1
|
Tan S, Xin G, Ding X, Li W. Physicochemical Characteristics of 'Wushan Plum' Subjected to Three Drying Methods. Chem Biodivers 2025; 22:e202402125. [PMID: 39548771 DOI: 10.1002/cbdv.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/18/2024]
Abstract
In this study, the effects of hot air drying (HAD), freeze-drying (FD), and air-impingement jet drying (JD) on the physicochemical characteristics of 'Wushan plum' were analyzed. The results indicated three drying methods affected the browning, ascorbic acids, phenolic compounds, and antioxidant activities. The ascorbic acid content in HAD, FD, and JD samples was1.75±0.38, 5.88±0.56, and 4.73±0.75 mg/100 g, respectively, and the content of total phenolic compounds was 2.76±0.10, 3.05±0.04, and 2.83±0.24 mg/g, respectively. HAD samples had the lowest antioxidant activities as determined by DPPH⋅, ABTS+⋅, and FRAP assays. In addition, 11 phenolic compounds in 'Wushan plum' were quantified by UPLC-QqQ-MS/MS. The results showed that quercetin glycoside was the main compound, and its content was significantly reduced by these three drying methods. In all, this result indicated that JD would be a good choice for dying 'Wushan plum' considering the drying time, drying efficiency, and the integrated quality of the dried sample.
Collapse
Affiliation(s)
- Si Tan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Guangzhen Xin
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Xiang Ding
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Wenfeng Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| |
Collapse
|
2
|
Hu Y, Zeng X, Jiang K, Luo Y, Quan Z, Li J, Ma Y, Guo X, Zhou D, Zhu B. Effect of non-enzymatic browning on oysters during hot air drying process: Color and chemical changes and insights into mechanisms. Food Chem 2024; 454:139758. [PMID: 38805927 DOI: 10.1016/j.foodchem.2024.139758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Hot air drying (HAD) is an extensive method used on oysters and it causes the most intuitive change, a color change. However, the mechanism of color change remains unclear. This study showed that oysters underwent browning during the HAD process. The colorimetric parameter L* decreased while a* and b* increased, all of which were well described by the first-order color kinetic model. Mechanistically, the HDA process induced the oxidative browning of phenols and the generation of Maillard reaction products (5-hydroxymethylfurfural and hydrophilic pyrrole). Meanwhile, the HAD process caused lipid oxidation, leading to the reduction of phosphatidylethanolamine and the generation of reactive carbonyl compounds (aldehydes and α-dicarbonyl compounds). Moreover, the accumulation of hydrophobic pyrroles, a lipid-induced Maillard-like reaction product, was observed. These results suggest that, in addition to phenolic oxidation, sugar- and amino acid-mediated non-enzymatic browning reactions, lipid-mediated Maillard-like reactions play important roles in oyster darkening during the HAD process.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiangbo Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Ying Luo
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhengze Quan
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Yurong Ma
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Dayong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
3
|
Bork LV, Proksch N, Stobernack T, Rohn S, Kanzler C. Influence of Hydroxycinnamic Acids on the Maillard Reaction of Arabinose and Galactose beyond Carbonyl-Trapping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15933-15947. [PMID: 38968025 PMCID: PMC11261603 DOI: 10.1021/acs.jafc.4c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Hydroxycinnamic acids, known for their health benefits and widespread presence in plant-based food, undergo complex transformations during high-temperature processing. Recent studies revealed a high browning potential of hydroxycinnamic acids and reactive Maillard reaction intermediates, but the role of phenolic compounds in the early stage of these reactions is not unambiguously understood. Therefore, we investigated the influence of caffeic acid and ferulic acid on the nonenzymatic browning of arabinose, galactose, and/or alanine, focusing on the implications on the formation of relevant early-stage Maillard intermediates and phenol-deriving products. Contrary to previous assumptions, hydroxycinnamic acids were found to promote nonenzymatic browning instead of solely trapping reactive intermediates. This was reflected by an intense browning, which was attributed to the formation of heterogeneous phenol-containing Maillard products. Although, caffeic acid is more reactive than ferulic acid, the formation of reactive furan derivatives and of heterogeneous phenol-containing colorants was promoted in the presence of both hydroxycinnamic acids.
Collapse
Affiliation(s)
- Leon Valentin Bork
- Institute
of Food Technology and Food Chemistry, Department of Food Chemistry
and Analysis, Technische Universität
Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Nicolas Proksch
- Institute
of Food Technology and Food Chemistry, Department of Food Chemistry
and Analysis, Technische Universität
Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Leibniz
Institute of Vegetable and Ornamental Crops (IGZ) e. V., Plant Quality
and Food Security, Theodor-Echtermeyer-Weg
1, 14979 Grossbeeren, Germany
| | - Tobias Stobernack
- Department
of Chemical and Product Safety, Federal
Institute of Risk Assessment, Max-Dohrn-Street 8−10, 10589 Berlin, Germany
| | - Sascha Rohn
- Institute
of Food Technology and Food Chemistry, Department of Food Chemistry
and Analysis, Technische Universität
Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Clemens Kanzler
- Institute
of Food Technology and Food Chemistry, Department of Food Chemistry
and Analysis, Technische Universität
Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
4
|
Long X, Li R, Gu J, Zhang L, Guo S, Fan Y, Fan Y, Zhu P. Changes in phenolic compounds of Phyllanthus emblica juice during different storage temperature and pH conditions. J Food Sci 2024; 89:4312-4330. [PMID: 38865254 DOI: 10.1111/1750-3841.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
The aim of this experiment was to investigate the effect of storage temperature and pH on phenolic compounds of Phyllanthus emblica juice. Juice was stored at different temperatures and pH for 15 days and sampled on 2-day intervals. The browning index (BI, ABS420 nm), pH, centrifugal precipitation rate (CPR), and phenolic compounds were evaluated. The results showed 4°C and pH 2.5 could effectively inhibit browning and slow down pH drop of P. emblica juice. The result of orthogonal partial least square-discriminant analysis showed P. emblica juice stored at 4°C and pH 2.5 still had a similar phenolic composition, but at 20°C, 37°C, and pH 3.5, the score plots were concentrated only in the first 3 days. Additionally, gallic acid (GA) and ellagic acid (EA) were screened out to be the differential compounds for browning of P. emblica juice. The contents of GA, epigallocatechin (EGC), corilagin (CL), gallocatechin gallate (GCG), chebulagic acid (CA), 1,2,3,4,6-O-galloyl-d-glucose (PGG), and EA were more stable at 4°C and pH 2.5. Overall, during storage at 4°C and pH 2.5, it could inhibit the increase of GA and EA and decrease of CL, GCG, CA, and PGG, whereas EGC did not show significant difference between storage conditions. The CPR was higher at 4°C, while pH 2.5 could reduce the CPR. In conclusion, in order to maintain stability of phenolic compounds and extended storage period, the P. emblica juice could be stored at low temperature and adjust the pH to increase the stability of juice system.
Collapse
Affiliation(s)
- Xiaomei Long
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Li
- Department of Pharmacy, Baoshan Hospital of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Jianxing Gu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lijun Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shuang Guo
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yidan Fan
- Department of Endocrinology, The Second Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuan Fan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Endocrinology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peifang Zhu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
5
|
Huang H, Gao Y, Wang L, Yu X, Chen S, Xu Y. Maillard reaction intermediates in Chinese Baijiu and their effects on Maillard reaction related flavor compounds during aging. Food Chem X 2024; 22:101356. [PMID: 38623507 PMCID: PMC11016959 DOI: 10.1016/j.fochx.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
This study investigated the Maillard reaction in Baijiu and the effects of extended aging in the presence of Maillard reaction intermediates (MRIs) on aromatic compounds, particularly focusing on heterocyclic changes. MRIs with different aroma types in Baijiu aged 1-18 years and force-aged for 6 weeks were determined. Results revealed that MRIs in soy sauce aroma-type Baijiu were significantly more abundant than those in other types of Baijiu. Changes in MRIs were observed and compared in aging and forced-aging Baijiu. Additionally, the distribution and variation of heterocycles in Baijiu were examined, which revealed an increase in N-heterocycle levels but a decrease in S- and O-heterocycle levels to a certain extent. The results of this study demonstrate that the Maillard reaction during the aging of Baijiu influences heterocycle concentrations, thereby improving flavor of aged Baijiu. Research into heterocycles and the Maillard reaction may help elucidate the aromatic evolution of Baijiu with aging and provide guidance for Baijiu storage.
Collapse
Affiliation(s)
- Hao Huang
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yuchen Gao
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Lulu Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Shuang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| |
Collapse
|
6
|
Yang Y, Liu XY, Zhao Q, Wu D, Ren JT, Ma M, Li PY, Wu JC, Gao WY, Li H. Changes in α-Dicarbonyl Compound Contents during Storage of Various Fruits and Juices. Foods 2024; 13:1509. [PMID: 38790808 PMCID: PMC11119979 DOI: 10.3390/foods13101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
α-Dicarbonyl compounds (α-DCs) are commonly present in various foods. We conducted the investigation into concentration changes of α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), and methylglyoxal (MGO) in fresh fruits and decapped commercial juices during storage at room temperature and 4 °C, as well as in homemade juices during storage at 4 °C. The studies indicate the presence of α-DCs in all samples. The initial contents of 3-DG in the commercial juices (6.74 to 65.61 μg/mL) are higher than those in the homemade ones (1.97 to 4.65 μg/mL) as well as fruits (1.58 to 3.33 μg/g). The initial concentrations of GO and MGO are normally less than 1 μg/mL in all samples. During storage, the α-DC levels in the fruits exhibit an initial increase followed by a subsequent decrease, whereas, in all juices, they tend to accumulate continuously over time. As expected, 4 °C storage reduces the increase rates of the α-DC concentrations in most samples. From the viewpoint of the α-DC contents, fruits and homemade juices should always be the first choice for daily intake of nutrients and commercial juices ought to be mostly avoided.
Collapse
Affiliation(s)
- Yang Yang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
- School of Pharmacy, Xi’an Medical University, 1 Xinwang Road, Xi’an 710021, China
| | - Xue-Yi Liu
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
| | - Qian Zhao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
| | - Dan Wu
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
| | - Jin-Tao Ren
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
| | - Meng Ma
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
| | - Pei-Yun Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
| | - Jia-Cai Wu
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China; (Y.Y.); (X.-Y.L.); (Q.Z.); (D.W.); (J.-T.R.); (M.M.); (P.-Y.L.); (J.-C.W.); (W.-Y.G.)
| |
Collapse
|
7
|
Zhao Y, Liu C, Deng J, Zhang P, Feng S, Chen Y. Green and Sustainable Forward Osmosis Process for the Concentration of Apple Juice Using Sodium Lactate as Draw Solution. MEMBRANES 2024; 14:106. [PMID: 38786940 PMCID: PMC11122952 DOI: 10.3390/membranes14050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
China is the world's largest producer and exporter of concentrated apple juice (CAJ). However, traditional concentration methods such as vacuum evaporation (VE) and freeze concentration cause the loss of essential nutrients and heat-sensitive components with high energy consumption. A green and effective technique is thus desired for juice concentration to improve product quality and sustainability. In this study, a hybrid forward osmosis-membrane distillation (FO-MD) process was explored for the concentration of apple juice using sodium lactate (L-NaLa) as a renewable draw solute. As a result, commercial apple juice could be concentrated up to 65 °Brix by the FO process with an average flux of 2.5 L·m-2·h-1. Most of the nutritional and volatile compounds were well retained in this process, while a significant deterioration in product quality was observed in products obtained by VE concentration. It was also found that membrane fouling in the FO concentration process was reversible, and a periodical UP water flush could remove most of the contaminants on the membrane surface to achieve a flux restoration of more than 95%. In addition, the L-NaLa draw solution could be regenerated by a vacuum membrane distillation (VMD) process with an average flux of around 7.87 L∙m-2∙h-1 for multiple reuse, which further enhanced the long-term sustainability of the hybrid process.
Collapse
Affiliation(s)
- Yuhang Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Jianju Deng
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Panpan Zhang
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Shiyuan Feng
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Yu Chen
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| |
Collapse
|
8
|
Bork LV, Proksch N, Rohn S, Kanzler C. Contribution of Hydroxycinnamic Acids to Color Formation in Nonenzymatic Browning Reactions with Key Maillard Reaction Intermediates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1708-1720. [PMID: 38224245 DOI: 10.1021/acs.jafc.3c07168] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The Maillard reaction is a vital part of food processing, involving a vast number of complex reaction pathways, resulting in high-molecular-weight colorants. So far, studies have been focused on the conversion of carbohydrates and amino compounds, but the literature elaborating the contribution of phenolic compounds to the formation of the colored end-products is still rare. The aim of this study was to characterize early reactions, underlying the formation of phenol-containing melanoidins. For this purpose, binary model systems of the prominent phenolic compounds caffeic acid and ferulic acid combined with α-dicarbonyl compounds typically formed in the Maillard reaction such as glyoxal, methylglyoxal, and diacetyl were analyzed after heat treatment. High-resolution mass spectrometry revealed that decarboxylation, aromatic electrophilic substitution, and nucleophilic addition are important reaction steps that lead to colored heterogeneous oligomers. Polymerization was favored for phenolic compounds with a high electron density in the aromatic system and for α-dicarbonyl compounds carrying aldehyde functions.
Collapse
Affiliation(s)
- Leon Valentin Bork
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Nicolas Proksch
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Clemens Kanzler
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
9
|
Sun X, Li J, Yan S. Study on the non-enzymatic browning of lotus rhizome juice during sterilization mediated by 1,2-dicarboxyl and heterocyclic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:362-372. [PMID: 37598410 DOI: 10.1002/jsfa.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Lotus rhizome juice (LRJ) is susceptible to the Maillard reaction (MR) and caramelization, which tend to cause a reduction in quality and lower consumer acceptance of the product. 1,2-Dicarbonyl compounds (DCs) and heterocyclic compounds have attracted increasing attention as key intermediates responsible for the formation of brown pigments during MR and caramelization. However, little is known about the effects of these two types of compounds on brown pigments in LRJ during sterilization. This study quantified the changes in brown intensity (A420), DCs, and heterocyclic compounds before and after spiking, and identified the precursors and intermediates for brown pigment formation as well as the formation pathways of the intermediates. RESULTS The spiking experiments suggested that spiking with fructose resulted in more 3-deoxyglucosone (3-DG) and 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one (DDMP), while that with lysine led to more glucosone (GS) and 2,3-butanedione (2,3-BD) in LRJ. The addition of glucose, asparagine, and glutamine promoted the formation of 5-hydroxymethylfurfural (HMF) significantly, whereas the addition of glucose, lysine, and asparagine resulted in more norfuraneol. Spiking with reducing sugars and amino acids promoted both glyoxal (GO) and methylglyoxal (MGO), and the effect of glucose on GO was particularly significant. Correlation analysis showed that A420 had the highest correlation with 3-DG in the fructose- and lysine-spiked group, and with HMF in the glucose-, asparagine-, and glutamine-spiked groups. CONCLUSION This study revealed that fructose, glucose, asparagine, glutamine, and lysine were essential precursors of MR and caramelization in LRJ during sterilization. 3-Deoxyglucosone and DDMP were mainly produced by caramelization with fructose as the primary precursor, whereas GS and 2,3-BD were primarily formed via MR with lysine catalysis. The MR and caramelization were the main formation pathways of HMF (catalyzed by asparagine and glutamine) and norfuraneol (catalyzed by lysine and asparagine), with glucose as the critical precursor. Methylglyoxal was mainly produced by MR or caramelization, and caramelization was the main formation pathway of GO, with glucose as the precursor. Dor brown pigment formation from fructose and lysine, 3-DG was identified as the most crucial intermediate, while for that from glucose, asparagine, and glutamine, HMF was found to be the most important intermediate. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianxian Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Science and Technology of Hubei Province, Aquatic Vegetable Preservation & Processing Technology Engineering Center of Hubei Province, Wuhan, Hubei, China
- Engineering Research Center of the Ministry of Education, Engineering Research Center of Ministry of Education for Green Development of Aquatic Biological Industry in Yangtze River Economic Belt, Wuhan, Hubei, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Science and Technology of Hubei Province, Aquatic Vegetable Preservation & Processing Technology Engineering Center of Hubei Province, Wuhan, Hubei, China
- Engineering Research Center of the Ministry of Education, Engineering Research Center of Ministry of Education for Green Development of Aquatic Biological Industry in Yangtze River Economic Belt, Wuhan, Hubei, China
| |
Collapse
|
10
|
Bork LV, Baumann M, Stobernack T, Rohn S, Kanzler C. Colorants and Antioxidants Deriving from Methylglyoxal and Heterocyclic Maillard Reaction Intermediates. Antioxidants (Basel) 2023; 12:1788. [PMID: 37760091 PMCID: PMC10525816 DOI: 10.3390/antiox12091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The Maillard reaction is well known for producing antioxidant compounds alongside colored substances. Low-molecular-weight antioxidant intermediates such as maltol (MAL) or norfuraneol (NF) are well described, but it is still unclear which of these Maillard intermediates are the precursors of antioxidant and colored melanoidins-the so-called late stage Maillard reaction products. This study aimed to provide novel insights into the correlation between browning potential and antioxidant properties of reaction products formed during the heat treatment of prominent Maillard reaction intermediates. It was achieved by the incubation of binary reaction systems composed of methylglyoxal (MGO) or NF in combination with furfural (FF), MAL, and pyrrole-2-carbaldehyde (PA) at pH 5 and 130 °C for up to 120 min. Overall, it could be shown that the formation of colored products in the binary NF reaction systems was more efficient compared to those of MGO. This was reflected in an increased browning intensity of up to 400% and a lower conversion rate of NF compared to MGO. The colorants formed by NF and FF or PA (~0.34 kDa and 10-100 kDa) were also found to exhibit higher molecular weights compared to the analogue products formed in the MGO incubations (<0.34 kDa and 10-100 kDa). The incorporation of NF into these heterogenous products with FF and PA resulted in the preservation of the initial antioxidant properties of NF (p < 0.05), whereas no antioxidant products were formed after the incubation of MGO.
Collapse
Affiliation(s)
- Leon Valentin Bork
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (M.B.); (S.R.)
| | - Maximilian Baumann
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (M.B.); (S.R.)
| | - Tobias Stobernack
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8–10, 10589 Berlin, Germany;
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (M.B.); (S.R.)
| | - Clemens Kanzler
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (M.B.); (S.R.)
| |
Collapse
|
11
|
Pérez-Cid B, Río Segade S, Vecino X, Moldes AB, Cruz JM. Effect of a Biosurfactant Extract Obtained from a Corn Kernel Fermented Stream on the Sensory Colour Properties of Apple and Orange Juices. Foods 2023; 12:foods12101959. [PMID: 37238776 DOI: 10.3390/foods12101959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In this work, we assessed the effect of a biosurfactant extract, which possesses preservative properties, on the sensory properties, regarding colour, of two fruit juices: pasteurized apple juice and natural orange juice. This biosurfactant extract was obtained from corn steep liquor, a secondary stream of the corn wet-milling industry. The biosurfactant extract is composed of natural polymers and biocompounds released during the spontaneous fermentation of corn kernels during the steeping process of corn. The reason for this study is based on the importance of colour as a visual attribute that can determine the consumer's preferences; it is important to study the effect of the biosurfactant extract under evaluation before including it in juice matrices. For this, a surface response factorial design was employed and the effects of the biosurfactant extract concentration (0-1 g/L), the storage time (1-7 days), and the conservation temperature (4-36 °C) on the CIELAB colour parameters (L*, a*, b*) of the juice matrices were evaluated, as well as the total colour differences (ΔE*) regarding the control juices and the saturation index (Cab*). Moreover, the CIELAB coordinates of each conducted treatment were converted into RGB values to obtain visual colour differences that can be appreciated by testers or consumers.
Collapse
Affiliation(s)
- Benita Pérez-Cid
- Analytical and Food Chemistry Department, Faculty of Chemistry-CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Susana Río Segade
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Turin, Italy
| | - Xanel Vecino
- Chemical Engineering Department, School of Industrial Engineering-CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Ana Belén Moldes
- Chemical Engineering Department, School of Industrial Engineering-CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - José Manuel Cruz
- Chemical Engineering Department, School of Industrial Engineering-CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
12
|
Hu J, Li X, Yu Q, Wang W, Bi J. Understanding the impact of pectin physicochemical variation on browning of simulated Maillard reaction system in thermal and storage processing. Int J Biol Macromol 2023; 240:124347. [PMID: 37028628 DOI: 10.1016/j.ijbiomac.2023.124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Maillard reaction browning is one of the quality deterioration in dried fruit products, but how pectin affects Maillard reaction in the fruit drying and storage process is not clear. This study aimed at investigating the mechanism of pectin variation impact on the browning of Maillard reaction by using simulated system (l-lysine, d-fructose and pectin) in thermal (60 °C and 90 °C for 8 h) and storage (37 °C for 14 days) process. Results showed that apple pectin (AP) and sugar beet pectin (SP) significantly enhanced the browning index (BI) of the Maillard reaction system by 0.01 to 134.51 in the thermal and storage processes, respectively, which were methylation degree of pectin-dependent. The pectin depolymerization product participated Maillard reaction by reacting with l-lysine, and increasing the 5-hydroxymethyl furfural (5-HMF) content (1.25-11.41-fold) and Abs420nm (0.01-0.09). It also produced a new product (m/z 225.1245), which finally increased browning level of the system.
Collapse
Affiliation(s)
- Jiaxing Hu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Xuan Li
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| | - Qingting Yu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Wenyue Wang
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| |
Collapse
|
13
|
Yan S, Wu L, Xue X. α-Dicarbonyl compounds in food products: Comprehensively understanding their occurrence, analysis, and control. Compr Rev Food Sci Food Saf 2023; 22:1387-1417. [PMID: 36789800 DOI: 10.1111/1541-4337.13115] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
α-Dicarbonyl compounds (α-DCs) are readily produced during the heating and storage of foods, mainly through the Maillard reaction, caramelization, lipid-peroxidation, and enzymatic reaction. They contribute to both the organoleptic properties (i.e., aroma, taste, and color) and deterioration of foods and are potential indicators of food quality. α-DCs are also important precursors to hazardous substances, such as acrylamide, furan, advanced lipoxidation end products, and advanced glycation end products, which are genotoxic, neurotoxic, and linked to several diseases. Recent studies have indicated that dietary α-DCs can elevate plasma α-DC levels and lead to "dicarbonyl stress." To accurately assess their health risks, quantifying α-DCs in food products is crucial. Considering their low volatility, inability to absorb ultraviolet light, and high reactivity, the analysis of α-DCs in complex food systems is a challenge. In this review, we comprehensively cover the development of scientific approaches, from extraction, enrichment, and derivatization, to sophisticated detection techniques, which are necessary for quantifying α-DCs in different foods. Exposure to α-DCs is inevitable because they exist in most foods. Recently, novel strategies for reducing α-DC levels in foods have become a hot research topic. These strategies include the use of new processing technologies, formula modification, and supplementation with α-DC scavengers (e.g., phenolic compounds). For each strategy, it is important to consider the potential mechanisms underlying the formation and removal of process contaminants. Future studies are needed to develop techniques to control α-DC formation during food processing, and standardized approaches are needed to quantify and compare α-DCs in different foods.
Collapse
Affiliation(s)
- Sha Yan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Vhangani LN, Van Wyk J. Inhibition of Browning in Apples Using Betacyclodextrin-Assisted Extracts of Green Rooibos ( Aspalathus linearis). Foods 2023; 12:foods12030602. [PMID: 36766132 PMCID: PMC9914553 DOI: 10.3390/foods12030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Green rooibos' bioactive compounds contribute greatly towards its antioxidant activity. The anti-browning activity of aqueous (GRE) and beta-cyclodextrin (β-GRE)-assisted extracts of green rooibos was investigated in canned apples. Freeze-dried extracts (GRE and β-GRE) obtained at 40 °C for 60 min were added in canned apples at 0.25 and 0.5% prior to heat processing and stored at 23 and 37 °C for 24 weeks. Lightness (L*), colour difference (DE*), furfural and hydroxymethyl furfural (HMF) were determined to establish the effect of extracts against non-enzymatic browning (NEB) development. The L* value decreased, whereas DE*, HMF and furfural increased with increased storage time and temperature. A higher inhibition was observed for samples stored at 23 °C, and storage at 37 °C reduced (p < 0.05) the inhibitory capacity of extracts. Greater inhibition against NEB development was reported for β-GRE 0.25 and 0.5 via the L* value (40.93-46.67%), β-GRE 0.25 for DE* (46.67%) and β-GRE 0.25 and 0.5 for HMF (59.55-67.33%). No differences (p > 0.05) were observed in furfural inhibition between all extracts, although inhibition was reported at 62.69-72.29%. Browning inhibition correlated with the reaction rate constant (k0) and activation energy (Ea), exhibiting a correlation coefficient of 0.925, 0.964, 0.932 and 0.754 for L*, DE*, HMF and furfural, respectively.
Collapse
|
15
|
Wang S, Bi Y, Zhou Z, Peng W, Tian W, Wang H, Fang X. Effects of pulsed vacuum drying temperature on drying kinetics, physicochemical properties and microstructure of bee pollen. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Zhang S, Wang L, Fu Y, Jiang JC. Bioactive constituents, nutritional benefits and woody food applications of Castanea mollissima: A comprehensive review. Food Chem 2022; 393:133380. [DOI: 10.1016/j.foodchem.2022.133380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/14/2023]
|
17
|
An insight into the mechanisms underpinning the anti-browning effect of Codium tomentosum on fresh-cut apples. Food Res Int 2022; 161:111884. [DOI: 10.1016/j.foodres.2022.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
18
|
Wang H, Iqbal A, Murtaza A, Xu X, Pan S, Hu W. A Review of Discoloration in Fruits and Vegetables: Formation Mechanisms and Inhibition. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2119997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Haopeng Wang
- College of food science and technology, Huazhong agricultural university, Wuhan, China
- Ministry of Education, Key laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei
| | - Aamir Iqbal
- College of food science and technology, Huazhong agricultural university, Wuhan, China
- Ministry of Education, Key laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei
| | - Ayesha Murtaza
- College of food science and technology, Huazhong agricultural university, Wuhan, China
- Ministry of Education, Key laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei
| | - Xiaoyun Xu
- College of food science and technology, Huazhong agricultural university, Wuhan, China
- Ministry of Education, Key laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei
| | - Siyi Pan
- College of food science and technology, Huazhong agricultural university, Wuhan, China
- Ministry of Education, Key laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei
| | - Wanfeng Hu
- College of food science and technology, Huazhong agricultural university, Wuhan, China
- Ministry of Education, Key laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei
| |
Collapse
|
19
|
Bi YX, Zielinska S, Ni JB, Li XX, Xue XF, Tian WL, Peng WJ, Fang XM. Effects of hot-air drying temperature on drying characteristics and color deterioration of rape bee pollen. Food Chem X 2022; 16:100464. [PMID: 36217315 PMCID: PMC9547186 DOI: 10.1016/j.fochx.2022.100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 10/25/2022] Open
|
20
|
Rai RK, Karri R, Dubey KD, Roy G. Regulation of Tyrosinase Enzyme Activity by Glutathione Peroxidase Mimics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9730-9747. [PMID: 35861245 DOI: 10.1021/acs.jafc.2c02359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide plays a crucial role in the melanogenesis process by regulating the activity of the key melanin-forming enzyme tyrosinase, responsible for the browning of fruits, vegetables, and seafood. Therefore, a molecule with dual activities, both efficient tyrosinase inhibition and strong hydrogen peroxide degrading ability, may act as a promising antibrowning agent. Herein, we report highly efficient selone-based mushroom tyrosinase inhibitors 2 and 3 with remarkable glutathione peroxidase (GPx) enzyme-like activity. The presence of benzimidazole moiety enhances the tyrosinase inhibition efficiency of selone 2 (IC50 = 0.4 μM) by almost 600 times higher than imidazole-based selone 1 (IC50 = 238 μM). Interestingly, the addition of another aromatic ring to the benzimidazole moiety has led to the development of an efficient lipid-soluble tyrosinase inhibitor 3 (IC50 = 2.4 μM). The selenium center and the -NH group of 2 and 3 are extremely crucial to exhibit high GPx-like activity and tyrosinase inhibition potency. The hydrophobic moiety of the inhibitors (2 and 3) further assists them in tightly binding at the active site of the enzyme and facilitates the C═Se group to strongly coordinate with the copper ions. Inhibitor 2 exhibited excellent antibrowning and polyphenol oxidase inhibition properties in banana and apple juice extracts.
Collapse
Affiliation(s)
- Rakesh Kumar Rai
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Ramesh Karri
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Gouriprasanna Roy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
21
|
Zhang R, Zhang M, Pu Y, Zhu L. Evolution of nonenzymatic browning during the simulated Msalais-production process in models of grape juice. Food Sci Nutr 2022; 10:2132-2140. [PMID: 35844914 PMCID: PMC9281960 DOI: 10.1002/fsn3.2829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022] Open
Abstract
Msalais is a wine fermented from boiled grape juice. Nonenzymatic browning (NEB) greatly affects the quality of Msalais, but to date its mechanism has not been systematically analyzed. In the current study, the evolution of NEB during Msalais production was investigated using models of grape juice. 5-Hydroxymethylfurfural (5-HMF), browning index (BI), yellowness index (YI), sample absorbance at 420 (A420), and b* increased during heating, with a clear transition point at 110 min. The Maillard reaction (MR) was the major contributor to NEB. Vitamin C (VC) facilitated NEB in the late stage of heating. During heating that lasted over 130 min, glucose contributed to NEB more than fructose, while the reverse was true for heating lasting less than 130 min. Proline (Pro) was the most important amino acid in facilitating NEB. BI and A420 decreased during fermentation, while increasing slightly during wine storage. In conclusion, this study identified the evolution of NEB during the Msalais process, which will facilitate the control of traditional Msalais production for improved wine quality.
Collapse
Affiliation(s)
- Rui‐li Zhang
- Production and Construction GroupKey Laboratory of High‐Quality Agricultural Product Extensive Processing in Southern XinjiangAlarChina
- College of Life ScienceTarim UniversityAlarChina
| | - Meng‐Meng Zhang
- Production and Construction GroupKey Laboratory of High‐Quality Agricultural Product Extensive Processing in Southern XinjiangAlarChina
- College of Life ScienceTarim UniversityAlarChina
| | - Yun‐Feng Pu
- Production and Construction GroupKey Laboratory of High‐Quality Agricultural Product Extensive Processing in Southern XinjiangAlarChina
- College of Life ScienceTarim UniversityAlarChina
| | - Li‐Xia Zhu
- Production and Construction GroupKey Laboratory of High‐Quality Agricultural Product Extensive Processing in Southern XinjiangAlarChina
- College of Life ScienceTarim UniversityAlarChina
| |
Collapse
|
22
|
Ning N, Wang X, Li J, Bi X, Li M, Xing Y, Che Z, Wang Y. Effects of different antioxidants combined with high hydrostatic pressure on the color and anthocyanin retention of a blueberry juice blend during storage. FOOD SCI TECHNOL INT 2022:10820132221098314. [PMID: 35491658 DOI: 10.1177/10820132221098314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blueberry juice has been found to undergo severe browning after treatment and cold storage, such as processing by high hydrostatic pressure (HHP) at 550 MPa/10 min/25°C followed storage at 4°C for 4 days. This browning may be due to the degradation of anthocyanin (AC) in the berries. Therefore, in this study, gallic acid (GA), ferulic acid (FA), ascorbic acid (VC), citric acid (CA), tea polyphenol (TP) and α-tocopherol (VE) were compared to determine their ability to improve the stability of the AC in HHP-treated blueberry juice. The juice was combined with the six abovementioned antioxidants at different concentrations, then treated by HHP at 550 MPa/10 min/25°C and stored at 4°C for 20 days. Thereafter, the pH levels, degrees °Brix (°Bx), color parameters, total AC content and polyphenol oxidase (PPO) activity of the blueberry juice blend were measured and compared. Gallic acid at 2 g/L was found to be the most effective antioxidant to protect against AC degradation. After storage at 4°C for 20 days, the AC content of the juice with no added antioxidants had decreased by 62.27% with a PPO relative activity of 50.78%, while the AC content of juice supplemented with 2 g/L GA had decreased by 13.42% with a PPO relative activity of 28.13%. The results of this study, thus, suggest that GA can stabilize the structure of AC in blueberry juice and reduce PPO activity, which may be beneficial in guiding the production of blueberry juice with high AC retention.
Collapse
Affiliation(s)
- Nan Ning
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Xiaoqiong Wang
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Jiarou Li
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China.,Key Laboratory of Food NonThermal Technology, Engineering Technology Research Center of Food NonThermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xiufang Bi
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Mingyuan Li
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Yage Xing
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Zhenming Che
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| | - Yan Wang
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, 12598Xihua University, Chengdu, People's Republic of China
| |
Collapse
|
23
|
Wang K, Xu Z. Comparison of freshly squeezed, Non-thermally and thermally processed orange juice based on traditional quality characters, untargeted metabolomics, and volatile overview. Food Chem 2022; 373:131430. [PMID: 34731802 DOI: 10.1016/j.foodchem.2021.131430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/11/2023]
Abstract
The NOVA food classification system, divides foods into four categories, namely unprocessed and minimally processed foods, processed culinary ingredients, processed foods, and ultra-processed foods. With the recently increasing pursuit of healthy diets, special attention to minimally processed foods has become crucial. According to NOVA, freshly squeezed, high pressure processing (HPP) and pasteurized orange juice are minimally processed foods. In this study, the differences in the quality and composition of these minimally processed juice are explored, as it was found that their traditional quality characteristics were too weak to illustrate their difference. However, based on untargeted metabolomics, two differential compounds were identified between freshly squeezed and HPP orange juice, in addition to 15 differential compounds between freshly squeezed and pasteurized orange juice. Moreover, all the pasteurized orange juice in this study was deemed to be out of the acceptance area of freshly squeezed and HPP orange juice in a data-driven soft independent modeling of class analogy (dd-SIMCA) model based on volatile overview. The results of this study provide data for clarifying the compositional differences between minimally processed juice for their further subclassification.
Collapse
Affiliation(s)
- Kewen Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
24
|
Augusto A, Miranda A, Crespo D, Campos MJ, Raimundo D, Pedrosa R, Mitchell G, Niranjan K, Silva SF. Preservation of fresh-cut Rocha Pear using Codium tomentosum extract. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Mohamad Salin NS, Md Saad WM, Abdul Razak HR, Salim F. Effect of Storage Temperatures on Physico-Chemicals, Phytochemicals and Antioxidant Properties of Watermelon Juice ( Citrullus lanatus). Metabolites 2022; 12:75. [PMID: 35050198 PMCID: PMC8780985 DOI: 10.3390/metabo12010075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Watermelon (Citrullus lanatus) consists of high moisture content and is favoured for its juice products. The popular fruit has a tempting taste, sweet aroma and attractive flesh colour. It is enriched with phytochemicals and antioxidant properties that are beneficial to human health. Due to convenience, the majority of individuals are likely to consume watermelon juice. However, little is known about the fruit juice storage and temperatures that may affect its beneficial properties. This study investigated the effect of storage temperature at room temperature, refrigerator cold, refrigerator freeze and freeze-dried, and analyzed the juice physico-chemicals (weight loss, pH, ash, moisture, total soluble solid, browning and turbidity), phytochemicals (total phenolic, total flavonoid, lycopene and β-carotene) and antioxidant scavenging activities during 9 days of storage. The results showed that watermelon juice was affected by storage temperatures and conditions with significant changes in physico-chemical appearance and decrease in total phytochemical content, thus consequently affecting their antioxidant activities during 9 days of storage. Although fresh watermelon juice can be consumed for its high nutritional values, freeze-drying is the preferable technique to retain its benefits and to delay juice degradation.
Collapse
Affiliation(s)
- Nur Shafinaz Mohamad Salin
- Centre of Medical Laboratory Technology, Faculty of Health Sciences, Puncak Alam Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam 42300, Selangor, Malaysia;
| | - Wan Mazlina Md Saad
- Centre of Medical Laboratory Technology, Faculty of Health Sciences, Puncak Alam Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam 42300, Selangor, Malaysia;
| | - Hairil Rashmizal Abdul Razak
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Fatimah Salim
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Puncak Alam Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam 42300, Selangor, Malaysia;
- Centre of Foundation Studies, Dengkil Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Dengkil 43800, Selangor, Malaysia
| |
Collapse
|
26
|
Zhu Y, Zhang M, Mujumdar AS, Liu Y. Application advantages of new non-thermal technology in juice browning control: A comprehensive review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2021419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Yaping Liu
- R & D Center, Guangdong Galore Food Co., Ltd. Guangdong, Zhongshan, China
| |
Collapse
|
27
|
Food spoilage, bioactive food fresh-keeping films and functional edible coatings: Research status, existing problems and development trend. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
CHEN P, CHENG F, WEI L, WANG S, ZHANG Z, HANG F, LI K, XIE C. Effect of Maillard reaction browning factors on color of membrane clarification non-centrifugal cane sugar during storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | | | | | - Fangxue HANG
- Guangxi University, China; Guangxi University, China; Ministry of Education, China
| | - Kai LI
- Guangxi University, China; Guangxi University, China; Ministry of Education, China
| | - Caifeng XIE
- Guangxi University, China; Guangxi University, China; Ministry of Education, China
| |
Collapse
|
29
|
Buvé C, Pham HTT, Hendrickx M, Grauwet T, Van Loey A. Reaction pathways and factors influencing nonenzymatic browning in shelf-stable fruit juices during storage. Compr Rev Food Sci Food Saf 2021; 20:5698-5721. [PMID: 34596322 DOI: 10.1111/1541-4337.12850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022]
Abstract
The occurrence of nonenzymaticbrowning in fruit juices during storage is a major quality defect. It negatively affects consumer acceptance and consumption behavior and determines the shelf-life of these products. Although nonenzymatic browning of fruit juices has been the subject of research for a long time, the exact mechanism of the nonenzymatic browning reactions is not yet completely understood. This review paper aims to give an overview of the compounds and reactions playing a key role in nonenzymatic browning during the storage of fruit juices. The chemistry of the plausible reactions and their relative importance will be discussed. To better understand nonenzymatic browning, factors affecting these reactions will be reviewed and several strategies and methods to evaluate color changes and browning will be discussed. Nonenzymatic browning involves three main reactions: ascorbic acid degradation, acid-catalyzed sugar degradation, and Maillard-associated reactions. The most important NEB pathway depends on the matrix. Nonenzymatic browning is affected by many factors, such as the juice composition, the pH, the oxygen availability (packaging material), and the storage conditions. Nonenzymatic browning can thus be considered as a complex problem. To characterize color changes and browning and obtain insight into the browning mechanism of fruit juices, food scientists applied several approaches and strategies. These included the use of model systems with/without the addition of labeled compound and real systems as well as advanced analytical methods.
Collapse
Affiliation(s)
- Carolien Buvé
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Leuven, Belgium
| | - Huong Tran Thuy Pham
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Leuven, Belgium.,Current affiliation: Hue University, University of Agriculture and Forestry, Hue City, Vietnam
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Leuven, Belgium
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Leuven, Belgium
| |
Collapse
|
30
|
Effect of high pressure carbon dioxide on the browning inhibition of sugar-preserved orange peel. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Zhang X, Ni L, Zhu Y, Liu N, Fan D, Wang M, Zhao Y. Quercetin Inhibited the Formation of Lipid Oxidation Products in Thermally Treated Soybean Oil by Trapping Intermediates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3479-3488. [PMID: 33703898 DOI: 10.1021/acs.jafc.1c00046] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this research, we studied the inhibitory mechanism of quercetin, one popular phenolic compound, against aldehyde formation in thermally treated soybean oil. It was found that quercetin reduced unsaturated aldehyde formation significantly, with the inhibitory effect decreased with the extension of the heating time. Meanwhile, quercetin had minimum effects on the fatty acid profile compared to untreated samples. Some new phenolic derivatives were formed in thermally treated soybean oil with quercetin, further analyzed by liquid chromatography-tandem mass spectrometry, and compared to newly synthesized derivatives (characterized by mass spectrometry and nuclear magnetic resonance spectroscopy). On the basis of their chemical structures, we proposed that quercetin reacted with 13-oxo-octadecadienoic acid, 10-oxo-hexadecenoic acid, and 10-oxo-octadecenoic acid formed from peroxidation of linoleic acid, palmitoleic acid, and oleic acid, respectively, to inhibit aldehyde formation. In addition, newly formed quercetin-3-O-hexanoate, quercetin-3-O-heptanoate, and quercetin-3-O-nonanoate showed weaker 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation scavenging activity and weaker antioxidant activity in soybean oil, which explained the decreased inhibitory activity of quercetin against aldehyde formation during heat treatment. More interesting, quercetin-3-O-hexanoate showed improved cellular antioxidant activity compared to the parent quercetin. Overall, quercetin inhibited the formation of lipid oxidation products in thermally treated soybean oil by reacting with early intermediates in the lipid oxidation reaction, and quercetin derivatives formed in the process could be with enhanced cellular antioxidant activity. Our results provide novel insight into the inhibitory mechanism of quercetin against the formation of lipid oxidation products.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Ling Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Yamin Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| |
Collapse
|
32
|
Investigations on the formation of α-dicarbonyl compounds and 5-hydroxymethylfurfural in apple juice, orange juice and peach puree under industrial processing conditions. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03663-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Zheng J, Guo H, Ou J, Liu P, Huang C, Wang M, Simal-Gandara J, Battino M, Jafari SM, Zou L, Ou S, Xiao J. Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Yang Y, Li Y, Feng L, Yu AN, Sun BG, Liu YP. The effects of reaction parameters on the non-enzymatic browning reaction between l-ascorbic acid and glycine. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The non-enzymatic browning (NEB) reaction between l-ascorbic acid (ASA) and glycine (Gly), including the effects of temperature (110–150 °C), time (10–150 min) and pH (4.5, 6.8, 8.0 and 9.5) on the formation of un-colored intermediate products (UIPs), browning products (BPs) and volatile products (VPs), were investigated. The results showed that pH had a remarkable effect on the reaction. The characteristics of zero-order kinetics for the formation of UIPs and BPs were discussed, and the corresponding activation energy (E
a
) was also calculated. When the pH was 4.5, the E
a
for the formation of UIPs was approximate 53.76 kJ/mol and less than that at other pH values; while the E
a
for BPs formation was approximate 94.06 kJ/mol and much higher than that at other pH values. The results suggested that an acidic environment facilitated the generation of UIPs, but did not remarkably promote the formation of BPs. The possible reaction pathway between ASA and Gly was proposed according to the experimental results.
Collapse
Affiliation(s)
- Yan Yang
- School of Chemistry & Environmental Engineering , Hubei Minzu University , Enshi , 445000 , China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University , Beijing , 100048 , China
| | - Ya Li
- School of Chemistry & Environmental Engineering , Hubei Minzu University , Enshi , 445000 , China
| | - Liang Feng
- School of Chemistry & Environmental Engineering , Hubei Minzu University , Enshi , 445000 , China
| | - Ai-Nong Yu
- School of Chemistry & Environmental Engineering , Hubei Minzu University , Enshi , 445000 , China
| | - Bao-Guo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University , Beijing , 100048 , China
| | - Yu-Ping Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University , Beijing , 100048 , China
| |
Collapse
|
35
|
Multiresponse kinetic modelling of α-dicarbonyl compounds formation in fruit juices during storage. Food Chem 2020; 320:126620. [DOI: 10.1016/j.foodchem.2020.126620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/17/2020] [Accepted: 03/15/2020] [Indexed: 11/20/2022]
|
36
|
Aktağ IG, Gökmen V. A survey of the occurrence of α-dicarbonyl compounds and 5-hydroxymethylfurfural in dried fruits, fruit juices, puree and concentrates. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Wang F, Owusu-Fordjour M, Xu L, Ding Z, Gu Z. Immobilization of Laccase on Magnetic Chelator Nanoparticles for Apple Juice Clarification in Magnetically Stabilized Fluidized Bed. Front Bioeng Biotechnol 2020; 8:589. [PMID: 32714899 PMCID: PMC7343707 DOI: 10.3389/fbioe.2020.00589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
The juice clarification, one of the key steps in juice processing, suffers from haze formation that results from residual phenolic compounds. In this study, laccase was immobilized on metal-chelated magnetic silica nanoparticles and used for continuous juice clarification in a magnetically stabilized fluidized bed (MSFB) assisted by alternating magnetic field. Furthermore, a new combination of laccase catalysis and microfiltration was developed for the juice clarification. Immobilized laccase provided high relative activity within broader ranges of pH and temperature compared to the free enzyme. Magnetic immobilized laccase exhibited the best reaction rate of 12.1 μmol g–1 min–1 for catechol oxidation under the alternating magnetic field of 400 Hz, 60 Gs. No activity loss occurred in immobilized laccase after 20 h continuous operation of juice treatment in MSFB under an alternating magnetic field. Combined with microfiltration after treatment with immobilized laccase, the color of apple juice was decreased by 33.7%, and the light transmittance was enhanced by 20.2%. Furthermore, only 16.3% of phenolic compounds and 15.1% of antioxidant activity was reduced for apple juice after the clarification. By this combination strategy, the apple juice possessed good freeze–thaw and thermal stability.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | | | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Zhongyang Ding
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Zhenghua Gu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Pham HTT, Bista A, Kebede B, Buvé C, Hendrickx M, Van Loey A. Insight into non-enzymatic browning of shelf-stable orange juice during storage: A fractionation and kinetic approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3765-3775. [PMID: 32270878 DOI: 10.1002/jsfa.10418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Non-enzymatic browning (NEB) is the main quality defect in shelf-stable orange juice and other fruit juices during storage. Previous studies on NEB focused solely on the soluble fraction of orange juice, regardless of the fact that both soluble and insoluble fractions turn brown during extended storage. Clear evidence of the relative contribution of both fractions to NEB is currently lacking in the literature. This study investigated the contribution of the soluble and insoluble fractions of orange juice, which were obtained by centrifugation and ethanol precipitation, to NEB during storage. Changes in different NEB-related attributes, such as ascorbic acid (AA) degradation, and the browning index (BI), were quantified and kinetically modeled. RESULTS Evaluation of color during storage showed that the orange juice and the soluble compound-containing fractions turned brown whereas the insoluble fractions did not. The soluble compound-containing fractions showed exactly the same browning behavior with storage as the plain orange juice. Based on the kinetic parameters obtained, the degradation of AA, the hydrolysis of sucrose, the increase in the glucose and fructose content, and the formation of furfural and 5-hydroxymethylfurfural during storage were similar for the plain orange juice and the soluble compound-containing fractions. CONCLUSION This work provided evidence that the soluble fraction of orange juice plays the major role in NEB, unlike the insoluble fraction, which seems to make no contribution. Results from this work also demonstrate the potential use of the soluble fraction as an orange-juice-based model system of reduced complexity that can be used for the further investigation of NEB processes. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huong Tran Thuy Pham
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, KU Leuven, Heverlee, Belgium
| | - Archana Bista
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, KU Leuven, Heverlee, Belgium
| | - Biniam Kebede
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, KU Leuven, Heverlee, Belgium
| | - Carolien Buvé
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, KU Leuven, Heverlee, Belgium
| | - Marc Hendrickx
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, KU Leuven, Heverlee, Belgium
| | - Ann Van Loey
- Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, KU Leuven, Heverlee, Belgium
| |
Collapse
|
39
|
Salehi F. Physicochemical characteristics and rheological behaviour of some fruit juices and their concentrates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00495-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Illera AE, Beltrán S, Sanz MT. Enzyme inactivation and changes in the properties of cloudy apple juice after high‐pressure carbon dioxide and thermosonication treatments and during refrigerated storage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. E. Illera
- Department of Biotechnology and Food Science University of Burgos Burgos Spain
| | - S. Beltrán
- Department of Biotechnology and Food Science University of Burgos Burgos Spain
| | - M. T. Sanz
- Department of Biotechnology and Food Science University of Burgos Burgos Spain
| |
Collapse
|
41
|
Trikusuma M, Paravisini L, Peterson DG. Identification of aroma compounds in pea protein UHT beverages. Food Chem 2020; 312:126082. [DOI: 10.1016/j.foodchem.2019.126082] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023]
|
42
|
Pham HTT, Bazmawe M, Kebede B, Buvé C, Hendrickx ME, Van Loey AM. Changes in the Soluble and Insoluble Compounds of Shelf-Stable Orange Juice in Relation to Non-Enzymatic Browning during Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12854-12862. [PMID: 31644283 DOI: 10.1021/acs.jafc.9b05014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For the first time in literature, this study revealed the participation of polymeric components of orange juice cloud and pulp (such as proteins, arabinogalactan proteins, or protein-pectin complexes) during nonenzymatic browning. In a quest to better understand the nonenzymatic browning of shelf-stable orange juice during storage, the juice was fractionated into different fractions depending on the solubility in water/ethanol and the obtained fractions were characterized. The results showed that brown compounds that were formed during storage of orange juice were distributed over water insoluble (pulp), ethanol insoluble (cloud), and ethanol soluble (serum) fractions. In the ethanol insoluble fraction, the brown compounds are hypothesized to be associated with proteins, arabinogalactan proteins, and/or protein-pectin complexes of this fraction without significantly changing their molecular weight distributions, monosaccharide compositions, and protein contents. The changes in the ethanol soluble fraction including ascorbic acid degradation, acid-catalyzed hydrolysis of sucrose, and formation of furfural and 5-hydroxymethylfurfural were highly correlated to the browning development of the juice during storage.
Collapse
Affiliation(s)
- Huong T T Pham
- KU Leuven , Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology , Kasteelpark Arenberg 22 box 2457 , 3001 Heverlee , Belgium
| | - Mona Bazmawe
- KU Leuven , Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology , Kasteelpark Arenberg 22 box 2457 , 3001 Heverlee , Belgium
| | - Biniam Kebede
- KU Leuven , Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology , Kasteelpark Arenberg 22 box 2457 , 3001 Heverlee , Belgium
- University of Otago , Department of Food Science , Box 56, Dunedin 9054 , New Zealand
| | - Carolien Buvé
- KU Leuven , Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology , Kasteelpark Arenberg 22 box 2457 , 3001 Heverlee , Belgium
| | - Marc E Hendrickx
- KU Leuven , Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology , Kasteelpark Arenberg 22 box 2457 , 3001 Heverlee , Belgium
| | - Ann M Van Loey
- KU Leuven , Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology , Kasteelpark Arenberg 22 box 2457 , 3001 Heverlee , Belgium
| |
Collapse
|
43
|
Paravisini L, Peterson DG. Mechanisms non-enzymatic browning in orange juice during storage. Food Chem 2019; 289:320-327. [PMID: 30955619 DOI: 10.1016/j.foodchem.2019.03.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
The role of Reactive Carbonyl Species (RCS) derived from the Maillard reaction and ascorbic acid degradation on brown color formation was investigated in orange juice during storage. Eight RCS were monitored in aseptic juice over an 8-week period under refrigerated (4 °C) and accelerated conditions (35 °C). Significant changes in RCS concentrations were reported and positively correlated with color formation. Recombination experiments demonstrated the significant role of 3-deoxyglucosone and acetol on color formation as well as their interactions with glyoxal and methylglyoxal that lead to an increase in browning. Isotopic enrichment techniques further identified fructose as the main precursor of RCS, indicating the important role of Maillard reaction as a mechanism of non-enzymatic browning during orange juice storage. Finally, among the amino acids, tryptophan and glutamine showed the largest percentage losses in orange juice during storage and were reported to significantly impact the RCS composition and color formation.
Collapse
Affiliation(s)
- Laurianne Paravisini
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States
| | - Devin G Peterson
- Department of Food Science and Technology, 317 Parker Food Science & Technology Building, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, United States.
| |
Collapse
|
44
|
Paravisini L, Peterson DG. Reactive carbonyl species as key control point for optimization of reaction flavors. Food Chem 2019; 274:71-78. [DOI: 10.1016/j.foodchem.2018.08.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 01/02/2023]
|
45
|
Characterization, Variables, and Antioxidant Activity of the Maillard Reaction in a Fructose⁻Histidine Model System. Molecules 2018; 24:molecules24010056. [PMID: 30586899 PMCID: PMC6337542 DOI: 10.3390/molecules24010056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
Fructose and its polysaccharides are widely found in fruits and vegetables, with the Maillard reaction of fructose affecting food quality. This study aimed to investigate the Maillard reaction of fructose using a fructose–histidine model system. The reaction process was characterized using fluorescence spectroscopy and ultraviolet spectroscopy. The effects of temperature, initial reactant concentration, initial fructose concentration, initial histidine concentration, and initial pH value on the different stages of the Maillard reaction were studied. Reactant reduction, ultraviolet and fluorescence spectra, acetic acid content, 5-hydroxymethylfurfural (5-HMF) content, and browning intensity were evaluated. The results showed that increasing the temperature and reactant concentration promoted the condensation reaction of fructose and amino acid in the early stage, the formation of intermediate products with ultraviolet absorption and fluorescence in the intermediate stage, and the formation of pigment in the final stage. The 5-HMF concentration decreased with increasing histidine concentration and initial pH value. Changes in the shape of ultraviolet and fluorescence spectra showed that the initial pH value affected not only the reaction rate, but also the intermediate product types. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging rate of the Maillard reaction products increased with increasing temperature, reactant concentration, and initial pH value.
Collapse
|