1
|
Ye L, Hu H, Wang Y, Cai Z, Yu W, Lu X. In vitro digestion and colonic fermentation characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5064-5076. [PMID: 38284773 DOI: 10.1002/jsfa.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Pickering emulsions stabilized by multicomponent particles have attracted increasing attention. Research on characterizing the digestion and health benefit effects of these emulsions in the human gastrointestinal tract are quite limited. This work aims to reveal the digestive characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions (PSPP-Es) during in vitro digestion and colonic fermentation. RESULTS The media-milling process improved the in vitro digestibility and fermentability of PSPP-Es by reaching afree fatty acids release rate of 43.11 ± 4.61% after gastrointestinal digestion and total phenolic content release of 101.00 ± 1.44 μg gallic acid equivalents/mL after fermentation. In addition, PSPP-Es exhibited good antioxidative activity (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays), α-glucosidase inhibitory activity (half-maximal inhibitory concentration: 6.70%, v/v), and prebiotic effects, reaching a total short-chain fatty acids production of 9.90 ± 0.12 mol L-1, boosting the growth of Akkermansia, Bifidobacterium, and Blautia and inhibiting the growth of Escherichia-Shigella. CONCLUSIONS These findings indicate that the media-milling process enhances the potential health benefits of purple sweet potato particle-stabilized Pickering emulsions, which is beneficial for their application as a bioactive component delivery system in food and pharmaceutical products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liuyu Ye
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Hong Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Wenwen Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| |
Collapse
|
2
|
Li M, Jia W. Formation and hazard of ethyl carbamate and construction of genetically engineered Saccharomyces cerevisiae strains in Huangjiu (Chinese grain wine). Compr Rev Food Sci Food Saf 2024; 23:e13321. [PMID: 38517033 DOI: 10.1111/1541-4337.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Huangjiu, a well-known conventional fermented Chinese grain wine, is widely consumed in Asia for its distinct flavor. Trace amounts of ethyl carbamate (EC) may be generated during the fermentation or storage process. The International Agency for Research on Cancer elevated EC to a Class 2A carcinogen, so it is necessary to regulate EC content in Huangjiu. The risk of intake of dietary EC is mainly assessed through the margin of exposure (MOE) recommended by the European Food Safety Authority, with a smaller MOE indicating a higher risk. Interventions are necessary to reduce EC formation. As urea, one of the main precursors of EC formation in Huangjiu, is primarily produced by Saccharomyces cerevisiae through the catabolism of arginine, the construction of dominant engineered fermentation strains is a favorable trend for the future production and application of Huangjiu. This review summarized the formation and carcinogenic mechanism of EC from the perspectives of precursor substances, metabolic pathways after ingestion, and risk assessment. The methods of constructing dominant S. cerevisiae strains in Huangjiu by genetic engineering technology were reviewed, which provided an important theoretical basis for reducing EC content and strengthening practical control of Huangjiu safety, and the future research direction was prospected.
Collapse
Affiliation(s)
- Mi Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
3
|
Chen W, Su H. Special issue: molecular nutrition and chronic diseases. J Zhejiang Univ Sci B 2023; 24:549-553. [PMID: 37455133 PMCID: PMC10350371 DOI: 10.1631/jzus.b2310001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
"Let food be thy medicine and medicine be thy food"-the ancient adage proposed by Greek philosopher Hippocrates of Kos thousands of years ago already acknowledged the importance of the beneficial and health-promoting effects of food nutrients on the body (Mafra et al., 2021). Recent epidemiological and large-scale community studies have also reported that unhealthy diets or eating habits may contribute heavily to the burden of chronic, non-communicable diseases, such as obesity, type 2 diabetes mellitus (T2DM), hypertension, cardiovascular disease (CVD), cancer, neurodegenerative diseases, arthritis, chronic kidney disease (CKD), and chronic obstructive pulmonary disease (COPD) (Jayedi et al., 2020; Gao et al., 2022). Emerging evidence highlights that a diet rich in fruits and vegetables can prevent various chronic diseases (Chen et al., 2022). Food bioactive compounds including vitamins, phytochemicals, and dietary fibers are responsible for these nutraceutical benefits (Boeing et al., 2012). Recently, phytochemicals such as polyphenols, phytosterols, and carotenoids have gained increasing attention due to their potential health benefits to alleviate chronic diseases (van Breda and de Kok, 2018). Understanding the role of phytochemicals in health promotion and preventing chronic diseases can inform dietary recommendations and the development of functional foods. Therefore, it is crucial to investigate the health benefits of phytochemicals derived from commonly consumed foods for the prevention and management of chronic diseases.
Collapse
Affiliation(s)
- Wei Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Hongming Su
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul 55108, USA
| |
Collapse
|
4
|
Bao T, Karim N, Ke H, Tangpong J, Chen W. Polysaccharide isolated from wax apple suppresses ethyl carbamate-induced oxidative damage in human hepatocytes. J Zhejiang Univ Sci B 2023; 24:574-586. [PMID: 37455135 PMCID: PMC10350369 DOI: 10.1631/jzus.b2200629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 06/27/2023]
Abstract
Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)-Araf-(1→, →3)-Galp-(1→, →3)-Araf-(1→, and →6)-Galp-(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.
Collapse
Affiliation(s)
- Tao Bao
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
5
|
Li J, Ge H, Xu Y, Xie J, Karim N, Yan F, Mo J, Chen W. Chlorogenic acid alleviates oxidative damage in hepatocytes by regulating miR-199a-5p/GRP78 axis. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Tzima K, Putsakum G, Rai DK. Antioxidant Guided Fractionation of Blackberry Polyphenols Show Synergistic Role of Catechins and Ellagitannins. Molecules 2023; 28:molecules28041933. [PMID: 36838920 PMCID: PMC9967577 DOI: 10.3390/molecules28041933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
In the present study, blackberry extract was prepared using a previously optimized solid-liquid extraction method in 70% aqueous acetone aimed at the recovery of its principal phenolics. Subsequently, 0.5 g of freeze-dried extract was subjected to flash chromatography fractionation, which was conducted on a C18 column using a binary solvent system of water and methanol at 10 mL/min. The total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) activities of the obtained 42 flash fractions were determined, and a strong positive correlation (r ≥ 0.986) was exhibited among them. Furthermore, the graph of the antioxidant indices of the flash fractions resembled the flash chromatogram, suggesting a good correlation among the compounds within the chromatographic peaks and the antioxidant indices. LC-MS/MS identified as many 28 phenolics, including cinnamtannin A2 reported for the first time in blackberries. This study further established the role of dominant anthocyanins (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside), but uniquely those of ellagitannins and catechins on the antioxidant capacity of blackberries.
Collapse
|
7
|
Peonidin-3-O-Glucoside from Purple Corncob Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Mitochondrial and Lysosome Functions to Reduce Oxidative Stress and Inflammation. Nutrients 2023; 15:nu15020372. [PMID: 36678243 PMCID: PMC9866220 DOI: 10.3390/nu15020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
A frequent chronic liver condition across the world is nonalcoholic fatty liver disease (NAFLD). Oxidative stress caused by lipid accumulation is generally considered to be the main cause of NAFLD. Anthocyanins can effectively inhibit the production of reactive oxygen species and improve oxidative stress. In this work, six major anthocyanins were separated from purple corncob by semi-preparative liquid chromatography. The effects of the 6 kinds of anthocyanins against NAFLD were investigated using a free fatty acid (FFA)-induced cell model. The results showed that peonidin 3-O-glucoside (P3G) can significantly reduce lipid accumulation in the NAFLD cell model. The treatment with P3G also inhibited oxidative stress via inhibiting the excessive production of reactive oxygen species and superoxide anion, increasing glutathione levels, and enhancing the activities of SOD, GPX, and CAT. Further studies unveiled that treatment with P3G not only alleviated inflammation but also improved the depletion of mitochondrial content and damage of the mitochondrial electron transfer chain developed concomitantly in the cell model. P3G upregulated transcription factor EB (TFEB)-mediated lysosomal function and activated the peroxisome proliferator-activated receptor alpha (PPARα)-mediated peroxisomal lipid oxidation by interacting with PPARα possibly. Overall, this study added to our understanding of the protective effects of purple corn anthocyanins against NAFLD and offered suggestions for developing functional foods containing these anthocyanins.
Collapse
|
8
|
Li W, Zhang X, Tan S, Li X, Gu M, Tang M, Zhao X, Wu Y. Zein enhanced the digestive stability of five citrus flavonoids via different binding interaction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4780-4790. [PMID: 35218206 DOI: 10.1002/jsfa.11838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/03/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zein is commonly used to construct food flavonoid delivery systems. This study investigated the effect and mechanism of zein on the digestive stability of five citrus flavonoids, namely hesperetin (HET), hesperidin (HED), neohesperidin (NHD), naringenin (NEN), and naringin (NIN). RESULTS Zein enhanced the digestive stability of the five citrus flavonoids, especially that of HET and NEN, during digestion in the stomach and small intestine. Fluorescence spectroscopy results suggested that citrus flavonoids spontaneously quenched the endogenous fluorescence of zein in static quenching mode. The binding of HET, HED and NHD to zein was driven respectively by electrostatic, hydrophobic and electrostatic interaction. However, Van der Waals' force and hydrogen (H)-bond interaction represented the primary driving force for binding NEN, and NIN to zein to form complexes. The binding of the five citrus flavonoids to zein also caused a diverse bathochromic shift in ultraviolet absorbance. Analysis using Fourier-transform infrared and Raman spectroscopy revealed that the binding behavior of the five citrus flavonoids had different effects on changes in the secondary structures, disulfide bonds, and tyrosine exposure of zein. The results were also partially verified by molecular dynamic simulation. CONCLUSIONS Zein enhanced the digestive stability of the five citrus flavonoids via different binding interactions that was due to the difference in molecular structure of citrus flavonoids. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xiaohua Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Si Tan
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xueping Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengyuan Gu
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengqi Tang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Yingmei Wu
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
9
|
Bao T, Karim N, Xie L, Xie J, Chen W. Simulated gastrointestinal digestion and colonic fermentation of blue honeysuckle: Phenolic profile and protectivity on ethyl carbamate-induced oxidative damage. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Xu Y, Li Y, Li J, Chen W. Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation. Redox Biol 2022; 53:102349. [PMID: 35623314 PMCID: PMC9142717 DOI: 10.1016/j.redox.2022.102349] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Humans are inevitably exposed to ethyl carbamate (EC) via consumption of fermented food and beverages. EC, known as an environmental toxin, can cause oxidative stress-mediated severe toxicity, but the underlying mechanisms remain unveiled. Ferroptosis is a newly identified ROS-mediated non-apoptotic cell death characterized by iron accumulation and excessive lipid oxidation. In this study, we first found that EC triggered ferroptosis in liver cells by detection of decreased cell viability, GSH, GPX4 and Ferritin levels, as well as increased iron and MDA contents. Ferroptosis inhibitor ferrostatin-1 (Fer-1) pretreatment rescued ferroptotic damage, indicating that ferroptosis was critical for EC-caused cell death. Furthermore, GSH synthesis precursor N-acetylcysteine displayed significant anti-ferroptotic properties and we suggested that GSH depletion might be the main cause of ferroptosis under EC exposure. EC-triggered GSH depletion mainly depended on suppressed GSH synthesis via inhibition of SLC7A11 and GCLC expressions. Notably, EC blocked Nrf2 activation by repression of phosphorylation modification and nuclear translocation, which further resulted in ferroptosis occurrence. We also observed EC-induced liver dysfunction and inflammation, accompanied with oxidative stress, ferroptosis and downregulated Nrf2 signaling in Balb/c mice, which could be effectively reversed by Fer-1 and tBHQ pretreatment. Together, our study indicated that ferroptosis is a new mechanism for EC-caused toxicity, which was attributed to Nrf2 inactivation and GSH depletion. Ethyl carbamate (EC) caused ferroptosis in L02 cells and liver tissues. GSH depletion was critical for EC-induced ferroptotic cell death. EC exposure blocked GSH synthesis-related pathways. Inactivation of Nrf2 signaling was involved in EC-triggered ferroptosis.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiaxin Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
11
|
Zhou K, Zhang X, Li B, Shen C, Sun YM, Yang J, Xu ZL. Citrulline Accumulation Mechanism of Pediococcus acidilactici and Weissella confusa in Soy Sauce and the Effects of Phenolic Compound on Citrulline Accumulation. Front Microbiol 2021; 12:757542. [PMID: 34925267 PMCID: PMC8678507 DOI: 10.3389/fmicb.2021.757542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Citrulline is one of the major precursors of ethyl carbamate in soy sauce, and the accumulation of citrulline is attributed to the metabolism of arginine by bacteria with the arginine deiminase (ADI) pathway. However, key strains and factors affecting citrulline accumulation are not yet clear. In this study, two key strains of Pediococcus acidilactici and Weissella confusa were isolated from soy sauce moromi, and the regularity of citrulline formation was studied. Results showed that the conversion rates from arginine to citrulline (A/C rate) and the citrulline accumulation ability of W. confusa and P. acidilactici significantly increased in the presence of different concentrations of NaCl, indicating that salt stress was the main factor for citrulline accumulation. The inconsistent expression of arc genes by salt stress was the reason for citrulline accumulation for P. acidilactici, but for W. confusa, it may be due to the influence of arginine/citrulline on the transportation system: the intracellular citrulline could neither transport to extracellular space nor convert into ornithine. Environmental factors greatly influenced citrulline accumulation of the two key bacteria; A/C rate and citrulline formation in both strains decreased at low temperature (15°C) under high salt stress, but opposite effects were observed for the two key strains under anaerobic light condition. Moreover, quercetin and gallic acid significantly decreased the A/C rate and citrulline accumulation ability of the two key strains. The optimal quercetin and gallic acid as suggested by simulation experiment were 100 and 10 mg/l, respectively, and the lowest A/C rate of 28.4% and citrulline level of 1326.7 mg/l were achieved in the simulation system. This study explored the main factors for citrulline formation by the two key strains and proposed a targeted way to control citrulline in soy sauce.
Collapse
Affiliation(s)
- Kai Zhou
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, China.,Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,Department of Production-Learning-Research, Shenzhen Total-Test Technology Co., Ltd., Shenzhen, China
| | - Xiao Zhang
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, China
| | - Bingyong Li
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, China
| | - Chaoqun Shen
- Department of Production-Learning-Research, Shenzhen Total-Test Technology Co., Ltd., Shenzhen, China
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyuan Yang
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Sánchez-Velázquez OA, Mulero M, Cuevas-Rodríguez EO, Mondor M, Arcand Y, Hernández-Álvarez AJ. In vitro gastrointestinal digestion impact on stability, bioaccessibility and antioxidant activity of polyphenols from wild and commercial blackberries (Rubus spp.). Food Funct 2021; 12:7358-7378. [PMID: 34180938 DOI: 10.1039/d1fo00986a] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastrointestinal digestion (GID) is a physiological process that transforms the stability, bioaccessibility and antioxidant activity (AOX) of polyphenols from blackberries (Rubus spp.). This study aimed to investigate the effect of the INFOGEST® GID protocol on the phenolic stability, bioaccessibility and AOX of Mexican wild (WB) and commercial (CB) blackberries. After GID, the total phenolic and anthocyanin contents in blackberries decreased by ≥68% and ≥74%, respectively. More than 40 phenolics were identified during GID; most of them degraded completely during digestion. GID had a negative effect on the AOX of both fruits (>50%), but WB showed the highest antioxidant activities, as assessed by the ORAC, DPPH, reducing power and β-carotene bleaching methods. In Caco-2 cells, the cell-based antioxidant activity of digested blackberries (p < 0.05) decreased by 48% in WB and by 56% in CB. The capacity to inhibit intracellular ROS decreased by 50% in WB and by up to 86% in CB, after digestion. GID is a complex process that impacts on the bioactive properties of food nutrients, especially phenolics. In vitro and cellular AOX of WB polyphenols withstood the gastrointestinal environment better than CB phenolics. The in vitro assays results suggest that phenolics from underutilized WB have a higher bioaccessibility and antioxidant capacity than the polyphenols from the most frequently consumed CB. However, whether this corresponds to a better bioaccessibility in humans remains to be determined in future work.
Collapse
Affiliation(s)
- Oscar Abel Sánchez-Velázquez
- Programa Regional de Posgrado en Biotecnología; Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa. Av. Josefa Ortíz de Dominguez, s/n, Ciudad Universitaria, PC 80030, Culiacán Rosales, Sinaloa, Mexico
| | | | | | | | | | | |
Collapse
|
13
|
Lu Y, Bao T, Mo J, Ni J, Chen W. Research advances in bioactive components and health benefits of jujube ( Ziziphus jujuba Mill.) fruit. J Zhejiang Univ Sci B 2021; 22:431-449. [PMID: 34128368 DOI: 10.1631/jzus.b2000594] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Jujube (Ziziphus jujuba Mill.), a highly nutritious and functional fruit, is reported to have various health benefits and has been extensively planted worldwide, especially in China. Many studies have shown that bioactive components derived from jujube fruit have significant nutritional and potential biological effects. In this paper, the latest progress in research on major bioactive compounds obtained from jujube is reviewed, and the potential biological functions of jujube fruit resources are discussed. As a dietary supplement, jujube fruit is well recognized as a healthy food which contains a variety of bioactive substances, such as polysaccharides, polyphenols, amino acids, nucleotides, fatty acids, dietary fiber, alkaloids, and other nutrients. These nutrients and non-nutritive phytochemicals obtained from jujube fruit have physiological functions including anticancer, antioxidant, anti-inflammatory, anti-hyperlipidemic, anti-hyperglycemic, immunoregulatory, neuroprotective, sedative, and antiviral functions. Of note is that new constituents, including alkaloids, dietary fiber, and other bioactive substances, as well as the antiviral, hypoglycemic, lipid-lowering, and neuroprotective effects of jujube fruit, are systematically reviewed here for the first time. Meanwhile, problems affecting the exploitation of jujube fruit resources are discussed and further research directions proposed. Therefore, this review provides a useful bibliography for the future development of jujube-based products and the utilization of jujube nutritional components in functional foods.
Collapse
Affiliation(s)
- Yang Lu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingdan Ni
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
14
|
Ke H, Bao T, Chen W. New function of polysaccharide from Rubus chingii Hu: protective effect against ethyl carbamate induced cytotoxicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3156-3164. [PMID: 33211321 DOI: 10.1002/jsfa.10944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rubus chingii Hu is a widely cultivated fruit in China and has declared multiple bioactivities including antioxidative activity. Ethyl carbamate (EC), mostly found in fermented food and alcoholic beverages, is a recognized human carcinogen, and researchers have proposed the correlation between oxidative stress and its toxicity. This study acquired the polysaccharide from R. chingii (RP) and explored its effect on EC-induced cytotoxicity using Caco-2 cells as the cell model. RESULTS Results showed that RP exhibited protection against EC-induced toxicity by repairing redox imbalance as indicative of mitigated mitochondrial membrane potential collapse, attenuated reactive oxygen species overproduction, and impeded glutathione depletion. Moreover, the structural features of RP were characterized and revealed that it was mainly constituted by galacturonic acid and arabinose, with an average molecular weight of 7.039 × 105 g mol-1 . CONCLUSION Overall, our results provided a new approach dealing with the toxicity caused by EC from the perspective of oxidative stress and described a new potential healthy value of R. chingii Hu, which could contribute to the development of a promising dietary supplement and functional food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
15
|
Bao T, Zhang M, Zhou Y, Chen W. Phenolic profile of jujube fruit subjected to gut microbiota fermentation and its antioxidant potential against ethyl carbamate-induced oxidative damage. J Zhejiang Univ Sci B 2021; 22:397-409. [PMID: 33973421 DOI: 10.1631/jzus.b2000754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To evaluate the composition of bioactive substances and the antioxidant effects of jujube fruit under gut microbiota fermentation (GMF), and the inhibitory effect on cytotoxicity caused by ethyl carbamate (EC). METHODS Changes in the contents of flavonoids, polyphenols, total sugars, and reducing sugars of jujube fruit after GMF (0, 2, 6, 12, 24, and 48 h) were determined. The oxidation resistance of fermented jujube fruits (from 0 to 48 h fermentation) was evaluated using in vitro 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and ferric reducing antioxidant power (FRAP) assays. Inhibitory effects of 48 h-fermented jujube fruit at various concentrations (0.25, 0.50, 1.00, and 2.00 mg/mL) on EC-treated toxicity and DNA damage of Caco-2 cells were estimated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and nuclear staining assays, respectively. Effects of different concentrations of jujube fruit on EC-treated Caco-2 cells' intracellular reactive oxygen species (ROS), glutathione (GSH) levels, and mitochondrial membrane potential (MMP) were also evaluated. RESULTS Jujube fruit has rich bioactive components after GMF and shows strong antioxidant capacity. Fermented jujube fruit can inhibit the cytotoxicity and DNA damage of Caco-2 cells caused by EC and reduce intracellular ROS generation, as well as restoring GSH and MMP. CONCLUSIONS Fermented jujube fruit extracts produced by GMF still contain biologically active substances which retain biological activity and antioxidation capabilities.
Collapse
Affiliation(s)
- Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Ming Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yuanqing Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China. .,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
16
|
Xu Y, Ke H, Li Y, Xie L, Su H, Xie J, Mo J, Chen W. Malvidin-3- O-Glucoside from Blueberry Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Transcription Factor EB-Mediated Lysosomal Function and Activating the Nrf2/ARE Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4663-4673. [PMID: 33787249 DOI: 10.1021/acs.jafc.0c06695] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a universal health issue, whereas there is still a lack of widely accepted therapy until now. Clinical research studies have shown that blueberry could effectively regulate the lipid metabolism, thereby improving obesity-related metabolic syndromes; however, the specific active substances and mechanisms remain unclear. Herein, the effects of the major 10 kinds of anthocyanins from blueberry against NAFLD were investigated using an free fatty acid (FFA)-induced cell model. Among these anthocyanins, malvidin-3-O-glucoside (M3G) and malvidin-3-O-galactoside (M3Ga) could remarkably ameliorate FFA-induced lipid accumulation. Besides, M3G and M3Ga also inhibited oxidative stress via suppressing reactive oxygen species and superoxide anion overproduction, increasing glutathione levels, and enhancing activities of antioxidant enzymes. Further studies unveiled that the representative anthocyanin M3G-upregulated transcription factor EB (TFEB)-mediated lysosomal function possibly interacted with TFEB and activated the Nrf2/ARE (antioxidant responsive element) signaling pathway. Overall, this study enriched the knowledge about the health-promoting effects of blueberry anthocyanins against NAFLD and provided ideas for the development of functional foods of blueberry anthocyanins.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Hongming Su
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
17
|
Du B, Deng G, Zaman F, Ma H, Li X, Chen J, Li T, Huang Y. Antioxidant cuttlefish collagen hydrolysate against ethyl carbamate-induced oxidative damage. RSC Adv 2021; 11:2337-2345. [PMID: 35424200 PMCID: PMC8693707 DOI: 10.1039/d0ra08487e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
Ethyl carbamate (EC) has been associated with the generation of reactive oxygen species (ROS) and depletion of glutathione (GSH), leading to a decline in cell viability. In this study, we found that the cuttlefish collagen hydrolysate (CCH) exhibited high antioxidant activity in scavenging hydroxyl radicals (IC50 = 0.697 mg mL-1), which was also effective in combating EC-induced oxidative damage in liver hepatocellular carcinoma HepG2 cells. The expression of genes related to oxidative stress response could be regulated by CCH to mitigate EC-induced oxidative stress. Pathway analysis confirmed that the protective ability of CCH could be related to ferroptosis and glutathione metabolism. Therefore, CCH could reduce the decline in cell viability by alleviating GSH depletion, and prevent EC-induced oxidative damage. Moreover, protective effect of CCH could be realized by upregulating the heme oxygenase-1 to achieve the preventation of cell sensitization. Considering these effects, CCH has potential for use in food to prevent oxidative stress.
Collapse
Affiliation(s)
- Bowei Du
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Guiya Deng
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Fakhar Zaman
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Hui Ma
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Xuejuan Li
- Rongcheng Lanrun Biological Technology Co., Ltd Rongcheng 264309 People's Republic of China
| | - Jialiang Chen
- Department of Graduate School, Beijing University of Chinese Medicine Beijing 100029 People's Republic of China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University New York NY 10027 USA
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| |
Collapse
|
18
|
Inhibition of ethyl carbamate accumulation in soy sauce by adding quercetin and ornithine during thermal process. Food Chem 2020; 343:128528. [PMID: 33189477 DOI: 10.1016/j.foodchem.2020.128528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 01/12/2023]
Abstract
Ethyl carbamate (EC), a genotoxic and carcinogenic compound in soy sauce accumulated during thermal processes, has raised public health concern for its multipoint potential carcinogenic risk to human. In this work, based on the analysis of EC accumulation during thermal processes of soy sauce, ornithine and quercetin were added before thermal processes to reduce EC accumulation. A reduction rate of 23.7-63.8% in simulated solution was founded. Kinetic studies indicated that ornithine was a byproduct of alcoholysis reaction when EC formed, while quercetin could compete with the precursor ethanol and react with carbamyl compounds, which therefore preventedEC accumulation. A maximum of 47.2% decrease of EC in soy sauce was achieved, and no remarkable changes in volatile compounds profile and color of soy sauce were found. In conclusion, the addition of quercetin and ornithine before thermal processes may be preferable for the controlling of EC content in soy sauce.
Collapse
|
19
|
Li Y, Hu D, Qi J, Cui S, Chen W. Lysosomal Reacidification Ameliorates Vinyl Carbamate-Induced Toxicity and Disruption on Lysosomal pH. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8951-8961. [PMID: 32806125 DOI: 10.1021/acs.jafc.0c00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ethyl carbamate (EC) is a carcinogen toxicant, commonly found in fermented foods and beverages. The carcinogenic and toxic possibility of EC is thought to be related to its metabolite vinyl carbamate (VC). However, we found interesting mechanisms underlying VC-induced toxicity in this study, which were greatly different from EC. We first conducted a simple synthesis procedure for VC and found that VC possessed higher toxicity but failed to regulate levels of reactive oxygen species, glutathione, and autophagy. Notably, VC treatment resulted in upregulation of lysosomal pH, which was responsible for its cytotoxicity. Cyclic adenosine monophosphate (cAMP) pretreatment could enhance restoration of lysosomal acidity and ameliorate VC-induced damage. Inhibition of protein kinase A and cystic fibrosis transmembrane conductance regulator can block cAMP-induced cytoprotection. Together, our results provided the evidence for novel mechanisms of toxicity and possible protection method under VC exposure, which might give new perspectives on the study of EC-induced toxicity.
Collapse
Affiliation(s)
- Yuting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Dongwen Hu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Jifeng Qi
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
20
|
In vitro study of bioaccessibility, antioxidant, and α-glucosidase inhibitory effect of pelargonidin-3-O-glucoside after interacting with beta-lactoglobulin and chitosan/pectin. Int J Biol Macromol 2020; 154:380-389. [DOI: 10.1016/j.ijbiomac.2020.03.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/17/2022]
|
21
|
Xie L, Mo J, Ni J, Xu Y, Su H, Xie J, Chen W. Structure-based design of human pancreatic amylase inhibitors from the natural anthocyanin database for type 2 diabetes. Food Funct 2020; 11:2910-2923. [DOI: 10.1039/c9fo02885d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Malvidin 3-O-arabinoside is identified as a novel human pancreatic amylase inhibitor from the natural anthocyanin database with a structure-based design approach.
Collapse
Affiliation(s)
- Lianghua Xie
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| | - Jianling Mo
- Department of Traditional Chinese Medicine
- Sir Run Run Shaw Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310016
| | - Jingdan Ni
- Department of Traditional Chinese Medicine
- Sir Run Run Shaw Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310016
| | - Yang Xu
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| | - Hongming Su
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| | - Jiahong Xie
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| | - Wei Chen
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| |
Collapse
|
22
|
Chu Q, Jia R, Chen W, Liu Y, Li Y, Ye X, Jiang Y, Zheng X. Purified Tetrastigma hemsleyanum vines polysaccharide attenuates EC-induced toxicity in Caco-2 cells and Caenorhabditis elegans via DAF-16/FOXO pathway. Int J Biol Macromol 2019; 150:1192-1202. [PMID: 31739013 DOI: 10.1016/j.ijbiomac.2019.10.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
Abstract
Ethyl Carbamate (EC), as a carcinogen widely found in fermented foods, was verified that its cytotoxicity was associated with oxidative stress. Polysaccharides from natural sources due to their antioxidative capacity have attracted great attention in the past time. In this study, purified polysaccharide from Tetrastigma hemsleyanum vines (TVP) with 64.89 kDA was extracted and conducted multiple analysis to identify its structural information. It could be discovered that TVP was composed of mannose, rhamnose, glucuronic acid, glucose, galactose, and arabinose. In vitro, TVP could inhibit cytotoxicity and genotoxicity, attenuate oxidative damage and mitochondrial dysfunction induced by EC in Caco-2 cells. Meanwhile, TVP could suppress apoptosis by mTOR and Bcl-2 signaling pathways, ameliorate oxidative via Sirt1-FoxO1 and Nrf2-Keap1 signaling pathways. In vivo, EC as well triggered the decline of survival and athletic ability in Caenorhabditis elegans (C. elegans) and TVP could reverse the decline. In the meantime, TVP could ameliorate oxidative damage in N2 and daf-2 (-) mutant but fail in daf-16 (-) mutant, which suggested that DAF-16 (FOXO) might affect the antioxidative protection of TVP in C. elegans. In brief, our results manifested that TVP could attenuate EC-induced cytotoxicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Wen Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yangyang Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yonglu Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yong Jiang
- Shanghai Zhengyue Enterprise Management Co, Ltd., 19th Floor, Block B, Xinchengkonggu Building, No. 388 Zhongjiang Road, Putuo District, Shanghai 600062, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
23
|
Różyło R, Wójcik M, Biernacka B, Dziki D. Gluten-free crispbread with freeze-dried blackberry: quality and mineral composition. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1660725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Lublin, Poland
| | - Monika Wójcik
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Lublin, Poland
| | - Beata Biernacka
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
24
|
Shishir MRI, Karim N, Gowd V, Xie J, Zheng X, Chen W. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.059] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Qu D, Liu C, Jiang M, Feng L, Chen Y, Han J. After In Vitro Digestion, Jackfruit Flake Affords Protection against Acrylamide-Induced Oxidative Damage. Molecules 2019; 24:E3322. [PMID: 31547332 PMCID: PMC6766818 DOI: 10.3390/molecules24183322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 01/16/2023] Open
Abstract
Some studies have demonstrated that acrylamide (AA) was correlated with oxidative stress, resulting in physical damage. The jackfruit flake was an immature pulp that contained a high level of antioxidant activity. This study aimed to assess the defensive efficacy of jackfruit flake in AA-induced oxidative stress before and after simulated gastrointestinal digestion. Our results indicate that the total polyphenol content of Jackfruit flake digest (Digestive products of jackfruit flake after gastrointestinal, JFG) was diminished; however, JFG had raised the relative antioxidant capacity compared to Jackfruit flake extract (JFE). Additionally, the results of High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) implied that a proportion of compounds were degraded/converted into other unknown and/or undetected metabolites. Further, by high content analysis (HCA) techniques, JFG markedly reduced cytotoxicity and excessive production of reactive oxygen species (ROS) in cells, thereby alleviating mitochondrial disorders. In this study, it may be converted active compounds after digestion that had preferable protective effects against AA-induced oxidative damage.
Collapse
Affiliation(s)
- Daofeng Qu
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Chu Liu
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Mengxue Jiang
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Lifang Feng
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Yuewen Chen
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Jianzhong Han
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| |
Collapse
|
26
|
Zhou W, Liang X, Zhang Y, Li K, Jin B, Lu L, Jin C, Lin X. Reduced nitrogen supply enhances the cellular antioxidant potential of phenolic extracts through alteration of the phenolic composition in lettuce (Lactuca sativa L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4761-4771. [PMID: 30932195 DOI: 10.1002/jsfa.9721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nitrogen availability is an important environmental factor that determines the production of phenolic compounds in vegetables, but the relationship between low nitrogen-induced alterations of phenolic compounds in vegetable crops and the cellular antioxidant activities of these compounds remains unclear. This study investigated the effect of reduced nitrogen supply (0.05 mmol L-1 nitrate) on phenolic metabolism in lettuce and the protective role of phenolic extracts against H2 O2 -induced oxidative stress in Caco-2 cells by determining cell damage, reactive oxygen species (ROS) content and antioxidant enzyme activities. RESULTS Reduced nitrogen supply significantly improved the accumulation of phenolic compounds in lettuce, which was partially correlated with the upregulation of genes related to the phenolic synthesis pathway. Phenolic extracts from lettuce cultivated in low-nitrogen medium exhibited a better protective effect against H2 O2 -induced oxidative damage in Caco-2 cells than those from lettuce cultivated with adequate nitrogen. These extracts act by increasing the activities of antioxidant enzymes and, subsequently, by inhibiting ROS overproduction, which leads to a decrease in mitochondrial membrane and DNA damage. The results of HPLC and correlation analyses implied that the improvement in the protective capacity of lettuce extracts after low-nitrogen treatment may be related, not only to the increased content of phenolic compounds, but also to the increased percentage contribution of chlorogenic acid and quercetin derivatives to the total phenolic content. CONCLUSION Reduction in nitrogen supply can be a powerful strategy to modify phenolic metabolism and composition in lettuce and, consequently, to improve their antioxidant capacity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiwei Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yimo Zhang
- Shanghai Pinghe Bilingual School, Shanghai, China
| | - Kejie Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Bingjie Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Polysaccharide from Rubus chingii Hu affords protection against palmitic acid-induced lipotoxicity in human hepatocytes. Int J Biol Macromol 2019; 133:1063-1071. [DOI: 10.1016/j.ijbiomac.2019.04.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/06/2023]
|
28
|
Gowd V, Bao T, Chen W. Antioxidant potential and phenolic profile of blackberry anthocyanin extract followed by human gut microbiota fermentation. Food Res Int 2019; 120:523-533. [DOI: 10.1016/j.foodres.2018.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 02/02/2023]
|
29
|
Xie J, Xu Y, Shishir MR, Zheng X, Chen W. Green extraction of mulberry anthocyanin with improved stability using β-cyclodextrin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2494-2503. [PMID: 30379343 DOI: 10.1002/jsfa.9459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mulberry anthocyanin is reported to possess various biological activities and it is unstable during extraction or food production. The use of organic solvents for extraction of mulberry anthocyanins may cause environmental pollution and safety concerns. Therefore, the aim of this study was to investigate the effect of a green extraction solvent (cyclodextrin) on the recovery of anthocyanin from mulberry fruits, as well as the thermal stability of anthocyanin. RESULTS β-Cyclodextrin (β-CD) or hydroxypropyl-β-cyclodextrin showed better anthocyanin extraction efficiency than water and ethanol aqueous solution for all tested mulberry cultivars. A molecular docking study indicated that anthocyanin (cyanidin-3-O-glucoside) was encapsulated in the cavity of β-CD, thus enhancing the solubility of anthocyanin. The extraction process was subsequently optimized using a Box-Behnken design. The optimal extraction conditions for anthocyanin and antioxidant activity were found at extraction temperature of 20 °C, extraction time of 44.95 min and β-CD concentration of 45 g L-1 . Furthermore, a degradation kinetic study demonstrated that addition of β-CD could significantly improve the thermal stability of anthocyanin during extraction, with the activation energy of anthocyanin degradation increasing from 63.06 to 76.77 kJ mol-1 . CONCLUSIONS Overall, our study suggests that β-CD is an alternative green extraction solvent for the recovery of anthocyanins, and addition of β-CD may potentially increase the thermal stability of anthocyanin during the extraction, which may give guidance for functional beverage production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiahong Xie
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Mohammad Ri Shishir
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Li Y, Ye X, Zheng X, Chen W. Transcription factor EB (TFEB)-mediated autophagy protects against ethyl carbamate-induced cytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:281-292. [PMID: 30384237 DOI: 10.1016/j.jhazmat.2018.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/07/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Ethyl carbamate (EC) is thought to be a toxicant that widely exists in cigarette smoke and polluted air, as well as fermented food and alcoholic beverages. However, the mechanism and approach to treat hepatic damage after EC exposure remain unclear. Here, we first found that EC caused decreased cell viability, reactive oxygen species (ROS) overproduction and glutathione (GSH) depletion in normal human hepatocytes L02 cells. Excessive ROS generation was found to be one of the major reasons for cell cytotoxicity of EC treatment. Furthermore, increased ROS levels also promoted autophagy, a lysosomal degradation process, which was confirmed by detection of LC3-II expression and puncta in GFP-RFP-LC3 transfection assay. Autophagy inhibitor chloroquine (CQ) pretreatment led to decreased cell viability and higher ROS levels compared with EC group, suggesting that autophagy protected EC-treated cells against oxidative stress and cytotoxicity. Notably, we observed increased lysosomal biogenesis and activation of transcription factor EB (TFEB), a master regulator of lysosomal generation, in the process of autophagy. Taken together, we unveiled a novel mechanism of hepatotoxicity and endogenous potent protection of TFEB-mediated autophagy against decreased cell viability and redox disturbance under EC exposure in normal human hepatocytes.
Collapse
Affiliation(s)
- Yuting Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Gowd V, Bao T, Wang L, Huang Y, Chen S, Zheng X, Cui S, Chen W. Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chem 2018; 269:618-627. [DOI: 10.1016/j.foodchem.2018.07.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023]
|
32
|
Călinoiu LF, Vodnar DC. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018; 10:E1615. [PMID: 30388881 PMCID: PMC6265897 DOI: 10.3390/nu10111615] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
Cereal grains represent one of the major sources of human food and nowadays, their production has increased to fulfill the needs of the world's population. Among whole grains, wheat is the most popular and contributes significantly to the human diet. Whole grains possess great nutritional and bioactive properties due to their fractions, bran and germ, that comprise unique health-promoting bioactive components. The evidence of health benefits in human intervention studies, as well as a World Health Organization report for 2012⁻2016, supports the dietary consumption of whole grains and whole-grain foods. The inverse correlation between whole grain consumption and the reduced risk of chronic diseases and metabolic syndromes was underlined by several epidemiological studies. This article focuses on the bioactive components of whole grains and their fractions, namely phenolic acids, starting from their chemical structure, bioactivity and bioavailability. According to the conclusive evaluation of the human intervention studies conducted using cereal bran and whole grains intake, the assumption that the bioactive compounds determine health outcomes is illustrated. In the last part of the work, the functional potential and the health claims related to whole grains and bran intake are discussed, as well as new technologies and strategies to enhance their health potential by an increased bioavailability.
Collapse
Affiliation(s)
- Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
33
|
Su H, Li Y, Hu D, Xie L, Ke H, Zheng X, Chen W. Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Free Radic Biol Med 2018; 126:269-286. [PMID: 30142454 DOI: 10.1016/j.freeradbiomed.2018.08.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Procyanidin B2, a naturally occurring phenolic compound, has been reported to exert multiple beneficial functions. However, the effect of procyanidin B2 on free fatty acids (FFAs)-induced hepatic steatosis remains obscure. The present study is therefore aimed to elucidate the protective effect of procyanidin B2 against hepatic steatosis and its underlying mechanism. Herein, we reported that procyanidin B2 attenuated FFAs-induced lipid accumulation and its associated oxidative stress by scavenging excessive ROS and superoxide anion radicals, blocking loss of mitochondrial membrane potential, restoring glutathione content, and increasing activity of antioxidant enzymes (GPx, SOD and CAT) in hepatocytes. Procyanidin B2 mechanistically promoted lipid degradation via modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathway. Molecular docking analysis indicated a possible ligand-binding position of procyanidin B2 with TFEB. In addition, administration of procyanidin B2 resulted in a significant reduction of hepatic fat accumulation in high-fat diet (HFD)-induced obese mice, and also ameliorated HFD-induced metabolic abnormalities, including hyperlipidemia and hyperglycemia. It was confirmed that procyanidin B2 prevented HFD-induced hepatic fat accumulation through down-regulating lipogenesis-related gene expressions (PPARγ, C/EBPα and SREBP-1c), inhibiting pro-inflammatory cytokines production (IL-6 and TNF-α) and increasing antioxidant enzymes activity (GPx, SOD and CAT). Moreover, hepatic fatty acids analysis indicated that procyanidin B2 caused a significant increase in the levels of palmitic acid, oleic acid and linoleic acid. Intriguingly, procyanidin B2 restored the decreased nuclear TFEB expression in HFD-induced liver steatosis and up-regulated its target genes involved in lysosomal pathway (Lamp1, Mcoln, Uvrag), which suggested a previously unrecognized mechanism of procyanidin B2 on ameliorating HFD-induced hepatic steatosis. Taken together, our results demonstrated that procyanidin B2 attenuated FFAs-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state, which had important implications that modulation of TFEB might be a potential therapeutic strategy for hepatic steatosis and procyanidin B2 could represent a promising novel agent in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Dongwen Hu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Zheng Y, Feng G, Sun Y, Liu S, Pi Z, Song F, Liu Z. Study on the compatibility interactions of formula Ding-Zhi-Xiao-Wan based on their main components transport characteristics across Caco-2 monolayers model. J Pharm Biomed Anal 2018; 159:179-185. [DOI: 10.1016/j.jpba.2018.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 01/04/2023]
|
35
|
Hu D, Xu Y, Xie J, Sun C, Zheng X, Chen W. Systematic evaluation of phenolic compounds and protective capacity of a new mulberry cultivar J33 against palmitic acid-induced lipotoxicity using a simulated digestion method. Food Chem 2018; 258:43-50. [DOI: 10.1016/j.foodchem.2018.03.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
|
36
|
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.018] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Effect of an In Vitro Digestion on the Antioxidant Capacity of a Microfiltrated Blackberry Juice (Rubus adenotrichos). BEVERAGES 2018. [DOI: 10.3390/beverages4020030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Li Y, Bao T, Chen W. Comparison of the protective effect of black and white mulberry against ethyl carbamate-induced cytotoxicity and oxidative damage. Food Chem 2018; 243:65-73. [DOI: 10.1016/j.foodchem.2017.09.106] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/04/2017] [Accepted: 09/20/2017] [Indexed: 01/19/2023]
|
39
|
Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
An effective method for preparation of high-purity pelargonidin-3-O-glucoside from strawberry and its protective effect on cellular oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:211-220. [DOI: 10.1016/j.jchromb.2017.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 12/16/2022]
|
41
|
Ethyl carbamate: An emerging food and environmental toxicant. Food Chem 2017; 248:312-321. [PMID: 29329860 DOI: 10.1016/j.foodchem.2017.12.072] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Ethyl carbamate (EC), a chemical substance widely present in fermented food products and alcoholic beverages, has been classified as a Group 2A carcinogen by the International Agency for Research on Cancer (IARC). New evidence indicates that long-term exposure to EC may cause neurological disorders. Formation of EC in food and its metabolism have therefore been studied extensively and analytical methods for EC in various food matrices have been established. Due to the potential threat of EC to human health, mitigation strategies for EC in food products by physical, chemical, enzymatic, and genetic engineering methods have been developed. Natural products are suggested to provide protection against EC-induced toxicity through the modulation of oxidative stress. This review summarizes knowledge on the formation and metabolism of EC, detection of EC in food products, toxic effects of EC on various organs, and mitigation strategies including prevention of EC-induced tumorigenesis and genotoxicity by natural products.
Collapse
|
42
|
Xu Y, Hu D, Bao T, Xie J, Chen W. A simple and rapid method for the preparation of pure delphinidin-3- O -sambubioside from Roselle and its antioxidant and hypoglycemic activity. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
43
|
Systematic evaluation of bioactive components and antioxidant capacity of some new and common bayberry cultivars using an in vitro gastrointestinal digestion method. Food Res Int 2017; 103:326-334. [PMID: 29389622 DOI: 10.1016/j.foodres.2017.10.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 02/08/2023]
Abstract
This study was aimed to investigate the impact of in vitro gastrointestinal digestion on some common and new bayberry cultivars. The contents of total phenolics (246-669mg gallic acid equivalents/kg FW (fresh weight)), flavonoids (116-689mg quercetin-3-O-rutinoside equivalents/kg FW), procyanidins (28-133mg catechin equivalents/kg FW) and anthocyanins (1-7mg cyaniding-3-O-glucoside equivalents/kg FW) were detected in digested cultivars. HPLC-TOF-MS analysis identified 17 phenolic compounds in digested sample. Among all digested cultivars, the new cultivars Anhaizaomei (ABTS, IC50=2.95mg/mL; FRAP, 401.32mg vitamin C equivalents (VCE)/kg FW) and Yingsi (ABTS, IC50=3.28mg/mL; FRAP, 400.81mg VCE/kg FW) showed better in vitro antioxidant capacity. Further cellular assay indicated that the common cultivar Dongkui (2mg/mL) possessed the strongest ROS scavenging activity. The comprehensive evaluation of bioactive components and antioxidant properties using principal component analysis suggests that common cultivar Dongkui, new cultivars Yingsi and Anhaizaomei could be considered as dietary supplements.
Collapse
|
44
|
Gowd V, Jia Z, Chen W. Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Zhang L, Xu Y, Li Y, Bao T, Gowd V, Chen W. Protective property of mulberry digest against oxidative stress – A potential approach to ameliorate dietary acrylamide-induced cytotoxicity. Food Chem 2017; 230:306-315. [DOI: 10.1016/j.foodchem.2017.03.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
|
46
|
Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1594963. [PMID: 28819542 PMCID: PMC5551560 DOI: 10.1155/2017/1594963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 02/08/2023]
Abstract
Ethyl carbamate (EC) is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE) on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays) jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH) depletion and caused mitochondrial membrane potential (MMP) collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress.
Collapse
|
47
|
Shishir MRI, Chen W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Chen Y, Ma X, Fu X, Yan R. Phytochemical content, cellular antioxidant activity and antiproliferative activity of Adinandra nitida tea (Shiyacha) infusion subjected to in vitro gastrointestinal digestion. RSC Adv 2017. [DOI: 10.1039/c7ra07429h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adinandra nitida tea (Shiyacha) is a traditional eminent and flourishing tea with a long history in Southeast Asia.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Food Science and Engineering
- Jinan University
- Guangzhou
- China
- School of Food Science and Engineering
| | - Xiang Ma
- Research School of Chemistry
- Institute of Advanced Studies
- The Australian National University
- Canberra
- Australia
| | - Xiong Fu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Rian Yan
- Department of Food Science and Engineering
- Jinan University
- Guangzhou
- China
| |
Collapse
|