1
|
Jiang Q, Wu D, Jiang J, Wu X, Ma J, Hu X, Sun W, Liu J. Magnetic fields improve the gel properties of myofibrillar proteins in low-salt myofibrillar protein emulsion systems. Food Chem 2025; 470:142681. [PMID: 39742607 DOI: 10.1016/j.foodchem.2024.142681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/03/2025]
Abstract
The effect of magnetic field on the properties of emulsified gels containing myofibrillar protein (MP-emulsified gels) with different salt concentration (0, 0.2, 0.4, 0.6 mol/L) were investigated. The results demonstrated that the magnetic field treatment (4 °C, 3.8 mT, 3 h) made the emulsion droplets smaller and more uniform. At the same time, the magnetic field treatment improved the gel strength and WHC (water holding capacity) of MP-emulsified gels by 88.89 % and 3.5 % at 0.2 mol/L NaCl, and it also ameliorated the network structure of emulsified gel. Raman spectra showed that magnetic field treatment induced the transformation of β-structure into α-helix structure in MP-emulsified gel. Under high salt conditions (0.4 mol/L ∼ 0.6 mol/L), the magnetic field promoted the exposure of aliphatic residues in the tertiary structure and influences the hydrophobic interaction between molecules. In conclusion, Magnetic field treatment (4 °C, 3.8 mT, 3 h) improved MP-emulsified gels properties, offering a promising strategy for low-salt meat products.
Collapse
Affiliation(s)
- Qianwen Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jingjiao Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Xiaoyu Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Xiaopeng Hu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| | - Jiao Liu
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Zhu M, Jiang L, Liu W, Li H, Jiao L, Ma H, Gao X, Kang Z. Analysis of the influencing mechanism of low-frequency alternating magnetic field-assisted freezing on oxidative and structural attributes of pork myofibrillar proteins based on proteomic changes. Food Chem 2025; 469:142537. [PMID: 39708654 DOI: 10.1016/j.foodchem.2024.142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Using quantitative proteomics, the study investigated the effects of low-frequency alternating magnetic field-assisted freezing (LF-MFF) on the oxidative status and structural integrity of porcine myofibrillar proteins (MPs). LF-MFF, especially at 3 mT (LF-MFF-3) and 4 mT (LF-MFF-4), significantly reduced MPs' oxidation compared to refrigerator freezing (RF) (P < 0.05). The spectroscopic analysis confirmed better structural preservation with LF-MFF-4. We identified 126 differentially abundant proteins (DAPs) associated with key metabolic pathways, including amino acid biosynthesis and oxidative phosphorylation, potentially affecting Adenosine Triphosphate (ATP) metabolism and contributing to freeze-induced protein damage and oxidative denaturation of MPs. Through correlation analysis, among the 52 DAPs in the LF-MFF-4 vs RF comparison, eight proteins with variable importance in projection (VIP) > 1.1 were identified as potential biomarkers for porcine MPs. These findings enhance our understanding of the oxidative and structural changes in MPs following LF-MFF, suggesting its potential for improving pork quality and meat preservation.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang 453003, China.
| | - Lijie Jiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wang Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xueli Gao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
3
|
Mao Y, Zhang Y, Li T, Chen Y, Wang Z, Jin W, Shen W, Li J. Insight into the mechanism of gel properties, microstructure and flavor of surimi gels improved by wheat bran with different particle sizes. Food Res Int 2025; 201:115601. [PMID: 39849762 DOI: 10.1016/j.foodres.2024.115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study investigated the effect of wheat bran (WB) with different particle sizes (W1, 155.00 ± 2.08 μm; W2, 78.33 ± 0.52 μm; W3, 46.90 ± 0.60 μm; W4, 23.53 ± 0.49 μm; and W5, 12.97 ± 0.19 μm) on the gel strength, texture, microstructure, dynamic rheological, secondary structures and flavor of surimi gels. Results demonstrated that the gel strength and water-holding capacity (WHC) of the surimi gels gradually increased with the decrease in WB particle size. The added W5 (12.97 ± 0.19 μm) increased the bound water content in the surimi gels by 12.60 % whereas the free water decreased by 6.59 % (p < 0.05), indicating that the addition of superfine WB contributed to the conversion of free water into bound water in the surimi gels matrices. Microstructural observations indicated that WB with different particle sizes promoted the formation of a continuous gel matrix and a denser surimi gel network structure. The β-sheet dominated in the secondary structure of surimi gels. Electronic tongue results showed that the addition of WB reduced the bitterness of surimi gels. Gas chromatography-ion mobility spectrometry (GC-IMS) results revealed that more esters were present in the samples when W1, W2, and W3 were added. Overall, W5 had the best enhancement effect on the quality of surimi gels, and this study lays the reference value for WB as an agricultural by-product to improve the quality of surimi products.
Collapse
Affiliation(s)
- Ying Mao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yinghui Zhang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Tiantian Li
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yueyi Chen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Zhan Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Weiping Jin
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Wangyang Shen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Jinling Li
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China.
| |
Collapse
|
4
|
Tu W, Liu X, Li K, Zhang B, Jiang F, Qiao D. Highly ordered aggregation of soy protein isolate particles for enhanced gel-related properties through konjac glucomannan addition. Food Chem 2025; 462:141004. [PMID: 39216378 DOI: 10.1016/j.foodchem.2024.141004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
This study assessed the effect of konjac glucomannan (KGM) on the aggregation of soy protein isolate (SPI) and its gel-related structure and properties. Raman results showed that KGM promoted the rearrangement of SPI to form more β-sheets, contributing to the formation of an ordered structure. Atomic force microscopy, confocal laser scanning microscopy, and small-angle X-ray scattering results indicated that KGM reduced the size of SPI particles, narrowed their size distribution, and loosened the large aggregates formed by the stacking of SPI particles, improving the uniformity of gel system. As the hydrogen bonding between the KGM and SPI molecules enhanced, a well-developed network structure was obtained, further reducing the immobilized water's content (T22) and increasing the water-holding capacity (WHC) of SPI gel. Furthermore, this gel structure showed improved gel hardness and resistance to both small and large deformations. These findings facilitate the design and production of SPI-based gels with desired performance.
Collapse
Affiliation(s)
- Wenyao Tu
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xizhong Liu
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Kexin Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Wang J, Zhang X, Ma S, Tao S, Wu M, Wu Q. Effect of black highland barley polysaccharides and low frequency-static magnetic field on casein-based coacervates: Formation, characterization, and probiotic encapsulation capacity. Int J Biol Macromol 2025; 287:138595. [PMID: 39662567 DOI: 10.1016/j.ijbiomac.2024.138595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
To evaluate the combination effects of highland barley polysaccharides (HBP) and low-frequency static magnetic field (LF-SMF) treatment on the structure and properties of acid-induced casein (CS) coacervates, this study conducted a comprehensive investigation at various stages- before, during, and after coacervation-for the first time. Compared with native CS, adding HBP caused CS to denature owing to hydrophobic and electrostatic interactions, and LF-SMF treatment further promoted these changes. During the acidification (pH 7.0-2.0) and coacervation processes, the integration of LF-SMF treatment with the addition of HBP enhanced the rate and extent of casein (CS) aggregation and crosslinking, attributable to alterations in the ζ-potential of CS. Among the formed coacervates, the yield and particle size of CS/HBP complex coacervates after being treated with LF-SMF (M-CS/HBP) increased from 67.9 % to 78.4 % and from 803.12 nm to 1253.43 nm, respectively. Additionally, M-CS/HBP demonstrated improved viscoelasticity and a more uniform, compact microstructure with denser packing. The alterations observed in CS-based coacervates were due to non-covalent interactions between CS and HBP, further promoted by LF-SMF treatment, leading to the unfolding and disordering of protein secondary structure. Consequently, M-CS/HBP complex coacervates demonstrated superior encapsulation efficiency for L. plantarum and provided enhanced protection for probiotics under adverse environments.
Collapse
Affiliation(s)
- Jingyi Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xue Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Shuzhen Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Sihong Tao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430068, China
| | - Qian Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
6
|
Zhu M, Liu W, Li M, Jiang L, Li H, Wang H, Gao X, Ma H, Kang Z. Enhancing the quality attributes of porcine myofibrillar proteins through low-frequency alternating magnetic field-assisted freezing. Int J Biol Macromol 2024; 283:137918. [PMID: 39577536 DOI: 10.1016/j.ijbiomac.2024.137918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This study explores the potential of low-frequency alternating magnetic field-assisted freezing (LF-MFF) on enhancing the physicochemical stability and gelling performance of porcine myofibrillar proteins (MPs). We observed that LF-MFF markedly reduced oxidative denaturation of MPs compared to refrigerator freezing (RF), thus maintaining higher gel quality. Notably, LF-MFF treatment at 3-4 mT enhanced MPs' solubility, decreased turbidity, and lowered dityrosine content. LF-MFF at 4 mT also effectively minimized MPs' aggregation and degradation. Rheological measurements revealed that the storage modulus (G') and apparent viscosity of MPs treated with 3-4 mT LF-MFF are comparable to those of fresh samples (FS). Furthermore, LF-MFF at 3-4 mT significantly improved the water-holding capacity (WHC), whiteness, gel strength, and textural properties of MPs. The 3-4 mT LF-MFF was particularly effective in enhancing hydrophobic interactions and hydrogen bonding, thereby inhibiting water mobility and protecting microstructure of MPs gels. In summary, LF-MFF, especially at 4 mT, improved the gelation properties of MPs by reducing oxidative denaturation, providing significant insights for its application in the frozen meat industry.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang 453003, PR China.
| | - Wang Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Mingzhe Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Lijie Jiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Hui Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xueli Gao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
7
|
Kang Z, Hou Q, Xu J. Research Progress and Teaching Exploration of Physical Processing Technology for Reduced-Salt Gel Meat Products. Foods 2024; 13:3606. [PMID: 39594022 PMCID: PMC11594212 DOI: 10.3390/foods13223606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Salt assumes a significant role in the production of meat gels. Excessive intake of salt adversely affects human health, and consumers' demand for reduced-salt meat products is escalating. This review primarily introduces the characteristics of the physical processing technology of reduced-salt gel meat products, such as the technology of ultrasonic, high-pressure processing, beating, plasma, and magnetic field, and its role in reduced-salt gel meat processing, and explores means to improve the teaching effect of the physical processing technology of reduced-salt gel meat products in the major of Food Science and Engineering. It was found that physical processing techniques, such as ultrasound, high-pressure processing, and beating, could enhance the solubility and processing performance of myofibrillar protein by improving the meat structure and protein conformation, increasing the interaction between proteins, water, and fat molecules, and enhancing the texture, water-holding capacity, and sensory quality of reduced-salt gel meat products. In the promotion and teaching of physical processing technology, it is necessary to strengthen interdisciplinary integration and scientific research activities according to the customs, laws and regulations of different countries and regions, combined with the development frontier of the technology, and develop reduced-salt gel meat products that meet local needs according to local conditions.
Collapse
Affiliation(s)
- Zhuangli Kang
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Qin Hou
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Jingguo Xu
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| |
Collapse
|
8
|
Chen Y, Lin H, Yang Y, Cui L, Chisoro P, Yang C, Wu G, Li Q, Li J, Zhang C, Li X. Exploring the role of static magnetic field in supercooling storage from the viewpoint of meat quality and microbial community. Food Res Int 2024; 195:114884. [PMID: 39277269 DOI: 10.1016/j.foodres.2024.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024]
Abstract
In order to explore the application prospects of static magnetic field (SMF) combined with supercooling in meat preservation, this study proposed a novel method of supercooling assisted by a stationary magnetic field (SMF + supercooling) for the preservation of chilled pork, evaluating its cooling rate and quality changes (e.g., water holding capacity, color, pH, and TVB-N), as well as the evolution trend of the microbiota. The results showed that SMF + supercooling significantly (P < 0.05) improved the cooling rate of pork. Compared to chilling and supercooling, SMF + supercooling significantly delayed the increase of TVB-N and TVC on the 12th day of storage (P < 0.05). SMF + supercooling treatment achieves the maintenance of pork water-holding capacity by inhibiting water migration, reducing drip loss, cooking loss, and centrifugal loss of pork. The 16S rDNA bacteria flora analysis demonstrated that SMF + supercooling treatment reduced the relative abundance of spoilage bacteria such as Acinetobacter, Streptococcus, and Pseudomonas, delaying the deterioration of pork quality caused by microbial growth. The SMF + supercooling treatment can be considered a novel refrigeration preservation method that delays the deterioration of pork quality and extends its shelf life.
Collapse
Affiliation(s)
- Yong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Hengxun Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yiping Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liye Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Prince Chisoro
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qingqing Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; Shandong Ledajia Biotechnology Co., Ltd, Laizhou, Shandong, 261400, China.
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
9
|
Badar IH, Wang Z, Zhou Y, Jaspal MH, Liu H, Chen Q, Kong B. Influence of flaxseed-derived diglyceride-based high internal phase Pickering emulsions on the rheological and physicochemical properties of myofibrillar protein gels. Food Chem 2024; 456:139970. [PMID: 38850606 DOI: 10.1016/j.foodchem.2024.139970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The study aimed to investigate the influence of flaxseed-derived diglyceride-based high internal phase Pickering emulsions (HIPPE) at different levels (0%, 10%, 20%, 30%, 40%, and 50%) on the rheological and physicochemical properties of myofibrillar protein (MPs) gels. The study indicated that with increasing HIPPE levels, there was a significant increase in whiteness while a decrease in water-holding capacity. The gels with 10% HIPPE levels had higher ionic bonds, while those with 40% and 50% HIPPE levels showed higher hydrogen bonds. By increasing HIPPE levels in the formation of MP gels, the T2 relaxation time was found to decrease. Additionally, in all MP gels, G' values were significantly higher than G" values over time. Adding lower contents of HIPPE levels resulted in a more compact microstructure. These findings indicate that flaxseed-derived diglyceride-based HIPPEs could be utilized as fat substitutes in meat products to enhance their nutritional quality.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ziyi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yafei Zhou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Muhammad Hayat Jaspal
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
10
|
Nie Y, Xiong YL, Jiang J. The interplay of muscle and pea proteins in low-salt gels: An insight into in situ structure formation in hybrid meat alternatives. Food Chem 2024; 455:139870. [PMID: 38850985 DOI: 10.1016/j.foodchem.2024.139870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
The present study investigated thermal gelation of mixed sarcoplasmic (Sarc), myofibrillar (Myof), and pea proteins corresponding to partial meat replacements (0, 25, and 50%) by pea protein isolate (PPI) at reducing salt levels (0.6 → 0.1 M NaCl) to understand in situ (simulated) structure-forming properties of hybrid meat analogues. The amount of soluble proteins in hybrids generally increased with salt concentrations and PPI substitution. While muscle proteins (mixed Sarc and Myof) had the strongest gelling capacity, hybrid proteins also exhibited moderate aggregation and gelling activity based on the sol→gel rheological transition and gel hardness testing. Sarc and pea 7S/11S globulins collectively compensated for the attenuated gelling capacity of mixed proteins due to diminishing Myof in the hybrids. Immobilized water within hybrid protein gels was tightly bonded (T2 from nuclear magnetic resonance), consistent with the dense and uniform microstructure observed. These findings offer a new knowledge base for developing reduced-salt hybrid meat analogues.
Collapse
Affiliation(s)
- Yunqing Nie
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Youling L Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA.
| | - Jiang Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Jiang J, Yang K, Gong H, Ma J, Hu X, Zhou Y, Zhang Y, Sun W. The conformational modification of myofibrillar protein by magnetic field improves its emulsification properties. Int J Biol Macromol 2024; 277:134114. [PMID: 39047999 DOI: 10.1016/j.ijbiomac.2024.134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the effect of different magnetic field treatments (0, 3, 6, 9, 12 mT) on the structure and emulsification properties of myofibrillar protein (MP). The results showed that the emulsion stabilized by MP with 3, 6, 9 mT magnetic field treatments possessed higher emulsifying ability, storage stability and apparent viscosity, since magnetic field induced the structural unfolding of MP and exposed the hydrophobic groups (the surface hydrophobic increased from 30.10 to 43.73 μg). Meanwhile, the magnetic field treatments decreased the MP particle size from 1752.00 to 1278.67 nm, which was favorable for the diffusion and adsorption of proteins at the oil-water interface, thus improving the MP emulsification ability and stability. Furthermore, the 9 mT magnetic field-treated MP had the best ability to emulsify oil droplets with a more uniform and smaller emulsion size from 28.593 to 23.443 μm. However, high-intensity magnetic field treatment (12 mT) caused MP particles to aggregate and the hydrophobic binding sites to be buried, which was not conducive to encapsulating oil droplets.
Collapse
Affiliation(s)
- Jingjiao Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Xiaopeng Hu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Yuanhua Zhou
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Yunhua Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
12
|
Kang ZL, Yao PL, Xie JJ, Li YP, Ma HJ. Effects of low-frequency magnetic field on solubility, structural and functional properties of soy 11S globulin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5944-5954. [PMID: 38415770 DOI: 10.1002/jsfa.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min. CONCLUSION LF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuang-Li Kang
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Peng-Lei Yao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jing-Jie Xie
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan-Ping Li
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, China
| | - Han-Jun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
13
|
Zhao S, Liu Y, Yang L, Zhao Y, Zhu M, Wang H, Kang Z, Ma H. Low-frequency alternating magnetic field and CaCl 2 influence the physicochemical, conformational and gel characteristics of low-salt myofibrillar protein. Food Chem X 2024; 22:101341. [PMID: 38586222 PMCID: PMC10997822 DOI: 10.1016/j.fochx.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
In this study, the improvement mechanism of low-frequency alternating magnetic field (LF-AMF, 5 mT, 3 h) combined with calcium chloride (CaCl2, 0-100 mM) on the gel characteristics of low-salt myofibrillar protein (MP) was investigated. LF-AMF combined with 80 mM CaCl2 treatment increased solubility (32.71%), surface hydrophobicity (40.86 μg), active sulfhydryl content (22.57%), water-holding capacity (7.15%). Besides, the combined treatment decreased turbidity, particle size and intrinsic fluorescence strength of MP. Fourier transform infrared spectroscopy (FT-IR) results indicated that the combined treatment altered the secondary structure of MP by increasing β-sheet and β-turn, and reducing α-helix and random coil. The combined treatment also induced a high G' value and shortened T2 relaxation time for forming a homogeneous and compact gel structure. These results revealed that LF-AMF combined CaCl2 treatment could as a potential approach for modifying the gel characteristics of low-salt MP.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yu Liu
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Liu Yang
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yanyan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Mingming Zhu
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| |
Collapse
|
14
|
Yan X, Xie M, Hu Z, Li J, Zheng H, Xie N, Zhen Z. Optimizing preparation of low-NaCl protein gels from goose meat and understanding synergistic effects of pH/NaCl in improving gel characteristics. Food Chem X 2024; 22:101333. [PMID: 38595756 PMCID: PMC11002545 DOI: 10.1016/j.fochx.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
This study explored the feasibility of partially substituting NaCl with MgCl2 in preparing gel products from goose meat. Furthermore, the effects of synergistic interaction between different pH levels and NaCl concentrations on the structure and characteristics of the gels were explored by analyzing their secondary structure, microstructure, and water-distribution properties. The results showed that NaCl could be partially substituted by MgCl2, with the optimal preparation conditions: NaCl (0.83 mol/L), pH (7.3), MgCl2 (0.04 mol/L), heating temperature (79 °C), heating time (20 min), and solid-liquid ratio (1:3). Furthermore, the pH had a more significant impact on the gels' structure and characteristics than did NaCl concentration. Thus, our optimized method can reduce the usage of NaCl in the gel products while at the same time improving the characteristics of gel products under low-NaCl conditions by lowering pH, laying a solid theoretical foundation for producing low-NaCl protein gel products from goose meat.
Collapse
Affiliation(s)
- Xinxin Yan
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Mingpeng Xie
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Zhonghai Hu
- Lu'an Longxiang Gourmet Poultry Co., Ltd., Lu'an 237400, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibo Zheng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Ningning Xie
- Institute of Agro-product Science and Technology, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Hefei 230031, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- The Institute of Functional Agriculture (Food) Science and Technology at Yangtze River Delta (iFAST), Chuzhou 239000, China
- Anhui Provincial Key Laboratory of Functional Agriculture and Functional Food, Chuzhou 233100, China
| |
Collapse
|
15
|
Chen W, Chen X, Liang W, Liao H, Qin H, Chen B, Ai M. Moderation-excess interactions of epigallocatechin gallate and CaCl 2 modulate the gelation performance of egg white transparent gels. Food Chem X 2024; 22:101512. [PMID: 38883918 PMCID: PMC11176626 DOI: 10.1016/j.fochx.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
In this study, the moderation-excess interaction of epigallocatechin gallate (EGCG) and calcium ions (Ca2+) to the gelation performance of transparent egg white protein (EWP) gel (EWG) was explored. The oxidation of EGCG introduced a yellowish-brown EWG, whereas the weakening of Ca2+ ionic bonds caused a notable reduction in the hardness of EWG, from 120.67 g to 73.57 g. Achieving the optimal EGCG-to-Ca2+ ratio in EWG conferred enhanced water-holding capacity to 86.98%, while an excess of EGCG attributed to the creation of a three-dimensional structure within the void "walls". The elevated presence of EGCG influenced the ionic bonds and hydrophobic interactions, thereby presenting a moderate-excess relationship with sulfhydryl and disulfide bonds, β-sheet, and α-helical structures. Notably, EGCG reduced the digestibility of EWG to 50.06%, while concurrently fostering the creation of smaller particle sizes. This study provides a scientific basis for the controllable preparation and quality regulation of transparent EWG.
Collapse
Affiliation(s)
- Weiling Chen
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Xingtian Chen
- College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Wenjing Liang
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Huiqing Liao
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Haisang Qin
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Bangdong Chen
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Chen B, Du G, Li K, Wang Y, Shi P, Li J, Bai Y. Properties of Myofibrillar Protein in Frozen Pork Improved through pH-Shifting Treatments: The Impact of Magnetic Field. Foods 2024; 13:1988. [PMID: 38998495 PMCID: PMC11241723 DOI: 10.3390/foods13131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
The present study demonstrates the effects of pH-shifting treatments and magnetic field-assisted pH-shifting treatments on the properties of myofibrillar protein (MP) in frozen meat. The solubility results indicate that the pH-shifting treatments increased the solubility of MP from 16.8% to a maximum of 21.0% (pH 9). The values of surface hydrophobicity and protein particle size distribution indicate that the pH-shifting treatment effectively inhibited protein aggregation through electrostatic interactions. However, under higher pH conditions (pH 10, 11), the treatments assisted by the magnetic field increased the degree of aggregation. The total thiol content and SDS-PAGE results further suggest that the magnetic field-assisted pH-shifting treatment accelerated the formation of covalent bonds among MPs under the alkaline environment. The results of the Differential Scanning Calorimetry (DSC) and protein secondary structure analysis indicate that the magnetic field promoted the unfolding of protein structures in an alkaline environment, markedly reducing the effective pH levels of pH-shifting. Electron paramagnetic resonance (EPR) data indicate that the phenomenon might be associated with the increased concentration of free radicals caused by the magnetic field treatment. In summary, the application of magnetic field-assisted pH-shifting treatments could emerge as a potent and promising strategy to improve the protein properties in frozen meat.
Collapse
Affiliation(s)
- Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Gaoang Du
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Panpan Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| |
Collapse
|
17
|
Yu H, Zhao Y, Li R, Guo X, Liu P, Zhang J. Effect of apple high-methoxyl pectin on heat-induced gelation of silver carp myofibrillar protein. Food Chem 2024; 441:138366. [PMID: 38199110 DOI: 10.1016/j.foodchem.2024.138366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The effect of adding apple high-methoxy pectin (HMP) (0-3 mg∙mL-1) on heat-induced gel characteristics of low concentration silver carp myofibrillar protein (MP) (15 mg∙mL-1) was studied. It was found that the hardness of gel increased by 20.6 times with adding 2 mg∙mL-1 HMP. Besides, HMP aided in the development of disulfide bonds and the aggregation of hydrophobic groups. During gel formation, the maximal storage modulus (G') of samples supplemented with 2 mg·mL-1 HMP was raised by a factor of 2.7. Of note, the images of SEM showed that protein and water were tightly combined with a proper amount of HMP and made its pores more uniform and dense. Meantime, the addition of moderate amounts of HMP enabled the formation of gels with favorable texture and performance at low concentration of MP was identified, which could provide a theoretical reference for the design and production of flesh low-calorie food gel.
Collapse
Affiliation(s)
- Han Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yunfeng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Runze Li
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
18
|
Zhao S, Hei M, Liu Y, Zhao Y, Wang H, Ma H, He H, Kang Z. Effect of low-frequency alternating magnetic fields on the physicochemical, conformational and rheological properties of myofibrillar protein after iterative freeze-thaw cycles. Int J Biol Macromol 2024; 267:131418. [PMID: 38582465 DOI: 10.1016/j.ijbiomac.2024.131418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in β-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China.
| | - Mengran Hei
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yu Liu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yanyan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hongju He
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
19
|
Li Y, Zhao S, Xia X, Liu Q, Chen Q, Wang H, Kong B. Insights into the emulsifying effect and oxidation stability of myofibrillar protein-diacylglycerol emulsions containing catechin at different ionic strengths. Food Res Int 2024; 181:114144. [PMID: 38448104 DOI: 10.1016/j.foodres.2024.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/08/2024]
Abstract
The purpose of this study was to investigate the effects of different ionic strengths on the emulsifying and oxidation stabilities of myofibrillar protein-diacylglycerol emulsions containing catechin (MP-DAG-C), in which lard, unpurified glycerolytic lard (UGL), and purified glycerolytic lard (PGL) were used as oil phases in this study, respectively. Results revealed that emulsifying ability was significantly improved by UGL and PGL (P < 0.05). Meanwhile, the emulsifying activity and stability, absolute ξ-potential value, shear viscosity, and dynamic rheological characteristic of emulsions increased with the increase of ionic strength (P < 0.05) remarkablely, which reached the maximum value at 0.6-M sodium chloride (NaCl). The droplets of emulsions at 0.6-M ionic strength were smallest and distributed most uniformly compared to other NaCl conditions. The formation of thiobarbituric acid substances and carbonyls increased, and the total sulfydryl contents decreased as the extension of storage days (P < 0.05). However, the oxidation stability of MP-DAG-C emulsions was insignificantly decreased by ionic strengths (P > 0.05). The above results showed that MP-DAG-C emulsions could keep excellent emulsifying effects and oxidation stability under high ionic strengths. This study provides data support for the application of MP-DAG-C emulsions in emulsified meat products, which is benefit for promoting the development of high-quality emulsified meat products.
Collapse
Affiliation(s)
- Yuexin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
20
|
Yan X, Li H, Wang X, Hu Z, Li J, Zheng H, Wang J, Zhen Z. From amino acid analysis to improved gel properties: The role of dl-valine in Landaise goose myofibrillar protein. Food Chem X 2024; 21:101123. [PMID: 38292675 PMCID: PMC10827391 DOI: 10.1016/j.fochx.2024.101123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The impact of exogenous limiting amino acids on protein gel formation was investigated to enhance the gelation properties of Landaise goose myofibrillar protein (MP). Amino acid composition and gel properties were analyzed, and homologous protein modeling and molecular docking techniques were used to simulate binding sites. Valine was identified as the first limiting amino acid. The addition of 0.075 % dl-valine proved optimal to enhance the gel strength (59.5 g) and water retention (76.76 %) of MP gels. Hydrophobic interactions and disulfide bonds were found to be the main forces maintaining conformational stability of the MP-dl-valine gels. The propyl group of dl-valine can form hydrophobic interactions with protein, contributing to stable complexes. DL valine could also strengthen chemical bonds and secondary structure, convert free water to immobile water, and improve the microstructure of the gel. Therefore, valine can be utilized as a nutritional and gel enhancer in Landaise goose meat products.
Collapse
Affiliation(s)
- Xinxin Yan
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Hong Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiujuan Wang
- Huoqiu County Animal Health Supervision Institute, Lu’an 237400, China
| | - Zhonghai Hu
- Lu'an Longxiang Gourmet Poultry Co., Ltd., Lu’an 237400, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibo Zheng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jie Wang
- WND Sci-Tech Development Service Center, Wuxi 214000, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- The Institute of Functional Agriculture (Food) Science and Technology at Yangtze River Delta (iFAST), Chuzhou 239000, China
- Anhui Provincial Key Laboratory of Functional Agriculture and Functional Food, Chuzhou 233100, China
| |
Collapse
|
21
|
Jiang J, Xia M, Gong H, Ma J, Sun W. Effect of magnetic field modification on oxidative stability of myoglobin in sarcoplasm systems. Food Chem 2024; 436:137691. [PMID: 37837684 DOI: 10.1016/j.foodchem.2023.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
This study aimed to investigate the effect of magnetic fields (0, 3, 6, 12 mT) on the oxidation characteristics of myoglobin (Mb) in the sarcoplasmic protein (SP) system and to understander the underlying mechanism. The metmyoglobin content, Soret band of heme iron porphyrin, protein conformation and molecular weight distribution were measured in different Mb and SP samples. The results showed that the primary oxidation site of hydroxyl radical on Mb was likely to be the porphyrin ring structure and the side chain group of protein rather than the central iron atoms, what's more, 12 mT magnetic field treatment had an inhibitory effect on the oxidative damage induced by hydroxyl radical.
Collapse
Affiliation(s)
- Jingjiao Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Minquan Xia
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
22
|
Liu J, Yang K, Wu D, Gong H, Guo L, Ma J, Sun W. Study on the interaction and gel properties of pork myofibrillar protein with konjac polysaccharides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2284-2293. [PMID: 37950529 DOI: 10.1002/jsfa.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Natural myofibrillar protein (MP) is sensitive to changes in the microenvironment, such as pH and ionic strength, and therefore can adversely affect the final quality of meat products. The aim of this study was to modify natural MP as well as to improve its functional properties. Therefore, the quality improvement effect of konjac polysaccharides with different concentrations (0, 1.5, 3, 4.5 and 6 g kg-1 protein) on MP gels was investigated. RESULTS With a concentration of konjac polysaccharides of 6 g kg-1 protein, the composite gel obtained exhibited a significant improvement of water binding (water holding capacity increased by 7.71%) and textural performance (strength increased from 29.12 to 37.55 N mm, an increase of 8.43 N mm). Meanwhile, konjac polysaccharides could help to form more disulfide bonds and non-disulfide covalent bonds, which enhanced the crosslinking of MP and maintained the MP gel network structure. Then, with the preservation of α-helix structure (a significant increase of 8.11%), slower protein aggregation and formation of small aggregates, this supported the formation of a fine and homogeneous network structure and allowed a reduction in water mobility. CONCLUSION During the heating process, konjac polysaccharides could absorb the surrounding water and fill the gel system, which resulted in an increase in the water content of the gel network and enhanced the gel-forming ability of the gel. Meanwhile, konjac polysaccharides might inhibit irregular aggregation of proteins and promote the formation of small aggregates, which in turn form a homogeneous and continuous gel matrix by orderly arrangement. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyang Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, China
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, China
| | - Linxiao Guo
- College of Marxism, Yangtze University, Jingzhou, China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, China
| |
Collapse
|
23
|
Ge J, Du Y, Wang Q, Xu X, Li J, Tao J, Gao F, Yang P, Feng B, Gao J. Effects of nitrogen fertilizer on the physicochemical, structural, functional, thermal, and rheological properties of mung bean (Vigna radiata) protein. Int J Biol Macromol 2024; 260:129616. [PMID: 38266839 DOI: 10.1016/j.ijbiomac.2024.129616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Nitrogen fertilizer can affect the seed quality of mung bean. However, the effects of nitrogen fertilizer on the properties of mung bean protein (MBP) remain unclear. We investigated the effects of four nitrogen fertilization levels on the physicochemical, structural, functional, thermal, and rheological properties of MBP. The results showed that the amino acid and protein contents of mung bean flour were maximized under 90 kg ha-1 of applied nitrogen treatment. Nitrogen fertilization can alter the secondary and tertiary structure of MBP. The main manifestations are an increase in the proportion of β-sheet, the exposure of more chromophores and hydrophobic groups, and the formation of loose porous aggregates. These changes improved the solubility, oil absorption capacity, emulsion activity, and foaming stability of MBP. Meanwhile, Thermodynamic and rheological analyses showed that the thermal stability, apparent viscosity, and gel elasticity of MBP were all increased under nitrogen fertilizer treatment. Correlation analysis showed that protein properties are closely related to changes in structure. In conclusion, nitrogen fertilization can improve the protein properties of MBP by modulating the structure of protein molecules. This study provides a theoretical basis for the optimization of mung bean cultivation and the further development of high-quality mung bean protein foods.
Collapse
Affiliation(s)
- Jiahao Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yarong Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoying Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jincai Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng Gao
- Agricultural Technology Extension Center of Hengshan District, Hengshan, Shaanxi Province 719199, China
| | - Pu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
24
|
Bai R, Li Z, Zhang L, Jiang S, Yu J, Madina A, Ye X, Yang C, Chen Y, Wang S, Ding W. Electron beam irradiation induced aggregation, structural and functional changes of soybean 11S globulin. Int J Biol Macromol 2024; 260:129585. [PMID: 38246473 DOI: 10.1016/j.ijbiomac.2024.129585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the effects of different irradiation doses of an electron beam (e-beam) (0, 2, 4, 6, 8, and 10 kGy) on the structure, emulsification, foaming, and rheological and gel properties of soybean 11S globulin. The irradiation treatment at 4 and 6 kGy significantly increased the solubility, surface hydrophobicity, disulfide bonding, and ζ-potential of 11S globulin, decreased the particle size of the protein solution, and effectively improved the emulsifying activity and foaming stability of the protein solution. Moreover, irradiation induced moderate cross-linking and aggregation of the proteins, thereby increasing the apparent viscosity and shear stress of the protein solution. In addition, the low-field NMR and microstructure analysis results revealed that protein gels formed a dense and homogeneous three-dimensional mesh structure after irradiation (6 kGy), along with increased content of bound water (T2b) and water not readily flowable (T21) and a decrease content of free water (T22). Overall, our results confirmed that e-beam irradiation could significantly improve the physicochemical properties of soybean 11S globulin. Our study thus provides a new technical means for the application of electron beam irradiation technology toward protein modification and broadens the high-value utilization of soybean 11S globulin in the food processing industry.
Collapse
Affiliation(s)
- Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co., Ltd, Yangling, Shaanxi 712100, China
| | - Aitmagambetova Madina
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunjie Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Wang R, Guo F, Zhao J, Feng C. Myofibril degradation and structural changes in myofibrillar proteins of porcine longissimus muscles during frozen storage. Food Chem 2024; 435:137671. [PMID: 37813022 DOI: 10.1016/j.foodchem.2023.137671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
The effect of frozen time and the temperature on myofibril degradation and the structure of myofibrillar proteins of porcine longissimus muscles were investigated. With extended frozen time and increased temperature, the muscle fibres became broken; the muscle cells became irregularly arranged; and the fragmentation index value, number of ionic bonds, and number of hydrogen bonds of the samples significantly decreased. Meanwhile, the myofibril fragmentation index value, number of hydrophobic interactions, and number of disulphide bonds significantly increased (P < 0.05). After 12 months of storage, the intensities of I760/I1003, I850/I830, I1450/I1003, and I2945/I1003 in the samples frozen at -8 °C were reduced by 4.36 %, 1.28 %, 1.86 %, and 0.74 %, respectively. A reduction in the maximum absorption peak and a red shift were observed in the ultraviolet spectrum. Therefore, frozen storage resulted in significant damage to the tissue microstructureand caused accelerated protein degradation, and the loss of protein structural integrity.
Collapse
Affiliation(s)
- Rui Wang
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China.
| | - Fang Guo
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Jianying Zhao
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Caiping Feng
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| |
Collapse
|
26
|
Song Q, Bai J, Li J, Jia J, Xu X, Wang L, Liu X, Yang N, Duan X. Phosvitin-based hydrogels prepared in AmimCl under magnetic field treatment: Structural characteristics, biological functions, and application in skin wound healing. Int J Biol Macromol 2024; 259:129224. [PMID: 38185308 DOI: 10.1016/j.ijbiomac.2024.129224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Due to the serious bacterial infection of skin and the waste of petroleum-based materials, there is an urgent need to develop natural biodegradable wound dressings with high antibacterial activity. Phosvitin (PSV) has shown its natural antioxidant and antibacterial properties, making it an excellent material for preparing wound healing dressings. In this study, we investigated the effect of magnetic field on the preparation of PSV-Microcrystalline Cellulose (MCC) composite hydrogels in 1-Allyl-3-methylimidazolium chloride (AmimCl) system. The results showed that the prepared hydrogels exhibited homogeneous surface structure, suitable swelling capacity and elasticity modulus, and sufficient thermal stability. The excellent antibacterial and antioxidant activities of hydrogels were mainly resulting from AmimCl and PSV, respectively, and the properties were enhanced after magnetic field treatment. The proteomics analysis indicated that AmimCl can readily penetrate the biological membranes of Staphylococcus aureus (S. aureus), upsetting the metabolism and reducing the virulence. The hydrogels showed great blood compatibility. Compared with the commercial materials, the 5 mT-treated hydrogels presented a comparable wound healing rate in the full-thickness skin injury model. On day 7, the wound healing rate of the 5 mT group reached approximately 84.40 %, which was significantly higher than that of the control group, 72.88 % (P < 0.05). In conclusion, our work provides experience for the development of biodegradable materials combined in ionic liquids and magnetic field, and explores their applications in wound healing dressings.
Collapse
Affiliation(s)
- Qi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jie Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jiayu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Lin Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
27
|
Zhu M, Wang H, Zong J, Zhang J, Zhao S, Ma H. Evaluating the effects of low-frequency alternating magnetic field thawing on oxidation, denaturation, and gelling properties of porcine myofibrillar proteins. Food Chem 2024; 433:137337. [PMID: 37688826 DOI: 10.1016/j.foodchem.2023.137337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
The impact of low-frequency alternating magnetic field thawing (LF-MFT) on the physicochemical and gelling properties of porcine myofibrillar proteins (MP) was studied. Results showed that compared to atmosphere thawing (AT), LF-MFT helped in inhibiting the oxidation and denaturation of protein during thawing, thereby maintaining a superior MP gel (P < 0.05). In particular, LF-MFT-4 (LF-MFT at 4 mT) could decrease the oxidation of MP, which might be due to having a higher content of total sulfhydryl and less carbonyl of MP than other thawing treatments. The denaturation of MP was reduced since LF-MFT-4 led to less aggregation and degradation than AT. The gelling properties were also retained, and a compact and homogeneous network structure was formed after LF-MFT-4, resulting in excellent water retention. These findings suggested that LF-MFT-4 improved the gelling properties of MP by inhibiting its oxidation and denaturation, demonstrating a potential application of LF-MFT in meat thawing.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; National Pork Processing Technology Research and Development Professional Center, Xinxiang 453003, China.
| | - He Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiaxing Zong
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Juan Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
28
|
Liu R, Guan W, Lv W, Kang Z, Wang Q, Jin D, Zhao X, Ge Q, Wu M, Yu H. Oxidative Modification, Structural Conformation, and Gel Properties of Pork Paste Protein Mediated by Oxygen Concentration in Modified Atmosphere Packaging. Foods 2024; 13:391. [PMID: 38338526 PMCID: PMC10855563 DOI: 10.3390/foods13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The objective of this study was to investigate the effect of pork oxidation through modified atmosphere packaging (MAP) on gel characteristics of myofibrillar proteins (MP) during the heat-induced gelation process. The pork longissimus thoracis (LT) was treated by MAP at varying oxygen concentrations (0, 20, 40, 60, and 80% O2) with a 5-day storage at 4 °C for the detection of MP oxidation and gel properties. The findings showed the rise of O2 concentration resulted in a significant increase of carbonyl content, disulfide bond, and particle size, and a decrease of sulfhydryl content and MP solubility (p < 0.05). The gel textural properties and water retention ability were significantly improved in MAP treatments of 0-60% O2 (p < 0.05), but deteriorated at 80% O2 level. As the concentration of O2 increased, there was a marked decrease in the α-helix content within the gel, accompanied by a simultaneous increase in β-sheet content (p < 0.05). Additionally, a judicious oxidation treatment (60% O2 in MAP) proved beneficial for crafting dense and uniform gel networks. Our data suggest that the oxidation treatment of pork mediated by O2 concentration in MAP is capable of reinforcing protein hydrophobic interaction and disulfide bond formation, thus contributing to the construction of superior gel structures and properties.
Collapse
Affiliation(s)
- Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Wen Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Wei Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Zhuangli Kang
- School of Tourism and Cuisine, Engineering Technology Research Center of Yangzhou Prepared Cuisine, Yangzhou University, Yangzhou 225127, China;
| | - Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Duxin Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| |
Collapse
|
29
|
Xu Y, Zhang D, Xie F, Li X, Schroyen M, Chen L, Hou C. Changes in water holding capacity of chilled fresh pork in controlled freezing-point storage assisted by different modes of electrostatic field action. Meat Sci 2023; 204:109269. [PMID: 37394351 DOI: 10.1016/j.meatsci.2023.109269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Electrostatic field-assisted low-temperature preservation is considered a novel technology, which provides an effective means of extending the shelf-life of meat. This study aimed to investigate the effects of different output time modes of a high voltage electrostatic field (HVEF) on the water holding capacity (WHC) of chilled fresh pork during controlled freezing-point storage. Under a direct current HVEF generator, chilled fresh pork samples were treated by the single, interval, or continuous HVEF treatment, with a control check group receiving no HVEF treatment. It was determined that the WHC of the continuous HVEF treatment higher than the control check group. This difference was proven by analyzing the moisture content, storage loss, centrifugal loss, cooking loss, and nuclear magnetic resonance imaging. Furthermore, the mechanism behind HVEF-assisted controlled freezing-point storage reduced the moisture loss was conducted by examining the changes in the hydration characteristics of myofibrillar protein. The study revealed that myofibrillar proteins exhibit high solubility and low surface hydrophobicity under continuous HVEF. Additionally, continuous HVEF has been demonstrated to effectively maintain the higher WHC and lower hardness of myofibrillar protein gel by inhibiting the water molecule migration. The demonstration of these results showcases the effectiveness of electrostatic fields for the future physical preservation of meat.
Collapse
Affiliation(s)
- Yuqian Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Feifei Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
30
|
Zhu M, Xing Y, Zhang J, Li H, Kang Z, Ma H, Zhao S, Jiao L. Low-frequency alternating magnetic field thawing of frozen pork meat: Effects of intensity on quality properties and microstructure of meat and structure of myofibrillar proteins. Meat Sci 2023; 204:109241. [PMID: 37321052 DOI: 10.1016/j.meatsci.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
The purpose of the study was to evaluate the changes in quality properties and microstructure of pork meat as well as structural variation in myofibrillar proteins (MPs) after low-frequency alternating magnetic field thawing (LF-MFT) with different intensities (1-5 mT). LF-MFT at 3-5 mT shortened the thawing time. LF-MFT treatment significantly influenced the quality properties of meat and notably improved the structure of MPs (P < 0.05), compared to atmosphere thawing (AT). Especially, among the thawing treatments, LF-MFT-4 (LF-MFT at 4 mT) had the lowest values of thawing loss and drip loss, and the least changes in the color and myoglobin content. Regarding the results of rheological properties and micrographs, an optimal gel structure and a more compact muscle fiber arrangement formed during LF-MFT-4. Moreover, LF-MFT-4 was beneficial for improving the conformation of MPs. Therefore, LF-MFT-4 reduced the deterioration of porcine quality by protecting MPs structure, indicating a potential use in the meat thawing industry.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Technology Research Center of Animal Products Intensive Processing and Quality Safety Control, Henan Institute of Science and Technology, Xinxiang 453003, China; National Pork Processing Technology Research and Development Professional Center, Xinxiang 453003, China.
| | - Yi Xing
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Juan Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhuangli Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
31
|
Wang J, Lu Q, Gong J, Gao F, Xu X, Wang H. Magnetic field-assisted cascade effects of improving the quality of gels-based meat products: A mechanism from myofibrillar protein gelation. Food Res Int 2023; 169:112907. [PMID: 37254342 DOI: 10.1016/j.foodres.2023.112907] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Physics-assisted processing technologies have huge potential in the meat processing industry. By modeling two essential procedures (pickling and preheating) of gels-based meat products, this work investigated the cascade effects of a new physical technology (magnetic field) on the conformational structures and gel properties of myofibrillar proteins (MPs). Samples were subjected with four magnetic field (MF)-assisted treatments (group A, both processes without MF; group B, pickling without MF combining with preheating with 4.5 mT MF; group C, pickling with 3.0 mT MF combining with preheating without MF; group D, pickling with 3.0 mT MF combining with preheating with 4.5 mT MF). The result showed that MF-assisted treatments significantly improved water holding capacity (WHC) of MP gels compared with group A (46.9%), reaching the maximum value of 52.1% in group D.According to the low-field nuclear magnetic results, group D decreased the percentages of P22 (6.97%) and increased the percentages of P21 (93%), which showed that water molecules were more tightly bound to each other. Meanwhile, the unfolding of α-helix and the formation of random coil of MF-assisted treatments resulted in more exposure of internal groups, leading to the formation of a dense network. These findings would provide new insights to improve the quality of gels-based meat products via the MF.
Collapse
Affiliation(s)
- Jingwen Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qiyuan Lu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junming Gong
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fei Gao
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
32
|
Lu W, Wu D, Wang L, Song G, Chi R, Ma J, Li Z, Wang L, Sun W. Insoluble dietary fibers from Lentinus edodes stipes improve the gel properties of pork myofibrillar protein: A water distribution, microstructure and intermolecular interactions study. Food Chem 2023; 411:135386. [PMID: 36652882 DOI: 10.1016/j.foodchem.2023.135386] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
This paper investigated the effects of Lentinus edodes stipes insoluble dietary fiber (LESIDF, 0%-3.0%) on the quality and microscopic properties of pork myofibrillar protein (MP) gels. The results showed that the water holding capacity and gel strength of composite gels enhanced with increasing LESIDF (1.0%-2.5%), and reached the maximum at the level of 2.5%-3.0%. Disulfide and non-disulfide covalent bonds were major chemical forces maintaining the 3D network of LESIDF-MP composite gels. LESIDF also promoted the formation of ionic and hydrogen bonds, confirmed by the self-assembly of β-sheets to α-helices, leading to a compact gel network structure. The observation of paraffin section revealed that LESIDF could capture more water molecules in gels, which was consistent with the transformation of free water to immobilized water. Overall, the optimal addition of LESIDF was 2.5%-3.0%, which provided a good strategy for LESIDF as an agricultural by-product to improve the quality of gel meat products.
Collapse
Affiliation(s)
- Weiwei Lu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - LiMei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Geyao Song
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Rongshuo Chi
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, Hubei 430064, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
33
|
Wang W, Jia R, Hui Y, Zhang F, Zhang L, Liu Y, Song Y, Wang B. Utilization of two plant polysaccharides to improve fresh goat milk cheese: Texture, rheological properties, and microstructure characterization. J Dairy Sci 2023; 106:3900-3917. [PMID: 37080791 DOI: 10.3168/jds.2022-22195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/22/2022] [Indexed: 04/22/2023]
Abstract
This study aimed to evaluate the effects of added jujube polysaccharide (JP) and Lycium barbarum polysaccharide (LBP) on the texture, rheological properties, and microstructure of goat milk cheese. Seven groups of fresh goat milk cheese were produced with 4 levels (0, 0.2, 0.6, and 1%, wt/wt) of JP and LBP. The goat milk cheese containing 1% JP showed the highest water-holding capacity, hardness, and the strongest rheological properties by creating a denser and more stable casein network structure. In addition, the yield of goat milk cheese was substantially improved as a result of JP incorporation. Cheeses containing LBP expressed lower fat content, higher moisture, and softer texture compared with the control cheese. Fourier-transform infrared spectroscopy and low-field nuclear magnetic resonance analysis demonstrated that the addition of JP improved the stability of the secondary protein structure in cheese and significantly enhanced the binding capacity of the casein matrix to water molecules due to strengthened intermolecular interactions. The current research demonstrated the potential feasibility of modifying the texture of goat milk cheese by JP or LBP, available for developing tunable goat milk cheese to satisfy consumer preferences and production needs.
Collapse
Affiliation(s)
- Weizhe Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Rong Jia
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuanyuan Hui
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
34
|
Insights into Feruloylated Oligosaccharide Impact on Gel Properties of Oxidized Myofibrillar Proteins Based on the Changes in Their Spatial Structure. Foods 2023; 12:foods12061222. [PMID: 36981149 PMCID: PMC10048018 DOI: 10.3390/foods12061222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenolic compounds can protect against myofibrillar protein (MP) oxidation in meat products. In this study, the inhibitory effect of feruloyl oligosaccharides (FOs) on MP oxidation was investigated, and the gel properties of MPs were further studied. The results showed that 50–100 μmol/g protein of FOs could effectively inhibit damage to amino acid side chains by reducing carbonyl contents by 60.5% and increasing sulfhydryl and free amine contents by 89.5% and 66%, which may protect the secondary and tertiary structures of MPs. Additionally, FOs at 50 μmol/g protein had better effects on the crosslinking of MPs, leading to effective improvements in the gel properties, which can be seen in the rheology properties, scanning electron microscope (SEM) photographs, and the distribution of water in the MP gel. On the contrary, 150–200 μmol/g protein of FOs showed peroxidative effects on oxidatively stressed MPs, which were detrimental to MPs and contributed to their denaturation in the electrophoresis analysis and irregular aggregation in the SEM analysis. The concentration-dependent effects of FOs depended on MP-FOs interactions, indicating that an appropriate concentration of FOs has the potential to protect MPs from oxidation and enhance the gelation ability of pork meat during processing.
Collapse
|
35
|
Wang Q, Gu C, Wei R, Luan Y, Liu R, Ge Q, Yu H, Wu M. Enhanced gelling properties of myofibrillar protein by ultrasound-assisted thermal-induced gelation process: Give an insight into the mechanism. ULTRASONICS SONOCHEMISTRY 2023; 94:106349. [PMID: 36870098 PMCID: PMC9996090 DOI: 10.1016/j.ultsonch.2023.106349] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Effects of the incorporation of ultrasound with varied intensities (0-800 W) into the thermal-induced gelation process on the gelling properties of myofibrillar protein (MP) were explored. In comparison with single heating, ultrasound-assisted heating (<600 W) led to significant increases in gel strength (up to 17.9%) and water holding capacity (up to 32.7%). Moreover, moderate ultrasound treatment was conducive to the fabrication of compact and homogenous gel networks with small pores, which could effectively impair the fluidity of water and allow redundant water to be entrapped within the gel network. Electrophoresis revealed that the incorporation of ultrasound into the gelation process facilitated more proteins to get involved in the development of gel network. With the intensified ultrasound power, α-helix in the gels lowered pronouncedly with a simultaneous increment of β-sheet, β-turn, and random coil. Furthermore, hydrophobic interactions and disulfide bonds were reinforced by the ultrasound treatment, which was in support of the construction of preeminent MP gels.
Collapse
Affiliation(s)
- Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Chen Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ranran Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi Luan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
36
|
Liu S, Wang Z, Zheng J, Sun W, Xiao Z, Shao JH. Effects of direct current magnetic field co-treated with stirring on gel properties of chicken batter: Hydration and textural properties. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Mohsenpour M, Nourani M, Enteshary R. Effect of thawing under an alternating magnetic field on rainbow trout (Oncorhynchus mykiss) fillet characteristics. Food Chem 2023; 402:134255. [DOI: 10.1016/j.foodchem.2022.134255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
|
38
|
Han Y, Liu H, Li Q, Zhao D, Shan K, Ke W, Zhang M, Li C. The degree of doneness affected molecular changes and protein digestibility of pork. Front Nutr 2023; 9:1084779. [PMID: 36687702 PMCID: PMC9845567 DOI: 10.3389/fnut.2022.1084779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
The degree of doneness has been shown to have a great impact on eating quality of meat, however, it is little known whether it affects protein digestibility of meat. In this study, we explored molecular changes and protein digestibility of pork under different degree of doneness. Pork chops were cooked in a 100°C water bath for about 26 min and a gradient decrease in doneness was obtained from outer to inner layers of samples. Compared with the raw samples, the cooked samples' active and total sulfhydryl contents, surface hydrophobicity, and turbidity increased but its solubility decreased. The inner layers with lower doneness contained higher α-helix, and fluorescence intensities of tryptophan and tyrosine residues than the outer layers with higher doneness. The pepsin and pancreatin digestibility of meat proteins in the inner layers were higher than those of the outer layers. Molecular simulation analysis showed that the most abundant protein in pork, i.e., myosin in the outer layers were more stable with an increased number of hydrogen bonds, making it difficult to be digested. These findings provided a new insight into the heterogeneity of meat nutritional quality due to the existence of doneness gradient.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kai Shan
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weixin Ke
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,*Correspondence: Miao Zhang,
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Chunbao Li,
| |
Collapse
|
39
|
Kang ZL, Kong LH, Hu ZL, Li YP, Ma HJ. Effect of sodium bicarbonate and sodium chloride on protein conformation and gel properties of pork myofibrillar protein. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
40
|
Wu ZW, Zou XL, Yao PL, Kang ZL, Ma HJ. Changes in Gel Characteristics, Rheological Properties, and Water Migration of PSE Meat Myofibrillar Proteins with Different Amounts of Sodium Bicarbonate. Molecules 2022; 27:8853. [PMID: 36557986 PMCID: PMC9782526 DOI: 10.3390/molecules27248853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The changes in the gel and rheological properties and water-holding capacity of PSE meat myofibrillar proteins with different amounts of sodium bicarbonate (SC, 0−0.6/100 g) were studied. Compared to the PSE meat myofibrillar proteins with 0/100 g SC, the texture properties and cooking yield significantly increased (p < 0.05) with increasing SC; meanwhile, adding SC caused the gel color to darken. All samples had similar curves with three phases, and the storage modulus (G’) values significantly increased with the increasing SC. The thermal stability of the PSE meat myofibrillar proteins was enhanced, and the G’ value at 80 °C increased with the increasing SC. Because water was bound more tightly to the protein matrix, the initial relaxation times of T21 and T22 shortened, the peak ratio of P21 significantly increased (p < 0.05), and the P22 significantly decreased (p < 0.05), which implied that the mobility of the water was reduced. Overall, SC could improve the thermal stability of the PSE meat myofibrillar proteins and increase the water-holding capacity and textural properties of the cooked PSE meat myofibrillar protein gels.
Collapse
Affiliation(s)
- Zhong-Wei Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiao-Li Zou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
- Department of Food Testing, Luohe Vocational College of Food, Luohe 462300, China
| | - Peng-Lei Yao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhuang-Li Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Han-Jun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
41
|
Huang Y, Liu Y, Zhang N, Zhang L, Ma X, Qin L, Dong X. The effects of trehalose synergy with NaCl on the textural, water distribution, and microstructure of snakehead fish filets induced by freeze-thaw cycles. J Texture Stud 2022; 54:276-287. [PMID: 36502504 DOI: 10.1111/jtxs.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
In this study, we investigated the effect of trehalose in concert with NaCl on the flesh of snakehead fish that had undergone freeze-thaw cycles. Four groups of treatments were compared in this study, including distilled water, 3% NaCl, antifreeze (4% wt/vol) with 3% NaCl, and 4% trehalose (wt/vol) with 3% (wt/vol) NaCl. The results showed that the addition of 4% trehalose (wt/vol) with 3% (wt/vol) NaCl reduced the cracks between muscle fibers and the pores on muscle fiber bundles caused by freeze-thaw cycles during frozen storage of snakehead fish, thus reducing mechanical damage to the fish tissue structure. Moreover, the treatment was able to reduce the thawing loss of snakehead fillets, reduce cooking loss, and help maintain the color of the fish. Further, 4% trehalose (wt/vol) + 3% (wt/vol) NaCl (T) could slow down the reduction of hardness, elasticity, and chewiness of fish fillets during frozen storage. This study provides a theoretical basis for reducing the freeze-thaw cycle on the quality changes of snakehead fish during transportation and marketing.
Collapse
Affiliation(s)
- Yizhen Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Yu Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Nana Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Lin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Xiaoxiao Ma
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Lei Qin
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| |
Collapse
|
42
|
Wu Y, Du Q, Fan X, Zhou C, He J, Sun Y, Xia Q, Pan D. Interaction between Kidney-Bean Polysaccharides and Duck Myofibrillar Protein as Affected by Ultrasonication: Effects on Gel Properties and Structure. Foods 2022; 11:foods11243998. [PMID: 36553740 PMCID: PMC9778066 DOI: 10.3390/foods11243998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The interaction of polysaccharides-protein with varied origins and structures provides opportunities for tailoring the physicochemical qualities of food protein-based materials. This work examined the feasibility of ultrasound-modified interaction between kidney bean dietary fiber (KSDF) and duck myofibrillar proteins (MP) to improve the physicochemical properties of the gel matrices. Accordingly, gel strength, water holding capacity, solubility, chemical interaction, secondary structure, and network structure of MP were determined. The addition of KSDF combined with the ultrasound treatment contributed to the improved water retention capability, G' values, and the reduced particle size of protein molecules, corresponding with the formation of dense pore-like structures. The results demonstrated that 1% KSDF and ultrasonication at 400 W significantly enhanced gel strength by up to 109.58% and the solubility increased by 213.42%. The proportion of α-helices of MP gels treated with 1% KSDF and ultrasonication at 400 W was significantly increased. The sonication-mediated KSDF-MP interaction significantly improved hydrophobic interactions of the proteins, thus explaining the denser network structure of the MP gels incorporated KSDF with ultrasound treatments. These results demonstrated the role of ultrasonication treatments in modifying KSDF-protein interaction to improve the gel and structural properties of the MP gels.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315048, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315048, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315048, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315048, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315048, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315048, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315048, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315048, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
43
|
Jia Y, Zhang Z, Li M, Ji N, Qin Y, Wang Y, Shi R, Wang T, Xiong L, Sun Q. The effect of hydroxypropyl starch on the improvement of mechanical and cooking properties of rice noodles. Food Res Int 2022; 162:111922. [DOI: 10.1016/j.foodres.2022.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
|
44
|
Tong L, Tang H, Chen J, Sang S, Liang R, Zhang Z, Ou C. Origin of static magnetic field induced quality improvement in sea bass ( Lateolabrax japonicus) during cold storage: Microbial growth inhibition and protein structure stabilization. Front Nutr 2022; 9:1066964. [PMID: 36466411 PMCID: PMC9709135 DOI: 10.3389/fnut.2022.1066964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
To explore the potential application of static magnetic field (SMF) treatment in marine fish preservation, the sea bass (Lateolabrax japonicus) was exposed to SMF (5 mT) and its quality changes during cold storage were evaluated by total viable counts, water holding capacity, pH, color, and textural properties. Characteristics of the protein in the presence of SMF were investigated by measuring total sulfhydryl (SH) content, Ca2+-ATPase activity, secondary structure, and muscle microstructure. SMF treatment exhibited positive effects on fish quality, showing favorable performance on the most quality indicators, especially a significant reduction in the Microbial Counts. Furthermore, higher total SH content and Ca2+-ATPase activity were observed in SMF-treated samples, demonstrating that the oxidation and denaturation of myofibrillar protein (MP) were delayed due to SMF treatment. The transformation of α-helix to random coil was prevented in SMF-treated samples, indicating that the secondary structure of MP was stabilized by SMF treatment. The above changes in protein structures were accompanied by changes in muscle microstructure. More intact and compact structures were observed in SMF-treated samples, characterized by well-defined boundaries between myofibers. Therefore, our findings suggest that under the conditions of this article, SMF treatment could maintain the quality of fish mainly by inhibiting the growth of microorganisms and enhancing the stability of protein structures, and could be a promising auxiliary technology for preservation of aquatic products.
Collapse
Affiliation(s)
- Li Tong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo, China
| | - Jingyi Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ruiping Liang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhepeng Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
45
|
Li Y, Jiang R, Gao Y, Duan Y, Zhang Y, Zhu M, Xiao Z. Investigation of the Effect of Rice Bran Content on the Antioxidant Capacity and Related Molecular Conformations of Plant-Based Simulated Meat Based on Raman Spectroscopy. Foods 2022; 11:3529. [PMID: 36360142 PMCID: PMC9657750 DOI: 10.3390/foods11213529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 05/25/2024] Open
Abstract
At present, plant-based simulated meat is attracting more and more attention as a meat substitute. This study discusses the possibility of partial substitution of rice bran (RB) for soybean protein isolate (SPI) in preparing plant-based simulated meat. RB was added to SPI at 0%, 5%, 10%, 15%, and 20% to prepare RB-SPI plant-based simulated meat by the high moisture extrusion technique. RB-SPI plant-based simulated meat revealed greater polyphenol content and preferable antioxidant capacity (DPPH radical scavenging capacity, ABTS scavenging ability, and FRAP antioxidant capacity) compared to SPI plant-based simulated meat. The aromatic amino acids (tryptophan and tyrosine) of RB-SPI plant-based simulated meats tend to be masked first, and then the hydrophobic groups are exposed as RB content increases and the polarity of the surrounding environment increases due to the change in the disulfide conformation of RB-SPI plant-based simulated meats from a stable gauche-gauche-gauche conformation to a trans-gauche-trans conformation.
Collapse
Affiliation(s)
- Yanran Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Ruisheng Jiang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yuzhe Gao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yumin Duan
- Experimental Center of Shenyang Normal University (Department of Grain), Shenyang 110034, China
| | - Yifan Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Minpeng Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
46
|
Yang X, Lan W, Zhao X, Lang A, Xie J. Inhibitory effects of chitosan grafted chlorogenic acid on antioxidase activity, and lipid and protein oxidation of sea bass (Lateolabrax japonicus) fillets stored at 4 °C. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6236-6245. [PMID: 35502594 DOI: 10.1002/jsfa.11972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sea bass (Lateolabrax japonicus), a marine fish, is prone to spoilage due to its high nutritional value. Preservatives are commonly used for storage for the production of fish fillets. In this work, chitosan (CS) was grafted onto chlorogenic acid (CA) to obtain a new preservative, chitosan grafted chlorogenic acid (CS-g-CA), which could enhance the biochemical properties of chitosan and obtain better antibacterial and antibacterial properties. This study therefore investigated the inhibitory effects of CS-g-CA on antioxidant enzyme activity, and lipid and protein oxidation of sea bass fillets stored at 4 °C. RESULTS Compared with the control group on day 9, the activity of 63% catalase (CAT), 78% superoxide diamidase (SOD), 73% glutathione peroxide enzyme (GSH-Px) and 60% DPPH scavenging activity was retained by CS-g-CA treatment. Changes in thiobarbituric acid (TBA) and conjugated diene (CD) values were delayed by CS-g-CA treatment. The use of CS-g-CA retards protein oxidation by inhibiting the formation of free amino acid and carbonyl groups, and maintaining a higher sulfhydryl content. Regarding myofibril degradation, CS-g-CA could maintain protein secondary structure by increasing the ratio of α-helices. CONCLUSIONS Chitosan-grafted chlorogenic acid could protect the activity of antioxidant enzymes and inhibit lipid oxidation by slowing down the production of lipid oxidation products. It also delayed protein oxidation by inhibiting oxidation product generation and stabilizing protein structure. It could therefore be used as a promising preservative for seafood. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - XinYu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
47
|
Yang K, Wu D, Wang L, Wang X, Ma J, Sun W. Direct current magnetic field: An optional strategy for reducing pyrophosphate in gelatinous meat products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
49
|
Kang ZL, Shang XY, Li YP, Ma HJ. Effect of ultrasound-assisted sodium bicarbonate treatment on gel characteristics and water migration of reduced-salt pork batters. ULTRASONICS SONOCHEMISTRY 2022; 89:106150. [PMID: 36063789 PMCID: PMC9463446 DOI: 10.1016/j.ultsonch.2022.106150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 05/25/2023]
Abstract
To study the potential usefulness of ultrasound (0, 30, and 60 min) and sodium bicarbonate (0 % and 0.2 %) combination on the reduced-salt pork batters, the changes in water holding capacity, gel properties, and microstructure were investigated. The pH, salt-soluble proteins solubility, cooking yield, and b* values of reduced-salt pork batters significantly increased (P < 0.05) with the increase in ultrasound time and the addition of sodium bicarbonate, leading to the hardness, springiness, cohesiveness, and chewiness significantly increased (P < 0.05). Furthermore, the use of ultrasound-assisted sodium bicarbonate treatment caused the reduced-salt pork batters to form a typical spongy structure with more evenly cavities. Due to the initial relaxation time of T21 and T22 were shorter, and the peak ratio of P21 was increased and P22 was decreased after ultrasound-assisted sodium bicarbonate treatment, implying that the mobility of water was reduced. Thus, the use of ultrasound-assisted sodium bicarbonate treatment enabled reduced-salt pork batters to have better gel characteristics and higher cooking yield.
Collapse
Affiliation(s)
- Zhuang-Li Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China.
| | - Xue-Yan Shang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Yan-Ping Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Han-Jun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| |
Collapse
|
50
|
Zhu M, Li H, Xing Y, Ma C, Peng Z, Jiao L, Kang Z, Zhao S, Ma H. Understanding the influence of fluctuated low-temperature combined with high-humidity thawing on gelling properties of pork myofibrillar proteins. Food Chem 2022; 404:134238. [DOI: 10.1016/j.foodchem.2022.134238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|