1
|
da Silva TEB, de Oliveira YP, de Carvalho LBA, Dos Santos JAB, Dos Santos Lima M, Fernandes R, de Assis CF, Passos TS. Nanoparticles based on whey and soy proteins enhance the antioxidant activity of phenolic compound extract from Cantaloupe melon pulp flour (Cucumis melo L.). Food Chem 2025; 464:141738. [PMID: 39476578 DOI: 10.1016/j.foodchem.2024.141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024]
Abstract
The phenolic compounds (PC) present in the pulp flour of Cantaloupe melon (Cucumis melo L.) were encapsulated in whey protein isolate (EPWI), whey protein concentrate (EPWC), and soy protein isolate (EPSP) by nanoprecipitation to evaluate the effect on the antioxidant potential in vitro. The crude extract was evaluated for the content and profile of PC, presenting 750 ± 60.73 mg EAG/100 g and ten different types with emphasis on procyanidin B1 (213.9 ± 33.23 mg/kg) and fumaric acid (181.6 ± 30.55 mg/kg). The characterization indicated the incorporation efficiency of PC in the range of 74.10 ± 0.28-90.60 ± 6.52 %, formation of spherical particles with smooth surfaces, average diameters between 74.90 ± 10.78-96.57 ± 10.17 nm, amorphous structure, and chemical interactions between the materials, justifying the potentiation of the antioxidant activity of the crude extract by up to six times (p < 0.05). Therefore, nanoencapsulation using protein materials and the nanoprecipitation technique is a promising strategy to promote the encapsulation of PC from Cantaloupe melon.
Collapse
Affiliation(s)
- Thais Emili Bezerra da Silva
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Yasmim Pessoa de Oliveira
- Undergraduate Course in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | | | - Jéssica Anarellis Barbosa Dos Santos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, PE 56316-686, Brazil
| | - Rafael Fernandes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Cristiane Fernandes de Assis
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Pharmacy, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59084-100, Brazil
| | - Thaís Souza Passos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| |
Collapse
|
2
|
Sekhavatizadeh SS, Faryabi F, Ganje M. Cocktail Sausage Supplemented With Whole Tomato Powder Encapsulated in Chia Seed Mucilage ( Salvia hispanica L.) by Lypholization: The Color, Sensory, Textural Properties, and Oxidation Stability of Sausage. Food Sci Nutr 2024; 12:10770-10785. [PMID: 39723036 PMCID: PMC11666901 DOI: 10.1002/fsn3.4594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 12/28/2024] Open
Abstract
The deterioration of meat products is significantly influenced by the oxidation of lipids. The addition of antioxidants is one of the accepted methods to retard lipid oxidation. The goal of this research was to encapsulate tomato powder with chia seed mucilage by lyophilization. Tomato powder and chia seed mucilage were used as the wall material at three ratios 1:1 (T1:C1), 2:1 (T2:C1), and 1:2 (T1:C2). The particle size, encapsulation efficiency, rheology, and solubility index of the beads were assessed. Three sausage samples, including the control, 3% w/w tomato powder (TPsample), and 6% w/w bead (EnTPsample), were produced. The color, texture, peroxide, thiobarbituric acid, and sensory parameters of the sausage were analyzed during storage. The results showed that T2:C1 had a maximum encapsulation efficiency (44.71%) with particle size (172.31 nm). T1:C1 had a highly significant value in the solubility index (90.09% w/w), but for the viscosity parameter, T1:C2 had a maximum value among the samples. FTIR and X-ray diffraction analyses demonstrated successful encapsulation in all samples. The water holding capacity (6.92% w/w), hardness (2992.5 g), and gumminess (2772.3 g) were the highest, but cooking loose (10.98% w/w) the lowest in the EnTPsamples. Higher color and odor scores were recorded for the EnTPs. In addition, the encapsulated tomato powder had a significantly (p < 0.05) lower peroxide value (7.34 mEq/kg) and thiobarbituric acid (2.09 mg MDA/kg) in the sausages than in the other samples. In conclusion, the incorporation of EnTPsample as a polyphenol component in cocktail sausages is more advantageous than TP alone.
Collapse
Affiliation(s)
| | - Fatemeh Faryabi
- Department of Food Science and TechnologyBushehr Institute of Kherad Higher EducationBushehrIran
| | - Mohammad Ganje
- Department of Food Science and TechnologyBushehr Institute of Kherad Higher EducationBushehrIran
- Department of Agriculture, Minab Higher Education CenterUniversity of HormozganBandar AbbasIran
| |
Collapse
|
3
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
dos Santos RNF, Passos TS, Fernandes RDS, Matsui KN, de Sousa Júnior FC, Damasceno KSFDSC, de Assis CF. Effect of nanoencapsulation on the solubility and antioxidant activity of astaxanthin pigmented oil extracted from shrimp waste (Litopeneaus vannamei). PLoS One 2024; 19:e0313059. [PMID: 39546460 PMCID: PMC11567521 DOI: 10.1371/journal.pone.0313059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
Astaxanthin-pigmented oil from shrimp waste meal was nanoencapsulated by O/W emulsification using porcine gelatin (EAG) and a combination with soy protein (EAGS 2:2 and EAGS 3:1) to improve the solubility and antioxidant activity of the pigmented oil. The encapsulates presented spherical shape and smooth surface; particle size equal to 159.68 (14.42) nm for EAG, 192.72 (10.44) nm for EAGS 2:2, and 95.41 (17.83) nm for EAGS 3:1; amorphous structure; and chemical interactions. The oil incorporation efficiency ranged from 87.60-89.20%, the percentage of astaxanthin incorporated was approximately 68%, and the dispersibility in water around 50%. The antioxidant potential evaluation indicated that all formulations preserve or enhance the antioxidant activity of the oil up to three times than non-encapsulated oil. Therefore, porcine gelatin alone or in combination with soy protein was effective in promoting the solubility and enhancing the antioxidant activity of the astaxanthin-pigmented oil, demonstrating interesting characteristics for use in food.
Collapse
Affiliation(s)
- Renata Nayane Fernandes dos Santos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Thaís Souza Passos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rafael da Silva Fernandes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Kátia Nicolau Matsui
- Departament of Chemical Engineering, Center of Technology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Francisco Canindé de Sousa Júnior
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Pharmacy, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla Suzanne Florentino da Silva Chaves Damasceno
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Cristiane Fernandes de Assis
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Pharmacy, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
5
|
Karim A, Raji Z, Habibi Y, Khalloufi S. A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry. Crit Rev Food Sci Nutr 2024; 64:11722-11756. [PMID: 37565505 DOI: 10.1080/10408398.2023.2243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dietary fiber (DF) significantly affects the quality attributes of food matrices. Depending on its chemical composition, molecular structure, and degree of hydration, the behavior of DF may differ. Numerous reports confirm that incorporating DF derived from food waste into food products has significant effects on textural, sensory, rheological, and antimicrobial properties. Additionally, the characteristics of DF, modification techniques (chemical, enzymatic, mechanical, thermal), and processing conditions (temperature, pH, ionic strength), as well as the presence of other components, can profoundly affect the functionalities of DF. This review aims to describe the interactions between DF and water, focusing on the effects of free water, freezing-bound water, and unfreezing-bound water on the hydration capacity of both soluble and insoluble DF. The review also explores how the structural, functional, and environmental properties of DF contribute to its hydration capacity. It becomes evident that the interactions between DF and water, and their effects on the rheological properties of food matrices, are complex and multifaceted subjects, offering both opportunities and challenges for further exploration. Utilizing DF extracted from food waste exhibits promise as a sustainable and viable strategy for the food industry to create nutritious and high-value-added products, while concurrently reducing reliance on primary virgin resources.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| |
Collapse
|
6
|
Li Y, Wei Q, Su J, Zhang H, Fan Z, Ding Z, Wen M, Liu M, Zhao Y. Encapsulation of astaxanthin in OSA-starch based amorphous solid dispersions with HPMCAS-HF/Soluplus® as effective recrystallization inhibitor. Int J Biol Macromol 2024; 279:135421. [PMID: 39349321 DOI: 10.1016/j.ijbiomac.2024.135421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024]
Abstract
In this study, the interaction among multifunctional excipients, including polysaccharides, cellulose derivatives, and surfactants, was particularly investigated, together with its impact on the physicochemical properties of astaxanthin amorphous solid dispersions (ASTX ASDs). It was indicated that Span 20 could rapidly form hemimicelles or aggregates in the presence of hypromellose acetate succinate HF (HPMCAS-HF, HF) or Soluplus®, while octenyl succinic anhydride modified starch (OSA-starch) efficiently assisted in the coalescence inhibition of drug-excipients aggregates, which was jointly beneficial to the recrystallization inhibition of amorphous ASTX. ASTX ASDs were further prepared with OSA-starch, HPMCAS-HF/Soluplus®, and Span 20 as the wall materials. DSC, SEM, and XRD confirmed that crystalline ASTX had transformed to amorphous state in the ASDs, while FT-IR spectra provided evidence suggesting the existence of hydrogen bonds and hydrophobic interaction between ASTX and the excipients. The dissolution of ASTX ASDs in different media revealed significant promotion, while the pharmacokinetic results further demonstrated the oral bioavailability of ASTX ASDs enhanced remarkably, exhibiting 2.75-fold (SD1) and 1.87-fold (SD2) increase, respectively, compared to ASTX bulk powder. In summary, the cellulose derivatives-surfactant interaction had great impact on the physicochemical properties of ASTX ASDs, and their combinations exhibited great potential for delivering the hydrophobic bioactive compounds efficiently.
Collapse
Affiliation(s)
- Yinglan Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qipeng Wei
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jianshuo Su
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhiping Fan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| |
Collapse
|
7
|
Marques BLM, Passos TS, Dantas AI, de Lima MAA, Moreira SMG, Rodrigues VM, do Nascimento Dantas MR, Lopes PS, Gomes APB, da Silva Fernandes R, Júnior FHX, Sousa Júnior FCD, de Assis CF. Nanoencapsulation of quinoa oil enhanced the antioxidant potential and inhibited digestive enzymes. Food Res Int 2024; 196:115066. [PMID: 39614496 DOI: 10.1016/j.foodres.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
Quinoa oil is rich in unsaturated fatty acids and vitamin E, but its instability limits its application in food, pharmaceutical, and cosmetic products. Nanoencapsulation emerges as a promising strategy to promote water dispersibility, preserve and enhance functional properties, and increase the bioavailability of bioactive compounds. This study encapsulated quinoa oil through O/W emulsification, using porcine gelatin (OG) and isolated whey protein (OWG) as encapsulating agents. The particles were characterized by different physical and chemical methods and evaluated in vitro for cytotoxicity using Chinese hamster ovary (CHO) cells, human hepatocarcinoma cells (HepG2) and epithelial cells, and bioactive potential through the determination of Total Antioxidant Capacity (CAT) (acidic and neutral media) and iron chelation, and inhibition of digestive enzymes (α-amylase and amyloglucosidase). OG and OWG particles presented smooth surfaces, with an average size between 161 ± 7 and 264 ± 6 nm, with a polydispersity index of 0.11 ± 0.03 and 0.130 ± 0.04, encapsulation efficiency of 74 ± 1.47 % and 83 ± 2.92 %, and water dispersibility >70 %, respectively. Free and nanoencapsulated quinoa oil did not show cytotoxic effects (cell viability >70 %). Nanoencapsulation promoted the enhancement of the antioxidant activity of quinoa oil in the range of 50-63 % in a neutral medium and 96-153 % in an acidic medium than free oil (p < 0.05). OG and OWG also enhanced the inhibition of the enzymes α-amylase (by 5-7 %) and amyloglucosidase (6-9 times more) than free oil (p < 0.05). The results showed that nanoencapsulation increased the potential for quinoa oil application, enabling the development of innovative products.
Collapse
Affiliation(s)
- Bruna Lorena Meneses Marques
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Alyne Ingrydid Dantas
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Malu Andrade Alves de Lima
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Victor M Rodrigues
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marina R do Nascimento Dantas
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Patrícia Santos Lopes
- Departament of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Ana Paula Barreto Gomes
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Francisco Canindé de Sousa Júnior
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cristiane Fernandes de Assis
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
8
|
Zhao J, Liu M, Li S, Gu L. Optimization of lycopene spray drying encapsulation in basil seed gum: Boosting bioavailability and mayonnaise stability. Int J Biol Macromol 2024; 282:136572. [PMID: 39414220 DOI: 10.1016/j.ijbiomac.2024.136572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to improve lycopene stability and bioavailability in food products. Lycopene, a potent antioxidant, often has poor stability and undesirable organoleptic properties. Therefore, the impact of basil seed gum (BSG) concentration and spray drying inlet temperature (IT) on the physicochemical, bioaccessibility, and antioxidant properties of encapsulated lycopene emulsion (ENL) was investigated using Central Composite Design (CCD)-Response Surface Methodology (RSM). Optimal encapsulation conditions were IT = 141.96 °C and BSG = 19.507 %. The ENLs had an average particle size of 147.56 nm, a polydispersity index (PI) of 0.263, and a zeta potential of -21.37 mV, indicating good colloidal stability. Antioxidant activity varied slightly during the four weeks of storage (a 9.65 % increase followed by a 13.6 % decrease), but it remained stable overall. Incorporating ENL into mayonnaise significantly reduced the acid value (2.78 mg KOH/g), the anisidine index (12.43), the peroxide value (7.13 meq/kg), and the TBARS index (0.534), and improved color parameters, reducing brightness (79.94) and whiteness (70.64) while masking lycopene's strong yellow and red hues. This study highlights BSG-encapsulated lycopene's potential to improve oxidative stability and sensory properties, offering a natural and effective method to enhance lycopene stability, bioavailability, and sensory acceptance in various food applications.
Collapse
Affiliation(s)
- Juyang Zhao
- Harbin University of Commerce, College of Tourism and Cuisine, Harbin, Heilongjiang 150028, China.
| | - Ming Liu
- Harbin University of Commerce, Vocational and Technical Education College, Harbin, Heilongjiang 150076, China
| | - Sinan Li
- Heilongjiang Academy of Agricultural Sciences, Maize Research Institute, Harbin, Heilongjiang 150086, China
| | - Liya Gu
- Harbin University of Commerce, College of Tourism and Cuisine, Harbin, Heilongjiang 150028, China
| |
Collapse
|
9
|
Barbosa Dos Santos JA, Assis CF, Soares Aragao CF, Dos Santos Lima M, Passos TS, da Silva-Maia JK. Nanoparticles based on biopolymers improved antioxidant activity of phenolic compounds from jambolan ( Syzygium cumini (L.) skeels). Heliyon 2024; 10:e36973. [PMID: 39286073 PMCID: PMC11402765 DOI: 10.1016/j.heliyon.2024.e36973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Jambolan (Syzygium cumini L.) is an underutilized fruit rich in bioactive phenolic compounds, specially anthocyanins, but the low stability of these substances and interaction with other compounds in the food matrix limit their application as food additives; nanoencapsulation is the best strategy to overcome these limitations. This study aimed to nanoencapsulate a phenolic-rich jambolan extract using whey proteins and pectin by nanoprecipitation in different antisolvent compositions. Two formulations were synthesized (7.33 % extract, 1.67 % pectin, and 5 % concentrated or isolated whey protein) precipitated in different acetone concentrations (50, 70, and 100 % v/v). SEM showed particles with spherical shape and smooth surface. DLS pointed diameters between 82 nm and 116 nm. FTIR indicated chemical interactions between the materials. Encapsulation efficiency showed high phenolic compounds entrapment in all systems [73.81-84.65 %, p > 0.05]. However, particles precipitated in 50 and 100 % acetone (v/v) showed greater anthocyanins retention [56.89-35.24 %, p < 0.05]. Nanoencapsulation potentiated the antioxidant activity up to 110 % more than the crude extract (p < 0.05). These results show the potential of nanoprecipitation as an effective encapsulation process and the biopolymers combination to produce nanoparticles containing jambolan phenolic compounds to promote their application in foods and health products.
Collapse
Affiliation(s)
- Jessica Anarellis Barbosa Dos Santos
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
| | - Cristiane Fernandes Assis
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, Brazil
| | - Cicero Flavio Soares Aragao
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, 56316-686, Petrolina, Brazil
| | - Thais Souza Passos
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
| | - Juliana Kelly da Silva-Maia
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
| |
Collapse
|
10
|
Gurgel de Medeiros LD, Almeida de Carvalho LB, Silva Freitas EP, Porto DL, Soares Aragão CF, Canindé de Sousa Júnior F, Florentino da Silva Chaves Damasceno KS, Fernandes de Assis C, Araújo Morais AH, Passos TS. Alternative flours from pulp melons ( Cucumis melo L.): Seasonality influence on physical, chemical, technological parameters, and utilization in bakery product. Heliyon 2024; 10:e29609. [PMID: 38756580 PMCID: PMC11096719 DOI: 10.1016/j.heliyon.2024.e29609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Fresh vegetables have high water content and low acidity, so drying can extend shelf life, allowing the obtaining of alternative flours for the development of new products. The study aimed to investigate the influence of the melon harvest and off-season on the chemical composition of melon (Cantaloupe, Charentais e Honey Dew) flours and the potential application in products. The flours were evaluated for granulometry, morphology, centesimal composition, lipid and mineral content, total phenolic compound (TPC), antioxidant activity, and technological properties. Cakes containing melon flour were produced to replace wheat flour (0, 25, and 50 %) and evaluated for proximate composition, microbiology, and sensory parameters. Flours were classified as fine-grained (MESH >16), except Charentais off-season (medium - MESH 8-16, and fine-grained - MESH >16), and all presented a rough surface and minimal cell wall ruptures. The harvest homogeneously influenced the humidity, as all the off-season flours showed higher levels [17-22 %] (p < 0.05) due to weather conditions. For TPC, Cantaloupe melon flours from the harvest (CFH) [208 mg/100 g] and off-season [877 mg/100 g] stood out (p < 0.05), and the latter showed greater antioxidant potential [328 μmol TE/g]. Palmitic, linoleic, and linolenic acid stood out in all flours, and potassium for minerals (63-78 %) in the harvest and off-season. The harvest and off-season specifically influenced the flour of each variety in swelling power, water solubility, oil absorption, and emulsifying capacity. For cakes with CFH, no thermotolerant coliforms and Escherichia coli were detected, and the mesophilic count was <1.0 CFU/g. The ash, protein, lipid, and fiber contents increased proportionally to melon flour addition (p < 0.05). Sensory acceptance was high for cakes containing 25 and 50 % of CFH [82.78 % and 82.53 %], and most consumers would likely buy the products (4.04 and 3.99) (p < 0.05). The study contributed to knowledge about the seasonality effect and demonstrated the potential use of melon flour in developing new products.
Collapse
Affiliation(s)
| | | | - Erika Paula Silva Freitas
- Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59078900, Brazil
| | - Dayanne Lopes Porto
- Pharmacy Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59012-570, Brazil
| | - Cícero Flávio Soares Aragão
- Pharmacy Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59012-570, Brazil
| | - Francisco Canindé de Sousa Júnior
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59078900, Brazil
- Pharmacy Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59012-570, Brazil
| | - Karla Suzanne Florentino da Silva Chaves Damasceno
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59078900, Brazil
- Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59078900, Brazil
| | - Cristiane Fernandes de Assis
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59078900, Brazil
- Pharmacy Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59012-570, Brazil
| | - Ana Heloneida Araújo Morais
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59078900, Brazil
- Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59078900, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, 59078970, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59078900, Brazil
- Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59078900, Brazil
| |
Collapse
|
11
|
Romo-Tovar J, Belmares Cerda R, Chávez-González ML, Rodríguez-Jasso RM, Lozano-Sepulveda SA, Govea-Salas M, Loredo-Treviño A. Importance of Certain Varieties of Cucurbits in Enhancing Health: A Review. Foods 2024; 13:1142. [PMID: 38672815 PMCID: PMC11048896 DOI: 10.3390/foods13081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The Cucurbitaceae family is an extensive group of fruits and vegetables that exhibit common characteristics; for example, they are farmed on a global scale and exhibit a wide range of applications, including fresh consumption and use in various food and beverage products. As is frequent, many species or genera share a common name, and this can lead to some confusion when looking for information about a specific variety. In this review, we describe the findings about the biological activity, like antibacterial, antiviral, antidiabetic, and anticancer properties, of two genera of this family, Cucumis and Momordica, which have been characterized and evaluated in several research studies and regarding which information is readily accessible. Those activities rely on the various physicochemical qualities and nutritional content of each variety, including factors like β-carotene and polyphenols, among others. The goal of this review is to provide a rapid search for each activity examined in the literature, enabling future research on their potential uses in functional foods and nutraceutical supplements.
Collapse
Affiliation(s)
- Jaqueline Romo-Tovar
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Ruth Belmares Cerda
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Mónica L. Chávez-González
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Rosa M. Rodríguez-Jasso
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Sonia A. Lozano-Sepulveda
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Mayela Govea-Salas
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Araceli Loredo-Treviño
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| |
Collapse
|
12
|
Li Y, Zhao Y, Zhang H, Ding Z, Han J. The Application of Natural Carotenoids in Multiple Fields and Their Encapsulation Technology: A Review. Molecules 2024; 29:967. [PMID: 38474479 DOI: 10.3390/molecules29050967] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Carotenoids, which are inherent pigments occurring in plants and microorganisms, manifest a diverse array of vivid hues. Owing to their multifarious health advantages, carotenoids have engendered substantial interest among scholars and consumers alike. Presently, carotenoids are extensively employed in the realms of food, nutrition and health commodities, pharmaceuticals, and cosmetics, rendering them an indispensable constituent of our quotidian existence. Therefore, the objective of this review is to present a succinct and methodical examination of the sources, constituents, and factors influencing formation of carotenoids. Particular attention will be given to encapsulation strategies that maintain intrinsic characteristics, as the growing desire for carotenoids is propelled by individuals' escalating standards of living. Moreover, the applications of natural carotenoids in multiple fields, including pharmaceutical, food and feed, as well as cosmetics, are discussed in detail. Finally, this article explores the main challenges hindering the future advancement of carotenoids, aiming at facilitating their effective integration into the circular economy.
Collapse
Affiliation(s)
- Yinglan Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng 252059, China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
13
|
Ahmadian S, Kenari RE, Amiri ZR, Sohbatzadeh F, Khodaparast MHH. Fabrication of double nano-emulsions loaded with hyssop (Hyssopus officinalis L.) extract stabilized with soy protein isolate alone and combined with chia seed gum in controlling the oxidative stability of canola oil. Food Chem 2024; 430:137093. [PMID: 37562266 DOI: 10.1016/j.foodchem.2023.137093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
The aim of this study was to encapsulate hyssop (Hyssopus officinalis L.) extract obtained through ultrasound-assisted cold plasma pretreatment extraction within a double emulsion stabilized by soy protein isolate alone (SPI) and combined with chia seed gum (CSG) in the external aqueous phase on the stabilization of canola oil. FTIR analysis verified that there were electrostatic interactions between CSG and SPI. The SPI/CSG-stabilized emulsion demonstrated lower viscosity, smaller droplets, higher ζ-potential, and encapsulation efficiency compared to the SPI-stabilized emulsion. Non-Newtonian, pseudoplastic behaviors were shown by emulsions. Also, according to the dynamic rheological parameters (G' and G''), the SPI/CSG-stabilized emulsion had elastic behavior with weak gel properties. The antioxidant activity of the encapsulated extract at 1500 ppm during the storage in canola oil was investigated and compared to unencapsulated extract and TBHQ. The results showed that oil containing encapsulated extract had lower oxidative alterations than the unencapsulated form.
Collapse
Affiliation(s)
- Soheila Ahmadian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| | - Zeynab Raftani Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
14
|
Pais TDS, Luchiari AC, de Souza AM, Medeiros I, Silva MGFR, Dos Santos YL, Silva-Maia JK, Passos TS, Morais AHDA. Assessment of acute toxicity of crude extract rich in carotenoids from Cantaloupe melon (Cucumis melo L.) and the gelatin-based nanoparticles using the zebrafish (Danio rerio) model. Food Chem Toxicol 2023; 181:114091. [PMID: 37804917 DOI: 10.1016/j.fct.2023.114091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cantaloupe melon is known for its carotenoid-rich orange pulp. However, carotenoids are sensitive to oxygen, light, and heat, potentially reducing their benefits. Nanoencapsulation can preserve these benefits but raises concerns about toxicity. We aimed to assess the safety and bioactive potential of crude extract-rich carotenoids (CE) and nanoparticles based on gelatin loaded with CE (EPG) by investigating parameters such as cardio or neurotoxicity, especially acute toxicity. EPG was obtained by O/W emulsification and characterized by different methods. Zebrafish embryos were exposed to CE and EPG at 12.5 mg/L and 50 mg/L for 96h and were investigated for survival, hatching, malformations, and seven days post fertilization (dpf) larvae's visual motor response. Adult fish underwent behavioral tests after acute exposure of 96h. CE and EPG showed no acute toxicity in zebrafish embryos, and both improved the visual motor response in 7dpf larvae (p = 0.01), suggesting the potential antioxidant and provitamin A effect of carotenoids in cognitive function and response in the evaluated model. Adult fish behavior remained with no signs of anxiety, stress, swimming pattern changes, or sociability that would indicate toxicity. This study highlights the safety and potential benefits of carotenoids in zebrafish. Further research is needed to explore underlying mechanisms and long-term effects.
Collapse
Affiliation(s)
- Tatiana Dos Santos Pais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Physiology and Behavior Department, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Psychobiology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Augusto Monteiro de Souza
- Biotechnology Program - Northeast Biotechnology Network (RENORBIO), Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Yohanna Layssa Dos Santos
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Juliana Kelly Silva-Maia
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil; Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
15
|
de Carvalho Gomes C, Lima MSR, de Oliveira GL, Medeiros I, Xavier HST, dos Santos Pais T, Costa IDS, de Carvalho FMC, Serquiz AC, de Souza Lima MC, de Araújo Morais AH, Passos TS. Nanoparticles Loaded with a Carotenoid-Rich Extract from Cantaloupe Melon Improved Hepatic Retinol Levels in a Diet-Induced Obesity Preclinical Model. ACS OMEGA 2023; 8:28475-28486. [PMID: 37576634 PMCID: PMC10413461 DOI: 10.1021/acsomega.3c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023]
Abstract
The study evaluated the effect of the carotenoid-rich extract from cantaloupe melon (CE) nanoencapsulated in porcine gelatin (EPG) on hepatic retinol concentration and liver damage scores in Wistar rats with obesity induced by high glycemic index and high glycemic load diet (HGLI diet). For 17 days, animals were fed the HGLI diet. They were divided into three groups and treated for 10 days [HGLI diet + water, HGLI diet + CE (12.5 mg/kg), and HGLI diet + EPG (50 mg/kg)]. The groups were evaluated for dietary intake, retinol, weight variation, hematological parameters, fasting glucose, lipid profile, hepatic retinol concentration, AST/ALT ratio, FIB-4 (Fibrosis-4 Index for Liver Fibrosis), and APRI (AST to Platelet Ratio Index) scores to evaluate the effects on the liver. Animals treated with EPG showed a lower dietary intake (p < 0.05). No significant weight change was detected in the evaluated groups (p > 0.05). The EPG-treated group had significantly higher concentrations (p < 0.05) of hepatic retinol [266 (45) μg/g] than the untreated group [186 (23.8) μg/g] and the one treated with CE [175 (8.08) μg/g]. Liver damage assessment scores did not show significant differences, but the lowest means were observed in the group treated with EPG. The nanoencapsulation of the extract rich in beta-carotene promoted reduced food consumption and increased hepatic retinol without causing significant changes in liver damage scores. Thus, EPG is a candidate for future clinical studies to evaluate the beneficial effects of treating diseases involving vitamin A deficiencies.
Collapse
Affiliation(s)
- Camila de Carvalho Gomes
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Mayara Santa Rosa Lima
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | | | - Isaiane Medeiros
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | | | - Tatiana dos Santos Pais
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Izael de Sousa Costa
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Nutrition
Course, Potiguar University, Natal, RN 59056-000, Brazil
| | - Fabiana Maria Coimbra de Carvalho
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Nutrition
Course, Potiguar University, Natal, RN 59056-000, Brazil
| | | | | | - Ana Heloneida de Araújo Morais
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Postgraduate
Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Nutrition
Department, Health Sciences Center, Federal
University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Thaís Souza Passos
- Postgraduate
Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Nutrition
Department, Health Sciences Center, Federal
University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| |
Collapse
|
16
|
Hessel V, Escribà-Gelonch M, Schmidt S, Tran NN, Davey K, Al-Ani LA, Muhd Julkapli N, Abdul Wahab Y, Khalil I, Woo MW, Gras S. Nanofood Process Technology: Insights on How Sustainability Informs Process Design. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:11437-11458. [PMID: 37564955 PMCID: PMC10410668 DOI: 10.1021/acssuschemeng.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Nanostructured products are an actively growing area for food research, but there is little information on the sustainability of processes used to make these products. In this Review, we advocate for selection of sustainable process technologies during initial stages of laboratory-scale developments of nanofoods. We show that selection is assisted by predictive sustainability assessment(s) based on conventional technologies, including exploratory ex ante and "anticipatory" life-cycle assessment. We demonstrate that sustainability assessments for conventional food process technologies can be leveraged to design nanofood process concepts and technologies. We critically review emerging nanostructured food products including encapsulated bioactive molecules and processes used to structure these foods at laboratory, pilot, and industrial scales. We apply a rational method via learning lessons from sustainability of unit operations in conventional food processing and critically apportioned lessons between emerging and conventional approaches. We conclude that this method provides a quantitative means to incorporate sustainability during process design for nanostructured foods. Findings will be of interest and benefit to a range of food researchers, engineers, and manufacturers of process equipment.
Collapse
Affiliation(s)
- Volker Hessel
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | | | - Svenja Schmidt
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Nam Nghiep Tran
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Kenneth Davey
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Lina A. Al-Ani
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ibrahim Khalil
- Healthcare
Pharmaceuticals Limited, Rajendrapur, Gazipur 1741, Bangladesh
| | - Meng Wai Woo
- Department
of Chemical & Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Sally Gras
- Department
of Chemical Engineering and Bio21 Molecular Science and Biotechnology
Institute, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
17
|
Queiroz JLCD, Medeiros I, Lima MSR, Carvalho FMCD, Camillo CS, Santos PPDA, Guerra GCB, da Silva VC, Schroeder HT, Krause M, Morais AHDA, Passos TS. Efficacy of Carotenoid-Loaded Gelatin Nanoparticles in Reducing Plasma Cytokines and Adipocyte Hypertrophy in Wistar Rats. Int J Mol Sci 2023; 24:10657. [PMID: 37445834 DOI: 10.3390/ijms241310657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 07/15/2023] Open
Abstract
The present study investigated the effect of gelatin-based nanoparticles (EPG) loaded with a carotenoid-rich crude extract (CE) on systemic and adipose tissue inflammatory response in a model with inflammation induced by a high glycemic index and high glycemic load diet (HGLI). Nanoparticles synthesized were characterized by different physical and chemical methods. The in vivo investigation evaluated Wistar rats (n = 20, 11 days, adult male with 21 weeks) subdivided into untreated (HGLI diet), conventional treatment (nutritionally adequate diet), treatment 1 (HGLI + crude extract (12.5 mg/kg)), and treatment 2 (HGLI + EPG (50 mg/kg)) groups. Dietary intake, caloric intake and efficiency, weight, inflammatory cytokines tissue concentration, visceral adipose tissue (VAT) weight, histopathological analysis, and antioxidant activity in plasma and VAT were investigated. EPG showed the same physical and chemical characteristics as previous batches (95.2 nm, smooth surface, and chemical interactions between materials). The EPG-treated group was the only group promoting negative ∆dietary intake, ∆caloric efficiency, and ∆weight. In addition, it presented a significant reduction (p < 0.05) in IL-6 and leptin levels and a greater presence of multilocular adipocytes. The results suggest that EPG can act as a nutraceutical in adjuvant therapy for treating inflammatory diseases associated with adipose tissue accumulation.
Collapse
Affiliation(s)
- Jaluza Luana C de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Mayara S R Lima
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Fabiana Maria C de Carvalho
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Nutrition Course, Potiguar University, Natal 59056-000, Brazil
| | - Christina S Camillo
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Pedro Paulo de A Santos
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Gerlane C B Guerra
- Development and Technological Innovation in Medicines Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Valéria C da Silva
- Development and Technological Innovation in Medicines Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Helena T Schroeder
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Ana Heloneida de A Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Thaís S Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
18
|
Zuccari G, Alfei S. Development of Phytochemical Delivery Systems by Nano-Suspension and Nano-Emulsion Techniques. Int J Mol Sci 2023; 24:9824. [PMID: 37372971 DOI: 10.3390/ijms24129824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The awareness of the existence of plant bioactive compounds, namely, phytochemicals (PHYs), with health properties is progressively expanding. Therefore, their massive introduction in the normal diet and in food supplements and their use as natural therapeutics to treat several diseases are increasingly emphasized by several sectors. In particular, most PHYs possessing antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant properties have been isolated from plants. Additionally, their secondary modification with new functionalities to further improve their intrinsic beneficial effects has been extensively investigated. Unfortunately, although the idea of exploiting PHYs as therapeutics is amazing, its realization is far from simple, and the possibility of employing them as efficient clinically administrable drugs is almost utopic. Most PHYs are insoluble in water, and, especially when introduced orally, they hardly manage to pass through physiological barriers and scarcely reach the site of action in therapeutic concentrations. Their degradation by enzymatic and microbial digestion, as well as their rapid metabolism and excretion, strongly limits their in vivo activity. To overcome these drawbacks, several nanotechnological approaches have been used, and many nanosized PHY-loaded delivery systems have been developed. This paper, by reporting various case studies, reviews the foremost nanosuspension- and nanoemulsion-based techniques developed for formulating the most relevant PHYs into more bioavailable nanoparticles (NPs) that are suitable or promising for clinical application, mainly by oral administration. In addition, the acute and chronic toxic effects due to exposure to NPs reported so far, the possible nanotoxicity that could result from their massive employment, and ongoing actions to improve knowledge in this field are discussed. The state of the art concerning the actual clinical application of both PHYs and the nanotechnologically engineered PHYs is also reviewed.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| |
Collapse
|
19
|
Pires JRA, Rodrigues C, Coelhoso I, Fernando AL, Souza VGL. Current Applications of Bionanocomposites in Food Processing and Packaging. Polymers (Basel) 2023; 15:polym15102336. [PMID: 37242912 DOI: 10.3390/polym15102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanotechnology advances are rapidly spreading through the food science field; however, their major application has been focused on the development of novel packaging materials reinforced with nanoparticles. Bionanocomposites are formed with a bio-based polymeric material incorporated with components at a nanoscale size. These bionanocomposites can also be applied to preparing an encapsulation system aimed at the controlled release of active compounds, which is more related to the development of novel ingredients in the food science and technology field. The fast development of this knowledge is driven by consumer demand for more natural and environmentally friendly products, which explains the preference for biodegradable materials and additives obtained from natural sources. In this review, the latest developments of bionanocomposites for food processing (encapsulation technology) and food packaging applications are gathered.
Collapse
Affiliation(s)
- João Ricardo Afonso Pires
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Rodrigues
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor Gomes Lauriano Souza
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
20
|
Tan Y, Zi Y, Peng J, Shi C, Zheng Y, Zhong J. Gelatin as a bioactive nanodelivery system for functional food applications. Food Chem 2023; 423:136265. [PMID: 37167667 DOI: 10.1016/j.foodchem.2023.136265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Gelatin has long been used as an encapsulant agent in the pharmaceutical and biomedical industries because of its low cost, wide availability, biocompatibility, and degradability. However, the exploitation of gelatin for nanodelivery application is not fully achieved in the functional food filed. In this review article, we highlight the latest work being performed for gelatin-based nanocarriers, including polyelectrolyte complexes, nanoemulsions, nanoliposomes, nanogels, and nanofibers. Specifically, we discuss the applications and challenges of these nanocarriers for stabilization and controlled release of bioactive compounds. To achieve better efficacy, gelatin is frequently used in combination with other biomaterials such as polysaccharides. The fabrication and synergistic effects of the newly developed gelatin composite nanocarriers are also present.
Collapse
Affiliation(s)
- Yang Tan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiawei Peng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
21
|
Diao Q, Tian S, Cao Y, Yao D, Fan H, Zhang Y. Transcriptome analysis reveals association of carotenoid metabolism pathway with fruit color in melon. Sci Rep 2023; 13:5004. [PMID: 36973323 PMCID: PMC10043268 DOI: 10.1038/s41598-023-31432-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractFlesh color is an important quality of melon (Cucumis melo L.) and is determined mainly by carotenoid content, awarding them with colors, aromas, and nutrients. enhancing the nutritional and health benefits of fruits and vegetables for humans. In this study, we performed transcriptomic analysis of two melon inbred line “B-14” (orange-flesh) and “B-6” (white-flesh) at three developmental stages. We observed that the β-carotene content of inbred line “B-6” (14.232 μg/g) was significantly lower than that of inbred line “B-14” (0.534 μg/g). RNA-sequencing and quantitative reverse transcription PCR analyses were performed to identify differentially expressed genes (DEGs) between the two inbred lines at different stages; the DEGs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes databases (KEGG). We identified 33 structural DEGs in different developmental periods of the two lines that were related to carotenoid metabolism. Among them, PSY, Z-ISO, ZDS, CRTISO, CCD4, VDE1, and NCED2 were highly correlated with carotenoid content. Thus, this study provides a basis for molecular mechanism of carotenoid biosynthesis and flesh color in melon fruit.
Collapse
|
22
|
Rathod NB, Meral R, Siddiqui SA, Nirmal N, Ozogul F. Nanoemulsion-based approach to preserve muscle food: A review with current knowledge. Crit Rev Food Sci Nutr 2023; 64:6812-6833. [PMID: 36789616 DOI: 10.1080/10408398.2023.2175347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Muscle foods are regarded as nutritionally dense foods while they are prone to spoilage by action of microorganism and oxidation. Recently, the consumer's preference is mostly toward minimally processed foods as well as preserved with natural preservatives. However, natural extract directly to the food matrix has several drawbacks. Hence development and applications of nanoemulsion has gained importance for the preservation of muscle foods to meet consumer requirements with enhanced food safety. Nanoemulsion utilizes natural extracts at much lower concentration with higher preservative abilities over original components. Nanoemulsions offer protection to the active component from degradation and ensure longer bioavailability. Novel techniques used for formulation of nanoemulsion provide stability to the emulsion with desirable qualities to improve their impacts. The application of nanoemulsion is known to enhance the preservative action of nanoemulsions by improving the microbial safety and oxidative stability in nanoform. This review provides recent updates on different methods used for formulation of nanoemulsions from different sources. Besides, successful application of nanoemulsion derived using natural agents for muscle food preservation and shelf life extension are reviewed. Thus, the application of nanoemulsion to extend shelf life and maintain quality is suggested for muscle foods.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post-Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth) Roha, Raigad, Maharashtra, India
| | - Raciye Meral
- Faculty of Engineering, Department of Food Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
23
|
Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as food colorants in food products. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Orlef A, Stanek E, Czamara K, Wajda A, Kaczor A. Formation of carotenoid supramolecular aggregates in nanocarriers monitored via aggregation-sensitive chiroptical output of enantiopure (3 S,3' S)-astaxanthin. Chem Commun (Camb) 2022; 58:9022-9025. [PMID: 35875940 DOI: 10.1039/d2cc02649j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation-sensitive chiroptical (ECD and RROA) output, provided by enantiopure (3S,3'S)-astaxanthin, was used to investigate and control the assembling processes of the carotenoid in Pluronic F-127 nanoparticles. The process of carotenoid J-aggregation inside nanocarriers is interfered with by the formation of kinetically stabilized H1 self-assemblies outside the micelles. Nanocarriers with encapsulated stable J-aggregates provide controlled release of carotenoid molecules to primary murine adipocytes.
Collapse
Affiliation(s)
- Aleksandra Orlef
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Ewa Stanek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Aleksandra Wajda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland. .,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| |
Collapse
|
25
|
Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Adv Colloid Interface Sci 2022; 307:102744. [PMID: 35878506 DOI: 10.1016/j.cis.2022.102744] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based nanocarriers are propitious vehicles used for the delivery of bioactive compounds (bioactives). In this area, calcium alginate and sodium alginate are the most promising wall materials because they are nontoxic, comparatively cheap, simple in production, biocompatible and biodegradable. In this review, we have highlighted different alginate-based nanocarriers such as nanoparticles, nanofibers, nanoemulsions, nanocomplexes, and nanohydrogels; also entrapment of different bioactives within alginate nanocarriers and their bioavailability in the gastric environment has been comprehensively discussed. Being biopolymers, alginates can be exploited as emulsifiers/ encapsulants for entrapment and delivery of different bioactives such as vitamins, minerals, essential fatty acids, peptides, essential oils, bioactive oils, polyphenols and carotenoids. Furthermore, the use of alginate-based nanocarriers in combination with other polysaccharides/ emulsifiers was recognized as the most effective and favorable approach for the protection, delivery and sustained release of bioactives.
Collapse
|
26
|
Kandemir K, Piskin E, Xiao J, Tomas M, Capanoglu E. Fruit Juice Industry Wastes as a Source of Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6805-6832. [PMID: 35544590 PMCID: PMC9204825 DOI: 10.1021/acs.jafc.2c00756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 05/15/2023]
Abstract
Food processing sustainability, as well as waste minimization, are key concerns for the modern food industry. A significant amount of waste is generated by the fruit juice industry each year. In addition to the economic losses caused by the removal of these wastes, its impact on the environment is undeniable. Therefore, researchers have focused on recovering the bioactive components from fruit juice processing, in which a great number of phytochemicals still exist in the agro-industrial wastes, to help minimize the waste burden as well as provide new sources of bioactive compounds, which are believed to be protective agents against certain diseases such as cardiovascular diseases, cancer, and diabetes. Although these wastes contain non-negligible amounts of bioactive compounds, information on the utilization of these byproducts in functional ingredient/food production and their impact on the sensory quality of food products is still scarce. In this regard, this review summarizes the most recent literature on bioactive compounds present in the wastes of apple, citrus fruits, berries, stoned fruits, melons, and tropical fruit juices, together with their extraction techniques and valorization approaches. Besides, on the one hand, examples of different current food applications with the use of these wastes are provided. On the other hand, the challenges with respect to economic, sensory, and safety issues are also discussed.
Collapse
Affiliation(s)
- Kevser Kandemir
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Elif Piskin
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Jianbo Xiao
- Department
of Analytical Chemistry and Food Science, Faculty of Food Science
and Technology, University of Vigo-Ourense
Campus, E-32004 Ourense, Spain
- International
Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China
| | - Merve Tomas
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
27
|
|
28
|
Gharanjig H, Gharanjig K, Sarli MA, Ozguney AT, Jalili M, Gharanjik A, Jahankaran S. Effect of molecular composition of comb-like polycarboxylate dispersants on hydrophobic dye dispersion properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
PRESTES AA, VARGAS MO, HELM CV, ESMERINO EA, SILVA R, PRUDENCIO ES. How to improve the functionality, nutritional value and health properties of fermented milks added of fruits bioactive compounds: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.17721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Morais AHDA, Passos TS, de Lima Vale SH, da Silva Maia JK, Maciel BLL. Obesity and the increased risk for COVID-19: mechanisms and nutritional management. Nutr Res Rev 2021; 34:209-221. [PMID: 33183383 PMCID: PMC7737140 DOI: 10.1017/s095442242000027x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 01/07/2023]
Abstract
The global COVID-19 (coronavirus disease 2019) pandemic has become a complex problem that overlaps with a growing public health problem, obesity. Obesity alters different components of the innate and adaptive immune responses, creating a chronic and low-grade state of inflammation. Nutritional status is closely related to a better or worse prognosis of viral infections. Excess weight has been recognised as a risk factor for COVID-19 complications. In addition to the direct risk, obesity triggers other diseases such as diabetes and hypertension, increasing the risk of severe COVID-19. The present review explains the diets that induce obesity and the importance of different foods in this process. We also review tissue disruption in obesity, leading to impaired immune responses and the possible mechanisms by which obesity and its co-morbidities increase COVID-19 morbidity and mortality. Nutritional strategies that support the immune system in patients with obesity and with COVID-19 are also discussed in light of the available data, considering the severity of the infection. The discussions held may contribute to combating this global emergency and planning specific public health policy.
Collapse
Affiliation(s)
- Ana Heloneida de Araújo Morais
- Nutrition Postgraduate Program, Centre for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
- Biochemistry Postgraduate Program, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
- Department of Nutrition, Centre for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| | - Thais Sousa Passos
- Department of Nutrition, Centre for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| | - Sancha Helena de Lima Vale
- Department of Nutrition, Centre for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| | - Juliana Kelly da Silva Maia
- Nutrition Postgraduate Program, Centre for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
- Department of Nutrition, Centre for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Centre for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
- Department of Nutrition, Centre for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN59078-970, Brazil
| |
Collapse
|
31
|
Microencapsulation of Bioactive Ingredients for Their Delivery into Fermented Milk Products: A Review. Molecules 2021; 26:molecules26154601. [PMID: 34361753 PMCID: PMC8347884 DOI: 10.3390/molecules26154601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The popularity and consumption of fermented milk products are growing. On the other hand, consumers are interested in health-promoting and functional foods. Fermented milk products are an excellent matrix for the incorporation of bioactive ingredients, making them functional foods. To overcome the instability or low solubility of many bioactive ingredients under various environmental conditions, the encapsulation approach was developed. This review analyzes the fortification of three fermented milk products, i.e., yogurt, cheese, and kefir with bioactive ingredients. The encapsulation methods and techniques alongside the encapsulant materials for carotenoids, phenolic compounds, omega-3, probiotics, and other micronutrients are discussed. The effect of encapsulation on the properties of bioactive ingredients themselves and on textural and sensory properties of fermented milk products is also presented.
Collapse
|
32
|
Gomes CDC, Passos TS, Morais AHA. Vitamin A Status Improvement in Obesity: Findings and Perspectives Using Encapsulation Techniques. Nutrients 2021; 13:nu13061921. [PMID: 34204998 PMCID: PMC8228342 DOI: 10.3390/nu13061921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
The association between obesity and vitamin A has been studied. Some studies point to the anti-obesity activity related to this vitamin, carotenoids with provitamin A activity, and carotenoid conversion products. This performance has been evaluated in respect of adipogenesis, metabolic activity, oxidation processes, secretory function, and oxidative stress modulation, showing a new property attributed to vitamin A in preventing and treating obesity. However, vitamin A and its precursors are highly sensitive and easily degraded when subjected to heat, the presence of light, and oxygen, in addition to losses related to the processes of digestion and absorption. In this context, encapsulation presents itself as an alternative capable of increasing vitamin A’s stability in the face of unfavorable conditions in the environment, which can reduce its functionality. Considering that vitamin A’s status shows a strong correlation with obesity and is an innovative theme, this article addresses the associations between vitamin A’s consumption and its precursors, encapsulated or not, and its physiological effects on obesity. The present narrative review points out those recent studies that demonstrate that vitamin A and its encapsulated precursors have the most preserved functionality, which guarantees better effects on obesity therapy.
Collapse
Affiliation(s)
- Camila de Carvalho Gomes
- Postgraduate Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil;
| | - Thais Souza Passos
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil;
| | - Ana Heloneida Araújo Morais
- Postgraduate Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil;
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil;
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil
- Correspondence: ; Tel.: +55-(84)991061887
| |
Collapse
|
33
|
Conboy Stephenson R, Ross RP, Stanton C. Carotenoids in Milk and the Potential for Dairy Based Functional Foods. Foods 2021; 10:1263. [PMID: 34199355 PMCID: PMC8226488 DOI: 10.3390/foods10061263] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Carotenoids are a family of over 1100 known natural pigments synthesized by plants, algae, fungi and bacteria. Dietary intake of carotenoids is necessary for mammals as they cannot be synthesized in the body. In cows, the nature of the diet consumed strongly influences the composition of milk produced and this includes carotenoid concentration and profile. Fresh forage is the richest source of carotenoids for cows. The main carotenoids identified in forages are lutein, β-carotene, zeaxanthin and epilutein. Manipulating cow feed via carotenoid supplementation increases the carotenoid content of bovine milk. In humans, carotenoids have anti-oxidant, anti-inflammatory and provitamin A activity. Lutein is a major carotenoid in human milk and the brain tissue of adults and infants. Lutein and zeaxanthin are linked to improved eye health and cognitive function. Traditionally for humans, fruit and vegetables have been the main source of carotenoid intake. Functional foods present an opportunity to incorporate these naturally occurring compounds into milk products for added health benefits, widening the range of dietary sources of carotenoids. We offer an overview of the literature to date on carotenoid-fortified dairy products and infant formula. This review will describe and summarize the key mechanisms by which the carotenoid profile of bovine milk can be manipulated. We present findings on the origin and role of carotenoids in bovine and human milk, outline factors that impact the carotenoid content of milk, evaluate carotenoid-fortified milk products and discuss the associated challenges, such as bioaccessibility and stability.
Collapse
Affiliation(s)
- Ruth Conboy Stephenson
- Vistamilk/Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Catherine Stanton
- Vistamilk/Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| |
Collapse
|
34
|
Zamuz S, Munekata PE, Gullón B, Rocchetti G, Montesano D, Lorenzo JM. Citrullus lanatus as source of bioactive components: An up-to-date review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Zamuz S, Munekata PE, Dzuvor CK, Zhang W, Sant'Ana AS, Lorenzo JM. The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Ribeiro JS, Veloso CM. Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106374] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
McClements DJ, Öztürk B. Utilization of Nanotechnology to Improve the Handling, Storage and Biocompatibility of Bioactive Lipids in Food Applications. Foods 2021; 10:foods10020365. [PMID: 33567622 PMCID: PMC7915003 DOI: 10.3390/foods10020365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Bioactive lipids, such as fat-soluble vitamins, omega-3 fatty acids, conjugated linoleic acids, carotenoids and phytosterols play an important role in boosting human health and wellbeing. These lipophilic substances cannot be synthesized within the human body, and so people must include them in their diet. There is increasing interest in incorporating these bioactive lipids into functional foods designed to produce certain health benefits, such as anti-inflammatory, antioxidant, anticancer and cholesterol-lowering properties. However, many of these lipids have poor compatibility with food matrices and low bioavailability because of their extremely low water solubility. Moreover, they may also chemically degrade during food storage or inside the human gut because they are exposed to certain stressors, such as high temperatures, oxygen, light, moisture, pH, and digestive/metabolic enzymes, which again reduces their bioavailability. Nanotechnology is a promising technology that can be used to overcome many of these limitations. The aim of this review is to highlight different kinds of nanoscale delivery systems that have been designed to encapsulate and protect bioactive lipids, thereby facilitating their handling, stability, food matrix compatibility, and bioavailability. These systems include nanoemulsions, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoliposomes, nanogels, and nano-particle stabilized Pickering emulsions.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence:
| | - Bengü Öztürk
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey;
| |
Collapse
|
38
|
de Oliveira GLR, Medeiros I, Nascimento SSDC, Viana RLS, Porto DL, Rocha HAO, Aragão CFS, Maciel BLL, de Assis CF, Morais AHDA, Passos TS. Antioxidant stability enhancement of carotenoid rich-extract from Cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions. Food Chem 2021; 348:129055. [PMID: 33508595 DOI: 10.1016/j.foodchem.2021.129055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 02/09/2023]
Abstract
The study evaluated the potential and antioxidant stability of nanoencapsulated carotenoid-rich extract (CE) from Cantaloupe melon (EPG). DPPH and ABTS radical scavenging assays were used to investigate the nanoencapsulation effect on antioxidant potential. CE and EPG stability were evaluated at 25 °C and 5 °C, with and without light (1600 lx) for 60 days, determining the β-carotene concentration by UHPLC and antioxidant potential by ABTS. The antioxidant potential of carotenoids increased after nanoencapsulation (57-59%). After 60 days, there was low retention of β-carotene (0-43.6%) in the CE, mainly at 25 °C light (0.00%) and dark (10.0%), and total loss of activity in the four conditions. EPG preserved the β-carotene concentration in the dark at 25 °C (99.0%) and in the light (83.1%) and dark (99.0%) at 5 °C, maintaining the antioxidant potential (68.7-48.3%). Therefore, EPG enhanced and stabilized the antioxidant potential of carotenoids, beneficial to human health.
Collapse
Affiliation(s)
| | - Isaiane Medeiros
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Sara Sayonara da Cruz Nascimento
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Rony Lucas Silva Viana
- Postgraduate Program in Biochemistry, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Dayanne Lopes Porto
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59012-570, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Postgraduate Program in Biochemistry, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Cícero Flávio Soares Aragão
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59012-570, Brazil
| | - Bruna Leal Lima Maciel
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Cristiane Fernandes de Assis
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59012-570, Brazil
| | - Ana Heloneida de Araújo Morais
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Postgraduate Program in Biochemistry, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Thaís Souza Passos
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| |
Collapse
|
39
|
Safety and bioactive potential of nanoparticles containing Cantaloupe melon ( Cucumis melo L.) carotenoids in an experimental model of chronic inflammation. ACTA ACUST UNITED AC 2020; 28:e00567. [PMID: 33304841 PMCID: PMC7714681 DOI: 10.1016/j.btre.2020.e00567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
Carotenoids present anti-inflammatory effects in healthy and overweight adults. Nanotechnology can enhance carotenoid's bioactive potential. Nanoparticles loaded with carotenoids from Cantaloupe melon were used in obese rats. Animals receiving the nanoparticles showed no signs of toxicity. Animals treated with nanoparticles had organs better aspect compared to untreated.
The safety and bioactive potential of crude carotenoid extract from Cantaloupe melon nanoencapsulated in porcine gelatin (EPG) were evaluated in a chronic inflammatory experimental model. Animals were fed a high glycemic index and high glycemic load (HGLI) diet for 17 weeks and treated for ten days with 1) HGLI diet, 2) standard diet, 3) HGLI diet + crude carotenoid extract (CE) (12.5 mg/kg), and 4) HGLI diet + EPG (50 mg/kg). General toxicity signals were investigated, considering body weight, food intake, hematological, biochemical parameters, relative weight, morphology, and histopathology of organs. The biochemical parameters indicated the low toxicity of EPG. Acute hepatitis was observed in animals' livers, but CE and EPG groups presented improved tissue appearance. Chronic enteritis was observed in animals, with villi and intestinal glands preservation in the EPG group. The results suggest the safety and the bioactive effect of EPG, possibly related to its anti-inflammatory potential.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate transferase
- BSD, Bowman’s space dilation
- CE, crude carotenoid extract
- CEUA, Ethics Committee on the Use of Animals
- Curcubitaceae
- EI, efficiency of incorporation
- EPG, crude carotenoid extract from Cantaloupe melon nanoencapsulated in porcine gelatin
- FTIR, Fourier Transform Infrared Spectroscopy
- GGT, gamma-glutamyl transferase
- HGLI, high glycemic index and high glycemic load
- IIF, inflammatory infiltrate foci
- Nanotechnology
- OECD, Organization for Economic Co-operation and Development
- Obesity
- PHT, presence of hypertrophic tubules
- PIGI, percentage of intestinal gland integrity
- PUV, percentage of ulcerated villi
- PVA, percentage of villous absence
- PVI, percentage of villus integrity
- PVN, percentage of villous necrosis
- SEM, Scanning Electron Microscope
- THC, tubular hyaline cylinders
- Toxicity
- β-carotene
Collapse
|
40
|
Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients. Food Res Int 2020; 137:109555. [DOI: 10.1016/j.foodres.2020.109555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
41
|
Whey protein isolate-gelatin nanoparticles enable the water-dispersibility and potentialize the antioxidant activity of quinoa oil (Chenopodium quinoa). PLoS One 2020; 15:e0240889. [PMID: 33125402 PMCID: PMC7598505 DOI: 10.1371/journal.pone.0240889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
The quinoa oil presents benefits to health, but its low water dispersibility in the aqueous matrix and instability of bioactive compounds is challenging for food application. This study performed the physicochemical and chemical characterization of quinoa oil and evaluated its water dispersibility and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity after nanoencapsulation in porcine gelatin and combination with whey protein isolate by emulsification O/W technique. Thus, three formulations were obtained: 1) OG-containing quinoa oil and porcine gelatin in aqueous phase 2; 2) OWG1-containing quinoa oil, whey protein isolate, and porcine gelatin in aqueous phase 2; and 3) OWG2-containing quinoa oil and whey protein isolate in aqueous phase 1, and porcine gelatin in aqueous phase 2. The oil characterization showed that quinoa oil presented the predominance of linoleic acid (53.4%), and concentration of alpha and gamma-tocopherol, respectively, of 8.56 and 6.28 mg.100g-1. All formulations presented a smooth surface without depression or cracking, an average diameter between 165.77 and 529.70 nm. Fourier transform infrared spectroscopy indicated chemical interaction between the encapsulating agents and the oil in all formulations, being more intensified in OWG1 and OWG2. Based on this, these formulations showed higher dispersibility in aqueous solution [68% (3.48) and 71% (2.97)]. This resulted in higher antioxidant activity for OWG1 and OWG2, showing the amounts that reduces antioxidant activity by 50% equal to 5.30 (0.19) mg/mL and 5.54 (0.27) mg/mL, respectively, compared to quinoa oil [13.36 (0.28) mg/mL] (p < 0.05). Thus, quinoa oil nanoencapsulation proved to be an efficient alternative to enable water-dispersibility and enhance antioxidant activity, increasing its potential for application in the food industry.
Collapse
|
42
|
Castro GMMA, Passos TS, Nascimento SSDC, Medeiros I, Araújo NK, Maciel BLL, Padilha CE, Ramalho AMZ, Sousa Júnior FC, de Assis CF. Gelatin nanoparticles enable water dispersibility and potentialize the antimicrobial activity of Buriti (Mauritia flexuosa) oil. BMC Biotechnol 2020; 20:55. [PMID: 33066751 PMCID: PMC7566068 DOI: 10.1186/s12896-020-00649-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
Background Buriti oil presents numerous health benefits, but due to its lipophilic nature and high oxidation, it is impossible to incorporate it into aqueous food matrices. Thus, the present study evaluated whether powder nanoparticles based on porcine gelatin (OPG) and in combination with sodium alginate (OAG) containing buriti oil obtained by O/W emulsification followed by freeze-drying enabled water dispersibility and preserved or increased the antimicrobial activity of the oil. Results OPG presented spherical shape, smooth surface, smaller particle size and polydispersity index [51.0 (6.07) nm and 0.40 (0.05)], and better chemical interaction between the nonpolar amino acids and the hydrophobic oil chain. OPG also presented a higher dispersibility percentage [85.62% (7.82)] than OAG [50.19% (7.24)] (p < 0.05), and significantly increased the antimicrobial activity of the oil by 59, 62, and 43% for Pseudomonas aeruginosa, Klebsiella pneumonia, and Staphylococcus aureus, respectively. Conclusions Thus, nanoencapsulation in gelatin is a promising strategy to increase the potential to use buriti oil in foods.
Collapse
Affiliation(s)
| | - Thais Souza Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Isaiane Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nathália Kelly Araújo
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil.,Federal Institute of Education, Science and Technology of Rio Grande do Norte, Pau dos Ferros, RN, Brazil
| | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos Eduardo Padilha
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Francisco Canidé Sousa Júnior
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Cristiane Fernandes de Assis
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
43
|
Giaconia MA, Ramos SDP, Pereira CF, Lemes AC, De Rosso VV, Braga ARC. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Gómez-García R, Campos DA, Oliveira A, Aguilar CN, Madureira AR, Pintado M. A chemical valorisation of melon peels towards functional food ingredients: Bioactives profile and antioxidant properties. Food Chem 2020; 335:127579. [PMID: 32738531 DOI: 10.1016/j.foodchem.2020.127579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
The goal of this work was to characterize the profile of bioactive compounds and the antioxidant activity of inodorus melon peels. Melon peels were divided into three fractions: a solid fraction with a higher content of carbohydrates (84.81%); a liquid fraction with a higher ash content (11.5%); and a pellet fraction with a higher protein content (34.90%). The structural carbohydrates study revealed a composition of cellulose (27.68%), hemicellulose (8.2%) and lignin (26.46%) in the solid fraction. The liquid fraction had the highest antioxidant activity based on results from DPPH, ABTS and ORAC assays. Flavones, hydroxybenzoic and hydroxycinnamic acids were the main phenolic classes found in all fractions. In addition, β-carotene, lutein, β-cryptoxanthin and violaxanthin had also been quantified. Melon fractions were rich in nutrients and bioactive substances and could be useful in the development of novel functional products, considering the growing market demand for safe and healthy food products.
Collapse
Affiliation(s)
- Ricardo Gómez-García
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; BBG-DIA. Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Débora A Campos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Cristóbal N Aguilar
- BBG-DIA. Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Ana R Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
45
|
Phytosterol vehicles used in a functional product modify carotenoid/cholesterol bioaccessibility and uptake by Caco-2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
de Queiroz JLC, Medeiros I, Piuvezam G, de França Nunes AC, Gomes CC, Maciel BLL, de Araújo Morais AH, Passos TS. Effect of carotenoid encapsulation on antioxidant activities: A protocol for systematic review. Medicine (Baltimore) 2020; 99:e19772. [PMID: 32311984 PMCID: PMC7220672 DOI: 10.1097/md.0000000000019772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Carotenoids play essential roles in human health, such as antioxidant activity, and therefore can decrease free radicals oxidation action, preventing numerous diseases. However, these compounds have an unstable nature, turning them susceptible to adverse conditions in food processing and storage. Thereby the search for alternatives that maintain and enhance carotenoid antioxidant function, such as encapsulation, has grown. The objective of this study was to establish a systematic review protocol to evaluate the effect of different encapsulation techniques on the antioxidant action of carotenoids, evaluating which one is the best and safest, and their role in enhancing the antioxidant activity. METHODS This protocol was guided by the preferred reporting items for protocols for systematic reviews and meta-analyzes. The databases to be searched are PubMed, EMBASE, Scopus, ScienceDirect, and Web of Science. Experimental studies conducted in rats and mice (in vivo) of both sexes and ages, evaluating the use of encapsulated and crude carotenoids will be included in the systematic review. The characteristics of the studies, the experimental model, and the main results will be described, and the risk of bias assessment will be evaluated. Three independent reviewers will proceed with the selection of studies, data extraction, and methodological quality assessment. A narrative synthesis will be made for the included studies. Besides, if sufficient qualitative data is available, a meta-analysis will be conducted. I2 statistics will be used to assess heterogeneity. RESULTS This protocol will guide the production of a systematic review that can determine the effect of different encapsulation techniques and encapsulating agents on the antioxidant action of carotenoids. Thus, it will enable the determination of the best encapsulation techniques to promote the preservation and increase of the antioxidant activity, contributing to future research that may reproduce the best carotenoid encapsulation technique in an animal model. CONCLUSION The systematic review to be produced from this protocol will provide support for the construction of research that evaluates the effect of encapsulation on the antioxidant function of carotenoids and its possible application as a nutraceutical, considering that this functionality is directly associated with health promotion. RECORD OF SYSTEMATIC REVIEW This review was recorded in the International Register of Prospective Systematic Reviews on January 22, 2020 (registration: CRD42020142065). Available at: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020142065.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Center for Health Sciences
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry Postgraduate Program, Biosciences Center
- Nutrition Postgraduate Program, Center for Health Sciences
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
47
|
Rehman A, Tong Q, Jafari SM, Assadpour E, Shehzad Q, Aadil RM, Iqbal MW, Rashed MM, Mushtaq BS, Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv Colloid Interface Sci 2020; 275:102048. [PMID: 31757387 DOI: 10.1016/j.cis.2019.102048] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Carotenoids retain plenty of health benefits and attracting much attention recently, but they have less resistance to processing stresses, easily oxidized and chemically unstable. Additionally, their application in food and pharmaceuticals are restricted due to some limitations such as poor bioavailability, less solubility and quick release. Nanoencapsulation techniques can be used to protect the carotenoids and to uphold their original characteristics during processing, storage and digestion, improve their physiochemical properties and enhance their health promoting effects. The importance of nanocarriers in foods and pharmaceuticals cannot be denied. This review comprehensively covers recent advances in nanoencapsulation of carotenoids with biopolymeric nanocarriers (polysaccharides and proteins), and lipid-based nanocarriers, their functionalities, aptness and innovative developments in preparation strategies. Furthermore, the present state of the art encapsulation of different carotenoids via biopolymeric and lipid-based nanocarriers have been enclosed and tabulated well. Nanoencapsulation has a vast range of applications for protection of carotenoids. Polysaccharides in combination with different proteins can offer a great avenue to achieve the desired formulation for encapsulation of carotenoids by using different nanoencapsulation strategies. In terms of lipid based nanocarriers, solid lipid nanoparticles and nanostructure lipid carriers are proving as the encouraging candidates for entrapment of carotenoids. Additionally, nanoliposomes and nanoemulsion are also promising and novel-vehicles for the protection of carotenoids against challenging aspects as well as offering an effectual controlled release on the targeted sites. In the future, further studies could be conducted for exploring the application of nanoencapsulated systems in food and gastrointestinal tract (GIT) for industrial applications.
Collapse
|
48
|
Aswathanarayan JB, Vittal RR. Nanoemulsions and Their Potential Applications in Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00095] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
de Campo C, Queiroz Assis R, Marques da Silva M, Haas Costa TM, Paese K, Stanisçuaski Guterres S, de Oliveira Rios A, Hickmann Flôres S. Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chem 2019; 301:125230. [PMID: 31374531 DOI: 10.1016/j.foodchem.2019.125230] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
Zeaxanthin nanoparticles (Zea-NP) and zeaxanthin nanoemulsion (Zea-NE) were incorporated in yogurt. Control yogurt (CY), yogurt added of nanoparticles (Y-NP) and yogurt added of nanoemulsion (Y-NE) were evaluated weekly regarding pH, titratable acidity, color, textural parameters, viscosity and syneresis during 28 days. Zeaxanthin retention in Y-NP and Y-NE was also determined over storage. Sensory attributes and morphology were evaluated in all yogurt samples, and zeaxanthin bioaccessibility after in vitro digestion was analyzed in Y-NP and Y-NE after preparation. At the end of storage time, zeaxanthin retention was higher in Y-NP (22.31 ± 2.53%) than in Y-NE (16.84 ± 0.53%). Despite the lower firmness and viscosity observed in Y-NP, these changes were not sensory perceived. The bioaccessibility after in vitro digestion suggested that nanoencapsulation provided a controlled release of the carotenoid. Zea-NP can be incorporated in yogurt, allowing the dispersion of a hydrophobic compound in a hydrophilic matrix, providing stability.
Collapse
Affiliation(s)
- Camila de Campo
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Renato Queiroz Assis
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Médelin Marques da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)-Campus Rolante, Rodovia RS-239, Km 68, n. 3505, CEP 95690-000 Rolante, RS, Brazil
| | - Tania Maria Haas Costa
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil; Departamento de Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Karina Paese
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90610-000 Porto Alegre, RS, Brazil
| | - Silvia Stanisçuaski Guterres
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90610-000 Porto Alegre, RS, Brazil
| | - Alessandro de Oliveira Rios
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Simone Hickmann Flôres
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
50
|
Rolim PM, Seabra LMJ, de Macedo GR. Melon By-Products: Biopotential in Human Health and Food Processing. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1613662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|