment solution at pH 6.3 were studied. WPI addition or copigment (except for Cys) addition alone could protect anthocyanin from degradation to a certain degree, and FA exhibited the best effect among copigments. Compared with the MAE-WPI and MAE-FA binary systems, ΔE of the MAE-WPI-FA ternary system decreased by 20.9% and 21.1%, respectively, and the total anthocyanin degradation rate decreased by 38.0% and 39.3%, respectively, indicating the best stabilizing effect. Remarkably, interactions between anthocyanins and Cys, which generate four anthocyanin derivatives with 513-nm UV absorption during heat treatment, did not alter the color stability of MAE solution; however, they accelerated anthocyanin degradation. These results favor the combined use of multiple methods to stabilize anthocyanins at neutral conditions.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Huang J, Hu Z, Chin Y, Pei Z, Yao Q, Chen J, Li D, Hu Y. Improved thermal stability of roselle anthocyanin by co-pigmented with oxalic acid: Preparation, characterization and enhancement mechanism. Food Chem 2023; 410:135407. [PMID: 36634562 DOI: 10.1016/j.foodchem.2023.135407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The enhancement effects of co-pigmentation on thermal stability of roselle anthocyanin extract (RAE) were investigated. The introduction of organic acids maintained color stability of RAE, and RAE co-pigmented with oxalic acid (OA) presented less color fading rates (19.46 ± 0.33 %) and higher redness (41.33 ± 3.51). Subsequently, suitable co-pigmentation concentration (OA:RAE = 1:2) was obtained regarding with lower ΔE (48.70 ± 2.36). Then, improvement behaviors of co-pigmentation on OA-RAE were evaluated. Results demonstrated that OA-RAE exhibited better thermal stability, as manifested by larger retention rates and more favorable thermal degradation kinetic parameters. Furthermore, both molecular docking simulation and experimental structural characterization revealed that hydrogen bonds and other non-covalent bonds made up the main parts of molecular interactions, leading to formation of stable binary complex. As a result, the aromatic ring of RAE was protected. In conclusion, the co-pigmentation of RAE via introduction of OA was effective in stability enhancement due to the generation of molecular bindings.
Collapse
Affiliation(s)
- Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiheng Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
| | - Yaoxian Chin
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Zhisheng Pei
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Jianchu Chen
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China.
| |
Collapse
|
12
|
Zhang S, Dongye Z, Wang L, Li Z, Kang M, Qian Y, Cheng X, Ren Y, Chen C. Influence of environmental pH on the interaction properties of WP-EGCG non-covalent nanocomplexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37029636 DOI: 10.1002/jsfa.12611] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/20/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Whey protein-epigallocatechin gallate (WP-EGCG) covalent conjugates and non-covalent nanocomplexes were prepared and compared using Fourier-transform infrared spectra. The effect of pH (at 2.6, 6.2, 7.1, and 8.2) on the non-covalent nanocomplexes' functional properties and the WP-EGCG interactions were investigated by studying antioxidant activity, emulsification, fluorescence quenching, and molecular docking, respectively. RESULTS With the formation of non-covalent and covalent complexes, the amide band decreased; the -OH peak disappeared; the antioxidant activity of WP-EGCG non-covalent complexes was 2.59- and 2.61-times stronger than WP-EGCG covalent conjugates for 1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing ability of plasma (FRAP), respectively (particle size: 137 versus 370 nm). The antioxidant activity (DPPH 27.48-44.32%, FRAP 0.47-0.63) was stronger at pH 6.2-7.1 than at pH 2.6 and pH 8.2 (DPPH 19.50% and 26.36%, FRAP 0.39 and 0.41). Emulsification was highest (emulsifying activity index 181 m2 g-1 , emulsifying stability index 107%) at pH 7.1. The interaction between whey protein (WP) and EGCG was stronger under neutral and weakly acidic conditions: KSV (5.11-8.95 × 102 L mol-1 ) and Kq (5.11-8.95 × 1010 L mol s-1 ) at pH 6.2-7.1. Binding constants (pH 6.2 and pH 7.1) increased with increasing temperature. Molecular docking suggested that hydrophobic interactions played key roles at pH 6.2 and pH 7.1 (∆H > 0, ∆S > 0). Hydrogen bonding was the dominant force at pH 2.6 and pH 8.2 (∆H < 0, ∆S < 0). CONCLUSION Environmental pH impacted the binding forces of WP-EGCG nanocomplexes. The interaction between WP and EGCG was stronger under neutral and weakly acidic conditions. Neutral and weakly acidic conditions are preferable for WP-EGCG non-covalent nanocomplex formation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuangling Zhang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Zixuan Dongye
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Li Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Zhenru Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Mengchen Kang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yaru Qian
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Xiaofang Cheng
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yuhang Ren
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Chengwang Chen
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| |
Collapse
|
13
|
Gao HH, Hou NC, Gao X, Yuan JY, Kong WQ, Zhang CX, Qin Z, Liu HM, Wang XD. Interaction between Chinese quince fruit proanthocyanidins and bovine serum albumin: Antioxidant activity, thermal stability and heterocyclic amine inhibition. Int J Biol Macromol 2023; 238:124046. [PMID: 36933591 DOI: 10.1016/j.ijbiomac.2023.124046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Heterocyclic amines (HCAs) are carcinogenic and mutagenic substances produced in fried meat. Adding natural antioxidants (e.g., proanthocyanidins (PAs)) is a common method to reduce HCAs; however, the interaction between the PAs and protein can affect the inhibitory efficacy of PAs on the formation of HCAs. In this study, two PAs (F1 and F2) with different degrees of polymerization (DP) were extracted from Chinese quince fruits. These were combined with bovine serum albumin (BSA). The thermal stability, antioxidant capacity and HCAs inhibition of all four (F1, F2, F1-BSA, F2-BSA) were compared. The results showed that F1 and F2 interact with BSA to form complexes. Circular dichroism spectra indicate that complexes had fewer α-helices and more β-sheets, β-turns and random coils than BSA. Molecular docking studies indicated that hydrogen bonds and hydrophobic interactions are the forces holding the complexes together. The thermal stabilities of F1 and, particularly, F2 were stronger than those of F1-BSA and F2-BSA. Interestingly, F1-BSA and F2-BSA showed increased antioxidant activity with increasing temperature. F1-BSA's and F2-BSA's HCAs inhibition was stronger than F1 and F2, reaching 72.06 % and 76.3 %, respectively, for norharman. This suggests that PAs can be used as natural antioxidants for reducing the HCAs in fried foods.
Collapse
Affiliation(s)
- Hui-Hui Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Nai-Chang Hou
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Yang Yuan
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wan-Qing Kong
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Nieto JA, Fernández-Jalao I, Siles-Sánchez MDLN, Santoyo S, Jaime L. Implication of the Polymeric Phenolic Fraction and Matrix Effect on the Antioxidant Activity, Bioaccessibility, and Bioavailability of Grape Stem Extracts. Molecules 2023; 28:molecules28062461. [PMID: 36985434 PMCID: PMC10051231 DOI: 10.3390/molecules28062461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The bioaccessibility and bioavailability of phenolics compounds of two grape stem extracts with different composition were studied. High polymeric extract (HPE) presented a higher content of total phenolics (TPC), procyanidins, hemicelluloses, proteins, and ashes, whereas low procyanidin extract (LPE) showed a higher fat, soluble sugars, and individual phenolic compounds content. Corresponding to its higher total phenolics content, HPE possesses a higher antioxidant activity (TEAC value). The digestion process reduced the antioxidant activity of the HPE up to 69%, due to the decrease of TPC (75%) with a significant loss of polymeric compounds. LPE antioxidant activity was stable, and TPC decreased by only 13% during the digestion process. Moreover, a higher antioxidant phenolic compounds bioavailability was shown in LPE in contrast to HPE. This behaviour was ascribed mainly to the negative interaction of polymeric fractions and the positive interaction of lipids with phenolic compounds. Therefore, this study highlights the convenience of carrying out previous studies to identify the better extraction conditions of individual bioavailable phenolic compounds with antioxidant activity, along with those constituents that could increase their bioaccessibility and bioavailability, such as lipids, although the role played by other components, such as hemicelluloses, cannot be ruled out.
Collapse
Affiliation(s)
- Juan Antonio Nieto
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Irene Fernández-Jalao
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - María de Las Nieves Siles-Sánchez
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| |
Collapse
|
15
|
Wan M, Lin S, Tan C, Wang M, Tong Y, Zhao Y, Kong Y, Deng H, Meng X, Ma Y. Effects of mannoprotein on the stability and in vitro digestion of cyanidin-3-glucoside. Food Chem 2023; 404:134602. [DOI: 10.1016/j.foodchem.2022.134602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
16
|
Yang P, Wang W, Xu Z, Rao L, Zhao L, Wang Y, Liao X. New insights into the pH dependence of anthocyanin-protein interactions by a case study of cyanidin-3-O-glucoside and bovine serum albumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
17
|
Wang L, Cheng X, Zhang S, Dongye Z, Kang M, Li Z, Chen C, Qian Y, Ren Y. The Rheological/interfacial Behavior and Stability Properties of Nanoemulsions Prepared Using Whey Protein-carboxymethyl Chitosan Conjugates. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Complexation of anthocyanins, betalains and carotenoids with biopolymers: An approach to complexation techniques and evaluation of binding parameters. Food Res Int 2023; 163:112277. [PMID: 36596187 DOI: 10.1016/j.foodres.2022.112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Natural pigments are bioactive compounds that can present health-promoting bioactivities in the human body. Due to their strong coloring properties, these compounds have been widely used as color additives as an alternative to artificial colorants. However, since these pigments are unstable under certain conditions, such as the presence of light, oxygen, and heat, the use of complexation and encapsulation techniques with biopolymers is in demand. Moreover, some functional properties can be achieved by using natural pigments-biopolymers complexes in food matrices. The complexation and encapsulation of natural pigments with biopolymers consist of forming a complex with the aim to make these compounds less susceptible to oxidative and degrading agents, and can also be used to improve their solubility in different media. This review aims to discuss different techniques that have been used over the last years to create natural pigment-biopolymers complexes, as well as the recent advances, limitations, effects, and possible applications of these complexes in foods. Moreover, the understanding of thermodynamic parameters between natural pigments and biopolymers is very important regarding the complex formation and their use in food systems. In this sense, thermodynamic techniques that can be used to determine binding parameters between natural pigments and potential wall materials, as well as their applications, advantages, and limitations are presented in this work. Several studies have shown an improvement in many aspects regarding the use of these complexes, including increased thermal and storage stability. Nonetheless, data regarding the biological effects on the human body and the sensory acceptance of natural pigments-biopolymers complexes in food systems are scarce in the literature.
Collapse
|
19
|
The Interactional Characterization of Lentil Protein Isolate (LPI) with Cyanidin-3-O-Glucoside (C3G) and Their Effect on the Stability and Antioxidant Activity of C3G. Foods 2022; 12:foods12010104. [PMID: 36613320 PMCID: PMC9818459 DOI: 10.3390/foods12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The interaction between lentil protein isolate (LPI) and cyanidin-3-O-glucoside (C3G) was investigated via with UV−vis spectroscopy, circular dichroism, and fluorescence spectroscopy and the stability of anthocyanin was also evaluated. After LPI mixed with C3G, the turbidity and foaming capacity increased and the particle size and surface charge did not change significantly, while the surface hydrophobicity decreased significantly (p < 0.05). The fluorescence results indicated that C3G quenched the intrinsic of LPI by static quenching and LPI bound with C3G via hydrophobic effects with Ka of 3.24 × 106 M−1 at 298 K. The addition of LPI significantly (p < 0.05) slightly decreased the thermal and oxidation degradation of C3G by up to 90.23% and 54.20%, respectively, while their antioxidant activity was inhibited upon mixing. These alterations of physicochemical properties might be attributed to their structural changes during the interaction. The obtained results would be of help in stabilizing bioactive compounds and the development of functional foods.
Collapse
|
20
|
Li W, Tian H, Guo F, Wu Y. Inhibition characteristics and mechanism of tyrosinase using five citrus flavonoids: A spectroscopic and molecular dynamics simulation study. J Food Biochem 2022; 46:e14484. [PMID: 36239431 DOI: 10.1111/jfbc.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 01/14/2023]
Abstract
This work presents a comparative analysis of the tyrosinase inhibitory effects of five citrus flavonoids, namely hesperetin, hesperidin, neohesperidin, naringenin and naringin. Visbile, fluorescence, and fourier transform infrared (FITR) spectroscopies, and molecular dynamic methods were employed to compare the anti-tyrosinase mechanisms of each flavonoid. Hesperetin, neohesperidin, naringenin and naringin exhibited potent inhibitory activities with IC50 values of 0.74 ± 0.05, 2.19 ± 0.03, 7.50 ± 9.82 and 24.94 ± 8.43 μmol/ml, respectively, all of which were higher than that of kojic acid (0.04 ± 0.02 μmol/ml). The enzymatic kinetics results suggested that hesperetin and naringenin were reversible inhibitors on tyrosinase in the mixed-type manner. H-bond and hydrophobic interactions were found to drive the binding of tyrosinase with hesperetin or naringenin, which subsequently changed the FTIR spectroscopy results by decreasing the α-helix ratio and increasing the β-turn, β-sheet and random coil ratio in tyrosinase. Molecular dynamics simulation not only verified some of the experimental results, but also suggested that the binding of hesperetin and naringenin to tyrosinase was spontaneous. The findings of this study indicate that citrus flavonoids are a promising dietary resource for tyrosinase inhibition. PRACTICAL APPLICATIONS: Hesperetin, hesperidin, neohesperidin, naringenin and naringin were typical citrus flavonoids that have anti-obesity, anti-oxidation, anti-inflammation and anti-diabetes activities. Current study suggested that hesperetin and naringenin were effective reversible inhibitors on tyrosinase in the mixed-type manner. Hesperetin and naringenin might serve as nutritional and chemical agents for regulating the tyrosinase activity to control melanin level in vivo.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology
- , Yangtze Normal University, Chongqing, China
| | - Hua Tian
- School of Life Science and Biotechnology
- , Yangtze Normal University, Chongqing, China
| | - Futing Guo
- School of Life Science and Biotechnology
- , Yangtze Normal University, Chongqing, China
| | - Yingmei Wu
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
21
|
Limited hydrolysis as a strategy to improve the non-covalent interaction of epigallocatechin-3-gallate (EGCG) with whey protein isolate near the isoelectric point. Food Res Int 2022; 161:111847. [DOI: 10.1016/j.foodres.2022.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022]
|
22
|
Wang H, Ke L, Zhou J, Li G, Xu T, Rao P. Multi-spectroscopic, molecular docking and molecular dynamic simulation evaluation of hydroxychloroquine sulfate interaction with caseins and whey proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Proteomic and computational characterisation of 11S globulins from grape seed flour by-product and its interaction with malvidin 3-glucoside by molecular docking. Food Chem 2022; 386:132842. [PMID: 35366628 DOI: 10.1016/j.foodchem.2022.132842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/23/2022]
Abstract
Grape seed flour by-product (GSBP) is an economic and renewable source of proteins, increasingly being explored due to interesting technological application such as colour protection in rich-anthocyanins beverages. Globulin-like proteins from GSBP were characterised by proteomic and computational studies. MALDI TOF/TOF analysis revealed the presence of two 11S globulins (acid and basic), whose 3D structures have been elucidated for the first time in Vitis vinifera L. grape seeds by using homology models and molecular dynamics. The secondary structure showed 11 α-helices and 25 β-sheets for acid and 12 α-helices and 24 β-sheets for basic 11S globulins. Molecular docking results indicate that both grape seed 11S globulins could establish different types of non-covalent interactions (π-π) with malvidin 3-O-glucoside (wine anthocyanin), which suggest a possible colour protection similar to that occurring in copigmentation phenomenon. These findings provide valuable information of globulin family proteins that could be relevant in food industry applications.
Collapse
|
24
|
Protective effect of amino acids on the stability of bayberry anthocyanins and the interaction mechanism between l-methionine and cyanidin-3-O-glycoside. Food Chem 2022; 396:133689. [PMID: 35849982 DOI: 10.1016/j.foodchem.2022.133689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 11/20/2022]
Abstract
The protective effects of three amino acids (l-phenylalanine, l-tryptophan and l-methionine) on the stability of bayberry anthocyanins were investigated. The anthocyanin stability under constant illumination (5000 Lux, 50 Hz) or in the presence of ascorbic acid were evaluated by degradation kinetic parameters, and the interaction between l-methionine and cyanidin-3-O-glucoside (C3G) in a model beverage system was analyzed using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, X-ray diffraction, molecular docking, and molecular dynamics simulation. Results indicated that the three amino acids significantly reduced the degradation rate of bayberry anthocyanins (p < 0.05), with the most effect by l-methionine. l-methionine could bind to C3G via hydrogen bonds and Van der Waals forces. This study suggested that l-methionine could well protect anthocyanin against degradation in the aqueous solution and have the potential to be used as a co-pigment to improve the sensory property and extend the shelf life of anthocyanin rich berry products.
Collapse
|
25
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Chen X, Guan Y, Zeng M, Wang Z, Qin F, Chen J, He Z. Effect of whey protein isolate and phenolic copigments in the thermal stability of mulberry anthocyanin extract at an acidic pH. Food Chem 2022; 377:132005. [PMID: 34998152 DOI: 10.1016/j.foodchem.2021.132005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
This study investigated the effect of whey protein isolate (WPI) and phenolic copigments on the color and anthocyanin stability of mulberry anthocyanin extract (MAE) subjected to heat treatment (80℃/120 min) at pH 3.6. Results showed that four phenolic compounds, including gallic acid, ferulic acid, (-)-epigallocatechin gallate (EGCG), and rutin, significantly affected the color enhancement of MAE solution, among which the strongest copigmentation effect on MAE was observed for rutin at 0.08-0.8 mg/ml. WPI (0.16 mg/ml) and rutin (0.8 mg/ml) reduced the thermal degradation rate of total anthocyanins by 27.1% and 50%, respectively. WPI-MAE-rutin ternary mixtures improved the color stability of MAE solution and decreased the anthocyanin's thermal degradation rate by 18.1% and 10.6%, respectively, compared with the corresponding binary systems (MAE-WPI and MAE-rutin). The results implied the MAE-WPI-rutin had a better protective effect on the thermal stability of MAE than the binary systems.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanming Guan
- China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing 100015, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
27
|
Nassarawa SS, Nayik GA, Gupta SD, Areche FO, Jagdale YD, Ansari MJ, Hemeg HA, Al-Farga A, Alotaibi SS. Chemical aspects of polyphenol-protein interactions and their antibacterial activity. Crit Rev Food Sci Nutr 2022; 63:9482-9505. [PMID: 35475717 DOI: 10.1080/10408398.2022.2067830] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The hunt for novel antibiotics has become a global public health imperative due to the rise in multidrug-resistant microorganisms, untreatable infection cases, overuse, and inefficacy of modern antibiotics. Polyphenols are getting much attention in research due to their multiple biological effects; their use as antimicrobial agents is attributed to their activity and that microbes have a hard time developing resistance to these natural compounds. Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. This review focused on polyphenol-protein interactions and the creation of this complex as a possible antibacterial agent. Also, different phenolic interactions on bacterial proteins, efflux pump, cell membrane, bacterial adhesion, toxins, and other bacterial proteins will be explored; these interactions can work in a synergic combination with antibiotics or act alone to assure bacterial inhibition. Additionally, our review will focus on polyphenol-protein interaction as a possible strategy to eradicate bacteria because polyphenols have shown a robust enzyme-inhibitory characteristic and a high tendency to complex with proteins, a response that neutralizes any bactericidal potential.
Collapse
Affiliation(s)
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, Srinagar, Jammu and Kashmir, India
| | - S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Yash D Jagdale
- MIT School of Food Technology, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University), Bareilly, Uttar Pradesh, India
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Monawra, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
28
|
Zhao C, Miao Z, Yan J, Liu J, Chu Z, Yin H, Zheng M, Liu J. Ultrasound-induced red bean protein–lutein interactions and their effects on physicochemical properties, antioxidant activities and digestion behaviors of complexes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Xue B, Tian J, Wang Y, Jin B, Deng H, Gao N, Xie X, Tang S, Li B. Mechanism underlying the interaction of malvidin-3-O-galactoside with protein tyrosine phosphatase-1B and α-glucosidase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Xu Z, Wang C, Yan H, Zhao Z, You L, Ho CT. Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.). Food Chem 2022; 373:131396. [PMID: 34710683 DOI: 10.1016/j.foodchem.2021.131396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022]
Abstract
Sugarcane contains various anthocyanins, which are responsible for the colors present in sugarcane. In this study, the color intensification of the major anthocyanin, cyanidin-3-O-glucoside, by phenolic acids/aldehydes (ferulic acid, vanillic acid, p-coumaric acid, syringic aldehyde and vanillic aldehyde) was investigated. The color enhancement of cyanidin-3-O-glucoside (hyperchromic effect and bathochromic shift) was affected by the temperature and concentration of phenolic acids/aldehydes present. Reactions were spontaneous and exothermic, as determined using different thermodynamic parameters (ΔG0, ΔH0, ΔS0). Quantum chemical calculations demonstrated their intermolecular interaction differences, and AIM analysis indicated that hydrogen bonds and van der Waals force interactions contributed to color. Pyranoanthocyanins derived from cyanidin-3-O-glucoside and ferulic/p-coumaric acids during storage were recognized as cyanidin-3-O-glucoside-vinylphenol and cyanidin-3-O-glucoside-vinylguaiacol, respectively, by UPLC-ESI-QTOF-MS/MS. The electron-donating substituents on the aromatic ring of ferulic/p-coumaric acids stabilized the intermediately formed carbenium ion. Decarboxylation and further oxidation of the pyran moieties to the aromatic heterocycles resulted in the final products.
Collapse
Affiliation(s)
- Zhengming Xu
- School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No.11, Fucheng Road, Haidian District, Beijing 100048, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No.11, Fucheng Road, Haidian District, Beijing 100048, China
| | - Huaifeng Yan
- School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhengang Zhao
- School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), 381 Wushan Road, Guangzhou 510640, China.
| | - Lijun You
- School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), 381 Wushan Road, Guangzhou 510640, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
31
|
Li W, Gong P, Xu M, Li D, Sun J, Zhou D, Zhu B. Isolation and characterization of the anthocyanins derived from red radishes (Raphanus sativus L.) and the protective ability of β-lactoglobulin against heat-induced oxidation. J Food Sci 2022; 87:1586-1600. [PMID: 35262931 DOI: 10.1111/1750-3841.16083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
Abstract
This study employed the "two-step dialysis" method and AB-8 or D101 macroporous resin chromatography to isolate the anthocyanins in red radishes (ARR). The red radish juice was dialyzed twice at 3000 and 500 Da, respectively. UHPLC-QqQ-MS/MS revealed 24 types of ARRs, of which pelargonidin (Pg)-3-diglucoside-5-(malonyl)glucoside (P3D5MG), Pg-3-diglucoside-5-glucoside (P3D5G), Pg-3-(feruloyl)diglucoside-5-(malonyl)glucoside (P3FD5MG), Pg, and malvidin (Mv) represented the main compounds. The total anthocyanin content in the ARR prepared via the "two-step dialysis" method was 29.69% and 18.44% higher than that obtained using AB-8 and D101 macroporous resins, respectively. The ARRs inhibited heat-induced β-lactoglobulin (β-Lg) oxidation. The amino acid residue microenvironment and secondary β-Lg structure were modified via ARR binding. The energy involved in P3D5MG and β-Lg binding was -392 kJ/mol, which was significantly lower than that during the binding process of P3D5M, P3FD5MG, Pg, and Mv to β-Lg (-338 to -168 kJ/mol). These results indicated that "two-step dialysis" was a promising method for deriving natural pigment with strong antioxidant activity from red radishes. PRACTICAL APPLICATION: As a natural food colorant, anthocyanins have attracted increasing attention in the food industry in recent years. This study used "two-step dialysis" to effectively separate ARRs. Moreover, the anthocyanins in ARR can bind to β-Lg to protect against heating-induced oxidation. Therefore, ARRs may not only act as a food pigment but also as antioxidants.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China.,National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengling Gong
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengyi Xu
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Deyang Li
- National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiatong Sun
- National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
32
|
Ren S, Rodriguez-Saona L, Giusti MM. Analyzing the Interaction between Anthocyanins and Native or Heat-Treated Whey Proteins Using Infrared Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051538. [PMID: 35268638 PMCID: PMC8911780 DOI: 10.3390/molecules27051538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Abstract
The color stability of anthocyanins (ACN) has been shown to be improved by interaction with whey proteins (WP). In this study, we explore the ACN–WP interaction using Fourier transform infrared spectroscopy (IR). ACN from purple corn, grape, and black carrot (50 μM) were evaluated. IR spectra (4000–700 cm−1) were collected for native and preheated (40–80 °C) WP (5 mg/mL) and ACN–WP mixtures at pH 7.4. Soft independent modeling of class analogy was used to analyze the IR data. The WP secondary structure changed after heat treatments and after interaction with ACN. As expected, the WP α-helices decreased, and β-sheet increased after heat treatment. The intensities of the WP amide I and II bands decreased after ACN addition, revealing a decrease in the WP α-helix content. Higher preheating temperatures (70–80 °C) resulted in a more disordered WP structure that favored stronger WP–ACN interactions related to amide III changes. Addition of ACN stabilized WP structure due to heat denaturation, but different ACN structures had different binding affinities with WP. WP structure had less change after interaction with ACN with simpler structures. These results increase our understanding of ACN–WP interactions, providing a potential strategy to extend anthocyanin color stability by WP addition.
Collapse
|
33
|
Ma Z, Cheng J, Jiao S, Jing P. Interaction of mulberry anthocyanins with soybean protein isolate: Effect on the stability of anthocyanins and protein
in vitro
digestion characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Jing Cheng
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Shunshan Jiao
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
34
|
Liu J, Cheng J, Ma Z, Liang T, Jing P. Interaction characterization of zein with cyanidin-3-O-glucoside and its effect on the stability of mulberry anthocyanins and protein digestion. J Food Sci 2021; 87:141-152. [PMID: 34954830 DOI: 10.1111/1750-3841.16024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Ingredient interactions usually occur in food matrix, which may affect their functions and properties. This study aimed to investigate the interactive effects of mulberry and corn protein on pigment stability and zein digestibility. The interaction of main compounds in both ingredients, that is, cyanidin-3-O-glucoside (C3G) and zein, was characterized via their structural, morphological, thermal stability, and digestible properties using multi-spectroscopic techniques, scanning electron microscopy, high performance liquid chromatography, and in vitro digestion models. Results showed that zein exhibited a strong binding affinity for C3G via van der Waals forces and hydrogen bonds determined in fluorescence assays. The secondary structure of zein changed due to C3G binding, with a decrease in α-helix and an increase in β-sheet. The particle size of zein decreased after interacting with C3G. The zein complexation with mulberry anthocyanin-rich extracts in a simulative food system did not affect the digestibility of zein significantly but enhanced the thermal stability of pigments slightly. Specifically, anthocyanins did not change the susceptibility of zein to pepsin proteolysis, suggesting that binding sites of C3G might not be the cleavage sites of pepsins. These results provide important insight into the binding mechanism of zein and anthocyanins and might help guide the design of anthocyanin-based functional food. PRACTICAL APPLICATION: Zein, as a storage protein widely distributed in corn flour, was commonly co-existing with anthocyanins in starchy food. This study provides insights into the molecular interactions between zein and cyanidin-3-O-glucoside. However, the interaction might not impact the zein digestion but enhance anthocyanin thermal stability. The findings of this work could throw light on the selection of ingredients rich in zein and anthocyanins in the food industry.
Collapse
Affiliation(s)
- Jianhua Liu
- International Faculty of Applied Technology, Yibin University, Yibin, China
| | - Jing Cheng
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Ma
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tisong Liang
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- International Faculty of Applied Technology, Yibin University, Yibin, China.,Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Cianciosi D, Forbes-Hernández TY, Regolo L, Alvarez-Suarez JM, Navarro-Hortal MD, Xiao J, Quiles JL, Battino M, Giampieri F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem 2021; 375:131904. [PMID: 34963083 DOI: 10.1016/j.foodchem.2021.131904] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Polyphenols are plant secondary metabolites, whose biological activity has been widely demonstrated. However, the research in this field is a bit reductive, as very frequently the effect of individual compound is investigated in different experimental models, neglecting more complex, but common, relationships that are established in the diet. This review summarizes the data that highlighted the interaction between polyphenols and other food components, especially macro- (lipids, proteins, carbohydrates and fibers) and micronutrients (minerals, vitamins and organic pigments), paying particular attention on their bioavailability, antioxidant capacity and chemical, physical, organoleptic and nutritional characteristics. The topic of food interaction has yet to be extensively studied because a greater knowledge of the food chemistry behind these interactions and the variables that modify their effects, could offer innovations and improvements in various fields ranging from organoleptic, nutritional to health and economic field.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - José M Alvarez-Suarez
- Departamento de Ingeniería en Alimentos. Colegio de Ciencias e Ingenierías. Universidad San Francisco de Quito, Quito, Ecuador 170157, Ecuador; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Maria Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China.
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
36
|
Wang Y, Zhang J, Zhang L. Anthocyanin-Dietary Proteins Interaction and Its Current Applications in Food Industry. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Zhang
- School of Food Science and Technology, The Food College of Shihezi University, Shihezi, Xinjiang, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
37
|
Hu M, Du X, Liu G, Huang Y, Qi B, Li Y. Sodium alginate/soybean protein-epigallocatechin-3-gallate conjugate hydrogel beads: evaluation of structural, physical, and functional properties. Food Funct 2021; 12:12347-12361. [PMID: 34842261 DOI: 10.1039/d1fo03099j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sodium alginate (SA) hydrogel beads have been extensively studied as delivery systems for bioactive compounds. Key challenges include overcoming the highly porous and poor emulsifying properties of SA hydrogels. Herein, soy protein isolate (SPI) was modified by covalent and noncovalent conjugation with epigallocatechin-3-gallate (EGCG), followed by complexation with SA to change the SA structure and fabricate hydrogel beads with low porosities. Microencapsulation beads were fabricated from SA-, SA/SPI-, and SA/SPI-modified EGCG complexes with a corn oil/quercetin mixture core. After the covalent and noncovalent SPI-modified EGCG complexes were combined with SA, the OH stretching vibration shifted, indicating that hydrogen bonds formed between the protein and SA, and the crystal structure of SA was destroyed. To achieve crosslinking, the beads were injected into a CaCl2 solution, whereby Ca2+ ions replaced the Na+ ions in SA. Meanwhile, the addition of covalent and noncovalent SPI-modified EGCG complexes promoted the binding capacity of Ca2+ and SA. All hydrogel beads possessed open-cell microstructures with interconnecting pores. The SA/SPI-modified EGCG hydrogel beads exhibited smoother surfaces, thicker shells, and lower porosity than the SA hydrogel beads. Moreover, they exhibited significantly higher antioxidant activities. During digestion, all types of hydrogel bead maintained their structure, and only a small part of the encapsulated oil and quercetin was digested in the upper part of the gastrointestinal tract. In short, the formation mechanism of hydrogel beads was clarified, and hydrogel beads with low porosity and high antioxidation activities were successfully fabricated.
Collapse
Affiliation(s)
- Miao Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiaoqian Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Guannan Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yuyang Huang
- National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150030, China.,College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang, 150027, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. .,National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. .,National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150030, China.,Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| |
Collapse
|
38
|
Zang Z, Chou S, Geng L, Si X, Ding Y, Lang Y, Cui H, Gao N, Chen Y, Wang M, Xie X, Xue B, Li B, Tian J. Interactions of blueberry anthocyanins with whey protein isolate and bovine serum protein: Color stability, antioxidant activity, in vitro simulation, and protein functionality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Physicochemical, Digestive, and Sensory Properties of Panax Notoginseng Saponins Encapsulated by Polymerized Whey Protein. Foods 2021; 10:foods10122942. [PMID: 34945493 PMCID: PMC8701336 DOI: 10.3390/foods10122942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Panax Notoginseng Saponins (PNS) may be beneficial to human health due to their bioactive function. The application of PNS in functional foods was limited due to the bitter taste and low oral bioavailability. PNS were encapsulated by polymerized whey protein (PWP) nanoparticles. The physicochemical, digestive, and sensory properties of the nanoparticles were investigated. Results showed that the nanoparticles had a particle size of 55 nm, the zeta potential of -28 mV, and high PNS encapsulation efficiency (92.94%) when the mass ratio of PNS to PWP was 1:30. Differential Scanning Calorimetry (DSC) results revealed that PNS were successfully encapsulated by PWP. The mainly intermolecular forces between PNS and PWP were hydrogen bonding and electrostatic attraction confirmed by Fourier Transform Infrared Spectroscopy (FTIR). Results of simulated gastrointestinal digestion indicated that the PNS-PWP (1:30) nanoparticles had smaller average particle size (36 nm) after treatment with gastric fluids and increased particle size (75 nm) after treatment with intestinal fluids. Transmission Electron Microscopy (TEM) micrographs reflected that the nanoparticles had irregular spherical structures. The encapsulated PNS exhibited significantly (p < 0.05) decreased bitterness compared to the non-encapsulated PNS confirmed by the electronic tongue. The results indicated that encapsulation of PNS with PWP could facilitate their application in functional foods.
Collapse
|
40
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
41
|
Interactions of β-Lactoglobulin with Bovine Submaxillary Mucin vs. Porcine Gastric Mucin: The Role of Hydrophobic and Hydrophilic Residues as Studied by Fluorescence Spectroscopy. Molecules 2021; 26:molecules26226799. [PMID: 34833889 PMCID: PMC8623809 DOI: 10.3390/molecules26226799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate binding interactions between β-lactoglobulin (BLG) and two different mucins, bovine submaxillary mucins (BSM) and porcine gastric mucin (PGM), using intrinsic and extrinsic fluorescence spectroscopies. Intrinsic fluorescence spectra showed an enhanced decrease of fluorescence intensity of BLG at all pH conditions when BLG was mixed with PGM rather than with BSM. We propose that, unlike BSM, the tertiary structure of PGM changes and the hydrophobic regions are exposed at pH 3 due to protonation of negatively charged residues. Results suggest that PGM also facilitated the structural unfolding of BLG and its binding with PGM by a hydrophobic interaction, especially at acidic pH, which was further supported by extrinsic fluorescence spectroscopy. Hydrophobic interaction is suggested as the dominant interaction mechanism between BLG and PGM at pH 3, whereas electrostatic interaction is the dominant one between BLG and BSM.
Collapse
|
42
|
|
43
|
Fu GM, Xu ZW, Luo C, Xu LY, Chen YR, Guo SL, Wu XD, Wan Y. Modification of soy protein isolate by Maillard reaction and its application in microencapsulation of Limosilactobacillusreuteri. J Biosci Bioeng 2021; 132:343-350. [PMID: 34344604 DOI: 10.1016/j.jbiosc.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Limosilactobacillusreuteri was encapsulated using Maillard-reaction-products (MRPs) of soy protein isolate (SPI) and α-lactose monohydrate by freeze-drying. The mixed solution of SPI and α-lactose monohydrate was placed in a water bath at 89°C for 160 min for Maillard reaction, and then freeze-dried to obtain MRPs. The effects of Maillard reaction on functional characteristics of MRPs and the properties of MRPs-microcapsules were studied. SDS-PAGE indicated that SPI subunit reacted with lactose to form a polymer, and the band of MRPs disappeared around the molecular weights of 33, 40, 63, and 100 kDa. Compared with SPI, the emulsion stability, emulsion activity, foaming capacity, foam stability, and gel strength of MRPs were increased by 259%, 55.71%, 82.32%, 58.53%, and 3266%, respectively. The results of Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and scanning electron micrographs confirmed that the protein structure also changed significantly. Then, MRPs were used as wall material to prepare L. reuteri microcapsules. Physical properties and viable counts of L. reuteri during the simulated gastrointestinal digestion and storage period were determined. The particle size of MRPs-microcapsules (68 μm) was smaller than that of SPI-microcapsules (91 μm). The viable counts of L. reuteri in simulated gastrointestinal digestion and after storage for 30 days were improved. The modifications with Maillard reaction can improve emulsification, foaming, and gel strength of SPI, and MRPs could be used as a new type of wall material in the production of L. reuteri microcapsules.
Collapse
Affiliation(s)
- Gui-Ming Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zi-Wen Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cheng Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Li-Yun Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yan-Ru Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shuai-Ling Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiao-Dan Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
44
|
Baba WN, McClements DJ, Maqsood S. Whey protein-polyphenol conjugates and complexes: Production, characterization, and applications. Food Chem 2021; 365:130455. [PMID: 34237568 DOI: 10.1016/j.foodchem.2021.130455] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
Whey proteins are widely used as functional ingredients in various food applications owing to their emulsifying, foaming, and gelling properties. However, their functional attributes are limited in some applications because of the dependence of their performance on pH, mineral levels, and temperature. Several approaches have been investigated to enhance the functional performance of whey proteins by interacting them with polyphenols via covalent bonds (conjugates) or non-covalent bonds (complexes). The interaction of the polyphenols to the whey proteins alters their molecular characteristics, techno-functional attributes, and biological properties. Analytical methods for characterizing the properties of whey protein-polyphenol complexes and conjugates are highlighted, and a variety of potential applications within the food industry are discussed, including as antioxidants, emulsifiers, and foaming agents. Finally, areas for future research are highlighted.
Collapse
Affiliation(s)
- Waqas N Baba
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | | | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
45
|
Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 2021; 20:3164-3191. [PMID: 34118125 DOI: 10.1111/1541-4337.12772] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Copigmentation and encapsulation are the two most commonly used techniques for anthocyanin stabilization. However, each of these techniques by itself suffers from many challenges associated with the simultaneous achievement of color intensification and high stability of anthocyanins. Integrating copigmentation and encapsulation may overcome the limitation of usage of a single technique. This review summarizes the most recent studies and their challenges aiming at combining copigmentation and encapsulation techniques. The effective approaches for encapsulating copigmented anthocyanins are described, including spray/freeze-drying, emulsification, gelation, polyelectrolyte complexation, and their combinations. Other emerging approaches, such as layer-by-layer deposition and ultrasonication, are also reviewed. The physicochemical principles underlying the combined strategies for the fabrication of various delivery systems are discussed. Particular emphasis is directed toward the synergistic effects of copigmentation and encapsulation, for example, modulating roles of copigments in the processes of gelation and complexation. Finally, some of the major challenges and opportunities for future studies are highlighted. The trend of integrating copigmentation and encapsulation has been just started to develop. The information in this review should facilitate the exploration of the combination of multistrategy and the fabrication of robust delivery systems for copigmented anthocyanins.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| |
Collapse
|
46
|
Lang Y, Tian J, Meng X, Si X, Tan H, Wang Y, Shu C, Chen Y, Zang Z, Zhang Y, Wang J, Li B. Effects of α-Casein on the Absorption of Blueberry Anthocyanins and Metabolites in Rat Plasma Based on Pharmacokinetic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6200-6213. [PMID: 34044544 DOI: 10.1021/acs.jafc.1c00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Blueberry anthocyanins are well known for their beneficial biological activities. However, the poor bioavailability of anthocyanins limits their functional capacity in vivo. Our current study aimed to detect the effects of α-casein on the absorption of blueberry anthocyanins and their metabolites in rats. Blueberry anthocyanins with and without α-casein were intragastrically administered to two groups of rats and their blood samples were collected within 24 h. Results illustrated that rapid absorption of anthocyanins was observed in the rat plasma, but their concentration was relatively low. With the complexation of α-casein, the maximum concentration (Cmax) of bioavailable anthocyanins and metabolites could increase by 1.5-10.1 times (P < 0.05 or P < 0.01). The promotional effect on the plasma absorption of malvidin-3-O-galactoside and vanillic acid was outstanding with the Cmax increasing from 0.032 to 0.323 and from 0.360 to 1.902 μg/mL, respectively (P < 0.01). Besides, the molecular docking models presented that anthocyanins could enter the structural cavity and interact with amino acid residues of α-casein, which was in accordance with the improved bioavailability of anthocyanins. Therefore, α-casein could assist more blueberry anthocyanins and their metabolites to enter blood circulation.
Collapse
Affiliation(s)
- Yuxi Lang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Xianjun Meng
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihuan Zang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Ye Zhang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jiaxin Wang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
47
|
The desulfite mechanism exploration in a mode: Interaction between casein and sulfite by multi-spectrometry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
The in-vitro digestion behaviors of milk proteins acting as wall materials in spray-dried microparticles: Effects on the release of loaded blueberry anthocyanins. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106620] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Xue H, Tan J, Zhu X, Li Q, Tang J, Cai X. Counter-current fractionation-assisted and bioassay-guided separation of active compounds from cranberry and their interaction with α-glucosidase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Hussain Y, Luqman S, Meena A. Research Progress in Flavonoids as Potential Anticancer Drug Including Synergy with Other Approaches. Curr Top Med Chem 2021; 20:1791-1809. [PMID: 32357817 DOI: 10.2174/1568026620666200502005411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In chemotherapy for cancer, conventional drugs aim to target the rapidly growing and dividing cells at the early stages. However, at an advanced stage, cancer cells become less susceptible because of the multidrug resistance and the recruitment of alternative salvage pathways for their survival. Besides, owing to target non-selectivity, healthy proliferating cells also become vulnerable to the damage. The combination therapies offered using flavonoids to cure cancer not only exert an additive effect against cancer cells by targetting supplementary cell carnage pathways but also hampers the drug resistance mechanisms. Thus, the review aims to discuss the potential and pharmacokinetic limitations of flavonoids in cancer treatment. Further successful synergistic studies reported using flavonoids to treat cancer has been described along with potential drug delivery systems. METHODS A literature search was done by exploring various online databases like Pubmed, Scopus, and Google Scholar with the specific keywords like "Anticancer drugs", "flavonoids", "oncology research", and "pharmacokinetics". RESULTS Dietary phytochemicals, mainly flavonoids, hinder cell signalling responsible for multidrug resistance and cancer progression, primarily targeting cancer cells sparing normal cells. Such properties establish flavonoids as a potential candidate for synergistic therapy. However, due to low absorption and high metabolism rates, the bioavailability of flavonoids becomes a challenge. Such challenges may be overcome using novel approaches like derivatization, and single or co-delivery nano-complexes of flavonoids with conventional drugs. These new approaches may improve the pharmacokinetic and pharmacodynamic of flavonoids. CONCLUSION This review highlights the application of flavonoids as a potential anticancer phytochemical class in combination with known anti-cancer drugs/nanoparticles. It also discusses flavonoid's pharmacokinetics and pharmacodynamics issues and ways to overcome such issues. Moreover, it covers successful methodologies employed to establish flavonoids as a safe and effective phytochemical class for cancer treatment.
Collapse
Affiliation(s)
- Yusuf Hussain
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Abha Meena
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| |
Collapse
|