1
|
Lam W, Yao Y, Tang C, Wang Y, Yuan Q, Peng L. Bifunctional mesoporous HMUiO-66-NH 2 nanoparticles for bone remodeling and ROS scavenging in periodontitis therapy. Biomaterials 2025; 314:122872. [PMID: 39383779 DOI: 10.1016/j.biomaterials.2024.122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Periodontal bone defects represent an irreversible consequence of periodontitis associated with reactive oxygen species (ROS). However, indiscriminate removal of ROS proves to be counterproductive for tissue repair and insufficient for addressing existing bone defects. In the treatment of periodontitis, it is crucial to rationally alleviate local ROS while simultaneously promoting bone regeneration. In this study, Zr-based large-pore hierarchical mesoporous metal-organic framework (MOF) nanoparticles (NPs) HMUiO-66-NH2 were successfully proposed as bifunctional nanomaterials for bone regeneration and ROS scavenging in periodontitis therapy. HMUiO-66-NH2 NPs demonstrated outstanding biocompatibility both in vitro and in vivo. Significantly, these NPs enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under normal and high ROS conditions, upregulating osteogenic gene expression and mitigating oxidative stress. Furthermore, in vivo imaging revealed a gradual degradation of HMUiO-66-NH2 NPs in periodontal tissues. Local injection of HMUiO-66-NH2 effectively reduced bone defects and ROS levels in periodontitis-induced C57BL/6 mice. RNA sequencing highlighted that differentially expressed genes (DEGs) are predominantly involved in bone tissue development, with notable upregulation in Wnt and TGF-β signaling pathways. In conclusion, HMUiO-66-NH2 exhibits dual functionality in alleviating oxidative stress and promoting bone repair, positioning it as an effective strategy against bone resorption in oxidative stress-related periodontitis.
Collapse
Affiliation(s)
- Waishan Lam
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Haridevamuthu B, Madesh S, Bharti AK, Dhivya LS, Rajagopal R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. Protective effect of a novel furan hybrid chalcone against bisphenol A-induced craniofacial developmental toxicity in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110072. [PMID: 39571873 DOI: 10.1016/j.cbpc.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
Bisphenol A (BPA), a pervasive endocrine disruptor, is known to cause significant developmental toxicity, particularly affecting craniofacial structures through oxidative stress and apoptosis. A novel furan hybrid chalcone derivative, 3-(2-hydroxy-5-nitrophenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DK04), specifically with a hydroxyl group for its antioxidant properties and a nitro group for enhanced electron-withdrawing ability, was evaluated for its potential to mitigate these toxic effects. Zebrafish embryos were exposed to BPA and co-treated with various concentrations of DK04. Our results demonstrated that DK04 significantly reduced reactive oxygen species (ROS) generation and lipid peroxidation, increased antioxidant enzyme activities (SOD and CAT), and restored the balance between pro-apoptotic (p53) and anti-apoptotic (bcl2) genes. Furthermore, DK04 treatment improved bone mineralization and chondrogenesis by reversing BPA-induced disruptions in osteogenic markers (runx2, sox9a, bmp6, and mmp13a). The locomotion impairments observed in BPA-exposed embryos were also ameliorated by DK04, indicating its potential neuroprotective effects. These findings suggest that DK04 offers a multifaceted approach to counteract BPA toxicity, making it a promising candidate for therapeutic intervention. This research underscores the importance of developing prophylactic compounds to safeguard health against environmental toxicants like BPA. Future studies should focus on long-term safety and efficacy in mammalian models and explore synergistic effects with other protective agents to broaden the applications of DK04 and contribute to public health benefits.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Ankit Kumar Bharti
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Huang Q, Wen T, Fang T, Lao H, Zhou X, Wei T, Luo Y, Xie C, Huang Z, Li K. A comparative evaluation of the composition and antioxidant activity of free and bound polyphenols in sugarcane tips. Food Chem 2025; 463:141510. [PMID: 39369597 DOI: 10.1016/j.foodchem.2024.141510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
The sugarcane tip is abundant in phenolic compounds. Previous studies have concentrated on the effects of free polyphenols, while bound polyphenols were overlooked. In this study, the content of bound polyphenols (SPB) (31.9 ± 0.9 mg GAE/g DW) was significantly higher than free polyphenols (SPF) (3.4 ± 0.1 mg GAE/g DW). A total of 44 free and 31 bound phenolics were identified by the UPLC-EIS-QTOF-MS/MS. Moreover, the antioxidant activity of SPB was more pronounced, as evidenced by its higher ABTS+ and DPPH scavenging rates than SPF, which was attributed to the higher tannin content. Furthermore, at all tested concentrations (100 and 200 μg/mL), SPB significantly enhanced the survival and antioxidant enzyme activity of Caenorhabditis elegans (C. elegans), while concurrently reducing ROS levels. High concentrations of SPB even exhibited antioxidant activity comparable to Vitamin C (Vc). The collective findings strongly indicate that SPB holds great potential as an effective antioxidant.
Collapse
Affiliation(s)
- Qiqi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tongquan Wen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Taowen Fang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Houyuan Lao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaohan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tengqing Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yiwen Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China.
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China.
| |
Collapse
|
4
|
Mavric-Scholze E, Simijonović D, Avdović E, Milenković D, Šaćirović S, Ćirić A, Marković Z. Comparative analysis of antioxidant activity and content of (poly)phenolic compounds in cabernet sauvignon and merlot wines of Slovenian and Serbian vineyards. Food Chem X 2025; 25:102108. [PMID: 39810947 PMCID: PMC11732501 DOI: 10.1016/j.fochx.2024.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The individual (poly)phenols of red wines cultivated in two different Western Balkan wine-growing regions were determined using the HPLC method, while the ABTS and DPPH tests were employed to investigate antioxidant activity. The reduction potential of antioxidants was determined by FRAP assay. Five distinct classes of phenolic compounds, including phenolic acids, flavan-3-ols, flavonols, stilbenes, and anthocyanins, were identified. The analyzed wines showed very good antioxidant properties. All of the studied wines exhibited a very strong correlation between their antioxidant potential and the concentration of significant antioxidants. Phenolic components that were the most represented in the investigated samples were selected for the theoretical investigation of the antioxidant effect. For this purpose, epicatechin gallate and sinapic acid were used. Their concentrations in the tested samples ranged up to 132.76 mg/mL and 125.66 mg/mL. Theoretical aspects of reactions of the mentioned compounds towards DPPH and ABTS radicals were examined.
Collapse
Affiliation(s)
- Elvira Mavric-Scholze
- Anhalt University of Applied Sciences, Department for Applied Biosciences and Process Engineering, Bernburger Str. 55, Köthen 06366, Germany
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića Bb, 34000 Kragujevac, Serbia
| | - Edina Avdović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića Bb, 34000 Kragujevac, Serbia
| | - Dejan Milenković
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića Bb, 34000 Kragujevac, Serbia
| | - Sabina Šaćirović
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, Belgrade 11080, Serbia
| | - Andrija Ćirić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića Bb, 34000 Kragujevac, Serbia
- State University of Novi Pazar, Department of Natural Science and Mathematics, Vuka Karadžića Bb, 36300 Novi Pazar, Serbia
- University of Applied Sciences Merseburg, Department of Engineering and Natural Sciences, Eberhard Leibnitz-Str. 2, 06217 Merseburg, Germany
| |
Collapse
|
5
|
Thbayh DK, Mentes D, Boros ZR, Palusiak M, Farkas L, Viskolcz B, Fiser B. α-Tocopherol and Trolox as Effective Natural Additives for Polyurethane Foams: A DFT and Experimental Study. Molecules 2024; 29:6037. [PMID: 39770125 PMCID: PMC11678614 DOI: 10.3390/molecules29246037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In this work, α-tocopherol and trolox were studied as compounds that have high biological activity. α-Tocopherol is considered a food additive because the refining process of vegetable oils causes the depletion of this vitamin, and thus, its inclusion is required to keep them from oxidizing. Computational tools have determined the antioxidant activity of these additives. The geometries of the studied molecules were optimized using two density functional methods, including M05-2X and M06-2X, in combination with the 6-311++G(2d,2p) basis set. The results indicated that when comparing the antioxidant activity of α-tocopherol and trolox, they were very similar to each other, but α-tocopherol had an antioxidant activity slightly higher, around 1.2 kJ/mol, than trolox. Thus, these additives can be used as polymer additives to protect materials from free-radical-induced stress. To test their applicability in polymeric formulations, flexible polyurethane foams were prepared with varying α-tocopherol ratios and NCO indices (1.0 and 1.1). Increasing the α-tocopherol content reduced the compressive force and altered the mechanical properties, likely due to its presence in the foam structure. This additive not only fine-tuned the mechanical properties but also provided antioxidant effects, enabling multiple enhancements in polymeric products with a single additive.
Collapse
Affiliation(s)
- Dalal K. Thbayh
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (D.K.T.); (B.V.)
- Polymer Research Center, University of Basrah, Basrah 61004, Iraq
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary;
| | - Dóra Mentes
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary;
| | - Zsanett R. Boros
- Wanhua-BorsodChem Zrt, Bolyai tér 1., 3700 Kazincbarcika, Hungary; (Z.R.B.); (L.F.)
| | - Marcin Palusiak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland;
| | - László Farkas
- Wanhua-BorsodChem Zrt, Bolyai tér 1., 3700 Kazincbarcika, Hungary; (Z.R.B.); (L.F.)
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (D.K.T.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary;
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (D.K.T.); (B.V.)
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland;
- Department of Biology and Chemistry, Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Ukraine
| |
Collapse
|
6
|
de Almeida LR, Aguiar AN, da Anunciação ABRM, d’Oliveira GDC, Vaz WF, Custódio JMF, Pérez CN, Napolitano HB. Three Dihydroquinolin-4-one Derivatives as Potential Biodiesel Additives: From the Molecular Structure to Machine Learning Approach. ACS OMEGA 2024; 9:49188-49204. [PMID: 39713672 PMCID: PMC11656225 DOI: 10.1021/acsomega.4c05742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Biodiesel offers an alternative to fossil fuels, primarily because it is derived from renewable sources, with the potential to mitigate issues such as pollutant and greenhouse gas emissions, resource scarcity, and the market instability of petroleum derivatives. However, lower durability and stability pose challenges. To address this, researchers worldwide are exploring technologies that employ specific molecules to slow down biodiesel's oxidation process, thereby preserving its key physicochemical properties. This study investigates heterocyclic dihydroquinolinone derivatives as potential additives to enhance the oxidative stability of diesel-biodiesel blends. Comprehensive structural and computational analyses were carried out by density functional theory to investigate the reactivity aspects of these compounds as potential additive candidates. The supramolecular arrangements were predominantly stabilized by weak molecular interactions, such as C-H···O and C-H···π, which are associated with antioxidant and antibacterial properties. We demonstrate that these groups can act as electron-donating or electron-withdrawing substituents. We explored frontier molecular orbitals, which provide insights into chemical reactivity, acidity, basicity, and the best oxidizing and reducing agents. Finally, the molecular chemical potential maps indicate the nucleophilic and electrophilic regions and the Fukui indices show the sites of nucleophilic, electrophilic, and radical attacks. This comprehensive study paves the way to understanding how dihydroquinolinone-based compounds serve as alternatives for fuel additives.
Collapse
Affiliation(s)
- Leonardo R. de Almeida
- Grupo
de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, 75132-903 Anápolis, GO, Brasil
| | - Antônio
S. N. Aguiar
- Grupo
de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, 75132-903 Anápolis, GO, Brasil
| | - Alex B. R. M. da Anunciação
- Grupo
de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, 75132-903 Anápolis, GO, Brasil
| | | | - Wesley F. Vaz
- Instituto
Federal de Educação, Ciência
e Tecnologia de Mato Grosso, 78466586 Lucas do Rio Verde, MT, Brasil
| | - Jean M. F. Custódio
- Instituto
de Química, Universidade Federal
de Goiás, 74690-900 Goiânia, GO, Brasil
| | - Caridad N. Pérez
- Instituto
de Química, Universidade Federal
de Goiás, 74690-900 Goiânia, GO, Brasil
| | - Hamilton B. Napolitano
- Grupo
de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, 75132-903 Anápolis, GO, Brasil
| |
Collapse
|
7
|
Antwi-Boasiako C, Agbemade B, Ko JH, Barone V, Uzarski R, Lee CY. Synthesis and Evaluation of Water-Soluble Antioxidants Derived from L-carnosine and Syringaldehyde (or Vanillin). Biochimie 2024:S0300-9084(24)00228-1. [PMID: 39369939 DOI: 10.1016/j.biochi.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Polyphenols are well known for their health-related benefits, including antioxidant activities, but most of them are hydrophobic, decreasing their bioavailability. This study reports water-soluble trimeric antioxidants synthesized with L-carnosine and the hydrophobic ortho-methoxy-substituted phenolic unit, syringaldehyde or vanillin. In the DPPH assay, carnosine-syringaldehyde (7.5 μM) and carnosine-vanillin (19 μM) derivatives showed much lower IC50 values than ascorbic acid (27.5 μM) and sodium ascorbate (30.5 μM) standards. According to the AAPH assay, carnosine-syringaldehyde and carnosine-vanillin protect DNA at concentrations as low as 6.5 μM and 26 μM, respectively, while both sodium ascorbate and ascorbic acid protected until 52 μM. Another notable property of these antioxidants is they can protect DNA well against hydroxyl radicals, produced via the Fenton reaction: carnosine-syringaldehyde showed DNA protection at all tested concentrations (833-1.6 μM), but the protection was slightly weaker between 26-1.6 μM. Carnosine-vanillin showed strong protection in the 833-104 μM range and some protection between 52-3.2 μM. Conversely, both sodium ascorbate and ascorbic acid did not protect DNA at any test concentration. In the pro-oxidant potential assessments, the synthesized antioxidants did not show any pro-oxidant effects at all concentrations, whereas sodium ascorbate showed severe pro-oxidant effects between 833-13 μM and ascorbic acid, 833-52 μM. Our study stresses the importance of ortho-methoxy group(s) for antioxidants as its electron-donating nature contributes to enhancing antioxidant activities, while steric bulk eliminates pro-oxidant effects by preventing the effective binding of transition metal ions to the phenolic hydroxyl group. The hydrophobicity of hindered phenols can be overcome if attached to a water-soluble scaffold.
Collapse
Affiliation(s)
- Collins Antwi-Boasiako
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA.
| | - Blessed Agbemade
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA; Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA.
| | - Jacqueline H Ko
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA.
| | - Veronica Barone
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA; Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA.
| | - Rebecca Uzarski
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan 48859, USA.
| | - Choon Young Lee
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA; Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA.
| |
Collapse
|
8
|
Qiu S, Sun J, Gu X, Li H, Wang H, Zhang S. Polyvinyl Chloride-Based Luminescent Downshifting Film with High Flame Retardancy and Excellent UV Resistance for Silicon Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402488. [PMID: 38716752 DOI: 10.1002/smll.202402488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Indexed: 10/04/2024]
Abstract
Solar power generation, as a clean energy source, has significant potential for development. This work reports the recent efforts to address the challenge of low power conversion efficiency in photovoltaic devices by proposing the fabrication of a luminescence downshifting layer using polyvinyl chloride (PVC) with added fluorescent dots to enhance light utilization. A photoluminescent microsphere (HCPAM) is synthesized by cross-linking hexachlorocyclotriphosphazene, 2-iminobenzimidazoline, and polyethyleneimine. Low addition of HCPAM can improve the fire safety of PVC films, raising the limiting oxygen index of PVC to 32.4% and reducing the total heat release and smoke production rate values by 14.5% and 42.9%, respectively. Additionally, modified PVC film remains a transparency of 88% and shows down-conversion light properties. When the PVC+1%HCPAM film is applied to the solar cell, the short-circuit current density increases from 42.3 to 43.8 mA cm-2, resulting in a 7.0% enhancement in power conversion efficiency. HCPAM also effectively delays the photooxidative aging of PVC, particularly at a 3% content, maintaining the surface morphology and optical properties of PVC samples during ultraviolet aging. This study offers an innovative strategy to enhance the fire and UV-resistant performance of PVC films and expand their applications in protecting and efficiently utilizing photovoltaic devices.
Collapse
Affiliation(s)
- Shuang Qiu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haiqiao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Zia S, Khan SM, Butt MTZ, Gull N. Insight into CMC-PVA-fHNTs Nanocomposite Hydrogel as an Advance Carrier for Cefadroxil Monohydrate: Fabrication and Characterization/Angiogenic Potential Analysis. Gels 2024; 10:235. [PMID: 38667654 PMCID: PMC11049344 DOI: 10.3390/gels10040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Controlled drug delivery is a key strategy aimed at reducing both the frequency of therapeutic dosages and potential systemic side effects, particularly in the case of high drug concentrations. The nanocomposite hydrogel systems presented in this study were synthesized by combining carboxymethyl cellulose, polyvinyl alcohol, and (3-aminopropyl)triethoxysilane-functionalized halloysite nanotubes (fHNTs). This hydrogel system is a potential candidate for the controlled release of cefadroxil monohydrate. These hydrogels are analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and rheological measurements. Additionally, swelling properties, porosity, hydrophilicity, drug release, and in vitro and in vivo analyses were also evaluated. The observed trends in swelling and drug release demonstrated that the outcomes are dependent on the presence of fHNTs in the hydrogel matrix. Notably, fHNTs-loaded hydrogels displayed sustained drug release patterns. This innovative approach eliminates the need for traditional encapsulation and presents promising and translatable strategies for achieving more effective drug release.
Collapse
Affiliation(s)
- Saba Zia
- Institute of Polymer and Textile Engineering, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan;
| | - Shahzad Maqsood Khan
- Institute of Polymer and Textile Engineering, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan;
| | - Muhammad Taqi Zahid Butt
- Institute of Metallurgy and Materials Engineering, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan;
| | - Nafisa Gull
- Institute of Polymer and Textile Engineering, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan;
| |
Collapse
|
10
|
Fan X, Zhou L, Xing Y, Wang L, Choi SS, Zhang Z, Zhang X, Liu C, Zhu Y, Fu Z, Han L. A comprehensive investigation on the chemical changes of traditional Chinese medicine with classic processing technology: Polygonum multiflorum under nine cycles of steaming and sunning as a case study. Anal Bioanal Chem 2024; 416:1733-1744. [PMID: 38347251 DOI: 10.1007/s00216-024-05177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
The processing of traditional Chinese medicine (TCM) plays an important role in the clinical application, which usually has the function of "increasing efficiency and reducing toxicity". Polygonum multiflorum (PM) has been reported to induce hepatotoxicity, while it is believed that the toxicity is reduced after processing. Studies have shown that the hepatotoxicity of PM is closely related to the changes in chemical components before and after processing. However, there is no comprehensive investigation on the chemical changes of PM during the processing progress. In this research, we established a comprehensive method to profile both small molecule compounds and polysaccharides from raw and different processed PM samples. In detail, an online two-dimensional liquid chromatography coupled with quadrupole-orbitrap mass spectrometry (2D-LC/Q-Orbitrap MS) was utilized to investigate the small molecules, and a total of 150 compounds were characterized successfully. After multivariate statistical analysis, 49 differential compounds between raw and processed products were screened out. Furthermore, an accurate and comprehensive method for quantification of differential compounds in PM samples was established based on ultra-high performance liquid chromatography/Q-Orbitrap-MS (UHPLC/Q-Orbitrap-MS) within 16 min. In addition, the changes of polysaccharides in different PM samples were analyzed, and it was found that the addition of black beans and steaming times would affect the content and composition of polysaccharides in PM significantly. Our work provided a reference basis for revealing the scientific connotation of the processing technology and increasing the quality control and safety of PM.
Collapse
Affiliation(s)
- Xinyu Fan
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lin Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanchao Xing
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liming Wang
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shin Sik Choi
- The Natural Science Research Institute, Department of Food and Nutrition, Myongji University, Yongin, 17058, Korea
| | - Zixin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Caixiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu Zhu
- Department of Clinical Laboratory, Nankai University Affiliated Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China.
| | - Zhifei Fu
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
11
|
Simijonović DM, Milenković DA, Avdović EH, Milanović ŽB, Antonijević MR, Amić AD, Dolićanin Z, Marković ZS. Coumarin N-Acylhydrazone Derivatives: Green Synthesis and Antioxidant Potential-Experimental and Theoretical Study. Antioxidants (Basel) 2023; 12:1858. [PMID: 37891938 PMCID: PMC10604617 DOI: 10.3390/antiox12101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Coumarin N-acylhydrazone derivatives were synthesized in the reaction of 3-acetylcoumarin and different benzohydrazides in the presence of molecular iodine as catalyst and at room temperature. All reactions were rapidly completed, and products were obtained in good to excellent yields. It is important to emphasize that four products were reported for the first time in this study. The obtained compounds were subjected to evaluation of their in vitro antioxidative activity using DPPH, ABTS, and FRAP methods. It was shown that products with a catechol moiety in their structure are the most potent antioxidant agents. The thermodynamic parameters and Gibbs free energies of reactions were used to determine the most probable mechanism of action. The results of in silico examination emphasize the need to take solvent polarity and free radical species into account when examining antiradical action. It was discovered by using computational approaches that HAT and SPLET are competitive molecular pathways for the radical scavenging activity of all compounds in polar mediums, while the HAT is the dominant mechanism in non-polar environments.
Collapse
Affiliation(s)
- Dušica M. Simijonović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.M.S.); (E.H.A.); (Ž.B.M.); (M.R.A.)
| | - Dejan A. Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.M.S.); (E.H.A.); (Ž.B.M.); (M.R.A.)
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.M.S.); (E.H.A.); (Ž.B.M.); (M.R.A.)
| | - Žiko B. Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.M.S.); (E.H.A.); (Ž.B.M.); (M.R.A.)
| | - Marko R. Antonijević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.M.S.); (E.H.A.); (Ž.B.M.); (M.R.A.)
| | - Ana D. Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica Cara Hadrijana 8A, 31000 Osijek, Croatia;
| | - Zana Dolićanin
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia;
| | - Zoran S. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.M.S.); (E.H.A.); (Ž.B.M.); (M.R.A.)
- Department of Natural Science and Mathematics, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
| |
Collapse
|
12
|
Yang H, Peng Z, Xie L, Xie J, Huang Z. Adding genistein or luteolin decreased the yield of citrinin and without reducing pigments in yam solid-fermentation by Monascus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6440-6451. [PMID: 37209398 DOI: 10.1002/jsfa.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chinese yam fermented by Monascus, namely red mold dioscorea (RMD), has the potential of treating diseases. However, the production of citrinin limits the application of RMD. In the present study, the fermentation process of Monascus was optimized by adding genistein or luteolin to reduce citrinin yield. RESULTS The results showed that citrinin in 25 g of Huai Shan yam was reduced by 48% and 72% without affecting the pigment yield by adding 0.2 g of luteolin or genistein, respectively, to a 250-mL conical flask after fermentation for 18 days at 28 °C, whereas the addition of luteolin increased the content of yellow pigment by 1.3-fold. Under optimal conditions, citrinin in 20 g of iron bar yam decreased by 55% and 74% after adding 0.2 g of luteolin or genistein. Luteolin also increased yellow pigment content by 1.2-fold. Ultra HPLC coupled to quadrupole time-of-flight mass spectrometry was used for the preliminary analysis of Monascus fermentation products. It was found that the amino acid types in RMD are similar to those in yams, but there are fewer polysaccharides and fatty acids. CONCLUSION The results obtained in the present study showed that the addition of genistein or luteolin could reduce citrinin on the premise of increasing pigment yield, which laid a foundation for the better use of yams in Monascus fermentation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiyun Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhiqing Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Zhang J, Li F, Shen S, Yang Z, Ji X, Wang X, Liao X, Zhang Y. More simple, efficient and accurate food research promoted by intermolecular interaction approaches: A review. Food Chem 2023; 416:135726. [PMID: 36893635 DOI: 10.1016/j.foodchem.2023.135726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The investigation of intermolecular interactions has become increasingly important in many studies, mainly by combining different analytical approaches to reveal the molecular mechanisms behind specific experimental phenomena. From spectroscopic analysis to sophisticated molecular simulation techniques like molecular docking, molecular dynamics (MD) simulation, and quantum chemical calculations (QCC), the mechanisms of intermolecular interactions are gradually being characterized more clearly and accurately, leading to revolutionary advances. This article aims to review the progression in the main techniques involving intermolecular interactions in food research and the corresponding experimental results. Finally, we discuss the significant impact that cutting-edge molecular simulation technologies may have on the future of conducting deeper exploration. Applications of molecular simulation technology may revolutionize the food research, making it possible to design new future foods with precise nutrition and desired properties.
Collapse
Affiliation(s)
- Jinghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China.
| |
Collapse
|
14
|
Lu XQ, Qin S, Li J. Radical Scavenging Capability and Mechanism of Three Isoflavonoids Extracted from Radix Astragali: A Theoretical Study. Molecules 2023; 28:5039. [PMID: 37446701 DOI: 10.3390/molecules28135039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
As a valuable traditional Chinese herbal medicine, Radix Astragali has attracted much attention due to its extensive pharmacological activities. In this study, density functional theory (DFT) was used thermodynamically and kinetically in detail to predict the antioxidant activity and reaction mechanisms involved in the free radical scavenging reactions of three representative isoflavonoids (formononetin, calycosin, and calycosin-7-glucoside) extracted from Radix Astragali. Three main mechanisms, including hydrogen atom transfer (HAT), proton transfer after electron transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were examined by calculating the thermodynamic parameters. It was found that HAT is the predominant mechanism in the gas phase, while SPLET is supported in the solvent environment. The isoflavonoids' order of antioxidant activity was estimated as: calycosin > calycosin-7-glucoside > formononetin. For the calycosin compound, the result revealed the feasibility of double HAT mechanisms, which involve the formation of stable benzodioxazole with significantly reduced energy in the second H+/e- reaction. In addition, the potential energy profiles and kinetic calculations show that the reaction of •OH into the 3'-OH site of calycosin has a lower energy barrier (7.2 kcal/mol) and higher rate constant (4.55 × 109 M-1 s-1) compared with other reactions in the gas phase.
Collapse
Affiliation(s)
- Xiao-Qin Lu
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
15
|
Thbayh DK, Palusiak M, Viskolcz B, Fiser B. Comparative study of the antioxidant capability of EDTA and Irganox. Heliyon 2023; 9:e16064. [PMID: 37234670 PMCID: PMC10205517 DOI: 10.1016/j.heliyon.2023.e16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress makes it difficult to preserve food and negatively affect the applicability of polymeric packaging. It is typically caused by an excess of free radicals, and it is dangerous to human health, resulting in the onset and development of diseases. The antioxidant ability and activity of ethylenediaminetetraacetic acid (EDTA) and Irganox (Irg) as synthetic antioxidant additives were studied. Three different antioxidant mechanisms were considered and compared by calculating bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) values. Two density functional theory (DFT) methods were used, M05-2X and M06-2X with the 6-311++G(2d,2p) basis set in gas phase. Both additives can be used to protect pre-processed food products and polymeric packaging from oxidative stress related material deterioration. By comparing the two studied compounds, it was found that EDTA has a higher antioxidant potential than Irganox. To the best of our knowledge several studies have been carried out to understand the antioxidant potential of various natural and synthetic species, but EDTA and Irganox were not compared and investigated before. These additives can be used to protect pre-processed food products and polymeric packaging and prevent material deterioration caused by oxidative stress.
Collapse
Affiliation(s)
- Dalal K. Thbayh
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Polymer Research Center, University of Basrah, Basrah, Iraq
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Marcin Palusiak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Transcarpathia, Ukraine
| |
Collapse
|
16
|
Huang W, Tian F, Wang H, Wu S, Jin W, Shen W, Hu Z, Cai Q, Liu G. Comparative assessment of extraction, composition, and in vitro antioxidative properties of wheat bran polyphenols. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Darie-Niță RN, Irimia A, Doroftei F, Stefan LM, Iwanczuk A, Trusz A. Bioactive and Physico-Chemical Assessment of Innovative Poly(lactic acid)-Based Biocomposites Containing Sage, Coconut Oil, and Modified Nanoclay. Int J Mol Sci 2023; 24:3646. [PMID: 36835080 PMCID: PMC9962215 DOI: 10.3390/ijms24043646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The bioactivity of the versatile biodegradable biopolymer poly(lactic acid) (PLA) can be obtained by combining it with natural or synthetic compounds. This paper deals with the preparation of bioactive formulations involving the melt processing of PLA loaded with a medicinal plant (sage) and an edible oil (coconut oil), together with an organomodifed montmorillonite nanoclay, and an assessment of the resulting structural, surface, morphological, mechanical, and biological properties of the biocomposites. By modulating the components, the prepared biocomposites show flexibility, both antioxidant and antimicrobial activity, as well as a high degree of cytocompatibility, being capable to induce the cell adherence and proliferation on their surface. Overall, the obtained results suggest that the developed PLA-based biocomposites could potentially be used as bioactive materials in medical applications.
Collapse
Affiliation(s)
| | - Anamaria Irimia
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Laura Mihaela Stefan
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Andrzej Iwanczuk
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Agnieszka Trusz
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
18
|
Effects of carboxyl- and amino-groups on the antioxidant activity of hydroxyanthraquinones with ESIPT property: a theoretical study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
19
|
Khallouki F, Saber S, Bouddine T, Hajji L, Elbouhali B, Silvente-Poirot S, Poirot M. In vitro and In vivo oxidation and cleavage products of tocols: From chemical tuners to “VitaminEome” therapeutics. A narrative review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Shang C, Zhang Y, Sun C, Wang L. Tactfully improve the antioxidant activity of 2′-hydroxychalcone with the strategy of substituent, solvent and intramolecular hydrogen bond effects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Thbayh DK, Reizer E, Kahaly MU, Viskolcz B, Fiser B. Antioxidant Potential of Santowhite as Synthetic and Ascorbic Acid as Natural Polymer Additives. Polymers (Basel) 2022; 14:polym14173518. [PMID: 36080595 PMCID: PMC9460313 DOI: 10.3390/polym14173518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
A wide variety of additives are used to improve specific characteristics of the final polymeric product. Antioxidant additives (AAs) can prevent oxidative stress and thus the damage of polymeric materials. In this work, the antioxidant potential and thus the applicability of Santowhite (SW) as synthetic and ascorbic acid (Asc) as natural AAs were explored by using computational tools. Two density functional theory (DFT) methods, M05-2X and M06-2X, have been applied in combination with the 6-311++G(2d,2p) basis set in gas phase. Three antioxidant mechanisms have been considered: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) have been computed for each potential hydrogen donor site. The results indicate that the antioxidant potential of Asc is higher than SW. Furthermore, some of the C-H bonds, depending on their position in the structures, are potent radical scavengers, but O-H groups are more prone to donate H-atoms to free radicals. Nonetheless, both additives can be potentially applied to safeguard common polymers and prohibit oxidative stress-induced material deterioration.
Collapse
Affiliation(s)
- Dalal K. Thbayh
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
- Polymer Research Center, University of Basrah, 61004 Basrah, Iraq
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Edina Reizer
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
| | - Mousumi U. Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, 6728 Szeged, Hungary
- Institute of Physics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Ukraine
- Correspondence:
| |
Collapse
|
22
|
Ramarajan D, Đorović Jovanović J, Marković Z, Dimić D, Sudha S. Spectroscopic, molecular docking, and ecotoxicology analyses of the monomer and dimers of 3-aminocyclohexa-2,6-diene-1-sulfonic acid – a theoretical approach. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Novodvorskyi Y, Lega D, Komarov I, Zhuravel I, Moskalenko O, Demchenko A. Synthesis and antioxidant activity of 3-(2-R-ylidenehydrazinyl)-6-tert-butyl-4H-[1,2,4]triazin-5-ones. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthesis and structure elucidation of several series of new hydrazones containing 1,2,4-triazine-5-one core and their antioxidant activity are presented. The target compounds have been synthesized via interaction of either 4-amino-6-(tert-butyl)-3-hydrazinyl-1,2,4-triazin-5(4H)-one or 6-(tert-butyl)-3-hydrazinyl-1,2,4-triazin-5(2H)-one with a wide range of compounds with a carbonyl group in moderate to high yields. Molecular structures of the synthesized compounds were confirmed by 1H NMR, 13C NMR, and elemental analyses. The antioxidant activity of these compounds against ascorbic acid was screened to determine their potential as promising oxidative stress suppressors. Our data showed that hydrazones derived from 4-amino-6-(tert-butyl)-3-hydrazinyl-1,2,4-triazin-5(4H)-one are the most active antioxidants among all tested compounds. Furthermore, 3 compounds of this series have been proved to be twice as active as ascorbic acid does. The conclusions are substantiated for in-depth investigations of these derivatives as promising agents for the treatment of disorders accompanied by oxidative stress.
Collapse
|
24
|
Rasool N, Srivastava R, Singh Y. Cationized silica ceria nanocomposites to target biofilms in chronic wounds. BIOMATERIALS ADVANCES 2022; 138:212939. [PMID: 35913235 DOI: 10.1016/j.bioadv.2022.212939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/25/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Altered wound healing is a major challenge faced by both developed and developing nations. Biofilm formation has been identified as one of the causative factors for the progression of chronic wounds. The spread of biofilm is controlled by inhibiting the biofilm formation or disrupting the mature biofilm. Functional nanomaterials/enzymes with antimicrobial effects, such as metal oxides, rare earth metals, and carbon nanoparticles have been investigated to treat biofilm and overcome the drawbacks associated with the antibiotic therapy. Cerium oxide nanoparticles (CNPs) have drawn significant attention as a promising antimicrobial agent owing to their antibacterial, enzyme-mimetic, and crystalline properties but they suffer from poor colloidal stability and dispersity in an aqueous environment and size-dependent function. In this work, we have developed a functionalized silica ceria nanocomposite (FSC), as an antibiotic-free system, to treat biofilms. The FSC possesses a high surface area of mesoporous silica nanoparticles (MSNs) combined with the intrinsic antibacterial activity of cerium oxide for biofilm inhibition. The nanocomposite was fabricated using silica and ceria precursors, and it exhibited a high surface area of 436 m2/g and an average particle size of around 450 nm. The physical and chemical properties of nanocomposite were characterized using FTIR, XRD, UV-Vis, BET, EDX, and XPS analysis. It exhibited a potent antioxidant activity (86%), positive haloperoxidase mimetic property, and broad-spectrum antibacterial activities. It showed 99.9% inhibition against S. aureus (Gram-positive) and 81% inhibition against E. coli (Gram-negative) within 12 and 24 h along with the significant inhibition of biofilm formation (80%) as well as the disruptive effect against the established biofilm (77%) of S. aureus. Cell viability assays indicated the proliferative nature of composite in normal basal conditions and increased cell viability (97%) in the presence of oxidative stress. Despite being a cationic nanomaterial, it showed a good hemocompatibility against human blood and caused complete wound closure in mouse fibroblast cell line within 24 h. The functionalized silica ceria nanocomposite developed has a strong potential in chronic wound healing applications.
Collapse
Affiliation(s)
- Nahida Rasool
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Rajendra Srivastava
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India; Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.
| |
Collapse
|
25
|
Paciotti R, Chiavarino B, Coletti C, Scuderi D, Re N, Corinti D, Rotari L, Fornarini S, Crestoni ME. IRMPD Spectroscopy of Bare Monodeprotonated Genistein, an Antioxidant Flavonoid. ACS OMEGA 2022; 7:19535-19544. [PMID: 35721943 PMCID: PMC9202291 DOI: 10.1021/acsomega.2c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 05/11/2023]
Abstract
Genistein is a naturally occurring polyphenol belonging to the family of flavonoids with estrogenic properties and proven antioxidant, anti-inflammatory, and hormonal effects. Genistein and its derivatives are involved in radical scavenging activity by way of mechanisms based on sequential proton-loss electron transfer. In view of this role, a detailed structural characterization of its bare deprotonated form, [geni-H]-, generated by electrospray ionization, has been performed by tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy in the 800-1800 cm-1 spectral range. Quantum chemical calculations at the B3LYP/6-311+G(d,p) level of theory were carried out to determine geometries, thermochemical data, and anharmonic vibrational properties of low-lying isomers, enabling to interpret the experimental spectrum. Evidence is gathered that the conjugate base of genistein exists as a single isomeric form, which is deprotonated at the most acidic site (7-OH) and benefits from a strong intramolecular H-bond interaction between 5-OH and the adjacent carbonyl oxygen in the most stable arrangement.
Collapse
Affiliation(s)
- Roberto Paciotti
- Dipartimento
di Farmacia, Università G. D’Annunzio
Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - Cecilia Coletti
- Dipartimento
di Farmacia, Università G. D’Annunzio
Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Debora Scuderi
- Institut
de Chimie Physique (UMR8000), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Nazzareno Re
- Dipartimento
di Farmacia, Università G. D’Annunzio
Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - Lucretia Rotari
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| |
Collapse
|
26
|
Du S, Wang X, Wang R, Lu L, Luo Y, You G, Wu S. Machine-learning-assisted molecular design of phenylnaphthylamine-type antioxidants. Phys Chem Chem Phys 2022; 24:13399-13410. [PMID: 35608602 DOI: 10.1039/d2cp00083k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a total of 302 molecular structures of phenylnaphthylamine antioxidants based on N-phenyl-1-naphthylamine and N-phenyl-2-naphthylamine skeletons with various substituents were modeled by exhaustive methods. Antioxidant parameters, including the hydrogen dissociation energy, solubility parameter, and binding energy, were calculated through molecular simulations. Then, a group decomposition scheme was determined to decompose 302 antioxidants. The antioxidant parameters and decomposition results constituted machine-learning data sets. Using an artificial neural network model, a correlation coefficient between the predicted and true values above 0.88 and an average relative error within 6% were achieved. Random forest models were used to analyze the factors affecting antioxidant activity from chemical and physical perspectives; the results showed that amino and alkyl groups were conducive to improving antioxidant performance. Moreover, substituent positions 1, 7, and 10 of N-phenyl-1-naphthylamine and 3, 7, and 10 of N-phenyl-2-naphthylamine were found to be the optimal positions for modifications to improve antioxidant activity. Two potentially efficient phenylnaphthylamine antioxidant structures were proposed and their antioxidant parameters were also calculated; the hydrogen dissociation energy and solubility parameter decreased by more than 9% and 7%, respectively, whereas the binding energy increased by more than 16% compared with the benchmark of N-phenyl-1-naphthylamine. These results indicate that molecular simulation and machine learning could provide alternative tools for the molecular design of new antioxidants.
Collapse
Affiliation(s)
- Shanda Du
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiujuan Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Runguo Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ling Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanlong Luo
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Guohua You
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
27
|
Yuan S, Yang Z, Shang C, Yang D, Wang Y, Qi H, Sun C, Wang L, Zhao X. A DFT study on the structure activity relationship of the natural xanthotoxin-based pharmaceutical cocrystals. J Mol Model 2022; 28:155. [PMID: 35579707 DOI: 10.1007/s00894-022-05152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
In this work, the pharmaceutical cocrystals xanthotoxin-para-aminobenzoic acid (XT-PABA) and xanthotoxin-oxalic acid (XT-OA) were systematically investigated in the gas and water phases by using the quantum chemical approach. The weak intermolecular interactions have been estimated and the O1…H4 (O1…H5) intermolecular hydrogen bond (IHB) with moderate intensity and partial covalent natures was confirmed based on the computed structural parameters, topology analysis, and reduced density gradient (RDG) isosurfaces. The electrophilic and nucleophilic reactivities of different positions associated with intermolecular interactions in XT, PABA, and OA were predicted by plotting the molecular electrostatic potential (MESP) diagrams. The calculated natural bond orbital (NBO) population analysis has quantitatively unveiled the intrinsic reason for the variations in weak intermolecular interactions within XT-PABA and XT-OA cocrystals, from the gas phase to the water phase. Besides, the frontier molecular orbitals (FMOs), Fukui function, and various global reactivity descriptors were computed to measure the chemical reactivity of all the investigated molecular systems. The XT-PABA and XT-OA cocrystals explored in this work could be regarded as valuable exemplar systems to design and synthesize the high-efficiency pharmaceutical cocrystals in the experiment.
Collapse
Affiliation(s)
- Shaohang Yuan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhiguang Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Changjiao Shang
- College of Science, Northeast Forestry University, Harbin, 150040, China
| | - Danyang Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yuxuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Haifei Qi
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin, 150040, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China. .,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, China. .,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China. .,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, China. .,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
28
|
Computational study of synthetic and natural polymer additives – Antioxidant potential of BHA, TBHQ, BHT, and curcumin. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Shang C, Cao Y, Sun C, Li Y. Comparison of the excited-state proton transfer and single electron transfer mechanisms of the natural antioxidant Juglone and its dimer 3,3′-bijuglone. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Spiegel M. Current Trends in Computational Quantum Chemistry Studies on Antioxidant Radical Scavenging Activity. J Chem Inf Model 2022; 62:2639-2658. [PMID: 35436117 PMCID: PMC9198981 DOI: 10.1021/acs.jcim.2c00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The antioxidative
nature of chemicals is now routinely studied
using computational quantum chemistry. Scientists are constantly proposing
new approaches to investigate those methods, and the subject is evolving
at a rapid pace. The goal of this review is to collect, consolidate,
and present current trends in a clear, methodical, and reference-rich
manner. This paper is divided into several sections, each of which
corresponds to a different stage of elaborations: preliminary concerns,
electronic structure analysis, and general reactivity (thermochemistry
and kinetics). The sections are further subdivided based on methodologies
used. Concluding remarks and future perspectives are presented based
on the remaining elements.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
31
|
Ara C, Jabeen S, Afshan G, Farooq A, Akram MS, Asmatullah, Islam A, Ziafat S, Nawaz B, Khan RU. Angiogenic potential and wound healing efficacy of chitosan derived hydrogels at varied concentrations of APTES in chick and mouse models. Int J Biol Macromol 2022; 202:177-190. [PMID: 35033532 DOI: 10.1016/j.ijbiomac.2022.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/18/2021] [Accepted: 01/08/2022] [Indexed: 12/22/2022]
Abstract
Chitosan (Cs) based biomaterials seem to be indispensable for neovasculogenesis and angiogenesis that ensure accelerated wound healing. Cs/poly (vinyl alcohol) (PVA) bio-constructs were cross-linked and investigated with varying concentrations of aminopropyltriethoxysilane (APTES). This study comprised of three phases: fabrication of hydrogels, characterization, assessment of angiogenic potential along with toxico-pathological effects, wound healing efficacy in chick and mice, respectively. The hydrogels were characterized by FTIR, SEM and TGA and the swelling response was examined in different solvents. The hydrogels swelling ratio was decreased with increasing amount of APTES, showed the highest swelling at acidic and basic pH while low swelling at neutral pH. Chorioallantoic membranes (CAM) assay was performed to study in-vivo angiogenesis, toxicological, morphological, biochemical and histological analyses in developing chicks. The results showed remarkably improved angiogenesis with little deviations in morphological, histological features and liver enzymes of chick embryos at higher concentrations of APTES. Besides, full thickness wounds were excised on mice dorsolateral skin to assess the wound healing. The rate of wound size reduction was significantly higher after topical application of hydrogels with elevated levels of crosslinker. Hence, the hydrogels showed enhanced angiogenesis, accelerated wound healing with little or no observable in-vivo toxicity.
Collapse
Affiliation(s)
- Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Sehrish Jabeen
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan
| | - Gul Afshan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan
| | - Ariba Farooq
- Department of Chemistry, The University of Lahore, Pakistan
| | - Muhammad Sarfraz Akram
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, Pakistan
| | - Asmatullah
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan.
| | - Shumaila Ziafat
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Bushra Nawaz
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rafi Ullah Khan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
32
|
Rubio-Cortés JE, López J, Velazco-Cabral I, Feliciano A, Vázquez MA, Alcaraz-Contreras Y. In Vitro Study of the Effect of 2,6-Substituents at the New 4-Ethoxy-Phenols as Antioxidants. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Julio López
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto, México
| | | | - Alberto Feliciano
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Miguel A. Vázquez
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto, México
| | | |
Collapse
|
33
|
Theoretical Study on the Structures, Spectral Properties, and Drugability of Xenicane-type Diterpenoids from Dictyota dichotoma. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Suryavanshi A, Kumar S, Kain D, Arya A, . V. In vitro antidiabetic, antioxidant activities and chemical composition of Ajuga parviflora Benth. shoot. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Ajuga parviflora Benth. (Lamiaceae) is an herbaceous plant that possesses ethnomedicinal values and is well known for its folkloric management of diabetes. This study was aimed to provide an experimental justification for its traditional antidiabetic use. Methods: Hydroalcoholic extract of A. parviflora shoot was quantified for its total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC). Gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectrophotometer (FTIR) spectroscopy were also used for their chemical nature. Additionally, the extract was evaluated for its inhibitory potential against key enzymes linked with hyperglycemia by in vitro means. Subsequently, for estimation of the antioxidant capacities 2,2-diphenyl-2-picrylhydrazyl radical (DPPH), 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS), and hydrogen peroxide (H2O2) scavenging activities were determined.Results: GC-MS analysis revealed numerous biologically active phytoconstituents including brassicasterol, phytol, and palmitic acid. The presence of different active functional groups such as alcohol, nitrile, amine, alkyl halide, alkene, and alkane was confirmed by FTIR analysis. The extract showed a significant (P≤ 0.05) dose-dependent inhibition for α-amylase enzyme (132.38±1.18 μg/mL), α-glucosidase enzyme (22.66±0.11 μg/mL), DPPH radical (103.03±1.59 μg/mL), ABTS radical (140.10±3.40 μg/mL) and H2O2 radical (298.26±4.37 μg/mL). TPC, TFC, and TTC were found 64.06±0.35 mg/g of the gallic acid equivalent (GAE), 45.27±0.58 mg/g of the rutin equivalent (RE), and 127.42±1.82 mg/g of the tannic acid equivalent (TAE), respectively. Conclusion: A. parviflora extract showed significant antioxidant and antidiabetic potentials. Thus, this plant might be served as a novel approach for discovering new and effective drug molecules against hyperglycemia.
Collapse
Affiliation(s)
- Amrita Suryavanshi
- Medicinal Plants Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi-110007, India
| | - Suresh Kumar
- Medicinal Plants Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi-110007, India
| | - Dolly Kain
- Medicinal Plants Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi-110007, India
| | - Atul Arya
- Medicinal Plants Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi-110007, India
| | - Vandana .
- Department of Chemistry, Dyal Singh College, University of Delhi, Delhi-110007, India
| |
Collapse
|
35
|
Liu X, Li Y, Yang Q, Cai H, Wang L, Zhao X. Improving the antioxidant activity of natural antioxidant honokiol by introducing the amino group. J Mol Model 2021; 27:350. [PMID: 34757484 DOI: 10.1007/s00894-021-04977-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Exploring and synthesizing the compounds with stronger antioxidant activity have always been the goal of researchers. Herein, the substitution effects of the amino (NH2-) group with the excellent electron-donating ability in different positions on the antioxidant activity of Honokiol (Hon) were systematically explored by using the quantum chemistry calculation based on the density functional theory method. The three possible antioxidant mechanisms of Hon and its four NH2-substituted derivatives (Hon1-Hon4), containing the hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET), were explored in depth considering the gas and solvent phases. In addition, the frontier molecular orbital energies, natural bond orbital (NBO) charge population, and global descriptive parameters were used to study their antioxidant activity. The results indicate that compared with the original molecule Hon, the NH2 substituents would have the stronger antioxidant activity. Moreover, the radical scavenging process of Hon and its derivatives has a disposition to the HAT and SPLET mechanisms in the gas and solvent phases, respectively. Meaningfully, owing to the lowest bond dissociation enthalpy and proton affinity values, Hon4 would show the most prominent antioxidant activity by comparison with the other compounds. In conclusion, this work will provide the purposeful reference for designing and synthesizing the antioxidants with more outstanding performance.
Collapse
Affiliation(s)
- Xiaohu Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin, 150040, China
| | - Qilei Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Hongda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China. .,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China. .,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
36
|
DFT study of the radical scavenging activity of isoxanthohumol, humulones (α-acids), and iso-α-acids from beer. Struct Chem 2021. [DOI: 10.1007/s11224-021-01780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Andreou D, Essien NB, Pubill-Ulldemolins C, Terzidis MA, Papadopoulos AN, Kostakis GE, Lykakis IN. Skeletally Tunable Seven-Membered-Ring Fused Pyrroles. Org Lett 2021; 23:6685-6690. [PMID: 34424721 DOI: 10.1021/acs.orglett.1c02251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe a copper-mediated method that enables the synthesis of seven-membered-ring fused pyrroles (7-mrFPs). The protocol proceeds via an in situ spiro-intermediate ring expansion and tolerates a library of 7-mrFP derivatives with a broad range of functional groups in a simple step with tangible parameters and substrate adaptations. These rare 7-mrFPs are now accessible on a millimolar scale, and selected examples exhibit high antioxidant activity.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Nsikak B Essien
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN19QJ, United Kingdom
| | | | - Michael A Terzidis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Athanasios N Papadopoulos
- Department of Nutritional Sciences & Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN19QJ, United Kingdom
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
38
|
CuO-NPs/TFA: a New Catalytic System to Synthesize a Novel Series of Pyrazole Imines with High Antioxidant Properties. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00888-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
Antonijević MR, Simijonović DM, Avdović EH, Ćirić A, Petrović ZD, Marković JD, Stepanić V, Marković ZS. Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency. Antioxidants (Basel) 2021; 10:1106. [PMID: 34356339 PMCID: PMC8301024 DOI: 10.3390/antiox10071106] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Compounds from the plant world that possess antioxidant abilities are of special importance for the food and pharmaceutical industry. Coumarins are a large, widely distributed group of natural compounds, usually found in plants, often with good antioxidant capacity. The coumarin-hydroxybenzohydrazide derivatives were synthesized using a green, one-pot protocol. This procedure includes the use of an environmentally benign mixture (vinegar and ethanol) as a catalyst and solvent, as well as very easy isolation of the desired products. The obtained compounds were structurally characterized by IR and NMR spectroscopy. The purity of all compounds was determined by HPLC and by elemental microanalysis. In addition, these compounds were evaluated for their in vitro antioxidant activity. Mechanisms of antioxidative activity were theoretically investigated by the density functional theory approach and the calculated values of various thermodynamic parameters, such as bond dissociation enthalpy, proton affinity, frontier molecular orbitals, and ionization potential. In silico calculations indicated that hydrogen atom transfer and sequential proton loss-electron transfer reaction mechanisms are probable, in non-polar and polar solvents respectively. Additionally, it was found that the single-electron transfer followed by proton transfer was not an operative mechanism in either solvent. The conducted tests indicate the excellent antioxidant activity, as well as the low potential toxicity, of the investigated compounds, which makes them good candidates for potential use in food chemistry.
Collapse
Affiliation(s)
- Marko R. Antonijević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (M.R.A.); (D.M.S.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (A.Ć.); (Z.D.P.)
| | - Dušica M. Simijonović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (M.R.A.); (D.M.S.)
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (M.R.A.); (D.M.S.)
| | - Andrija Ćirić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (A.Ć.); (Z.D.P.)
| | - Zorica D. Petrović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (A.Ć.); (Z.D.P.)
| | - Jasmina Dimitrić Marković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Višnja Stepanić
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Zoran S. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (M.R.A.); (D.M.S.)
| |
Collapse
|
40
|
Zuo Y, Sun Y, Yang W, Zhang K, Chen Y, Yin X, Liu Y. Performance and mechanism of 1-hydroxy ethylidene-1,1-diphosphonic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid in the inhibition of calcium carbonate scale. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
O—H and C—H bond dissociations in non-phenyl and phenyl groups: A DFT study with dispersion and long-range corrections. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Radical scavenger competition of alizarin and curcumin: a mechanistic DFT study on antioxidant activity. J Mol Model 2021; 27:166. [PMID: 33987710 PMCID: PMC8119285 DOI: 10.1007/s00894-021-04778-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
In vivo hydroxyl, peroxyl, and superoxide free radicals caused by oxidative stress can be toxic to molecules that are essential for the human body. However, there are natural compounds that can decrease the amount of these harmful species. In this work, we are focusing on two well-known compounds, alizarin (red) and curcumin, to study their interactions with these small radicals for a comparison between a rigid and a flexible structure. We made a mechanistic study and found the major and minor degradation products of curcumin as well as the autoxidation products of it based on a wide range of literature. We found several more favored pathways than those that were previously proposed. On the contrary, for degradation/oxidation of alizarin, only a few proposed mechanisms can be found which were performed in specific conditions. Our calculations predicted some favored rearrangements for the alizarin by peroxyl and superoxide radicals. Interaction of alizarin red and bright yellow curcumin with small radicals like hydroxyl, peroxyl, and superoxide radicals, such as the reaction between curcumin radicals and oxygen molecule, results in different species like epoxides or another kind of radical forms. The stability of epoxides is different in the case of rigid and flexible structures. ![]()
Collapse
|
43
|
How the functional group substitution and solvent effects affect the antioxidant activity of (+)-catechin? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Khoirunisa V, Rusydi F, Boli LSP, Puspitasari I, Rachmawati H, Dipojono HK. The significance of long-range correction to the hydroperoxyl radical-scavenging reaction of trans-resveratrol and gnetin C. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201127. [PMID: 33972845 PMCID: PMC8074789 DOI: 10.1098/rsos.201127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/23/2020] [Indexed: 05/17/2023]
Abstract
Density functional theory has been gaining popularity for studying the radical scavenging activity of antioxidants. However, only a few studies investigate the importance of calculation methods on the radical-scavenging reactions. In this study, we examined the significance of (i) the long-range correction on the coulombic interaction and (ii) the London dispersion correction to the hydroperoxyl radical-scavenging reaction of trans-resveratrol and gnetin C. We employed B3LYP, CAM-B3LYP, M06-2X exchange-correlation functionals and B3LYP with the D3 version of Grimme's dispersion in the calculations. The results showed that long-range correction on the coulombic interaction had a significant effect on the increase of reaction and activation energies. The increase was in line with the change of hydroperoxyl radical's orientation in the transition state structure. Meanwhile, the London dispersion correction only had a minor effect on the transition state structure, reaction energy and activation energy. Overall, long-range correction on the coulombic interaction had a significant impact on the radical-scavenging reaction.
Collapse
Affiliation(s)
- Vera Khoirunisa
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Engineering Physics Study Program, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Lampung Selatan 35365, Indonesia
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Febdian Rusydi
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Lusia S. P. Boli
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Ira Puspitasari
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Information System Study Program, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Heni Rachmawati
- School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Hermawan K. Dipojono
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| |
Collapse
|
45
|
Cao TT, Xu TF, Deng FX, Qiao WW, Cui CW. Reactivity and mechanism between OH and phenolic pollutants: Efficiency and DFT calculation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
He S, Wang Y, Xie J, Gao H, Li X, Huang Z. 1H NMR-based metabolomic study of the effects of flavonoids on citrinin production by Monascus. Food Res Int 2020; 137:109532. [PMID: 33233162 DOI: 10.1016/j.foodres.2020.109532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Monascus comprises purple-red molds. Various compounds can be obtained from these species, including statins and food-safe yellow, red, and orange pigments. However, the secondary metabolite citrinin, a mycotoxin, is produced during the late stages of growth. Citrinin biosynthesis should be reduced to apply Monascus pigments safely. Fortunately, this can be achieved by the addition of flavonoids (genistein, daidzein, apigenin, and kaempferol). However, the effects of these flavonoids on other metabolites remain unknown. Here, we report a 1H NMR-based multivariate metabolomic analysis of the effects of flavonoids on mycotoxin citrinin production by Monascus. Fifteen metabolites involved in lysine and arginine biosynthesis and alanine, aspartate, glutamate, biotin, arginine, proline, and glutathione metabolism were detected. The reduction in glutamate, aspartate, biotin, and 2-phosphoglycerate content suggested their association with the citrinin reduction mechanism. This study identifies the citrinin production pathway in Monascus and will aid in the development of citrinin-control methods.
Collapse
Affiliation(s)
- Shanshan He
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yanling Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Heng Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiujiang Li
- The First Affiliated Hospital of Nanchang University, Nanchang University, No.17 Yongwai Main Street, Nanjing West Road, Nanchang 330006, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
47
|
Lu L, Luo K, Yang W, Zhang S, Wang W, Xu H, Wu S. Insight into the anti-aging mechanisms of natural phenolic antioxidants in natural rubber composites using a screening strategy based on molecular simulation. RSC Adv 2020; 10:21318-21327. [PMID: 35518775 PMCID: PMC9054403 DOI: 10.1039/d0ra03425h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 12/05/2022] Open
Abstract
The failure of materials upon aging has led to the accumulation of waste and environmental pollution. Adding antioxidants (AOs) to the composites is one of the most effective ways to retard aging. However, traditional synthetic AOs are always detrimental to the environment and human health. The selection of antioxidants from streams by experiments will also definitely cost a lot of time and money. In addition, the complexity of thermo-oxidative aging factors along with the lack of quantitative tools significantly hampers its applications. So, building a screening strategy to quickly and easily find an appropriate and eco-friendly AO is imperative. In this study, we chose natural rubber (NR) as a matrix and provided a screening strategy based on diverse natural phenolic antioxidants to evaluate their ability in protecting NR composites. Thymol, α-tocopherol, and lipid-soluble epigallocatechin gallate (lsEGCG) were chosen from 18 natural phenolic antioxidants as potential alternative candidates. They were proved, indeed, to enhance the oxidative time in NR from experiments. Our results emphasized that thymol, α-tocopherol, and lsEGCG were promising alternatives for AOs in NR, and the in vitro toxicity test suggested that they are biocompatible. This study may develop a new strategy preference for screening the antioxidants by combining molecular simulation with the validation of experimental approaches, and therefore guide the AO molecular design with a more accurate theoretical prediction.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Kaiqiang Luo
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Wei Yang
- Global Energy Interconnection Research Institute, State Key Laboratory of Advanced Power Transmission Technology Beijing 102211 P. R. China
| | - Sidian Zhang
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Wencai Wang
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100005 P. R. China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
48
|
Experimental and Theoretical Studies of Carboxylic Polymers with Low Molecular Weight as Inhibitors for Calcium Carbonate Scale. CRYSTALS 2020. [DOI: 10.3390/cryst10050406] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poly acrylic acid (PAA) and polyepoxysuccinic acid (PESA) were investigated as scale inhibitors. The static experiments certified that PAA was superior to PESA for the inhibition of calcium carbonate in the low molecular weight range. The X-ray diffraction patterns suggest that the effect of PAA on the calcite (1 0 4) and (1 1 0) crystal plane was more obvious. Scanning electron microscopy was used to study the surface morphology of the depositions, which indicated that the addition of scale inhibitors could disturb the normal growth of CaCO3 scale. The transmittance ratio of ferric oxide demonstrated that PAA had a better dispersion performance than PESA. The molecular dynamics simulation and quantum calculation were selected to theoretically explore the mechanism and structure of scale inhibitors, indicating that the interaction of PAA with (1 0 4) and (1 1 0) calcite crystal surfaces was stronger than PESA. In addition, the results indicated that the PAA with negative charge more easily adsorbed free Ca2+ in the aqueous phase. Based on these observations, PAA exhibited better scale inhibition and dispersion effects than PESA in the case of low molecular weight.
Collapse
|
49
|
Electronic (donating or withdrawing) effects of ortho-phenolic substituents in dendritic antioxidants. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Lee CY, Sharma A, Semenya J, Anamoah C, Chapman KN, Barone V. Computational Study of Ortho-Substituent Effects on Antioxidant Activities of Phenolic Dendritic Antioxidants. Antioxidants (Basel) 2020; 9:E189. [PMID: 32106494 PMCID: PMC7139565 DOI: 10.3390/antiox9030189] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/04/2023] Open
Abstract
Antioxidants are an important component of our ability to combat free radicals-an excess of which leads to oxidative stress, which is related to aging and numerous human diseases. Oxidative damage also shortens the shelf-life of foods and other commodities. Understanding the structure-activity relationship of antioxidants and their mechanisms of action is important for designing more potent antioxidants for potential use as therapeutic agents as well as preservatives. We report the first computational study on the electronic effects of ortho-substituents in dendritic tri-phenolic antioxidants, comprising a common phenol moiety and two other phenol units with electron-donating or electron-withdrawing substituents. Among the three proposed antioxidant mechanisms, sequential proton loss electron transfer (SPLET) was found to be the preferred mechanism in methanol for the dendritic antioxidants based on calculations using Gaussian 16. We then computed the total enthalpy values by cumulatively running SPLET for all three rings to estimate electronic effects of substituents on overall antioxidant activity of each dendritic antioxidant and establish their structure-activity relationships. Our results show that the electron-donating o-OCH3 group has a beneficial effect while the electron-withdrawing o-NO2 group has a negative effect on the antioxidant activity of the dendritic antioxidant. The o-Br and o-Cl groups did not show any appreciable effects. These results indicate that electron-donating groups such as o-methoxy are useful for designing potent dendritic antioxidants while the nitro and halogens do not add value to the radical scavenging antioxidant activity. We also found that the half-maximal inhibitory concentration (IC50) values of 2,2-diphenyl-1-picrylhydrazyl (DPPH) better correlate with the second step (electron transfer enthalpy, ETE) than the first step (proton affinity, PA) of the SPLET mechanism, implying that ETE is the better measure for estimating overall radical scavenging antioxidant activities.
Collapse
Affiliation(s)
- Choon Young Lee
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.S.); (J.S.); (C.A.); (K.N.C.)
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.S.); (J.S.); (C.A.); (K.N.C.)
| | - Julius Semenya
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.S.); (J.S.); (C.A.); (K.N.C.)
| | - Charles Anamoah
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.S.); (J.S.); (C.A.); (K.N.C.)
| | - Kelli N. Chapman
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.S.); (J.S.); (C.A.); (K.N.C.)
| | - Veronica Barone
- Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|