1
|
Van Wayenbergh E, Boakye AA, Baert J, Langenaeken NA, Appaw WO, Foubert I, Oduro IN, Courtin CM. Vitamin A stability during storage of fortified gari produced using different fortification strategies. NPJ Sci Food 2024; 8:102. [PMID: 39702648 DOI: 10.1038/s41538-024-00350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Food fortification is an effective strategy to combat vitamin A deficiency. Gari, a cassava-based West African food product, is an interesting product to fortify with vitamin A, but the low stability of vitamin A poses a challenge. We showed that toasted wheat bran can stabilise vitamin A as retinyl palmitate (RP) during storage of RP-fortified gari to a limited extent. After four weeks of accelerated storage, the RP retention of gari with toasted wheat bran was 34 ± 9% whereas this was only 19.4 ± 0.3% for gari without bran. When comparing different fortification strategies, including RP addition, red palm oil addition and the use of yellow cassava, red palm oil addition was shown the most promising strategy. After eight weeks of accelerated storage, the vitamin A retention was more than four times higher for red palm oil-fortified gari (22.6 ± 0.1%) than for the two other fortification strategies.
Collapse
Affiliation(s)
- Eline Van Wayenbergh
- KU Leuven, Department of Microbial and Molecular Systems (M²S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - Abena A Boakye
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jolien Baert
- KU Leuven, Department of Microbial and Molecular Systems (M²S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - Niels A Langenaeken
- KU Leuven, Department of Microbial and Molecular Systems (M²S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - William O Appaw
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Imogen Foubert
- KU Leuven Kulak, Department of Microbial and Molecular Systems (M²S), Research Unit of Food and Lipids & Leuven Food Science and Nutrition Research Centre (LFoRCe), Etienne Sabbelaan 53, B-8500, Kortrijk, Belgium
| | - Ibok N Oduro
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christophe M Courtin
- KU Leuven, Department of Microbial and Molecular Systems (M²S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium.
| |
Collapse
|
2
|
Van Wayenbergh E, Langenaeken NA, Verheijen J, Foubert I, Courtin CM. Mechanistic understanding of the stabilisation of vitamin A in oil by wheat bran: The interplay between vitamin A degradation, lipid oxidation, and lipase activity. Food Chem 2024; 436:137785. [PMID: 37866098 DOI: 10.1016/j.foodchem.2023.137785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Wheat bran stabilises vitamin A (retinyl palmitate, RP) in oil during storage, but the stabilisation mechanism remains unknown. We here studied the effect of the concentration of RP in oil (0.1-2%) and of RP-enriched oil in the system (5-50%) on the RP retention during accelerated storage of systems with native and toasted wheat bran. Generally, toasted bran showed better RP stabilisation than native bran. After four weeks of storage, up to 65% RP was retained in toasted bran systems, whereas the RP retention for native bran was below 10%. For native bran, a higher oil-to-bran ratio and, thus, a lower wheat lipase level resulted in better RP retention. For toasted bran, combined high oil and high RP concentrations resulted in the lowest RP retention. We, therefore, conclude that wheat bran protects RP and lipids from oxidation. This protection is reduced by the pro-oxidative effect of RP, lipid oxidation and lipase.
Collapse
Affiliation(s)
- Eline Van Wayenbergh
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Niels A Langenaeken
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jolien Verheijen
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Imogen Foubert
- KU Leuven Kulak, Department of Microbial and Molecular Systems (M(2)S), Research Unit of Food and Lipids & Leuven Food Science and Nutrition Research Centre (LFoRCe), Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Christophe M Courtin
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
3
|
Issa-Zacharia A, Mareni GB. Compliance Level and Stability of Micronutrients in Fortified Maize Flour in Tanzania. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:7746750. [PMID: 38433769 PMCID: PMC10904681 DOI: 10.1155/2024/7746750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
Maize flour fortification was introduced in Tanzania in 2011 to address the risk of micronutrient deficiency to children, adolescents, and women of childbearing age. Fortified maize flours are processed by small-scale processors who are exempted from mandatory fortification. The current study is aimed at assessing the compliance and stability of fortified processed maize flour with zinc, iron, and folic acid by small-scale processors in comparison to the recommended Tanzania national standards (TZS 328). A total of 69 samples of fortified maize flour were collected at the point of production and retail outlets in Dar es Salaam and Morogoro municipalities, Tanzania. Micronutrients (zinc and iron) were analysed using microwave plasma atomic emission spectrometry (MP-AES), and folic acid was analysed using high-performance liquid chromatography (HPLC). The mean concentrations of micronutrient were significantly (p < 0.05) higher at the production site compared to the retail outlet. The amount of iron, zinc, and folic acid in the samples at the production site was 27.17 ± 1.63 mg/kg, 30.56 ± 2.01 mg/kg, and 0.69 ± 0.02 mg/kg, respectively, while it was 19.34 ± 0.97 mg/kg, 21.71 ± 1.50 mg/kg, and 0.49 ± 0.02 mg/kg for iron, zinc, and folic acid, respectively, at the retail outlets. Only 31.6% of the assessed samples from production and 12.9% from retail outlets complied with the recommended national standard. The stability of iron, zinc, and folic acid for the fortified maize flour stored at room temperature (20-32°C) for six months was 95.8%, 96.9%, and 66.9%, respectively. Further investigation on the consistency performance of the dosifier and consistency training of working in the processing unit on the requirements of fortification standards should be done.
Collapse
Affiliation(s)
- Abdulsudi Issa-Zacharia
- Department of Food Science and Agro-processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu, Morogoro, Tanzania
| | - Gudila Boniface Mareni
- Department of Food Science and Agro-processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
4
|
Huey SL, Konieczynski EM, Mehta NH, Krisher JT, Bhargava A, Friesen VM, Mbuya MNN, Monterrosa EC, Nyangaresi AM, Mehta S. A systematic review of the impacts of post-harvest handling on provitamin A, iron and zinc retention in seven biofortified crops. NATURE FOOD 2023; 4:978-985. [PMID: 37945785 PMCID: PMC10661739 DOI: 10.1038/s43016-023-00874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Post-harvest handling can affect micronutrient retention in biofortified crops through to the point of consumption. Here we conduct a systematic review identifying 67 articles examining the retention of micronutrients in conventionally bred biofortified maize, orange sweet potato, cassava, pearl millet, rice, beans and wheat. Provitamin A crops maintain high amounts compared with non-biofortified counterparts. Iron and zinc crops have more variability in micronutrient retention dependent on processing method; for maximum iron and zinc content, whole grain product consumption such as whole wheat flour or only slightly milled brown rice is beneficial. We offer preliminary suggestions for households, regulatory bodies and programme implementers to increase consumer awareness on best practices for preparing crops to maximize micronutrient content, while highlighting gaps in the literature. Our online, interactive Micronutrient Retention Dashboard ( https://www.cpnh.cornell.edu/mn-retention-db ) offers an at-a-glance view of the compiled minimum and maximum retention found, organized by processing method.
Collapse
Affiliation(s)
- Samantha L Huey
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
- Program in International Nutrition, Cornell University, Ithaca, NY, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elsa M Konieczynski
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
| | - Neel H Mehta
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
| | - Jesse T Krisher
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
| | - Arini Bhargava
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
| | | | | | | | | | - Saurabh Mehta
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA.
- Program in International Nutrition, Cornell University, Ithaca, NY, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Van Wayenbergh E, Coddens L, Langenaeken NA, Foubert I, Courtin CM. Stabilization of Vitamin A by Cereal Bran: The Importance of the Balance between Antioxidants, Pro-oxidants, and Oxidation-Sensitive Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15296-15304. [PMID: 37787608 DOI: 10.1021/acs.jafc.3c04585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
This study investigated the contribution of bran antioxidants and lipids to the stabilizing effect of cereal bran on vitamin A during accelerated storage. Hereto, wheat and rice bran samples subjected to a sequential extraction process were used. Vitamin A stabilization was more pronounced for wheat compared to rice bran. This was attributed to the higher antioxidant capacity and lower degree of lipid oxidation of wheat compared to rice bran. Removal of the chloroform/methanol-extractable fraction resulted in a substantial decrease in vitamin A retention from 78 to 26% for wheat bran and from 30 to 0% for rice bran after 2 weeks of accelerated storage. However, the vitamin A-stabilizing effect could not be attributed to specific components. The ability of cereal bran to stabilize vitamin A is therefore believed to be determined by the balance of antioxidants, pro-oxidants, and oxidation-sensitive components in the system.
Collapse
Affiliation(s)
- Eline Van Wayenbergh
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Lisa Coddens
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Niels A Langenaeken
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Imogen Foubert
- Department of Microbial and Molecular Systems (M2S), Research Unit of Food and Lipids & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kulak, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Christophe M Courtin
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| |
Collapse
|
6
|
Van Wayenbergh E, Langenaeken NA, Struyf N, Goos P, Foubert I, Courtin CM. Stabilisation of vitamin A by wheat bran is affected by wheat bran antioxidants, bound lipids and endogenous lipase activity. Food Res Int 2023; 169:112911. [PMID: 37254347 DOI: 10.1016/j.foodres.2023.112911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Food fortification is an efficient strategy to combat vitamin A deficiency. However, the stability of vitamin A during storage is low. Cereal bran can be used as a natural and affordable stabilising agent, but the mechanism behind this stabilisation remains unclear. To unravel this mechanism, vitamin A stabilisation was studied during an accelerated storage experiment (60 °C, 70% relative humidity) using a set of 30 in-house modified wheat bran samples. The characteristics of these samples were linked to vitamin A stabilisation during storage using forward regression modelling. While all wheat bran samples could stabilise vitamin A to a significant extent, the stabilising effect was more pronounced for samples with a high antioxidant capacity, high bound lipid content and low lipase activity. The main effect of lipase activity was more than thrice as large as the main effects of antioxidant capacity and bound lipid content. These results suggest that wheat bran antioxidants and bound lipids protect vitamin A from degradation during storage, while endogenous lipase activity counteracts the stabilising effect. Based on these findings, modified wheat bran mixed with vitamin A can be a cost-effective and healthy aid in food fortification by providing high vitamin A stability.
Collapse
Affiliation(s)
- Eline Van Wayenbergh
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.
| | - Niels A Langenaeken
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Nore Struyf
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Peter Goos
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Kasteelpark Arenberg 30, B-3001 Heverlee, Belgium; Department of Engineering Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp, Belgium
| | - Imogen Foubert
- Research Unit of Food and Lipids & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kulak, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| |
Collapse
|
7
|
Chepkoech B, Sila DN, Orina IN. Effect of Storage Condition on Retention of Vitamins in Selected Commercial Fortified Maize Flour in Kenya. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Food fortification is one strategy that has been used to overcome micronutrient deficiencies among vulnerable populations. Maize, a common staple food in Kenya, has been used as a suitable fortification vehicle. However, several factors, including storage conditions, impact micronutrient stability in fortified maize flour.This study aimed to to assess the influence of storage condition on the retention of retinol and B-vitamins in selected commercial fortified maize flour. Fresh samples of fortified maize flours from two brands (coded XX1 and XY2) were sampled from the manufacturers at the point of production. The storage stability of retinol and B-vitamins in the two brands (XX1 and XY2) was monitored for 6 months at 25 °C/ 75 % relative humidity and 35 °C/ 83 % relative humidity. Retinol and thiamine were the least stable vitamins in both flour brands, while riboflavin and folate were relatively stable. Niacin was the most stable vitamin. Retinol was the least stable vitamin for brand XXI at both 25 °C/75% RH and 35 °C/83% RH, followed by thiamine, riboflavin, folate, and niacin. However, brand XY2 showed that under both storage conditions, thiamine was the least stable vitamin, followed by retinol, riboflavin, folate, and niacin. Vitamin retention was higher in samples stored at a lower temperature and relative humidity (25 °C/ 75 % RH) than in samples stored at higher temperature and relative humidity (35 °C/ 83 % RH) for both brands. In conclusion, thiamine and retinol were generally more susceptible to storage losses. Although the vitamin content in the flour samples decreased during storage, the changes in both storage conditions (except for riboflavin) and both brands were not significantly different.
Collapse
Affiliation(s)
- Brenda Chepkoech
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Daniel Ndaka Sila
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Irene Nyangoge Orina
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
8
|
Simultaneous Determination of B1, B2, B3, B6, B9, and B12 Vitamins in Premix and Fortified Flour Using HPLC/DAD: Effect of Detection Wavelength. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9065154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simultaneous determination of water-soluble B vitamins is a troublesome analytical procedure since they have greatly variable structures and acid-base properties which imposed difficulties on eluting them in short time and selecting wavelength of detection. The aim of the present study was to develop a simple method that overcomes these difficulties. The method was successful in simultaneous determination of B1, B2, B3, B6, B9, and B12 in premix and fortified flour by extracting vitamins with 0.1% (w/v) of ascorbate and ethylene diamine tetra-acetic acid (EDTA) solution followed by eluting using gradient mobile phase consisting of 0.03% trifluoroacetic acid aqueous solution (pH 2.6) and acetonitrile on high performance liquid chromatography (HPLC) instrument coupled with diode array detector (DAD). Elution of vitamins was completed within 9.3 min, and the lowest values obtained for limit of quantification (LOQ) for B1, B2, B3, B6, B9, and B12 were 0.6, 0.2, 0.8, 0.3, 0.5, and 0.7 μg/mL, respectively, at four wavelengths of 361, 280, 265, and 210 nm. In general, variation of wavelength of detection in the range from 210 to 361 nm affects sensitivity but had a marginal effect on the linearity and LOQ of the developed method and its application for determining B vitamins in premix and fortified flour. The 210 nm wavelength exhibited the highest sensitivity though resulted in higher values of B vitamins in fortified flour with respect to 265, 280, and 361 nm. Noteworthy, determination of B2 and B12 in the premix at 361 nm had relatively high RSD values compared to the lower wavelengths. Thus, wavelengths in the range from 265 to 280 may be more favorable over 210 and 361 nm. The method reported in the present work does not require any sample cleanup/preconcentration steps, and chromatographic elution was achieved in 9.3 min without the need for ion-pairing reagents.
Collapse
|
9
|
Kumar SB, Arnipalli SR, Mehta P, Carrau S, Ziouzenkova O. Iron Deficiency Anemia: Efficacy and Limitations of Nutritional and Comprehensive Mitigation Strategies. Nutrients 2022; 14:nu14142976. [PMID: 35889932 PMCID: PMC9315959 DOI: 10.3390/nu14142976] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022] Open
Abstract
Iron deficiency anemia (IDA) has reached epidemic proportions in developing countries and has become a major global public health problem, affecting mainly 0–5-year-old children and young women of childbearing age, especially during pregnancy. Iron deficiency can lead to life-threatening loss of red blood cells, muscle function, and energy production. Therefore, the pathogenic features associated with IDA are weakness and impaired growth, motor, and cognitive performance. IDA affects the well-being of the young generation and the economic advancement of developing countries, such as India. The imbalance between iron intake/absorption/storage and iron utilization/loss culminates into IDA. However, numerous strategic programs aimed to increase iron intake have shown that improvement of iron intake alone has not been sufficient to mitigate IDA. Emerging critical risk factors for IDA include a composition of cultural diets, infections, genetics, inflammatory conditions, metabolic diseases, dysbiosis, and socioeconomic parameters. In this review, we discuss numerous IDA mitigation programs in India and their limitations. The new multifactorial mechanism of IDA pathogenesis opens perspectives for the improvement of mitigation programs and relief of IDA in India and worldwide.
Collapse
|
10
|
Hermetic Bags Help Afghan Rural Women Preserve Wheat Flour during Winter. INSECTS 2022; 13:insects13030237. [PMID: 35323535 PMCID: PMC8953509 DOI: 10.3390/insects13030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023]
Abstract
On-farm preservation of wheat flour is a challenge due to insect pests and high relative humidity. This experiment was conducted to assess the effectiveness of hermetic bags in preserving wheat flour stored by women during the wintertime when relative humidity is high. Forty women (households) from two districts in Herat province, Afghanistan, stored their wheat flour for 6 months. Each woman stored 25 kg of wheat flour in a Purdue Improved Crop Storage (PICS) bag and a polypropylene (PP) woven bag. Moisture content, insect population, flour color, bread taste, and profitability of storage were assessed. Moisture content and insect population significantly increased in PP bags after six months of storage, while no changes were observed in PICS bags. There was a significant negative correlation between wheat flour color and moisture content (r = −70.7, p < 0.001) and insect population (r = −79.9, p < 0.001). Wheat flour stored in PICS bags for 6 months retained its color and produced better bread than that stored in PP bags. Storing wheat flour in PICS bags for six months showed a return on investments (ROI) of +16.9% against −33% for the PP bag. Farm households and other wheat value chain actors can safely store wheat flour in hermetic bags for up to six months under high relative humidity conditions. This would help improve food security for millions of wheat consumers in developing countries.
Collapse
|
11
|
Pyo E, Tsang BL, Parker ME. Rice as a vehicle for micronutrient fortification: a systematic review of micronutrient retention, organoleptic properties, and consumer acceptability. Nutr Rev 2022; 80:1062-1085. [PMID: 35146517 DOI: 10.1093/nutrit/nuab107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Previous reviews have focused on evaluating the efficacy and effectiveness of rice fortification, despite the need to also understand the outcomes of micronutrient retention, organoleptic properties, and acceptability to inform nutrition programs. OBJECTIVE This systematic review aims to consolidate existing evidence on micronutrient retention, organoleptic properties, and acceptability of fortified rice. DATA SOURCES Eligible articles were identified from 22 electronic databases and personal referrals and reviews. STUDY SELECTION Studies on rice fortified via extrusion or coating technologies were included in the review if they reported outcomes in at least 1 of 3 domains: micronutrient retention, organoleptic or physicochemical properties, and acceptability (evaluated by sensory tests and consumer surveys). Any years of publication and study populations were considered for inclusion. A total of 15 391 articles were screened, yielding 49 for inclusion. DATA EXTRACTION Study results were summarized descriptively through discussions by intervention conditions, study population, measurement methods, and key findings. The included studies were independently reviewed by 2 of the 3 authors, and all 3 authors reached consensus on the quality and major findings from the included articles. RESULTS Extrusion and coating fortification technologies were found to be comparable across studies that assessed retention, organoleptic properties, and acceptability. Cooking fortified rice in excess water increased micronutrient loss for both technologies. Fortified kernels containing ferric pyrophosphate, zinc oxide, or zinc sulfate showed the most positive results for all outcomes reviewed, while retention rates of vitamin A in multiple-micronutrient-fortified rice were variable. CONCLUSIONS The current practice of fortifying rice with ferric pyrophosphate provides high micronutrient stability and results in rice with organoleptic properties and consumer acceptance levels comparable to those of unfortified milled rice, although it presents challenges regarding the effect of vitamin A-fortified rice on vitamin A status.
Collapse
Affiliation(s)
- Euisun Pyo
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Becky L Tsang
- Food Fortification Initiative, Atlanta, Georgia, USA
| | - Megan E Parker
- Maternal, Newborn, Child Health and Nutrition, PATH, Seattle, Washington, USA
| |
Collapse
|
12
|
RODRÍGUEZ-LORA MC, CIRO-VELÁSQUEZ HJ, SALCEDO-MENDOZA JG. Effect of pretreatments and drying methods in the quality attributes of fortified yam flour (Dioscorea rotundata). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.44121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Li S, Zhao W, Liu S, Li P, Zhang A, Zhang J, Wang Y, Liu Y, Liu J. Characterization of nutritional properties and aroma compounds in different colored kernel varieties of foxtail millet (Setaria italica). J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Butter oil (ghee) enrichment with aromatic plants: Chemical characterization and effects on fibroblast migration in anin-vitro wound healing model. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Dhakal SP, He J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res Int 2020; 137:109326. [DOI: 10.1016/j.foodres.2020.109326] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 01/29/2023]
|
16
|
Lee HJ, Shin C, Chun YS, Kim J, Jung H, Choung J, Shim SM. Physicochemical properties and bioavailability of naturally formulated fat-soluble vitamins extracted from agricultural products for complementary use for natural vitamin supplements. Food Sci Nutr 2020; 8:5660-5672. [PMID: 33133568 PMCID: PMC7590293 DOI: 10.1002/fsn3.1804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
The purpose of the current study was to evaluate the physicochemical properties, digestive stability, storage stability, and intestinal absorption of formulated natural vitamins (FNV) by mixing fat-soluble vitamins extracted from agricultural products with their synthetic vitamin (SYNV) counterparts using a 6 to 4 ratio (w:w, dry weight). The FNV A, D, E, and K were evenly dispersed without crystal growth in the dispersion specifications for the functional tablet foods. The FNV A, D, E, and K had 89, 73, 65, and 36% of the digestive recovery, respectively, which was comparable to that of the SYNV. FNV D, E, and K were retained over 77%, but rapidly decreased to 15% after 6 months during accelerated storage at 25 30 and 35℃. The comparable radical scavenging capacity was found between the FNV and the SYNV. Results from the current study suggest that fat-soluble vitamins extracted from agricultural products could be reasonable complementary use for natural vitamin supplements.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Food Science and BiotechnologySejong UniversitySeoulRepublic of Korea
| | - Changho Shin
- Department of Sports ScienceSungkyunkwan UniversityGyeonggi‐doRepublic of Korea
| | | | - Jongkyu Kim
- Aribio Co., Ltd.Gyeonggi‐doRepublic of Korea
| | - Hansang Jung
- Department of Physical EducationKangnam UniversityGyeonggi‐doRepublic of Korea
| | | | - Soon Mi Shim
- Department of Food Science and BiotechnologySejong UniversitySeoulRepublic of Korea
| |
Collapse
|
17
|
Jiang H, Liu T, He P, Ding Y, Chen Q. Rapid measurement of fatty acid content during flour storage using a color-sensitive gas sensor array: Comparing the effects of swarm intelligence optimization algorithms on sensor features. Food Chem 2020; 338:127828. [PMID: 32822904 DOI: 10.1016/j.foodchem.2020.127828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
The fatty acid content of flour is an important indicator for determining the deterioration of flour. We propose a novel rapid measurement method for fatty acid content during flour storage based on a self-designed color-sensitive gas sensor array. First, a color-sensitive gas sensor array was prepared to capture the odor changes during flour storage. The sensor features were then optimized using genetic algorithm (GA), ant colony optimization (ACO) and particle swarm optimization (PSO). Finally, back propagation neural network (BPNN) models were established to measure the fatty acid content during flour storage. Experimental results showed that the optimization effects of the three algorithms improved in the following order: GA < ACO < PSO, for the sensor features optimization. In the validation set, the determination coefficient of the best PSO-BPNN model was 0.9837. The overall results demonstrate that the models established on the optimized features can realize rapid measurements of fatty acid content during flour storage.
Collapse
Affiliation(s)
- Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Tong Liu
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Peihuan He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuhan Ding
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
18
|
Deli M, Baudelaire ED, Nguimbou RM, Njintang Yanou N, Scher J. Micronutrients and in vivo antioxidant properties of powder fractions and ethanolic extract of Dichrostachys glomerata Forssk. fruits. Food Sci Nutr 2020; 8:3287-3297. [PMID: 32724593 PMCID: PMC7382194 DOI: 10.1002/fsn3.1606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Dichrostachys glomerata powders were processed by sieve fractionation and ethanolic extraction followed by freeze-drying. The micronutrient contents and the in vivo antioxidant properties of powder fractions in rats' high-fat diet-induced oxidation model were determined. Sieved fractionation was achieved by finely grinding the Dichrostachys fruits and fractionating on a sieve column to retain particle of sizes <180, 180-212, 212-315, and ≥315 µm. Unsieved powder and lyophilized ethanolic extract were used as control. All the powders were examined for the minerals, total carotenoids, and vitamins contents. For in vivo antioxidant properties assessment, the individual powder was dissolved in water and administered to rats at the dose of 250 mg/kg body weight. Oxidation was induced by treating the rat with high-fat diet, and the measured parameters were malondialdehyde, superoxide dismutase, and catalase activities. The results showed a significant influence (p < .05) of particle size on the micronutrient contents and in vivo antioxidant properties. The smaller the particle size of the powder fractions, the higher the minerals, vitamins, total carotenoids contents, and antioxidant properties. Comparatively, the ethanolic powder had the highest carotenoids content, while the powders of particle size <180 µm and 180-212 µm had the highest minerals and vitamin contents. The highest antioxidant properties were characterized by high superoxide dismutase, catalase activities, and low malondialdehyde production. The grinding of Dichrostachys fruit followed by controlled differential sieving process may compete with ethanol extraction for an efficient concentration of bioactive compounds and micronutrients except carotenoids.
Collapse
Affiliation(s)
- Markusse Deli
- Food Sciences and NutritionENSAIUniversity of NgaoundereNgaoundereCameroon
| | | | | | - Nicolas Njintang Yanou
- Department of Biological SciencesFaculty of SciencesUniversity of NgaoundereNgaoundereCameroon
| | - Joël Scher
- Laboratoire d'Ingénierie des Biomolécules (LIBio)Université de LorraineVandœuvre‐lès‐NancyFrance
| |
Collapse
|
19
|
Hemery YM, Fontan L, Laillou A, Jallier V, Moench-Pfanner R, Avallone S, Berger J. Influence of storage conditions and packaging of fortified wheat flour on microbial load and stability of folate and vitamin B12. Food Chem X 2020; 5:100076. [PMID: 31891158 PMCID: PMC6928326 DOI: 10.1016/j.fochx.2019.100076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 11/08/2022] Open
Abstract
Fortified flours were stored for 6 months at controlled temperature and humidity. Well-packaged flours were stable up to 6 months whatever the storage conditions. Vitamins B9 and B12 were mostly affected by the permeability of the packaging. In low-quality packaging, vitamins were affected by relative humidity variations. In low-quality packaging, flour microbial quality was impacted when stored at 85% RH.
Flour fortification with folic acid (FA) is implemented in many countries, and the fortification of flour with vitamin B12 has been planned. However, vitamins losses can occur during storage. In this study, fortified wheat flour was packaged either in paper bags or multilayer aluminum/PET bags, and stored in controlled conditions of temperature (25 °C or 40 °C) and relative humidity (65% or 85% RH) for 6 months. FA content, cyanocobalamin content, and microbial quality were regularly assessed. In flours packed in multilayer bags (non-permeable to oxygen and humidity), no significant FA and cyanocobalamin losses were observed, irrespective of temperature and RH. In flours packed in permeable paper bags, the microbial quality deteriorated in flours stored at 85% RH, FA loss reached 22–53% after 6 months at 85% RH, whereas cyanocobalamin loss reached 49–63% after 6 months at 65% RH. This shows that, depending on environmental conditions, packaging choice is of critical importance.
Collapse
Affiliation(s)
- Youna M Hemery
- NUTRIPASS, IRD, University of Montpellier, SupAgro, Montpellier, France.,QualiSud, University of Montpellier, CIRAD, IRD, Montpellier SupAgro, University of Avignon, University of Reunion Island, Montpellier, France
| | - Laura Fontan
- NUTRIPASS, IRD, University of Montpellier, SupAgro, Montpellier, France
| | | | - Vincent Jallier
- GAIN - Global Alliance for Improved Nutrition, Geneva, Switzerland
| | | | - Sylvie Avallone
- QualiSud, University of Montpellier, CIRAD, IRD, Montpellier SupAgro, University of Avignon, University of Reunion Island, Montpellier, France
| | - Jacques Berger
- NUTRIPASS, IRD, University of Montpellier, SupAgro, Montpellier, France.,QualiSud, University of Montpellier, CIRAD, IRD, Montpellier SupAgro, University of Avignon, University of Reunion Island, Montpellier, France
| |
Collapse
|
20
|
Cardoso RV, Fernandes Â, Gonzaléz-Paramás AM, Barros L, Ferreira IC. Flour fortification for nutritional and health improvement: A review. Food Res Int 2019; 125:108576. [DOI: 10.1016/j.foodres.2019.108576] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
|
21
|
Moustiés C, Bourlieu C, Barea B, Servent A, Alter P, Lebrun M, Hemery YM, Laillou A, Avallone S. Lipid Composition and State of Oxidation of Fortified Infant Flours in Low‐Income Countries Are Not Optimal and Strongly Affected by the Time of Storage. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Célia Moustiés
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'AvignonUniversité de la Réunion 1101 Avenue Agropolis Montpellier France
| | - Claire Bourlieu
- IATE, INRA, CIRAD, Univ MontpellierMontpellier SupAgro 1101 Avenue Agropolis Montpellier France
| | - Bruno Barea
- IATE, INRA, CIRAD, Univ MontpellierMontpellier SupAgro 1101 Avenue Agropolis Montpellier France
| | - Adrien Servent
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'AvignonUniversité de la Réunion 1101 Avenue Agropolis Montpellier France
| | - Pascaline Alter
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'AvignonUniversité de la Réunion 1101 Avenue Agropolis Montpellier France
| | - Marc Lebrun
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'AvignonUniversité de la Réunion 1101 Avenue Agropolis Montpellier France
| | - Youna Morgane Hemery
- Nutripass, Univ Montpellier, IRDMontpellier SupAgro 911 Avenue Agropolis Montpellier France
| | - Arnaud Laillou
- UNICEF Ethiopia Zambezi‐Building #020 2nd, 3rd & 4th floors Addis Ababa Addis Ababa 1169 Ethiopia
| | - Sylvie Avallone
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'AvignonUniversité de la Réunion 1101 Avenue Agropolis Montpellier France
| |
Collapse
|
22
|
Wan D, Wu Q, Ni H, Liu G, Ruan Z, Yin Y. Treatments for Iron Deficiency (ID): Prospective Organic Iron Fortification. Curr Pharm Des 2019; 25:325-332. [DOI: 10.2174/1381612825666190319111437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
Abstract
Iron deficiency, one of the most common nutritional deficient disorders, frequently affects infants,
adolescents and pregnant women and impairs growth, development and immune responses. Iron deficiency may
also be secondary to gastrointestinal conditions such as gastrectomy and inflammatory bowel disease, as well as
cancer and chronic uremia. Iron supplementation is the most commonly selected treatment option for iron deficiency.
This review summarizes the iron compounds currently recommended for the iron fortification of foods
and for clinical use. Additionally, this review discusses and compares the important aspects of high-quality iron
compounds/products and classes of compounds that enhance iron bioavailability. The development of efficient
iron fortification methods remains the most cost-effective and long-term approach to the treatment of iron deficiency
or related anemia. To date, no orally administered options for iron fortification can sufficiently replace the
parenteral administration of iron supplements, which includes the intramuscular injection of iron-dextran to neonatal
piglets and intravenous injection of iron supplements to patients with gastrointestinal disorders. Iron
bioavailability may be enhanced by encouraging customers to ingest iron-enriched foods together with dietary
sources of vitamin C, folic acid and/or oligosaccharides.
Collapse
Affiliation(s)
- Dan Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Hengjia Ni
- Academician Workstation of Hunan Baodong Farming Co. Ltd., Hunan 422001, China
| | - Gang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yulong Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
23
|
O'Callaghan YC, Shevade AV, Guinee TP, O'Connor TP, O'Brien NM. Comparison of the nutritional composition of experimental fermented milk:wheat bulgur blends and commercially available kishk and tarhana products. Food Chem 2019; 278:110-118. [DOI: 10.1016/j.foodchem.2018.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
|
24
|
Choudhry H, Nasrullah M. Iodine consumption and cognitive performance: Confirmation of adequate consumption. Food Sci Nutr 2018; 6:1341-1351. [PMID: 30258574 PMCID: PMC6145226 DOI: 10.1002/fsn3.694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022] Open
Abstract
Iodine, a dynamic nutrient present in thyroid hormones, is responsible for regulating thyroid function, supporting a healthy metabolism, and aiding growth and development. Iodine is also essential for brain development during specific time windows influencing neurogenesis, neuronal and glial cell differentiation, myelination, neuronal migration, and synaptogenesis. About 1.5 billion people in 130 countries live in areas at risk of iron deficiencies (IDs). Reduced mental ability due to IDs occurs in almost 300 million people. Ensuring the consumption of minimum recommended daily allowances of iodine remains challenging. The effects of ID disorders range from high mortality of fetuses and children to inhibited mental development (cretinism). Poor socioeconomic development and impaired school performance are also notable. Currently, ID disorders are the single greatest contributor to preventable brain damage in fetuses and infants and arrested psychomotor development in children. Iodized salt may help fulfill iodine requirements. Increases in food salt iodization programs can help overcome ID disorders. Dietary plans can be well adjusted to incorporate iodinated foods. Maternal iodine supplementation for offspring requires adequate attention. Fruits, vegetables, bread, eggs, legumes (beans and peas), nuts, seeds, seafood, lean meats and poultry, and soy products provide small quantities of iodine. Nutrient-dense foods containing essential vitamins and minerals such as iodine may confer positive effects. To some extent, fortified foods and daily dietary supplements can be provided for different nutrients including iodine; otherwise, iodine may be consumed in less than the recommended amounts. This review focuses on aspects of adequate iodine consumption to avoid cognitive impairments.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- Cancer and Mutagenesis UnitKing Fahd Center for Medical ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Md. Nasrullah
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
25
|
Tian SQ, Chen ZC, Wei YC. Measurement of colour-grained wheat nutrient compounds and the application of combination technology in dough. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Barrett AH, Richardson MJ, Froio DF, Connor LFO, Anderson DJ, Ndou TV. Long-Term Vitamin Stabilization in Low Moisture Products for NASA: Techniques and Three-Year Vitamin Retention, Sensory, and Texture Results. J Food Sci 2018; 83:2183-2190. [PMID: 30059142 DOI: 10.1111/1750-3841.14218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Abstract
Multiyear spaceflight will require innovative strategies to preserve vitamins in foods, in order to retain astronaut health and functionality long-term. Furthermore, space foods must be low weight/volume to comply with cargo restrictions, and must retain sensory quality to ensure consumption. Low water activity products were developed, fortified with vitamins A, B1, B9, C, and E at twice their spaceflight requirements, stored for three years at 21 °C and one year at 38 °C, and analyzed annually for retained vitamin content and organoleptic quality. The vitamins were encapsulated in carbohydrate or lipid coatings and tested in relatively low and high fat versions of compressed bars and powdered drink mix formulations. Susceptibility to degradation at 21 °C followed the sequence B9 > A > B1 > C > E; degradation rates were fitted to first-order kinetics. Vitamins A and C were more sensitive at the higher storage temperature. Vitamin retention was slightly higher in compressed bars verses powders. Effects of matrix lipid level on stability were vitamin dependent. Sensory characteristics for products stored three years at 21 °C remained mostly above 6.0 on a 9-point hedonic scale, whereas those stored for one year at 38 °C remained mostly above 5.0. Compressed bars firmed significantly during storage. All vitamin levels after three years at 21 °C remained above the space flight requirements, demonstrating the suitability of the selected fortification schemes and food matrices for long-term preservation. PRACTICAL APPLICATION Vitamins A, B1, B9, C, and E were retained at 70% to 95% levels for three years at 21 °C in carefully formulated, fortified low water activity products. Product compression and vacuum packaging slightly helped to further preserve vitamins. The sensory quality of these products was retained throughout storage.
Collapse
Affiliation(s)
- Ann H Barrett
- Food Engineering and Analysis Team, Combat Feeding Directorate, US Army Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760-5018, U.S.A
| | - Michelle J Richardson
- Food Engineering and Analysis Team, Combat Feeding Directorate, US Army Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760-5018, U.S.A
| | - Danielle F Froio
- Food Protection and Innovative Packaging Team, Combat Feeding Directorate, US Army Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760-5018, U.S.A
| | - Lauren F O' Connor
- Food Engineering and Analysis Team, Combat Feeding Directorate, US Army Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760-5018, U.S.A
| | - Danielle J Anderson
- Performance Nutrition Team, Combat Feeding Directorate, US Army Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760-5018, U.S.A
| | - Tshinanne V Ndou
- Performance Nutrition Team, Combat Feeding Directorate, US Army Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760-5018, U.S.A
| |
Collapse
|
27
|
Influence of Moderate High-Pressure Homogenization on Quality of Bioactive Compounds of Functional Food Supplements. J FOOD QUALITY 2017. [DOI: 10.1155/2017/2856125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current interest in health has led to an increase in demand for functional food supplements as well as in industry concern for maintaining the bioactive compounds of such foods via the application of new technologies. In this study, we evaluated the effect of moderate high-pressure homogenization (HPH) treatments (80 and 120 MPa) versus thermal treatment (80°C, atmospheric pressure) on the functional bioactive compounds from four different functional supplements stored under accelerated conditions (40°C ± 2°C and 75% ± 5% relative humidity) for 6 months. HPH proved to be a better alternative than thermal treatment for functional supplements containing heat-sensitive compounds such as vitamin C, vitamin A, and unsaturated fatty acids (10-hydroxy-2-decenoic acid). The proanthocyanidin, cynarin, chlorogenic, and iron contents, however, were not initially affected by HPH treatments. The storage time caused important reductions in the majority of the compounds studied (mainly in vitamins C, B12, and A), although the lowest decrease was found in the HPH samples. The food matrix had an important effect on the final functional composition and required the optimization of HPH treatments for each functional food supplement. HPH is a recommended alternative to thermal treatment for functional food supplements, in particular when they are rich in thermolabile bioactive compounds.
Collapse
|