1
|
Lin Q, Peng C, Yu K, Lin Y, Xu Y, Li L, Ni H, Chen F. The mining of thermostable β-glucosidase for tea aroma enhancement under brewing conditions. Food Chem 2024; 460:140624. [PMID: 39089040 DOI: 10.1016/j.foodchem.2024.140624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The β-glucosidases known to improve tea aroma are all mesothermal enzymes, limiting their use under brewing conditions. Based on the properties analysis and molecular docking, the thermostable β-glucosidase (TPG) from Thermotoga petrophlia showed potential to enhance tea aroma. Treatment by recombinant TPG at 90 °C, the floral, sweet and grassy notes of instant Oolong tea were increased, while the roasted, caramel and woody notes were decreased. The improved floral, sweet and grassy notes were related to increase releasing of benzyl alcohol (floral), geraniol (floral), (Z)-3-hexen-1-ol (grassy), benzaldehyde (sweet) and 1-hexanol (grassy) by TPG hydrolyzing of (Z)-3-hexenyl-β-D-glucopyranoside, hexanyl-β-D-glucopyranoside (HGP), benzyl-β-D-glucopyranoside, prunasin and geranyl-β-D-glucopyranoside (GGP), respectively. Although the catalytic efficiency of TGP to GGP was about twice that to HGP, HPG was more competitive than GGP when they mixed. Combined with microstructure analysis, the structure-function relationship of TPG-influencing tea aroma were understood. This study provided the method of how to mining new function of characterized β-glucosidases, as well as a theoretical basis for the development of new tea products.
Collapse
Affiliation(s)
- Qi Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Cheng Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Kunpeng Yu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yanling Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yongquan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China; Enterprise Key Laboratory of Beverage Plant Extraction Technology of Fujian Province, Zhangzhou, 363005, China.
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China; Enterprise Key Laboratory of Beverage Plant Extraction Technology of Fujian Province, Zhangzhou, 363005, China; Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Ten Kate GA, Sanders P, Dijkhuizen L, van Leeuwen SS. Kinetics and products of Thermotoga maritima β-glucosidase with lactose and cellobiose. Appl Microbiol Biotechnol 2024; 108:349. [PMID: 38809317 PMCID: PMC11136819 DOI: 10.1007/s00253-024-13183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by β-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many β-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable β-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the β-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly β(1 → 3) and β(1 → 6) elongating activity, but also some β(1 → 4) elongation was observed. The β-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: • β-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. • Thermotoga maritima β-glucosidase has high activity and high thermostability. • Thermotoga maritima β-glucosidase GOS contains mainly (β1-3) and (β1-6) linkages.
Collapse
Affiliation(s)
- Geert A Ten Kate
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Royal FrieslandCampina, Stationsplein 4, 3818 LE, Amersfoort, The Netherlands
| | - Peter Sanders
- Eurofins Expertise Centre for Complex Carbohydrates and Chemistry, PO Box 766, 8440 AT, Heerenveen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- CarbExplore Research BV, Zernikelaan 8, 9747 AA, Groningen, The Netherlands
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA30, 9713 GZ, Groningen, The Netherlands.
- Van Hall Larenstein, University of Applied Sciences, Agora 1, P.O. box 1528, 8901 BV, Leeuwarden, The Netherlands.
| |
Collapse
|
3
|
Ramírez-Ramírez LG, Zazueta-Álvarez DE, Fileto-Pérez HA, Reyes-Jáquez D, Núñez-Núñez CM, Galindo-De la Rosa JDD, López-Miranda J, Vázquez-Ortega PG. Improvement in the Thermostability of a Recombinant β-Glucosidase Immobilized in Zeolite under Different Conditions. Molecules 2022; 27:4105. [PMID: 35807351 PMCID: PMC9268045 DOI: 10.3390/molecules27134105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
β-Glucosidase is part of the cellulases and is responsible for degrading cellobiose into glucose, a compound that can be used to produce biofuels. However, the use of the free enzyme makes the process more expensive. Enzyme immobilization improves catalytic characteristics and supports, such as zeolites, which have physical-chemical characteristics and ion exchange capacity that have a promising application in the biotechnological industry. This research aimed to immobilize by adsorption a recombinant β-glucosidase from Trichoderma reesei, obtained in Escherichia coli BL21 (DE3), in a commercial zeolite. A Box Behnken statistical design was applied to find the optimal immobilization parameters, the stability against pH and temperature was determined, and the immobilized enzyme was characterized by SEM. The highest enzymatic activity was determined with 100 mg of zeolite at 35 °C and 175 min. Compared to the free enzyme, the immobilized recombinant β-glucosidase presented greater activity from pH 2 to 4 and greater thermostability. The kinetic parameters were calculated, and a lower KM value was obtained for the immobilized enzyme compared to the free enzyme. The obtained immobilization parameters by a simple adsorption method and the significant operational stability indicate promising applications in different fields.
Collapse
Affiliation(s)
- Luis Gerardo Ramírez-Ramírez
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| | - David Enrique Zazueta-Álvarez
- Departamento de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Durango, Durango 34300, Mexico; (D.E.Z.-Á.); (C.M.N.-N.)
| | - Héctor Alonso Fileto-Pérez
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| | - Damián Reyes-Jáquez
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| | - Cynthia Manuela Núñez-Núñez
- Departamento de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Durango, Durango 34300, Mexico; (D.E.Z.-Á.); (C.M.N.-N.)
| | - Juan de Dios Galindo-De la Rosa
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Javier López-Miranda
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| | - Perla Guadalupe Vázquez-Ortega
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| |
Collapse
|
4
|
Akram F, Haq IU, Shah FI, Aqeel A, Ahmed Z, Mir AS, Qureshi SS, Raja SI. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability. Bioorg Chem 2022; 127:105942. [PMID: 35709577 DOI: 10.1016/j.bioorg.2022.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Azka Shahzad Mir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Sumbal Sajid Qureshi
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Saleha Ibadat Raja
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Molecular dynamics simulation guided distal mutation of Thermotoga naphthophila β-glucosidase for significantly enhanced synthesis of galactooligosaccharides and expanded product scope. Int J Biol Macromol 2022; 210:21-32. [DOI: 10.1016/j.ijbiomac.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
|
6
|
Narisetty V, Parhi P, Mohan B, Hakkim Hazeena S, Naresh Kumar A, Gullón B, Srivastava A, Nair LM, Paul Alphy M, Sindhu R, Kumar V, Castro E, Kumar Awasthi M, Binod P. Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective. BIORESOURCE TECHNOLOGY 2022; 346:126590. [PMID: 34953996 DOI: 10.1016/j.biortech.2021.126590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic wastes have the ability to be transformed into oligosaccharides and other value-added products. The synthesis of oligosaccharides from renewable sources bestow to growing bioeconomies. Oligosaccharides are synthesized chemically or biologically from agricultural residues. These oligosaccharides are functional food supplements that have a positive impact on humans and livestock. Non-digestible oligosaccharides, refered as prebiotics are beneficial for the colonic microbiota inhabiting the f the digestive system. These microbiota plays a crucial role in stimulating the host immune system and other physiological responses. The commonly known prebiotics, galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannanooligosaccharides (MOS), and isomaltooligosaccharides (IOS) are synthesized either through enzymatic or whole cell-mediated approaches using natural or agricultural waste substrates. This review focusses on recent advancements in biological processes, for the synthesis of oligosaccharides using renewable resources (lignocellulosic substrates) for sustainable circular bioeconomy. The work also addresses the limitations associated with the processes and commercialization of the products.
Collapse
Affiliation(s)
- Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Priyanka Parhi
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Binoop Mohan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, E-32004 Ourense, Spain
| | - Anita Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Lakshmi M Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India.
| |
Collapse
|
7
|
Lyu J, Gao R, Guo Z. Galactosyldiacylglycerols: From a Photosynthesis-Associated Apparatus to Structure-Defined In Vitro Assembling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8910-8928. [PMID: 33793221 DOI: 10.1021/acs.jafc.1c00204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Being ubiquitously present in plants, microalgae, and cyanobacteria and as the major constituents of thylakoid membranes, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) make up approximately 52 and 26%, respectively, of chloroplast lipids. Thylakoid membranes harbor the photosynthetic complexes and numerous essential biochemical pathways where MGDG and DGDG play a central role in facilitating photosynthesis light reaction, maintaining chloroplast morphology, and responding to abiotic stresses. Furthermore, these galactolipids are also bioactive compounds with antitumor, antimicrobial, antiviral, immunosuppressive, and anti-inflammatory activities and important nutritional value. These characteristics are strictly dependent upon their fatty acyl chain length, olefinic nature, and stereoconfiguration. However, their application potentials are practically untapped, largely as a result of the fact that their availability in large quantity and high purity (structured galactolipids) is challenging. In addition to laborious extraction from natural sources, in vitro assembling of these molecules could be a promising alternative. Thus, this review updates the latest advances in elucidating biosynthesis paths of MGDG and DGDG and related enzyme systems, which present invaluable inspiration to design approaches for a retrosynthesis of galactolipids. More critically, this work summarizes recent developments in the biological and enzymatic syntheses of galactolipids, especially the strategic scenarios for the construction of in vitro enzymatic and/or chemoenzymatic synthesis routes. Protein engineering of enzymes involved in the synthesis of MGDG and DGDG to improve their properties is highlighted, and the applications of galactolipids in foods and medicine are also discussed.
Collapse
Affiliation(s)
- Jiabao Lyu
- Department of Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Zheng Guo
- Department of Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| |
Collapse
|
8
|
Zhang J, Zhao N, Xu J, Qi Y, Wei X, Fan M. Exploring the catalytic mechanism of a novel β-glucosidase BGL0224 from Oenococcus oeni SD-2a: Kinetics, spectroscopic and molecular simulation. Enzyme Microb Technol 2021; 148:109814. [PMID: 34116760 DOI: 10.1016/j.enzmictec.2021.109814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/25/2022]
Abstract
The β-glucosidase derived from microorganisms has attracted worldwide interest for their industrial applications, but studies on β-glucosidases from Oenococcus oeni are rare. In this paper, catalytic mechanism of a novel β-glucosidase BGL0224 of Oenococcus oeni SD-2a was explored for the first time by kinetic parameters determination, fluorescence spectroscopy and quenching mechanism analysis, molecular dynamics simulation. The results indicated that BGL0224 had universal catalytic effect on different types of glycoside substrates, but the catalytic efficiencies were different. Fluorescence quenching analysis results suggested that the quenching processes between BGL0224 and seven kinds of substrates were predominated by the static quenching mechanism. A reasonable three-dimensional model of BGL0224 was obtained using the crystal structure of E.coli BglA as a template. The analysis results of molecular simulation (RMSD, Rg, RMSF and hydrogen bonding) showed that the composite system 'BGL0224-pNPG' was very stable after 40 ns. The catalytic process of BGL0224 acting on 'p-Nitrophenyl β-d-glucopyranoside' conformed to the double displacement mechanism. Two glutamic acid residues 'Glu178 and Glu377' played a vital role in the whole catalytic process. Overall, this study gave specific insights on the catalytic mechanism of BGL0224, which was of great significance for developing its potential applications in food industry.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Junnan Xu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yiman Qi
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Uehara R, Iwamoto R, Aoki S, Yoshizawa T, Takano K, Matsumura H, Tanaka S. Crystal structure of a GH1 β-glucosidase from Hamamotoa singularis. Protein Sci 2020; 29:2000-2008. [PMID: 32713015 PMCID: PMC7454551 DOI: 10.1002/pro.3916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
A GH1 β-glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4'-galactosyllactose, a tri-galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction.
Collapse
Affiliation(s)
- Ryo Uehara
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Riki Iwamoto
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Sayaka Aoki
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Kazufumi Takano
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Shun‐ichi Tanaka
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| |
Collapse
|
10
|
Deng P, Meng C, Wu Y, Xu J, Tang X, Zhang X, Xiao Y, Wang X, Fang Z, Fang W. An unusual GH1 β-glucosidase from marine sediment with β-galactosidase and transglycosidation activities for superior galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol 2020; 104:4927-4943. [DOI: 10.1007/s00253-020-10578-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022]
|
11
|
Discovery and Characterization of a Novel Method for Effective Improvement of Cyclodextrin Yield and Product Specificity. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8406-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Andrades DD, Graebin NG, Ayub MA, Fernandez-Lafuente R, Rodrigues RC. Physico-chemical properties, kinetic parameters, and glucose inhibition of several beta-glucosidases for industrial applications. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Vazquez-Ortega PG, Alcaraz-Fructuoso MT, Rojas-Contreras JA, López-Miranda J, Fernandez-Lafuente R. Stabilization of dimeric β-glucosidase from Aspergillu s nige r via glutaraldehyde immobilization under different conditions. Enzyme Microb Technol 2018; 110:38-45. [DOI: 10.1016/j.enzmictec.2017.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 01/28/2023]
|
14
|
Zhang Y, He S, Simpson BK. Enzymes in food bioprocessing — novel food enzymes, applications, and related techniques. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|