1
|
Fang M, Liu Y, Gao X, Yu J, Tu X, Mo X, Zhu H, Zou Y, Huang C, Fan S. Perillaldehyde alleviates polyQ-induced neurodegeneration through the induction of autophagy and mitochondrial UPR in Caenorhabditis elegans. Biofactors 2024. [PMID: 38990058 DOI: 10.1002/biof.2089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease associated with autophagy disorder and mitochondrial dysfunction. Here, we identified therapeutic potential of perillaldehyde (PAE), a monoterpene compound obtained from Perilla frutescens (L.) Britt., in the Caenorhabditis elegans (C. elegans) model of HD, which included lifespan extension, healthspan improvement, decrease in polyglutamine (polyQ) aggregation, and preservation of mitochondrial network. Further analyses indicated that PAE was able to induce autophagy and mitochondrial unfolded protein reaction (UPRmt) activation and positively regulated expression of associated genes. In lgg-1 RNAi C. elegans or C. elegans with UPRmt-related genes knockdown, the effects of PAE treatment on polyQ aggregation or rescue polyQ-induced toxicity were attenuated, suggesting that its neuroprotective activity depended on autophagy and UPRmt. Moreover, we found that pharmacological and genetic activation of UPRmt generally protected C. elegans from polyQ-induced cytotoxicity. Finally, PAE promoted serotonin synthesis by upregulating expression of TPH-1, and serotonin synthesis and neurosecretion were required for PAE-mediated UPRmt activation and its neuroprotective activity. In conclusion, PAE is a potential therapy for polyQ-related diseases including HD, which is dependent on autophagy and cell-non-autonomous UPRmt activation.
Collapse
Affiliation(s)
- Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Hernández-García S, García-Cano B, Martínez-Rodríguez P, Henarejos-Escudero P, Gandía-Herrero F. Olive oil tyrosols reduce α-synuclein aggregation in vitro and in vivo after ingestion in a Caenorhabditis elegans Parkinson's model. Food Funct 2024; 15:7214-7223. [PMID: 38817211 DOI: 10.1039/d4fo01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Parkinson's disease is the neurodegenerative motor disorder with the highest incidence worldwide. Among other factors, Parkinson's disease is caused by the accumulation of α-synuclein aggregates in a patient's brain. In this work, five molecules present in the diet are proposed as possible nutraceuticals to prevent and/or reduce the formation of α-synuclein oligomers that lead to Parkinson's disease. The olive oil polyphenols tyrosol, hydroxytyrosol (HT), hydroxytyrosol acetate (HTA) and dihydroxyphenyl acetic acid (DOPAC) besides vitamin C were tested using a cellular model of α-synuclein aggregation and a Caenorhabditis elegans Parkinson's disease animal model. Levodopa was included in the assays as the main drug prescribed to treat the disease as well as dopamine, its direct metabolite. HTA and DOPAC completely hindered α-synuclein aggregation in vitro, while dopamine reduced the aggregation by 28.7%. The Parallel Artificial Membrane Permeability Assay (PAMPA) showed that HTA had the highest permeability through brain lipids among the compounds tested. Furthermore, the C. elegans Parkinson's disease model made it possible to assess the chosen compounds in vivo. The more effective substances in vivo were DOPAC and HTA which reduced the αS aggregation inside the animals by 79.2% and 76.2%, respectively. Moreover, dopamine also reduced the aggregates by 67.4% in the in vivo experiment. Thus, the results reveal the potential of olive oil tyrosols as nutraceuticals against α-synuclein aggregation.
Collapse
Affiliation(s)
- Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Beatriz García-Cano
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
3
|
Hernández-García S, Guerrero-Rubio MA, Henarejos-Escudero P, Martínez-Rodríguez P, Gandía-Herrero F. Exploring in the classroom the relationship between alcohol intake and behavioral disorders through an animal model. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 52:474-479. [PMID: 38501696 DOI: 10.1002/bmb.21829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/10/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Alcohol consumption has profound effects on behavior, such as impaired judgment, addiction or even death. It is estimated that alcohol contributes to around three million deaths worldwide, 13.5% of them in young people with ages between 20 and 39 years. Consequently, it is necessary to raise awareness among college and high school students of the risk related to alcohol drinking. The small nematode Caenorhabditis elegans is an animal widely used as a model organism to study nearly all aspects of Biochemistry. It is a powerful tool to test the potential bioactivity and molecular mechanisms of natural compounds and drugs in vivo. Therefore, it is an interesting topic to include in an undergraduate course of Biotechnology, Biochemistry or Biology students among other scientific vocations. C. elegans is also used as a neurobiological model to evaluate substances' neurotoxicity and behavioral effects. The proposed experiment introduces students to the handling of this preclinical model and to the evaluation of behavioral alterations induced by chemicals in scientific research. The effects of different doses of ethanol on C. elegans behavior are studied using a versatile chemotaxis assay. This laboratory experiment is suitable for an undergraduate course. The practical session can be used in the global strategies of information and awareness of educational centres to mitigate the impact of alcohol abuse among students, both in formal courses or in Science fairs or exhibitions.
Collapse
Affiliation(s)
- Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| |
Collapse
|
4
|
Marco A, Ashoo P, Hernández-García S, Martínez-Rodríguez P, Cutillas N, Vollrath A, Jordan D, Janiak C, Gandía-Herrero F, Ruiz J. Novel Re(I) Complexes as Potential Selective Theranostic Agents in Cancer Cells and In Vivo in Caenorhabditis elegans Tumoral Strains. J Med Chem 2024; 67:7891-7910. [PMID: 38451016 PMCID: PMC11129195 DOI: 10.1021/acs.jmedchem.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
A series of rhenium(I) complexes of the type fac-[Re(CO)3(N^N)L]0/+, Re1-Re9, was synthesized, where N^N = benzimidazole-derived bidentate ligand with an ester functionality and L = chloride or pyridine-type ligand. The new compounds demonstrated potent activity toward ovarian A2780 cancer cells. The most active complexes, Re7-Re9, incorporating 4-NMe2py, exhibited remarkable activity in 3D HeLa spheroids. The emission in the red region of Re9, which contains an electron-deficient benzothiazole moiety, allowed its operability as a bioimaging tool for in vitro and in vivo visualization. Re9 effectivity was tested in two different C. elegans tumoral strains, JK1466 and MT2124, to broaden the oncogenic pathways studied. The results showed that Re9 was able to reduce the tumor growth in both strains by increasing the ROS production inside the cells. Moreover, the selectivity of the compound toward cancerous cells was remarkable as it did not affect neither the development nor the progeny of the nematodes.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Pezhman Ashoo
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Samanta Hernández-García
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Pedro Martínez-Rodríguez
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Natalia Cutillas
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Annette Vollrath
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Dustin Jordan
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Fernando Gandía-Herrero
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| |
Collapse
|
5
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
6
|
de Araújo LCA, Leite NR, da Rocha PDS, Baldivia DDS, Agarrayua DA, Ávila DS, da Silva DB, Carollo CA, Campos JF, Souza KDP, dos Santos EL. Campomanesia adamantium O Berg. fruit, native to Brazil, can protect against oxidative stress and promote longevity. PLoS One 2023; 18:e0294316. [PMID: 37972127 PMCID: PMC10653513 DOI: 10.1371/journal.pone.0294316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Campomanesia adamantium O. Berg. is a fruit tree species native to the Brazilian Cerrado biome whose fruits are consumed raw by the population. The present study determined the chemical composition of the C. adamantium fruit pulp (FPCA) and investigated its in vitro antioxidant potential and its biological effects in a Caenorhabditis elegans model. The chemical profile obtained by LC-DAD-MS identified 27 compounds, including phenolic compounds, flavonoids, and organic carboxylic acids, in addition to antioxidant lipophilic pigments and ascorbic acid. The in vitro antioxidant activity was analysed by the radical scavenging method. In vivo, FPCA showed no acute reproductive or locomotor toxicity. It promoted protection against thermal and oxidative stress and increased the lifespan of C. elegans. It also upregulated the antioxidant enzymes superoxide dismutase and glutathione S-transferase and activated the transcription factor DAF-16. These results provide unprecedented in vitro and in vivo evidence for the potential functional use of FPCA in the prevention of oxidative stress and promotion of longevity.
Collapse
Affiliation(s)
- Laura Costa Alves de Araújo
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Natasha Rios Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Paola dos Santos da Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Danielle Araujo Agarrayua
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Daiana Silva Ávila
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Denise Brentan da Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
7
|
Guerrero-Rubio MA, Hernández-García S, García-Carmona F, Gandía-Herrero F. Consumption of commonly used artificial food dyes increases activity and oxidative stress in the animal model Caenorhabditis elegans. Food Res Int 2023; 169:112925. [PMID: 37254351 DOI: 10.1016/j.foodres.2023.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
In recent decades, the consumption of artificial colorants in foods and beverages has increased despite of concerns in the general population raised by studies that have shown possible injurious effects. In this study, tartrazine, sunset yellow, quinoline yellow, ponceau 4R, carmoisine and allura red were employed as pure compounds to explore their effects in vivo in the animal model Caenorhabditis elegans. The exposition of C. elegans to these artificial dyes produced damage related with aging such as oxidative stress and lipofuscin accumulation, as well as a heavy shortening of lifespan, alterations in movement patterns and alterations in the production of dopamine receptors. Besides, microarray analysis performed with worms treated with tartrazine and ponceau 4R showed how the consumption of synthetic colorants is able to alter the expression of genes involved in resistance to oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
8
|
Martínez-Rodríguez P, Guerrero-Rubio MA, Hernández-García S, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Characterization of betalain-loaded liposomes and its bioactive potential in vivo after ingestion. Food Chem 2023; 407:135180. [PMID: 36521390 DOI: 10.1016/j.foodchem.2022.135180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Betalains are plant pigments characterized by showing a wide range of beneficial properties for health. Its bioactive potential has been studied for the first time after its encapsulation in liposomes and subsequent administration to the animal model Caenorhabditis elegans. Phenylalanine-betaxanthin and indoline carboxylic acid-betacyanin encapsulated at concentrations of 25 and 500 μM managed to reduce lipid accumulation and oxidative stress in the nematodes. Highly antioxidant betalains dopaxanthin and betanidin were also included in the survival analyses. The results showed that phenylalanine-betaxanthin was the most effective betalain by increasing the lifespan of C. elegans by 21.8%. In addition, the administration of encapsulated natural betanidin increased the nematodes' survival rate by up to 13.8%. The preservation of the bioactive properties of betalains manifested in this study means that the stabilization of the plant pigments through encapsulation in liposomes can be postulated as a new way for administration in pharmacological and food applications.
Collapse
Affiliation(s)
- Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
9
|
Hernández-Cruz E, Eugenio-Pérez D, Ramírez-Magaña KJ, Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS OMEGA 2023; 8:8936-8959. [PMID: 36936291 PMCID: PMC10018526 DOI: 10.1021/acsomega.2c07025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is a natural physiological process where the levels of oxidants, such as reactive oxygen species (ROS) and nitrogen (RNS), exceed the strategy of antioxidant defenses, culminating in the interruption of redox signaling and control. Oxidative stress is associated with multiple pathologies, including premature aging, neurodegenerative diseases, obesity, diabetes, atherosclerosis, and arthritis. It is not yet clear whether oxidative stress is the cause or consequence of these diseases; however, it has been shown that using compounds with antioxidant properties, particularly compounds of natural origin, could prevent or slow down the progress of different pathologies. Within this context, the Caenorhabditis elegans (C. elegans) model has served to study the effect of different metabolites and natural compounds, which has helped to decipher molecular targets and the effect of these compounds on premature aging and some diseases such as neurodegenerative diseases and dyslipidemia. This article lists the studies carried out on C. elegans in which metabolites and natural extracts have been tested against oxidative stress and the pathologies associated with providing an overview of the discoveries in the redox area made with this nematode.
Collapse
Affiliation(s)
- Estefani
Yaquelin Hernández-Cruz
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biological Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Dianelena Eugenio-Pérez
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
10
|
Giraldo-Silva L, Ferreira B, Rosa E, Dias ACP. Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030543. [PMID: 36771630 PMCID: PMC9919935 DOI: 10.3390/plants12030543] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/12/2023]
Abstract
The use of Opuntia ficus-indica fruits in the agro-food sector is increasing for a multiplicity of players. This renewed interest is, in part, due to its organoleptic characteristics, nutritional value and health benefits. Furthermore, industries from different sectors intend to make use of its vast array of metabolites to be used in different fields. This trend represents an economic growth opportunity for several partners who could find new opportunities exploring non-conventional fruits, and such is the case for Opuntia ficus-indica. O. ficus-indica originates from Mexico, belongs to the Cactaceae family and is commonly known as opuntia, prickly pear or cactus pear. The species produces flowers, cladodes and fruits that are consumed either in raw or in processed products. Recent publications described that consumption of the fruit improves human health, exhibiting antioxidant activity and other relevant pharmacological activities through enzymatic and non-enzymatic mechanisms. Thus, we provide a systematic, scientific and rational review for researchers, consumers and other relevant stakeholders regarding the chemical composition and biological activities of O. ficus-indica fruits.
Collapse
Affiliation(s)
- Luis Giraldo-Silva
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Bárbara Ferreira
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Alberto C. P. Dias
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Feng J, Li X, Xiao Y, Zhang FR, Liu ZQ, Zhang HF, Yang XH. Effects of Se-enriched Chrysanthemum morifolium on lifespan and antioxidant defense-related gene expression of Drosophila melanogaster model. J Food Biochem 2022; 46:e14503. [PMID: 36331088 DOI: 10.1111/jfbc.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Chrysanthemum morifolium is a well-known edible medicinal plant in Asia and some other regions. Content of selenium in Se-enriched C. morifolium (SeCM) is significantly higher than that in traditional C. morifolium (non-Se-enriched C. morifolium, TCM). In order to understand health effects of SeCM, its chemical composition, lifespan-prolonging activities, and impacts on antioxidant defense-related gene expressions of model organism D. melanogaster were systematically studied. A total of eight phenols, including luteolin-7-O-glucoside, linarin, luteolin, apigenin, diosmetin, acacetin, 3-caffeoylquinic acid and 4,5-dicaffeoylquinic acid, were identified in SeCM extract. Compared with TCM, SeCM exhibited superior antioxidant properties. Intake of SeCM dramatically reduced malondialdehyde level and increased activities of endogenous antioxidant enzymes in fruit flies. SeCM was able to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase and hydrogen peroxide catalase, and extend lifespans of fruit flies. Comparatively high antioxidant capacities and lifespan-prolonging activities of SeCM might be attributed to its abundant phenols and selenium, which probably ameliorated accumulation of free radicals and susceptibility to oxidative stress. These findings provide clues on further exploitation and utilization of Se-enriched C. morifolium. PRACTICAL APPLICATIONS: Chrysanthemum morifolium has been used for nutraceutical and curative purposes in China for thousands of years. Se-enriched C. morifolium typically contains more selenium than traditional C. morifolium, and is widely consumed in Asia and some other regions. Selenium is an essential micronutrient for humans, and selenium deficiency may result in several diseases such as myocardial infarction. SeCM is one of important selenium supplements. In this study, SeCM was found to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase, and hydrogen peroxide catalase, and extend lifespans of experimental animals. These results provide supporting information for developing SeCM-based functional foods with distinct health benefits.
Collapse
Affiliation(s)
- Jing Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Xiao Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, PR China
| | - Fei-Ran Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Zi-Qi Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Hua-Feng Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Xiao-Hua Yang
- Research Station of Selenium-enriched Tea of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
13
|
Bioactive potential and spectroscopical characterization of a novel family of plant pigments betalains derived from dopamine. Food Res Int 2022; 162:111956. [DOI: 10.1016/j.foodres.2022.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
|
14
|
Attanzio A, Restivo I, Tutone M, Tesoriere L, Allegra M, Livrea MA. Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus indica, L.: A Critical Review of Accumulated Evidence and Perspectives. Antioxidants (Basel) 2022; 11:antiox11122364. [PMID: 36552572 PMCID: PMC9774763 DOI: 10.3390/antiox11122364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Phytochemicals from plant foods are considered essential to human health. Known for their role in the adaptation of plants to their environment, these compounds can induce adaptive responses in cells, many of which are directed at maintaining the redox tone. Indicaxanthin is a long-known betalain pigment found in the genus Opuntia of cactus pear and highly concentrated in the edible fruits of O. ficus indica, L. whose bioactivity has been overlooked until recently. This review summarizes studies conducted so far in vitro and in vivo, most of which have been performed in our laboratory. The chemical and physicochemical characteristics of Indicaxanthin are reflected in the molecule's reducing properties and antioxidant effects and help explain its ability to interact with membranes, modulate redox-regulated cellular pathways, and possibly bind to protein molecules. Measurement of bioavailability in volunteers has been key to exploring its bioactivity; amounts consistent with dietary intake, or plasma concentration after dietary consumption of cactus pear fruit, have been used in experimental setups mimicking physiological or pathophysiological conditions, in cells and in animals, finally suggesting pharmacological potential and relevance of Indicaxanthin as a nutraceutical. In reporting experimental results, this review also aimed to raise questions and seek insights for further basic research and health promotion applications.
Collapse
|
15
|
Ortega-Forte E, Hernández-García S, Vigueras G, Henarejos-Escudero P, Cutillas N, Ruiz J, Gandía-Herrero F. Potent anticancer activity of a novel iridium metallodrug via oncosis. Cell Mol Life Sci 2022; 79:510. [PMID: 36066676 PMCID: PMC9448686 DOI: 10.1007/s00018-022-04526-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Oncosis (from Greek ónkos, meaning "swelling") is a non-apoptotic cell death process related to energy depletion. In contrast to apoptosis, which is the main form of cell death induced by anticancer drugs, oncosis has been relatively less explored but holds potential to overcome drug resistance phenomena. In this study, we report a novel rationally designed mitochondria-targeted iridium(III) complex (OncoIr3) with advantageous properties as a bioimaging agent. OncoIr3 exhibited potent anticancer activity in vitro against cancer cells and displayed low toxicity to normal dividing cells. Flow cytometry and fluorescence-based assays confirmed an apoptosis-independent mechanism involving energy depletion, mitochondrial dysfunction and cellular swelling that matched with the oncotic process. Furthermore, a Caenorhabditis elegans tumoral model was developed to test this compound in vivo, which allowed us to prove a strong oncosis-derived antitumor activity in animals (with a 41% reduction of tumor area). Indeed, OncoIr3 was non-toxic to the nematodes and extended their mean lifespan by 18%. Altogether, these findings might shed new light on the development of anticancer metallodrugs with non-conventional modes of action such as oncosis, which could be of particular interest for the treatment of apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Enrique Ortega-Forte
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
16
|
Li LX, Chen MS, Zhang ZY, Paulsen BS, Rise F, Huang C, Feng B, Chen XF, Jia RY, Ding CB, Feng SL, Li YP, Chen YL, Huang Z, Zhao XH, Yin ZQ, Zou YF. Structural features and antioxidant activities of polysaccharides from different parts of Codonopsis pilosula var. modesta (Nannf.) L. T. Shen. Front Pharmacol 2022; 13:937581. [PMID: 36091763 PMCID: PMC9449496 DOI: 10.3389/fphar.2022.937581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, three acidic polysaccharides from different plant parts of Codonopsis pilosula var. Modesta (Nannf.) L. T. Shen were obtained by ion exchange chromatography and gel filtration chromatography, and the yields of these three polysaccharides were different. According to the preliminary experimental results, the antioxidant activities of the polysaccharides from rhizomes and fibrous roots (CLFP-1) were poor, and was thus not studied further. Due to this the structural features of polysaccharides from roots (CLRP-1) and aerial parts (CLSP-1) were the object for this study and were structurally characterized, and their antioxidant activities were evaluated. As revealed by the results, the molecular weight of CLRP-1and CLSP-1 were 15.9 kDa and 26.4 kDa, respectively. The monosaccharide composition of CLRP-1 was Ara, Rha, Fuc, Xyl, Man, Gal, GlcA, GalA in a ratio of 3.8: 8.4: 1.0: 0.8: 2.4: 7.4: 7.5: 2.0: 66.7, and Ara, Rha, Gal, GalA in a ratio of 5.8: 8.9: 8.0: 77.0 in for CLSP-1. The results of structural elucidation indicated that both CLRP-1 and CLSP-1 were pectic polysaccharides, mainly composed of 1, 4-linked galacturonic acid with long homogalacturonan regions. Arabinogalactan type I and arabinogalactan type II were presented as side chains. The antioxidant assay in IPEC-J2 cells showed that both CLRP-1 and CLSP-1 promoted cell viability and antioxidant activity, which significantly increase the level of total antioxidant capacity and the activity of superoxide dismutase, catalase, and decrease the content of malondialdehyde. Moreover, CLRP-1 and CLSP-1 also showed powerful antioxidant abilities in Caenorhabditis elegans and might regulate the nuclear localization of DAF-16 transcription factor, induced antioxidant enzymes activities, and further reduced reactive oxygen species and malondialdehyde contents to increase the antioxidant ability of Caenorhabditis elegans. Thus, these finding suggest that CLRP-1 and CLSP-1 could be used as potential antioxidants.
Collapse
Affiliation(s)
- Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meng-Si Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zi-Yu Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chun-Bang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shi-Ling Feng
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yang-Ping Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yu-Long Chen
- Sichuan Academy of Forestry, Ecology Restoration and Conservation on Forestry and Wetland Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Yu-Long Chen, ; Yuan-Feng Zou,
| | - Zhen Huang
- Sichuan Academy of Forestry, Ecology Restoration and Conservation on Forestry and Wetland Key Laboratory of Sichuan Province, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yu-Long Chen, ; Yuan-Feng Zou,
| |
Collapse
|
17
|
Abstract
In the last years, the use of natural phytochemical compounds as protective agents in the prevention and treatment of obesity and the related-metabolic syndrome has gained much attention worldwide. Different studies have shown health benefits for many vegetables such Opuntia ficus-indica and Beta vulgaris and their pigments collectively referred as betalains. Betalains exert antioxidative, anti-inflammation, lipid lowering, antidiabetic and anti-obesity effects. This review summarizes findings in the literature and highlights the therapeutic potential of betalains and their natural source as valid alternative for supplementation in obesity-related disorders treatment. Further research is needed to establish the mechanisms through which these natural pigments exert their beneficial effects and to translate the promising findings from animal models to humans.
Collapse
Affiliation(s)
- Pasquale Calvi
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy.,Dipartment of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Simona Terzo
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| | - Antonella Amato
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| |
Collapse
|
18
|
Martínez-Rodríguez P, Guerrero-Rubio MA, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Health-promoting potential of betalains in vivo and their relevance as functional ingredients: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Gea-González A, Hernández-García S, Henarejos-Escudero P, Martínez-Rodríguez P, García-Carmona F, Gandía-Herrero F. Polyphenols from traditional Chinese medicine and Mediterranean diet are effective against Aβ toxicity in vitro and in vivo in Caenorhabditis elegans. Food Funct 2022; 13:1206-1217. [PMID: 35018947 DOI: 10.1039/d1fo02147h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential of naturally occurring polyphenols as nutraceuticals to prevent and/or treat Alzheimer's disease is studied. Five structurally related flavones and four tyrosols were tested in vitro in human amyloid-β peptide aggregation assays. The most promising compounds were two flavones, scutellarein and baicalein, and two tyrosols hydroxytyrosol and hydroxytyrosol acetate. These compounds caused a dose-dependent reduction of Aβ-peptide aggregation up to 90% for the flavones and 100% for the tyrosols, at concentrations of 83.3 μM and 33.3 mM, respectively. The IC50 value obtained for scutellarein was 22.5 μM, and was slightly higher for baicalein, 25.9 μM, while for hydroxytyrosol and hydroxytyrosol acetate they were 0.57 mM and 0.62 mM. Given these results, the compounds were selected to conduct in vivo assays with the Caenorhabditis elegans animal model of Alzheimer's disease. The amyloid anti-aggregation ability of these polyphenols was demonstrated in in vivo aggregation assays in which 1 mM hydroxytyrosol reduced the amyloid plaques in the mutant strain CL2331 by 43%. The neuroprotective effect was evaluated in chemotaxis experiments carried out with transgenic strain CL2355 that expresses the human amyloid-β peptide in the neurons. The chemotaxis index was improved by 240% when the neuron-impaired animals were treated with 1 mM hydroxytyrosol. The results indicate that the four molecules would be viable candidates to develop nutraceuticals that interfere in amyloid-β peptide aggregation and, consequently, prevent and/or treat Alzheimer's disease.
Collapse
Affiliation(s)
- Adriana Gea-González
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
20
|
Carreón-Hidalgo JP, Franco-Vásquez DC, Gómez-Linton DR, Pérez-Flores LJ. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res Int 2022; 151:110821. [PMID: 34980373 DOI: 10.1016/j.foodres.2021.110821] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022]
Abstract
Betalains are plant pigments with functional properties used mainly as food dyes. However, they have been shown to be unstable to different environmental factors. This paper provides a review of (1) Betalain plant sources within several plant families such as Amaranthaceae, Basellaceae, Cactaceae, Portulacaceae, and Nyctaginaceae, (2) The biosynthesis pathway of betalains for both betacyanins and betaxanthins, (3) Betalain extraction process, including non-conventional technologies like microwave-assisted, ultrasound-assisted, and pulsed electrical field extraction, (4) Factors affecting their stability, mainly temperature, water activity, light incidence, as well as oxygen concentration, metals, and the presence of antioxidants, as well as activation energy as a mean to assess stability, and novel food-processing technologies able to prevent betalain degradation, (5) Methods to increase shelf life, mainly encapsulation by spray drying, freeze-drying, double emulsions, ionic gelation, nanoliposomes, hydrogels, co-crystallization, and unexplored methods such as complex coacervation and electrospraying, (6) Biological properties of betalains such as their antioxidant, hepatoprotective, antitumoral, and anti-inflammatory activities, among others, and (7) Applications in foods and other products such as cosmetics, textiles and solar cells, among others. Additionally, study perspectives for further research are provided for each section.
Collapse
Affiliation(s)
| | | | - Darío R Gómez-Linton
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico
| | - Laura J Pérez-Flores
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico.
| |
Collapse
|
21
|
Xiao X, Zhou Y, Tan C, Bai J, Zhu Y, Zhang J, Zhou X, Zhao Y. Barley β-glucan resist oxidative stress of Caenorhabditis elegans via daf-2/daf-16 pathway. Int J Biol Macromol 2021; 193:1021-1031. [PMID: 34798183 DOI: 10.1016/j.ijbiomac.2021.11.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022]
Abstract
β-glucan is an important functional active component with relatively high content in barley. It is reported to possess various biological activities, including anti-oxidative stress, but its mechanism of action remains obscure. In the current study, C. elegans was used as an in vivo animal model to explore its anti-oxidative stress mechanism. We found that both RBG (raw barley β-glucan) and FBG (fermented barley β-glucan) could significantly reduce the ROS level in C. elegans under oxidative emergency conditions. In addition, both FBG and RBG had positive effects on SOD and CAT enzyme activity, and FBG treatment obviously reduced the MDA content in nematodes under oxidative stress. Moreover, FBG and RBG pretreatment could extend the median lifespan of C. elegans under oxidative stress. The CB1370 and CF1038 mutants further confirmed that daf-2 and daf-16 were necessary for FBG or RBG to participate in anti-oxidative stress, and the RT-PCR results also evidenced that β-glucans resist oxidative stress in C. elegans partially through the daf-2/daf-16 pathway. In summary, barley β-glucan has high potential to defense oxidative stress as a natural polysaccharide.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Neuroprotective Effects against Glutamate-Induced HT-22 Hippocampal Cell Damage and Caenorhabditis elegans Lifespan/Healthspan Enhancing Activity of Auricularia polytricha Mushroom Extracts. Pharmaceuticals (Basel) 2021; 14:ph14101001. [PMID: 34681226 PMCID: PMC8539790 DOI: 10.3390/ph14101001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is associated with several diseases, particularly neurodegenerative diseases, commonly found in the elderly. The attenuation of oxidative status is one of the alternatives for neuroprotection and anti-aging. Auricularia polytricha (AP), an edible mushroom, contains many therapeutic properties, including antioxidant properties. Herein, we report the effects of AP extracts on antioxidant, neuroprotective, and anti-aging activities. The neuroprotective effect of AP extracts against glutamate-induced HT-22 neuronal damage was determined by evaluating the cytotoxicity, intracellular reactive oxygen species (ROS) accumulation, and expression of antioxidant enzyme genes. Lifespan and healthspan assays were performed to examine the effects of AP extracts from Caenorhabditis elegans. We found that ethanolic extract (APE) attenuated glutamate-induced HT-22 cytotoxicity and increased the expression of antioxidant enzyme genes. Moreover, APE promoted in the longevity and health of the C. elegans. Chemical analysis of the extracts revealed that APE contains the highest quantity of flavonoids and a reasonable percentage of phenols. The lipophilic compounds in APE were identified by gas chromatography/mass spectrometry (GC/MS), revealing that APE mainly contains linoleic acid. Interestingly, linoleic acid suppressed neuronal toxicity and ROS accumulation from glutamate induction. These results indicate that AP could be an exciting natural source that may potentially serves as neuroprotective and anti-aging agents.
Collapse
|
23
|
Vertti-Quintero N, Berger S, Casadevall I Solvas X, Statzer C, Annis J, Ruppen P, Stavrakis S, Ewald CY, Gunawan R, deMello AJ. Stochastic and Age-Dependent Proteostasis Decline Underlies Heterogeneity in Heat-Shock Response Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102145. [PMID: 34196492 DOI: 10.1002/smll.202102145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Significant non-genetic stochastic factors affect aging, causing lifespan differences among individuals, even those sharing the same genetic and environmental background. In Caenorhabditis elegans, differences in heat-shock response (HSR) are predictive of lifespan. However, factors contributing to the heterogeneity of HSR are still not fully elucidated. Here, the authors characterized HSR dynamics in isogenic C. elegans expressing GFP reporter for hsp-16.2 for identifying the key contributors of HSR heterogeneity. Specifically, microfluidic devices that enable cross-sectional and longitudinal measurements of HSR dynamics in C. elegans at different scales are developed: in populations, within individuals, and in embryos. The authors adapted a mathematical model of HSR to single C. elegans and identified model parameters associated with proteostasis-maintenance of protein homeostasis-more specifically, protein turnover, as the major drivers of heterogeneity in HSR dynamics. It is verified that individuals with enhanced proteostasis fidelity in early adulthood live longer. The model-based comparative analysis of protein turnover in day-1 and day-2 adult C. elegans revealed a stochastic-onset of age-related proteostasis decline that increases the heterogeneity of HSR capacity. Finally, the analysis of C. elegans embryos showed higher HSR and proteostasis capacity than young adults and established transgenerational contribution to HSR heterogeneity that depends on maternal age.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Xavier Casadevall I Solvas
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Biosystems, KU Leuven, Leuven, B-3001, Belgium
| | - Cyril Statzer
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Jillian Annis
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Peter Ruppen
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Stavros Stavrakis
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Collin Y Ewald
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Rudiyanto Gunawan
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
24
|
Shi H, Hu X, Zheng H, Li C, Sun L, Guo Z, Huang W, Yu R, Song L, Zhu J. Two novel antioxidant peptides derived from Arca subcrenata against oxidative stress and extend lifespan in Caenorhabditis elegans. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
25
|
Guerrero-Rubio MA, Hernández-García S, García-Carmona F, Gandía-Herrero F. Flavonoids' Effects on Caenorhabditis elegans' Longevity, Fat Accumulation, Stress Resistance and Gene Modulation Involve mTOR, SKN-1 and DAF-16. Antioxidants (Basel) 2021; 10:antiox10030438. [PMID: 33809299 PMCID: PMC8001597 DOI: 10.3390/antiox10030438] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Flavonoids are potential nutraceutical compounds present in diary food. They are considered health-promoting compounds and promising drugs for different diseases, such as neurological and inflammatory diseases, diabetes and cancer. Therefore, toxicological and mechanistic studies should be done to assert the biological effects and identify the molecular targets of these compounds. In this work we describe the effects of six structurally-related flavonoids—baicalein, chrysin, scutellarein, 6-hydroxyflavone, 6,7-dihydroxyflavone and 7,8-dihydroxyflavone—on Caenorhabditis elegans’ lifespan and stress resistance. The results showed that chrysin, 6-hydroxyflavone and baicalein prolonged C. elegans’ lifespan by up to 8.5%, 11.8% and 18.6%, respectively. The lifespan extensions caused by these flavonoids are dependent on different signaling pathways. The results suggested that chrysin’s effects are dependent on the insulin signaling pathway via DAF-16/FOXO. Baicalein and 6-hydroxyflavone’s effects are dependent on the SKN-1/Nfr2 pathway. In addition, microarray analysis showed that baicalein downregulates important age-related genes, such as mTOR and PARP.
Collapse
|
26
|
Guerrero-Rubio MA, Hernández-García S, García-Carmona F, Gandía-Herrero F. Biosynthesis of a novel polymeric chitosan-betaxanthin and characterization of the first sugar-derived betalains and their effects in the in vivo model Caenorhabditis elegans. Carbohydr Polym 2021; 252:117141. [PMID: 33183600 DOI: 10.1016/j.carbpol.2020.117141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/16/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Betaxanthins are nitrogenous plant pigments belonging to the family of betalains and they are known for their health-promoting effects and fluorescent properties. A novel biotechnological approach in the synthesis of these compounds has allowed the synthesis of high amounts of known betalains and of novel, tailor-made betalains through the condensation of the structural unit - betalamic acid - with amine groups of different compounds. Here we describe the synthesis and characterization of chitosan-betaxanthin, the first fluorescent polymeric betaxanthin which forms nanoparticles and that might combine the fluorescent properties of betalains and the properties of chitosan, a sugar polymer widely used with medical purposes. In addition, glucosamine, the structural unit of chitosan, and its stereoisomer galactosamine were shown to condense in solution with betalamic acid. This produced novel molecules with spectral and in vivo antioxidant and anti-aging properties similar to those of biological betaxanthins, which are the first sugar-derived betaxanthins described.
Collapse
Affiliation(s)
- M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
27
|
Matencio A, Guerrero-Rubio MA, Gandía-Herrero F, García-Carmona F, López-Nicolás JM. Nanoparticles of betalamic acid derivatives with cyclodextrins. Physicochemistry, production characterization and stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Ortega E, Ballester FJ, Hernández-García A, Hernández-García S, Guerrero-Rubio MA, Bautista D, Santana MD, Gandía-Herrero F, Ruiz J. Novel organo-osmium(ii) proteosynthesis inhibitors active against human ovarian cancer cells reduce gonad tumor growth inCaenorhabditis elegans. Inorg Chem Front 2021. [DOI: 10.1039/c9qi01704f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel Os(ii) arene complexes with a deprotonated ppy or ppy-CHO C^N ligand have been synthesized to selectively act on cancer cells as proteosynthesis inhibitorsin vitroand exert antitumor activityin vivoinC. elegansmodels.
Collapse
Affiliation(s)
- Enrique Ortega
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Francisco J. Ballester
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Alba Hernández-García
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | - M. Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | | | - M. Dolores Santana
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | - José Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| |
Collapse
|
29
|
Zhao X, Zhang X, Tie S, Hou S, Wang H, Song Y, Rai R, Tan M. Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: An in vitro and in vivo study. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Guerrero‐Rubio MA, García‐Carmona F, Gandía‐Herrero F. First description of betalains biosynthesis in an aquatic organism: characterization of 4,5-DOPA-extradiol-dioxygenase activity in the cyanobacteria Anabaena cylindrica. Microb Biotechnol 2020; 13:1948-1959. [PMID: 32767544 PMCID: PMC7533325 DOI: 10.1111/1751-7915.13641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 01/01/2023] Open
Abstract
The biosynthesis of betalamic acid, the structural unit of pigments betalains, is performed by enzymes with 4,5-DOPA-extradiol-dioxygenase activity. These enzymes were believed to be limited to plants of the order Caryophyllales and to some fungi. However, the discovery of Gluconacetobacter diazotrophicus as the first betalain-forming bacterium opened a new field in the search for novel biological systems able to produce betalains. This paper describes molecular and functional characterization of a novel dioxygenase enzyme from the aquatic cyanobacterium Anabaena cylindrica. The enzyme was found to be a homodimer of a polypeptide of 17.8 kDa that, opposite to previous related enzymes, showed a strong inhibition by excess of the precursor L-DOPA. However, its heterologous expression has allowed detecting the formation of the main compounds in the biosynthetic pathway of betalains. In addition, phylogenetic analysis has shown that this enzyme is not close related to enzymes from plants, fungi or proteobacteria such as G. diazotrophicus. The presence of enzymes that produce these health-promoting compounds is more diverse than expected. The discovery of this novel dioxygenase in the phylum cyanobacteria expands the presence of betalamic acid-forming enzymes in organisms of different nature with no apparent relationship among them.
Collapse
Affiliation(s)
- María Alejandra Guerrero‐Rubio
- Departamento de Bioquímica y Biología Molecular AUnidad Docente de BiologíaFacultad de VeterinariaRegional Campus of International Excellence ‘Campus Mare Nostrum’MurciaSpain
| | - Francisco García‐Carmona
- Departamento de Bioquímica y Biología Molecular AUnidad Docente de BiologíaFacultad de VeterinariaRegional Campus of International Excellence ‘Campus Mare Nostrum’MurciaSpain
| | - Fernando Gandía‐Herrero
- Departamento de Bioquímica y Biología Molecular AUnidad Docente de BiologíaFacultad de VeterinariaRegional Campus of International Excellence ‘Campus Mare Nostrum’MurciaSpain
| |
Collapse
|
31
|
Guerrero-Rubio MA, Hernández-García S, Escribano J, Jiménez-Atiénzar M, Cabanes J, García-Carmona F, Gandía-Herrero F. Betalain health-promoting effects after ingestion in Caenorhabditis elegans are mediated by DAF-16/FOXO and SKN-1/Nrf2 transcription factors. Food Chem 2020; 330:127228. [DOI: 10.1016/j.foodchem.2020.127228] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 01/03/2023]
|
32
|
Matencio A, Guerrero-Rubio MA, Caldera F, Cecone C, Trotta F, García-Carmona F, López-Nicolás JM. Lifespan extension in Caenorhabditis elegans by oxyresveratrol supplementation in hyper-branched cyclodextrin-based nanosponges. Int J Pharm 2020; 589:119862. [PMID: 32916214 DOI: 10.1016/j.ijpharm.2020.119862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
In this work, the increase of the Caenorhabditis elegans (C. elegans) lifespan extension using hyper-branched cyclodextrin-based nanosponges (CD-NS) complexing oxyresveratrol (OXY), and the possible inhibition of C. elegans phosphodiesterase type 4 (PDE4) were evaluated. The titration displacement of fluorescein was used to calculate the apparent complexation constant (KF) between CD-NS and OXY. Moreover, PDE4 was expressed in E. coli, purified and refolded in presence of cyclodextrins (CDs) to study its possible inhibition as pharmacological target of OXY. The apparent activity was characterized and the inhibitory effect of OXY on PDE4 displayed a competitive in vitro inhibition corroborated in silico. A maximum increase of the in vivo life expectancy of about 9.6% of using OXY/CD-NS complexes in comparison with the control was obtained, in contrast to the 6.5% obtained with free OXY. No effect on lifespan or toxicity with CD-NS alone was found. These results as a whole represent new opportunities to use OXY and CD-NS in lifespan products.
Collapse
Affiliation(s)
- Adrián Matencio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Fabrizio Caldera
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Claudio Cecone
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
33
|
Kuhn F, Azevedo ES, Noreña CPZ. Behavior of inulin, polydextrose, and egg albumin as carriers of
Bougainvillea glabra
bracts extract: Rheological performance and powder characterization. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fernanda Kuhn
- Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Eduarda Silva Azevedo
- Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | | |
Collapse
|
34
|
Henarejos-Escudero P, Hernández-García S, Guerrero-Rubio MA, García-Carmona F, Gandía-Herrero F. Antitumoral Drug Potential of Tryptophan-Betaxanthin and Related Plant Betalains in the Caenorhabditis elegans Tumoral Model. Antioxidants (Basel) 2020; 9:antiox9080646. [PMID: 32707947 PMCID: PMC7465535 DOI: 10.3390/antiox9080646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Betalains are plants pigments identified as potent antioxidant molecules, naturally present in foods like beetroot and prickly pears. Although activities described for betalain-containing formulations include cancer prevention and treatment, the use of extracts instead of purified pigments has avoided the investigation of the real chemopreventive and chemotherapeutic potential of these phytochemicals. Three betalain-rich extracts and six individual pure betalains were used in this work to characterize the activity and to explore possible molecular mechanisms. The animal model Caenorhabditis elegans (tumoral strain JK1466) was used to evaluate the effect of betalains as chemotherapeutics drugs. An objective evaluation method of tumor growth in C. elegans has been developed to assess the possible antitumoral activity of the different treatments. This protocol allowed a fast and reliable screening of possible antitumoral drugs. Among the betalains tested, tryptophan-betaxanthin reduced tumor size by 56.4% and prolonged the animal’s lifespan by 9.3%, indicating high effectiveness and low toxicity. Structure–activity relationships are considered. Assays with mutant strains of C. elegans showed that the mechanism underlying these effects was the modulation of the DAF-16 transcription factor and the insulin signaling pathway. Our results indicate that tryptophan-betaxanthin and related betalains are strong candidates as antitumoral molecules in cancer treatment.
Collapse
|
35
|
Martel J, Wu CY, Peng HH, Ko YF, Yang HC, Young JD, Ojcius DM. Plant and fungal products that extend lifespan in Caenorhabditis elegans. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:255-269. [PMID: 33015140 PMCID: PMC7517010 DOI: 10.15698/mic2020.10.731] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - John D. Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
36
|
Fang Z, Xiao B, Jiang W, Hao X, Tan J, Lu A, Li J, Wang W, Wang G, Zhang Y. The antioxidant capacity evaluation of polysaccharide hydrolyzates from pumpkin using Caenorhabditis elegans model. J Food Biochem 2020; 45:e13275. [PMID: 32515505 DOI: 10.1111/jfbc.13275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Our previous study has optimized the acid hydrolysis process of pumpkin polysaccharides (PPe) with scavenging ability based on central composite design. The aim of this study was to explore the in vivo-antioxidant ability of PPe and pumpkin polysaccharides acid-hydrolysis (PPe-S) using Caenorhabditis elegans. In composition analysis, the constituents of total sugar, protein, uronic acid, and sulfur groups in PPe-S were 87.03 ± 1.21%, 1.25 ± 0.78%, 37.61 ± 0.97%, and 0.14 ± 0.04%, respectively. Besides, results of antioxidant ability showed that PPe and PPe-S could reduce the oxidative stress (OS) induced by methyl viologen, extend lifespan of worms, and reduce reactive oxygen species (ROS) level under oxidative conditions significantly (p < .05). Furthermore, PPe and PPe-S could enhance the stress-resistance related antioxidant enzymes including catalase (CAT) and superoxide dismutase (SOD) significantly (p < .05). Moreover, the antioxidant effect of PPe-S was superior to PPe at the concentration of 4.0 mg/ml. In summary, this study demonstrated that the derived hydrolyzates from PPe had protective effects on the damage induced by the generation of intracellular free radical agents. PRACTICAL APPLICATIONS: OS plays an important role in the pathogenesis of metabolic diseases, including type 2 diabetes. It is widely acknowledged that diabetes and its complications pose a threat to human's health, and the number of people with diabetes will expand to 640 million in the 2040 year. Current studies have shown that all diabetes drugs have a kind of side effects. Fortunately, researchers have found and confirmed that plant-derived polysaccharide had a notable hypoglycemic effect via reducing the OS level in cell and tissue, and could decrease the diabetes symptoms as well. In this study, we proved that the polysaccharide derived from pumpkin could effectively ameliorate the OS level in C. elegans, including decreasing the damage of biofilm and ROS level. Therefore, our study shows that there is a high potential for pumpkin-derived polysaccharide and its hydrolyzates to be a bioactive component to prevent diabetes. In other words, this research can be applied to diabetes prevention and other diseases induced by OS.
Collapse
Affiliation(s)
- Zhiyu Fang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Bin Xiao
- Liang Xin College, China Jiliang University, Hangzhou, China
| | - Wen Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiao Hao
- Liang Xin College, China Jiliang University, Hangzhou, China
| | - Jingjing Tan
- Liang Xin College, China Jiliang University, Hangzhou, China
| | - Aoxue Lu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jia Li
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Weimin Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ge Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yongjun Zhang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
37
|
Ramírez-Rodríguez Y, Martínez-Huélamo M, Pedraza-Chaverri J, Ramírez V, Martínez-Tagüeña N, Trujillo J. Ethnobotanical, nutritional and medicinal properties of Mexican drylands Cactaceae Fruits: Recent findings and research opportunities. Food Chem 2020; 312:126073. [DOI: 10.1016/j.foodchem.2019.126073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
|
38
|
Rahimi P, Mesbah-Namin SA, Ostadrahimi A, Abedimanesh S, Separham A, Asghary Jafarabadi M. Effects of betalains on atherogenic risk factors in patients with atherosclerotic cardiovascular disease. Food Funct 2020; 10:8286-8297. [PMID: 31723956 DOI: 10.1039/c9fo02020a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study evaluated the potential impacts of supplementation with betalain-rich extracts of foods on some atherosclerotic risk factors in coronary artery disease patients. During an acute phase, 48 male patients received about 50 mg betalain/betacyanin, and their blood and urine samples were collected at 3, 8, and 24 hours after supplementations. Also, in a pilot randomized crossover trial, these participants were allocated to two-week interventions (a betacyanin-rich supplement of Opuntia stricta, a betalain-rich supplement of red beetroot and a placebo) with two-week washout periods. Then, their plasma samples were collected at the baseline after a two-week period. The concentrations of betanin in plasma and urine samples were determined using HPLC. Also, homocysteine and glucose levels, lipid profile, and blood pressure were analyzed. Additionally, quality of life and dietary intake were assessed. After these interventions, minimal amounts of betanin were found in plasma and about 0.13-0.93% in urine. Also, both supplements significantly decreased the concentration of homocysteine, glucose, total cholesterol, triglyceride, and LDL. Also, betalain-rich supplements lowered both systolic and diastolic blood pressures. Nevertheless, the clinically meaningful changes were only found in the case of Hcy, LDL, and non-HDL-c concentrations. It seems that food sources of betalains can be considered as functional foods because they improve the lipid profile and levels of homocysteine, glucose, blood pressure, and quality of life to some extent.
Collapse
Affiliation(s)
- Parisa Rahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
39
|
Nishioka Y, Nishikawa S, Shibata T. A Hot Water Extract of Sideritis scardica Prolongs Life Span and Enhances Heat Shock Resistance in Caenorhabditis elegans. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20917283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sideritis scardica is a Lamiaceae plant that is endemic to the alpine zone of the Balkan Peninsula. The tea of S. scardica has been handed down as a “tea of longevity” in the Rhodope region of Bulgaria for an unknown amount of time. In this study, we prepared a hot water extract of S. scardica (SHWE) and examined its effects on both life span and stress response in living tissue using Caenorhabditis elegans and its transgenic mutants. The life span of wild-type N2 worms was prolonged by approximately 15% at the SHWE concentration of 5 µg/mL and approximately 22% at the SHWE concentration of 50 µg/mL, as compared with the control group. The effect of SHWE on the expression of heat shock protein 16.2 (HSP-16.2) under heat stress was investigated using TJ375 worms, a transgenic mutant of C. elegans. In the TJ375 worms pretreated with SHWE, the fluorescence intensity of green fluorescent protein fluorescence, which indicates the expression of HSP-16.2, was significantly increased. In the assay using TJ356 worms, the worms pretreated with SHWE did not show the translocation of DAF-16, a forkhead transcription factor class O homolog, from the cytoplasm to nucleus under heat stress. Additionally, under heat stress, the pretreatment of SHWE improved the survival rate of GR1307 worms, a knockout mutant of daf-16. These results indicate that SHWE enhances HSP-16.2 expression through a stress-response pathway (eg, HSF-1 pathway) other than the DAF-16 pathway, resulting in a prolonged life span of C. elegans under heat stress.
Collapse
Affiliation(s)
- Yoshihiko Nishioka
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | - Toshiyuki Shibata
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
40
|
Carli GJD, Rotela AT, Lubini G, Contiliani DF, Candia NB, Depintor TS, Abreu FCPD, Simões ZLP, Ríos DF, Pereira TC. SSD - a free software for designing multimeric mono-, bi- and trivalent shRNAs. Genet Mol Biol 2020; 43:e20190300. [PMID: 32141472 PMCID: PMC7197978 DOI: 10.1590/1678-4685-gmb-2019-0300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
RNA interference (RNAi) is a powerful gene silencing technology, widely used in
analyses of reverse genetics, development of therapeutic strategies and
generation of biotechnological products. Here we present a free software tool
for the rational design of RNAi effectors, named siRNA and shRNA designer (SSD).
SSD incorporates our previously developed software Strand Analysis to construct
template DNAs amenable for the large scale production of mono-, bi- and
trivalent multimeric shRNAs, via in vitro rolling circle
transcription. We tested SSD by creating a trivalent multimeric shRNA against
the vitellogenin gene of Apis mellifera. RT-qPCR analysis
revealed that our molecule promoted a decrease in more than 50% of the target
mRNA, in a dose-dependent manner, when compared to the control group. Thus, SSD
software allows the easy design of multimeric shRNAs, for single or multiple
simultaneous knockdowns, which is especially interesting for studies involving
large amounts of double-stranded molecules.
Collapse
Affiliation(s)
- Gabriel José de Carli
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Abdon Troche Rotela
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay.,Universidad Nacional de Asunción, Facultad Politécnica, San Lorenzo, Paraguay
| | - Greice Lubini
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Danyel Fernandes Contiliani
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Nidia Benítez Candia
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay
| | - Thiago S Depintor
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Fabiano Carlos Pinto de Abreu
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Zilá Luz Paulino Simões
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Danilo Fernández Ríos
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay
| | - Tiago Campos Pereira
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| |
Collapse
|
41
|
Chen H, Wang J, Liu X, Zhou A, Xiao J, Huang K, Chen H, Cao Y. Optimization in continuous phase-transition extraction of crude flavonoids from finger citron fruit and evaluation on their antiaging activities. Food Sci Nutr 2020; 8:1636-1648. [PMID: 32180971 PMCID: PMC7063346 DOI: 10.1002/fsn3.1450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The development of antiaging functional products is a hot topic in the field of functional foods. However, the efficient extraction of functional ingredients is the limiting step for the functional food industry. Continuous phase-transition extraction (CPE) is a new extraction technique that combines the advantages of Soxhlet extraction and supercritical extraction, which may have a distinct advantage over traditional methods in the extraction of flavonoids. In our study, the Box-Behnken design combined with response surface methodology was used to optimize CPE of crude flavonoids from finger citron fruit. The antiaging activities of finger citron crude flavonoids (FCCF) were evaluated by Caenorhabditis elegans (C. elegans) model. The optimal extraction conditions for CPE were as follows: ethanol concentration 85%, temperature 90°C, time 120 min, and pressure 0.2 MPa. Compared with the heat reflux extraction, the extraction rate and content of FCCF extracted by CPE increased by 24.28% and 33.22% (p < .05), respectively. FCCF extended the lifespan of C. elegans by 14.94% without causing adverse effects on their reproduction and locomotion ability. A further analysis suggested that FCCF prolonged the lifespan of nematodes under normal and oxidative stress by increasing the activity of major enzymes in endogenous antioxidant defense system and reducing the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA). The results confirmed the effectiveness of CPE in extracting crude flavonoids from finger citron fruit, and the extracted FCCF exhibited strong antiaging activities.
Collapse
Affiliation(s)
- Haiqiang Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | | | - Hanmin Chen
- Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| |
Collapse
|
42
|
Yücetepe A, Altin G, Özçelik B. A novel antioxidant source: evaluation of
in vitro
bioaccessibility, antioxidant activity and polyphenol profile of phenolic extract from black radish peel wastes (
Raphanus sativus
L. var.
niger
) during simulated gastrointestinal digestion. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aysun Yücetepe
- Department of Food Engineering Faculty of Engineering Aksaray University Aksaray 68100Turkey
| | - Gokce Altin
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Maslak, Istanbul 34469Turkey
- Molecular Engineering & Science Institute University of Washington 3946 W Stevens Way NE Seattle WA 98105USA
| | - Beraat Özçelik
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Maslak, Istanbul 34469Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co. Maslak, Istanbul 34469Turkey
| |
Collapse
|
43
|
Guerrero-Rubio MA, Escribano J, García-Carmona F, Gandía-Herrero F. Light Emission in Betalains: From Fluorescent Flowers to Biotechnological Applications. TRENDS IN PLANT SCIENCE 2020; 25:159-175. [PMID: 31843371 DOI: 10.1016/j.tplants.2019.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 05/02/2023]
Abstract
The discovery of visible fluorescence in the plant pigments betalains revealed the existence of fluorescent patterns in flowers of plants of the order Caryophyllales, where betalains substitute anthocyanins. The serendipitous initial discovery led to a systemized characterization of the role of different substructures on the photophysical phenomenon. Strong fluorescence is general to all members of the family of betaxanthins linked to the structural property that the betalamic acid moiety is connected to an amine group. This property has led to bioinspired tailor-made probes and to the development of novel biotechnological applications in screening techniques or microscopy labeling. Here, we comprehensively review the photophysics, photochemistry, and photobiology of betalain fluorescence and describe all current applications.
Collapse
Affiliation(s)
- M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Murcia, Spain
| | - Josefa Escribano
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
44
|
Guerrero‐Rubio MA, López‐Llorca R, Henarejos‐Escudero P, García‐Carmona F, Gandía‐Herrero F. Scaled-up biotechnological production of individual betalains in a microbial system. Microb Biotechnol 2019; 12:993-1002. [PMID: 31270958 PMCID: PMC6681404 DOI: 10.1111/1751-7915.13452] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/17/2022] Open
Abstract
The recent interest in plant pigment betalains as bioactive compounds and chemopreventive agents has led to the search for a reliable and scalable process to obtain them. The cloning of the novel and efficient enzyme 4,5-DOPA-extradiol dioxygenase from Gluconacetobacter diazotrophicus in an expression vector, and the subsequent heterologous expression in Escherichia coli cultures has led to the start-up of a biotechnological production system of individual pigments. The aim of this study was to search for the optimal conditions for the production of betalamic acid in microbial factories and the scaled-up obtention of the derived pigments. Four different betaxanthins and two betacyanins were obtained after the addition of non-transformable amines and amino acids and their condensation with the betalamic acid produced by the dioxygenase. The scaled-up obtention and purification of betalains improved the yields of the previous methodologies reaching quantities by up to 150 mg of pure compounds.
Collapse
Affiliation(s)
- María Alejandra Guerrero‐Rubio
- Departamento de Bioquímica y Biología Molecular AUnidad Docente de BiologíaFacultad de Veterinaria. Regional Campus of International Excellence ‘Campus Mare Nostrum’Universidad de MurciaMurciaSpain
| | - Rosalía López‐Llorca
- Departamento de Bioquímica y Biología Molecular AUnidad Docente de BiologíaFacultad de Veterinaria. Regional Campus of International Excellence ‘Campus Mare Nostrum’Universidad de MurciaMurciaSpain
| | - Paula Henarejos‐Escudero
- Departamento de Bioquímica y Biología Molecular AUnidad Docente de BiologíaFacultad de Veterinaria. Regional Campus of International Excellence ‘Campus Mare Nostrum’Universidad de MurciaMurciaSpain
| | - Francisco García‐Carmona
- Departamento de Bioquímica y Biología Molecular AUnidad Docente de BiologíaFacultad de Veterinaria. Regional Campus of International Excellence ‘Campus Mare Nostrum’Universidad de MurciaMurciaSpain
| | - Fernando Gandía‐Herrero
- Departamento de Bioquímica y Biología Molecular AUnidad Docente de BiologíaFacultad de Veterinaria. Regional Campus of International Excellence ‘Campus Mare Nostrum’Universidad de MurciaMurciaSpain
| |
Collapse
|
45
|
Rahimi P, Mesbah-Namin SA, Ostadrahimi A, Separham A, Asghari Jafarabadi M. Betalain- and betacyanin-rich supplements’ impacts on the PBMC SIRT1 and LOX1 genes expression and Sirtuin-1 protein levels in coronary artery disease patients: A pilot crossover clinical trial. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
46
|
Kumorkiewicz A, Szmyr N, Popenda Ł, Pietrzkowski Z, Wybraniec S. Alternative Mechanisms of Betacyanin Oxidation by Complexation and Radical Generation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7455-7465. [PMID: 31244196 DOI: 10.1021/acs.jafc.9b01168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of natural pigments such as betalains in food and health-related products is often limited by said pigments' relative oxidative stabilities in the products or physiological matrices. Determination of the mechanism of oxidation may inform future development and delivery of better stabilized molecules for improved outcomes. In order to best determine the oxidation mechanism of betanin, a natural food colorant, our efforts were directed toward structural elucidation (LCMS-IT-TOF and NMR) of previously tentatively identified key dehydrogenation products that had been generated as a result of betanin, decarboxylated betanin, and neobetanin oxidation by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radicals. The resultant oxidation products, the neo-derivatives, were the most stable and survived the preparative isolation and purification process. Structural analyses subsequently confirmed that these compounds, as well as neobetanin, were also the key products of alternative pathways of betanin and 2-decarboxy-betanin oxidation when catalyzed by Cu2+ cations in aqueous solutions at pH close to neutral. Therefore, the structures of the following five neo- or xanneo-derivatives (14,15- or 2,3,14,15-dehydrogenated derivatives, respectively) were confirmed: neobetanin, 2-decarboxy-neobetanin, 2-decarboxy-xanneobetanin, 2,17-bidecarboxy-xanneobetanin, and 2,15,17-tridecarboxy-xanneobetanin. This research confirmed that Cu2+-catalyzed oxidation of betanin and 2-decarboxy-betanin results in generation of neo-derivatives of betanin. In contrast, Cu2+-catalyzed oxidation of 17-decarboxy-betanin and 2,17-bidecarboxy-betanin resulted mostly in formation of betanin xan-derivatives. A relevant mechanism of Cu2+-catalyzed oxidation of the pigments is proposed herein that suggests that the oxidation of betanin can possibly occur in the region of the dihydropyridinic ring and can omit the stage of methide quinone formation in the dihydroindolic system.
Collapse
Affiliation(s)
- Agnieszka Kumorkiewicz
- Department of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering and Technology , Cracow University of Technology , ul. Warszawska 24 , Cracow 31-155 , Poland
| | - Natalia Szmyr
- Department of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering and Technology , Cracow University of Technology , ul. Warszawska 24 , Cracow 31-155 , Poland
| | - Łukasz Popenda
- NanoBioMedical Centre , Adam Mickiewicz University in Poznań , Umultowska 85 , 61-614 Poznań , Poland
| | - Zbigniew Pietrzkowski
- FutureCeuticals Inc. , 23 Peters Canyon Road , Irvine , California 92606 , United States
| | - Sławomir Wybraniec
- Department of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering and Technology , Cracow University of Technology , ul. Warszawska 24 , Cracow 31-155 , Poland
| |
Collapse
|
47
|
Tutunchi P, Roufegarinejad L, Hamishehkar H, Alizadeh A. Extraction of red beet extract with β-cyclodextrin-enhanced ultrasound assisted extraction: A strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food models. Food Chem 2019; 297:124994. [PMID: 31253277 DOI: 10.1016/j.foodchem.2019.124994] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Improving the extraction efficiency and stability of red beet compounds has gained the attention of researchers due to their high nutritional and health benefits. In this study, β-cyclodextrin (β-CD) enhanced ultrasound assisted extraction was used for the extraction of red beet extract, and lyophilized extracts were characterized with FTIR and DSC analyses. The samples extracted with aqueous 5% β-CD solutions revealed the highest content of betanin (2.243 ± 0.04 mg) and total phenolic compounds (20.03 ± 1.28 mg GAE/g DW), and the highest DPPH inhibition activity (59.87 ± 4.94%). Additionally, complexation with β-CD significantly enhanced the stability of betanin, phenolic compounds and antiradical activity in the stored beverage and gummy candy models at various pH and temperature conditions during 28 days. In conclusion, β-CD-enhanced ultrasound assisted extraction is a suitable approach to extracting and stabilizing the red beet compounds for application in food, nutraceutical, and medical fields.
Collapse
Affiliation(s)
- Parizad Tutunchi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Leila Roufegarinejad
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Alizadeh
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
48
|
Abstract
Several studies have demonstrated the health-promoting effects of betalains due to their high antioxidant capacity and their positive effect on the dose-dependent inhibition of cancer cells and their proliferation. To date, betalains were restricted to plants of the order Caryophyllales and some species of fungi, but the present study reveals the first betalain-producing bacterium, as well as the first steps in the formation of pigments. This finding demonstrates that betalain biosynthesis can be expanded to prokaryotes. The biosynthesis of antioxidant pigments, namely, betalains, was believed to be restricted to Caryophyllales plants. This paper changes this paradigm, and enzyme mining from bacterial hosts promoted the discovery of bacterial cultures producing betalains. The spectrum of possible sources of betalain pigments in nature is broadened by our description of the first betalain-forming bacterium, Gluconacetobacter diazotrophicus. The enzyme-specific step is the extradiol cleavage of the precursor amino acid l-dihydroxyphenylalanine (l-DOPA) to form the structural unit betalamic acid. Molecular and functional work conducted led to the characterization of a novel dioxygenase, a polypeptide of 17.8 kDa with a Km of 1.36 mM, with higher activity and affinity than those of its plant counterparts. Its superior activity allowed the first experimental characterization of the early steps in the biosynthesis of betalains by fully characterizing the presence and time evolution of 2,3- and 4,5-seco-DOPA intermediates. Furthermore, spontaneous chemical reactions are characterized and incorporated into a comprehensive enzymatic-chemical mechanism that yields the final pigments.
Collapse
|