1
|
Tošović J, Kolenc Z, Hostnik G, Bren U. Exploring antioxidative properties of xanthohumol and isoxanthohumol: An integrated experimental and computational approach with isoxanthohumol pKa determination. Food Chem 2025; 463:141377. [PMID: 39342736 DOI: 10.1016/j.foodchem.2024.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
This study explores the antioxidative activities of xanthohumol (XN) and isoxanthohumol (IXN), prenylated flavonoids from Humulus lupulus (family Cannabaceae), utilizing the oxygen radical absorption capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays along with computational Density Functional Theory methods. Experimentally, XN demonstrated significantly higher antioxidative capacities than IXN. Moreover, we determined IXN pKa values using the UV/Vis spectrophotometric method for the first time, facilitating its accurate computational modeling under physiological conditions. Through a thermodynamic approach, XN was found to efficiently scavenge HOO• and CH3O• radicals via Hydrogen Atom Transfer (HAT) and Radical Adduct Formation (RAF) mechanisms, while CH3OO• scavenging was feasible only through the HAT pathway. IXN exhibited its best antioxidative activity against CH3O• via both HAT and RAF mechanisms and could also scavenge HOO• through RAF. Both Single Electron Transfer (SET) and Sequential Proton Loss-Electron Transfer (SPLET) mechanisms were thermodynamically unfavorable for all radicals and both compounds.
Collapse
Affiliation(s)
- Jelena Tošović
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Zala Kolenc
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Gregor Hostnik
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia; University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška ulica 8, SI-6000 Koper, Slovenia; Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Wang N, Zang ZH, Sun BB, Li B, Tian JL. Recent advances in computational prediction of molecular properties in food chemistry. Food Res Int 2024; 192:114776. [PMID: 39147479 DOI: 10.1016/j.foodres.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
The combination of food chemistry and computational simulation has brought many impacts to food research, moving from experimental chemistry to computer chemistry. This paper will systematically review in detail the important role played by computational simulations in the development of the molecular structure of food, mainly from the atomic, molecular, and multicomponent dimension. It will also discuss how different computational chemistry models can be constructed and analyzed to obtain reliable conclusions. From the calculation principle to case analysis, this paper focuses on the selection and application of quantum mechanics, molecular mechanics and coarse-grained molecular dynamics in food chemistry research. Finally, experiments and computations of food chemistry are compared and summarized to obtain the best balance between them. The above review and outlook will provide an important reference for the intersection of food chemistry and computational chemistry, and is expected to provide innovative thinking for structural research in food chemistry.
Collapse
Affiliation(s)
- Nuo Wang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Zhi-Huan Zang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bing-Bing Sun
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jin-Long Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China.
| |
Collapse
|
3
|
Milanović Ž, Jeremić S, Antonijević M, Dimić D, Nakarada Đ, Avdović E, Marković Z. The inhibitory potential of 4,7-dihydroxycoumarin derivatives on ROS-producing enzymes and direct HOO •/o 2• - radical scavenging activity - a comprehensive kinetic DFT study. Free Radic Res 2024; 58:493-508. [PMID: 39264119 DOI: 10.1080/10715762.2024.2400674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
This study examined the antiradical activity of three synthesized coumarin derivatives: (E)-3-(1-((2-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A1-OH), (E)-3-(1-((3-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A2-OH), and (E)-3-(1-((4-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A3-OH) against HOO•/O2•- radical species. The investigation included electron spin resonance (ESR) measurements and a DFT kinetic study. Thermodynamic and kinetic parameters of antiradical mechanisms-Formal Hydrogen Atom Transfer (f-HAT), Radical Adduct Formation (RAF), Sequential Proton Loss followed by Electron Transfer (SPLET), and Single-Electron Transfer followed by Proton Transfer (SET-PT)-were evaluated using the Quantum Mechanics-based test for Overall Free Radical Scavenging Activity (QM-ORSA) under physiological conditions. ESR results indicated antiradical activity decreased in the sequence A1-OH (58.7%) > A2-OH (57.5%) > A3-OH (53.1%). Kinetic analysis revealed the f-HAT mechanism dominated HOO• inactivation. A newly formulated Sequential Proton Loss followed by Radical Adduct Formation (SPL-RAF) mechanism described interactions with O2•-. The activity toward O2•- was A2-OH (1.26 × 106 M-1s-1) > A3-OH (7.71 × 105 M-1s-1) > A1-OH (4.22 × 105 M-1s-1). Molecular docking and dynamics studies tested inhibitory capability against enzymes producing reactive species: Lipoxygenase (LOX), Myeloperoxidase (MPO), NAD(P)H oxidase (NOX), and Xanthine Oxidase (XOD). Affinity to enzymes decreased in the order: XOD > LOX > NOX > MPO.
Collapse
Affiliation(s)
- Žiko Milanović
- Institute for Information Technologies, Department of Science, University of Kragujevac, Kragujevac, Serbia
| | - Svetlana Jeremić
- Department of Natural Science and Mathematics, State University of Novi Pazar, Novi Pazar, Serbia
| | - Marko Antonijević
- Institute for Information Technologies, Department of Science, University of Kragujevac, Kragujevac, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Đura Nakarada
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Edina Avdović
- Institute for Information Technologies, Department of Science, University of Kragujevac, Kragujevac, Serbia
| | - Zoran Marković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Kragujevac, Serbia
- Department of Natural Science and Mathematics, State University of Novi Pazar, Novi Pazar, Serbia
| |
Collapse
|
4
|
Milanović Ž. Exploring enzyme inhibition and comprehensive mechanisms of antioxidant/prooxidative activity of natural furanocoumarin derivatives: A comparative kinetic DFT study. Chem Biol Interact 2024; 396:111034. [PMID: 38723799 DOI: 10.1016/j.cbi.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This study aimed to explore the antioxidant and prooxidative activity of two natural furanocoumarin derivatives, Bergaptol (4-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, BER) and Xanthotoxol (9-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, XAN). The collected thermodynamic and kinetic data demonstrate that both compounds possess substantial antiradical activity against HO• and CCl3OO• radicals in physiological conditions. BER exhibited better antiradical activity in comparison to XAN, which can be attributed to the enhanced deprotonation caused by the positioning of the -OH group on the psoralen ring. In contrast to highly reactive radical species, newly formed radical species BER• and XAN• exhibited negligible reactivity towards the chosen constitutive elements of macromolecules (fatty acids, amino acids, nucleobases). Furthermore, in the presence of O2•─, the ability to regenerate newly formed radicals BER• and XAN• was observed. Conversely, in physiological conditions in the presence of Cu(II) ions, both compounds exhibit prooxidative activity. Nevertheless, the prooxidative activity of both compounds is less prominent than their antioxidant activity. Furthermore, it has been demonstrated that anionic species can engage in the creation of a chelate complex, which restricts the reduction of metal ions when reducing agents are present (O2•─ and Asc─). Moreover, studies have demonstrated that these chelating complexes can be coupled with other radical species, hence enhancing their ability to inactivate radicals. Both compounds exhibited substantial inhibitory effects against enzymes involved in the direct or indirect generation of ROS: Xanthine Oxidase (XOD), Lipoxygenase (LOX), Myeloperoxidase (MPO), NADPH oxidase (NOX).
Collapse
Affiliation(s)
- Žiko Milanović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| |
Collapse
|
5
|
Antonijević M, Avdović E, Simijonović D, Milanović Ž, Žižić M, Marković Z. Investigation of novel radical scavenging mechanisms in the alkaline environment: Green, sustainable and environmentally friendly antioxidative agent(s). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169307. [PMID: 38128658 DOI: 10.1016/j.scitotenv.2023.169307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Pharmaceutical and industrial utilization of synthetic chemicals has an immerse impact on the environment. In that sense, novel chemicals with potential for industrial application should be investigated for their behaviour in reactions with hydroxyl radical, simulating AOPs (Advanced Oxidation Processes). AOPs are known for being highly effective in wastewater management and natural water remediation. In this paper, exhaustive research on the radical scavenging activity of a newly synthesized coumarin derivative (4HCBH), as a representative of the series of coumarin-benzohydrazides with high antioxidative potential was conducted. This study took into consideration the pH value range significant for practically all living organisms (pH = 7.0-8.5). According to the experimentally obtained results, the 4HCBH showed an increase in radical scavenging activity, following the slight increase in pH values, which suggested that the formation of anionic form of 4HCBH is responsible for its antiradical activity. Further investigations led to the postulation of a novel mechanistic approach called Sequential Proton Loss Electron Transfer - Radical-Radical Coupling (SPLET-RRC), in which, by a series of steps, a new, stable compound was formed. Furthermore, it was demonstrated that the product generated through SPLET-RRC showed lower toxicity than the parent molecule.
Collapse
Affiliation(s)
- Marko Antonijević
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia; University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Edina Avdović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Žiko Milanović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Milan Žižić
- University of Belgrade, Institute for Multidisciplinary Research, Life Sciences Department, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia; State University of Novi Pazar, Department of Natural Sciences and Mathematics, 36300 Vuka Karadžića, Novi Pazar, Serbia; University of Applied Sciences, Department of Engineering and Natural Sciences, Eberhard-Leibnitz-Straße 2, DE-06217 Merseburg, Germany.
| |
Collapse
|
6
|
Milanović Ž, Dimić D, Avdović EH, Simijonović DM, Nakarada Đ, Jakovljević V, Vojinović R, Marković ZS. Mechanism of Antiradical Activity of Coumarin-Trihydroxybenzohydrazide Derivatives: A Comprehensive Kinetic DFT Study. Antioxidants (Basel) 2024; 13:143. [PMID: 38397741 PMCID: PMC10885972 DOI: 10.3390/antiox13020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
As part of this study, the mechanisms of the antioxidant activity of previously synthesized coumarin-trihydrobenzohydrazine derivatives were investigated: (E)-2,4-dioxo-3-(1-(2-(2″,3″,4″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (1) and (E)-2,4-dioxo-3-(1-(2-(3″,4″,5″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (2). The capacity of the compounds to neutralize HO• was assessed by EPR spectroscopy. The standard mechanisms of antioxidant action, Hydrogen Atom Transfer (HAT), Sequential Proton Loss followed by Electron Transfer (SPLET), Single-Electron Transfer followed by Proton Transfer (SET-PT), and Radical Adduct/Coupling Formation (RAF/RCF) were examined using the QM-ORSA methodology. It was estimated that the newly synthesized compounds, under physiological conditions, exhibited antiradical activity via SPLET and RCF mechanisms. Based on the estimated overall rate constants (koverall), it can be concluded that 2 exhibited a greater antiradical capacity. The obtained values indicated a good correlation with the EPR spectroscopy results. Both compounds exhibit approximately 1.5 times more activity in comparison to the precursor compound used in the synthesis (gallic acid).
Collapse
Affiliation(s)
- Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Liceja Kneževine Srbije 1A, 34000 Kragujevac, Serbia; (Ž.M.); (E.H.A.); (D.M.S.); (Z.S.M.)
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.D.); (Đ.N.)
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Liceja Kneževine Srbije 1A, 34000 Kragujevac, Serbia; (Ž.M.); (E.H.A.); (D.M.S.); (Z.S.M.)
| | - Dušica M. Simijonović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Liceja Kneževine Srbije 1A, 34000 Kragujevac, Serbia; (Ž.M.); (E.H.A.); (D.M.S.); (Z.S.M.)
| | - Đura Nakarada
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.D.); (Đ.N.)
| | - Vladimir Jakovljević
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevc, Serbia;
| | - Radiša Vojinović
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevc, Serbia;
| | - Zoran S. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Liceja Kneževine Srbije 1A, 34000 Kragujevac, Serbia; (Ž.M.); (E.H.A.); (D.M.S.); (Z.S.M.)
- Department of Natural Science and Mathematics, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
| |
Collapse
|
7
|
Vo QV, Thuy Hoa DT, Hoa NT, Tran MD, Mechler A. The radical scavenging activity of monocaffeoylquinic acids: the role of neighboring hydroxyl groups and pH levels. RSC Adv 2024; 14:4179-4187. [PMID: 38292262 PMCID: PMC10825902 DOI: 10.1039/d3ra08460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Caffeoylquinic acids (CQAs) are well-known antioxidants. However, a key aspect of their radical scavenging activity - the mechanism of action - has not been addressed in detail thus far. Here we report on a computational study of the mechanism of activity of CQAs in scavenging hydroperoxyl radicals. In water at physiological pH, the CQAs demonstrated ≈ 104 times higher HOO˙ antiradical activity than in lipid medium (k(lipid) ≈ 104 M-1 s-1). The activity in the aqueous solution was determined by the hydrogen transfer mechanism of the adjacent hydroxyl group (O6'-H) of the dianion states (Γ = 93.2-95.2%), while the single electron transfer reaction of these species contributed 4.8-6.8% to the total rate constants. The kinetics estimated by the calculations are consistent with experimental findings in water (pH = 7.5), yielding a kcalculated/kexperimental = 2.4, reinforcing the reliability and precision of the computational method and demonstrating its utility for evaluating radical reactions in silico. The results also revealed the pH dependence of the HOO˙ scavenging activity of the CQAs; activity was comparable for all compounds below pH 3, however at higher pH values 5CQA reacted with the HOO˙ with lower activity than 3CQA or 4CQA. It was also found that CQAs are less active than Trolox below pH 4.7, however over pH 5.0 they showed higher activity than the reference. The CQAs had the best HOO˙ antiradical activity at pH values between 5.0 and 8.6. Therefore, in the physiological environment, the hydroperoxyl antiradical capacity of CQAs exhibits similarity to renowned natural antioxidants including resveratrol, ascorbic acid, and Trolox.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Duong Thi Thuy Hoa
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Manh Duc Tran
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University Victoria 3086 Australia
| |
Collapse
|
8
|
Joneidi S, Alizadeh SR, Ebrahimzadeh MA. Chlorogenic Acid Derivatives: Structural Modifications, Drug Design, and Biological Activities: A Review. Mini Rev Med Chem 2024; 24:748-766. [PMID: 37608658 DOI: 10.2174/1389557523666230822095959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/15/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Phenolic acids have recently gained considerable attention because of their numerous practical, biological, and pharmacological benefits. Various polyphenolic compounds are widely distributed in plant sources. Flavonoids and phenolic acids are the two main polyphenolic compounds that many plants contain abundant polyphenols. Chlorogenic acid, one of the most abundant phenolic acids, has various biological activities, but it is chemically unstable and degrades into other compounds or different enzymatic processes. METHODS In this review, we have studied many publications about CA and its derivatives. CA derivatives were classified into three categories in terms of structure and determined each part's effects on the body. The biological evaluations, structure-activity relationship, and mechanism of action of CA derivatives were investigated. The search databases for this review were ScienceDirect, Scopus, Pub- Med and google scholar. RESULTS Many studies have reported that CA derivatives have demonstrated several biological effects, including anti-oxidant, anti-inflammatory, anti-microbes, anti-mutation, anti-carcinogenic, anti-viral, anti-hypercholesterolemia, anti-hypertensive, anti-bacterial, and hypoglycemic actions. The synthesis of new stable CA derivatives can enhance its metabolic stability and biological activity. CONCLUSION The present study represented different synthetic methods and biological activities of CA derivatives. These compounds showed high antioxidant activity across a wide range of biological effects. Our goal was to help other researchers design and develop stable analogs of CA for the improvement of its metabolic stability and the promotion of its biological activity.
Collapse
Affiliation(s)
- Shima Joneidi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Drucker CT, Cicali AR, Roberts AMP, Hughey CA, Senger LW. Identification of alkaline-induced thiolyl-chlorogenic acid conjugates with cysteine and glutathione. Food Chem 2023; 423:136267. [PMID: 37187006 DOI: 10.1016/j.foodchem.2023.136267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Alkaline reactions of chlorogenic acid (CGA) yield undesirable development of brown or green pigments, limiting the utilization of alkalized CGA-rich foods. Thiols such as cysteine and glutathione mitigate pigment formation through several mechanisms, including redox coupling to reduce CGA quinones, and thiol conjugation, which forms colorless thiolyl-CGA compounds that do not readily participate in color-generating reactions. This work provided evidence of the formation of both aromatic and benzylic thiolyl-CGA conjugate species formed with cysteine and glutathione under alkaline conditions in addition to hydroxylated conjugate species hypothesized to arise from reactions with hydroxyl radicals. Formation of these conjugates proceeds more quickly than CGA dimerization and amine addition reactions mitigating pigment development. Differentiation between aromatic and benzylic conjugates is enabled by characteristic fragmentation of CS bonds. Acyl migration and hydrolysis of the quinic acid moiety of thiolyl-CGA conjugates yielded a variety of isomeric species also identified through untargeted LC-MS methods.
Collapse
Affiliation(s)
- Charles T Drucker
- Food Science Program, Schmid College of Science and Technology, Chapman University, University Drive, Orange, CA 92866, USA.
| | - Amanda R Cicali
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Drive, Harrisonburg, VA 22807, USA.
| | - Andrew M P Roberts
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Drive, Harrisonburg, VA 22807, USA.
| | - Christine A Hughey
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Drive, Harrisonburg, VA 22807, USA.
| | - Lilian W Senger
- Food Science Program, Schmid College of Science and Technology, Chapman University, University Drive, Orange, CA 92866, USA.
| |
Collapse
|
10
|
Chen X, Yu T, Kong Q, Xu H, Zhao Z, Li G, Fan H, Wang Y. A chlorogenic acid functional strategy of anti-inflammation, anti-coagulation and promoted endothelial proliferation for bioprosthetic artificial heart valves. J Mater Chem B 2023; 11:2663-2673. [PMID: 36883900 DOI: 10.1039/d2tb02407a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Heart valve replacement has become an optimal choice for the treatment of severe heart valve disease. At present, most commercial bioprosthetic heart valves (BHVs) are made from porcine pericardium or bovine pericardium treated with glutaraldehyde. Nevertheless, due to the toxicity of residual aldehyde groups left after glutaraldehyde cross-linking, these commercial BHVs exhibit poor biocompatibility, calcification, risk of coagulation and endothelialization difficulty, which greatly affects the durability of the BHVs and shortens their service life. In this work, based on a chlorogenic acid functional anti-inflammation, anti-coagulation and endothelialization strategy and dual-functional non-glutaraldehyde cross-linking reagent OX-CO, a kind of functional BHV material OX-CA-PP has been developed from OX-CO cross-linked porcine pericardium (OX-CO-PP) followed by the convenient modification of chlorogenic acid through a reactive oxygen species (ROS) sensitive borate ester bond. The functionalization of chlorogenic acid can reduce the risk of valve leaf thrombosis and promote endothelial cell proliferation, which is beneficial to the formation of a long-term interface with good blood compatibility. Meanwhile, such a ROS responsive behavior can trigger intelligent release of chlorogenic acid on-demand to achieve the inhibition of acute inflammation at the early stage of implantation. The in vivo and in vitro experimental results show that the functional BHV material OX-CA-PP exhibits superior anti-inflammation, improved anti-coagulation, minimal calcification and promoted proliferation of endothelial cells, showing that this non-glutaraldehyde functional strategy has great potential for the application of BHVs and providing a promising reference for other implanted biomaterials.
Collapse
Affiliation(s)
- Xiaotong Chen
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Tao Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Qunshou Kong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Haojun Fan
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Chen M, Li Z, Sun G, Jin S, Hao X, Zhang C, Liu L, Zhang L, Liu H. Theoretical study on the free radical scavenging potency and mechanism of natural coumestans: Roles of substituent, noncovalent interaction and solvent. PHYTOCHEMISTRY 2023; 207:113580. [PMID: 36587886 DOI: 10.1016/j.phytochem.2022.113580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The free radical scavenging potency and mechanisms of seven representative natural coumestans were systematically evaluated using density functional theory (DFT) approach. Thermodynamic feasibility of different mechanisms was assessed by various physio-chemical descriptors involved in the double (2H+/2e‒) radical-trapping processes. Energy diagram and related transition state structures of the reaction between wedelolactone (WEL) and hydroperoxyl radical were constructed to further uncover the radical-trapping details. Results showed that the studied coumestans prefer to scavenge radicals via formal hydrogen atom transfer (fHAT) mechanism in the gas phase and non-polar environment, whereas sequential proton loss electron transfer (SPLET) is favored in polar media. Moreover, the feasibility of second fHAT and SPLET processes was also revealed. Sequential double proton loss double electron transfer (SdPLdET) mechanism represents the preferred pathway in aqueous solution at physiological pH. Our findings highlight the essential role of ortho-dihydroxyl group, noncovalent interaction and solvents on radical-trapping potency. 4'-OH in D-ring was found to be the most favorable site to trap radical for most of the studied coumestans, whereas 3-OH in A-ring for lucernol (LUN).
Collapse
Affiliation(s)
- Mohan Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Gang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Shuang Jin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xiyue Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chi Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
12
|
Milanović Ž, Dimić D, Klein E, Biela M, Lukeš V, Žižić M, Avdović E, Bešlo D, Vojinović R, Dimitrić Marković J, Marković Z. Degradation Mechanisms of 4,7-Dihydroxycoumarin Derivatives in Advanced Oxidation Processes: Experimental and Kinetic DFT Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2046. [PMID: 36767412 PMCID: PMC9916318 DOI: 10.3390/ijerph20032046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Coumarins represent a broad class of compounds with pronounced pharmacological properties and therapeutic potential. The pursuit of the commercialization of these compounds requires the establishment of controlled and highly efficient degradation processes, such as advanced oxidation processes (AOPs). Application of this methodology necessitates a comprehensive understanding of the degradation mechanisms of these compounds. For this reason, possible reaction routes between HO• and recently synthesized aminophenol 4,7-dihydroxycoumarin derivatives, as model systems, were examined using electron paramagnetic resonance (EPR) spectroscopy and a quantum mechanical approach (a QM-ORSA methodology) based on density functional theory (DFT). The EPR results indicated that all compounds had significantly reduced amounts of HO• radicals present in the reaction system under physiological conditions. The kinetic DFT study showed that all investigated compounds reacted with HO• via HAT/PCET and SPLET mechanisms. The estimated overall rate constants (koverall) correlated with the EPR results satisfactorily. Unlike HO• radicals, the newly formed radicals did not show (or showed negligible) activity towards biomolecule models representing biological targets. Inactivation of the formed radical species through the synergistic action of O2/NOx or the subsequent reaction with HO• was thermodynamically favored. The ecotoxicity assessment of the starting compounds and oxidation products, formed in multistage reactions with O2/NOx and HO•, indicated that the formed products showed lower acute and chronic toxicity effects on aquatic organisms than the starting compounds, which is a prerequisite for the application of AOPs procedures in the degradation of compounds.
Collapse
Affiliation(s)
- Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, 12−16 Studentski Trg, 11000 Belgrade, Serbia
| | - Erik Klein
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Monika Biela
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Vladimír Lukeš
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Milan Žižić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Edina Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Drago Bešlo
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, University Josip Juraj Strossmayer Osijek, Vladimir Prelog 1, 31000 Osijek, Croatia
| | - Radiša Vojinović
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevc, Serbia
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
| |
Collapse
|
13
|
Belaya NI, Belyi AV, Shcherbakov IN, Budnikova EA. Regression-Classification Algorithm for Screening of Antiradical Activity of Flavonoids and the Related Structures. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Hao Z, Liang L, Liu H, Yan Y, Zhang Y. Exploring the Extraction Methods of Phenolic Compounds in Daylily ( Hemerocallis citrina Baroni) and Its Antioxidant Activity. Molecules 2022; 27:2964. [PMID: 35566310 PMCID: PMC9101449 DOI: 10.3390/molecules27092964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Daylily is a valuable plant resource with various health benefits. Its main bioactive components are phenolic compounds. In this work, four extraction methods, ultrasonic-assisted water extraction (UW), ultrasonic-assisted ethanol extraction (UE), enzymatic-assisted water extraction (EW), and enzymatic-assisted ethanol extraction (EE), were applied to extract phenolic compounds from daylily. Among the four extracts, the UE extract exhibited the highest total phenolic content (130.05 mg/100 g DW) and the best antioxidant activity. For the UE extract, the DPPH value was 7.75 mg Trolox/g DW, the FRAP value was 14.54 mg Trolox/g DW, and the ABTS value was 15.37 mg Trolox/g DW. A total of 26 phenolic compounds were identified from the four extracts, and the UE extract exhibited a higher abundance range of phenolic compounds than the other three extracts. After multivariate statistical analysis, six differential compounds were selected and quantified, and the UE extract exhibited the highest contents of all six differential compounds. The results provided theoretical support for the extraction of phenolic compounds from daylily and the application of daylily as a functional food.
Collapse
Affiliation(s)
| | | | | | - Yi Yan
- Beijing Key Laboratory of Flavor Chemistry, School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Z.H.); (L.L.); (H.L.); (Y.Z.)
| | | |
Collapse
|
15
|
Xue Y, Chen M, Li Z, Zhang L, Wang G, Zheng Y, An L. Effects of hydroxyl group, glycosylation and solvents on the antioxidant activity and mechanism of maclurin and its derivatives: Theoretical insights. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Belaya NI, Belyi AV, Shcherbakov IN, Budnikova EA. Two-Variable Predictive Model of the Antiradical Activity of Hydroxybenzoic Acids in Media with Physiological pH. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s002315842106001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Amić A, Dimitrić Marković JM, Marković Z, Milenković D, Milanović Ž, Antonijević M, Mastiľák Cagardová D, Rodríguez-Guerra Pedregal J. Theoretical Study of Radical Inactivation, LOX Inhibition, and Iron Chelation: The Role of Ferulic Acid in Skin Protection against UVA Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081303. [PMID: 34439551 PMCID: PMC8389219 DOI: 10.3390/antiox10081303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/18/2022] Open
Abstract
Ferulic acid (FA) is used in skin formulations for protection against the damaging actions of the reactive oxygen species (ROS) produced by UVA radiation. Possible underlying protective mechanisms are not fully elucidated. By considering the kinetics of proton-coupled electron transfer (PCET) and radical-radical coupling (RRC) mechanisms, it appears that direct scavenging could be operative, providing that a high local concentration of FA is present at the place of •OH generation. The resulting FA phenoxyl radical, after the scavenging of a second •OH and keto-enol tautomerization of the intermediate, produces 5-hydroxyferulic acid (5OHFA). Inhibition of the lipoxygenase (LOX) enzyme, one of the enzymes that catalyse free radical production, by FA and 5OHFA were analysed. Results of molecular docking calculations indicate favourable binding interactions of FA and 5OHFA with the LOX active site. The exergonicity of chelation reactions of the catalytic Fe2+ ion with FA and 5OHFA indicate the potency of these chelators to prevent the formation of •OH radicals via Fenton-like reactions. The inhibition of the prooxidant LOX enzyme could be more relevant mechanism of skin protection against UVA induced oxidative stress than iron chelation and assumed direct scavenging of ROS.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +381-31-399-980
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Marko Antonijević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia;
| | | |
Collapse
|
18
|
Prediction of a wide range of compounds concentration in raw coffee beans using NIRS, PLS and variable selection. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Xue Y, Teng Y, Chen M, Li Z, Wang G. Antioxidant Activity and Mechanism of Avenanthramides: Double H +/e - Processes and Role of the Catechol, Guaiacyl, and Carboxyl Groups. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7178-7189. [PMID: 34156855 DOI: 10.1021/acs.jafc.1c01591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Avenanthramides (AVAs), unique phenolic compounds in oats, have attracted increasing interest due to their health benefits. Eight representative AVAs were studied using the density functional theory (DFT) method to elucidate their antioxidant activity and mechanism. Preference of different mechanisms was evaluated based on thermodynamic descriptors involved in double (2H+/2e-) free radical scavenging reactions. It was found that the hydrogen atom transfer (HAT) mechanism is more favorable in the gas and benzene phases, while sequential proton loss electron transfer (SPLET) is preferred in polar media. The results suggest the feasibility of the double HAT and double SPLET mechanisms for 2s and c-series AVAs. The sequential triple proton loss double electron transfer (StPLdET) mechanism represents the dominant pathway in aqueous solution at physiological pH. In addition, the sequential proton loss hydrogen atom transfer (SPLHAT) mechanism provides an alternative pathway to trap free radicals. Results also revealed the important role of the catechol, guaiacyl, and carboxyl moieties.
Collapse
Affiliation(s)
- Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yangxin Teng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Mohan Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Guirong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
20
|
Khoirunisa V, Rusydi F, Boli LSP, Saputro AG, Rachmawati H, Nakanishi H, Kasai H, Dipojono HK. Computational Investigation on the ∙OOH Scavenging Sites of Gnetin C. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09666-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Khoirunisa V, Rusydi F, Boli LSP, Puspitasari I, Rachmawati H, Dipojono HK. The significance of long-range correction to the hydroperoxyl radical-scavenging reaction of trans-resveratrol and gnetin C. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201127. [PMID: 33972845 PMCID: PMC8074789 DOI: 10.1098/rsos.201127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/23/2020] [Indexed: 05/17/2023]
Abstract
Density functional theory has been gaining popularity for studying the radical scavenging activity of antioxidants. However, only a few studies investigate the importance of calculation methods on the radical-scavenging reactions. In this study, we examined the significance of (i) the long-range correction on the coulombic interaction and (ii) the London dispersion correction to the hydroperoxyl radical-scavenging reaction of trans-resveratrol and gnetin C. We employed B3LYP, CAM-B3LYP, M06-2X exchange-correlation functionals and B3LYP with the D3 version of Grimme's dispersion in the calculations. The results showed that long-range correction on the coulombic interaction had a significant effect on the increase of reaction and activation energies. The increase was in line with the change of hydroperoxyl radical's orientation in the transition state structure. Meanwhile, the London dispersion correction only had a minor effect on the transition state structure, reaction energy and activation energy. Overall, long-range correction on the coulombic interaction had a significant impact on the radical-scavenging reaction.
Collapse
Affiliation(s)
- Vera Khoirunisa
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Engineering Physics Study Program, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Lampung Selatan 35365, Indonesia
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Febdian Rusydi
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Lusia S. P. Boli
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Ira Puspitasari
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Information System Study Program, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Heni Rachmawati
- School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Hermawan K. Dipojono
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| |
Collapse
|
22
|
Milanović Ž, Tošović J, Marković S, Marković Z. Comparison of the scavenging capacities of phloroglucinol and 2,4,6-trihydroxypyridine towards HO˙ radical: a computational study. RSC Adv 2020; 10:43262-43272. [PMID: 35519718 PMCID: PMC9058218 DOI: 10.1039/d0ra08377a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/21/2020] [Indexed: 01/06/2023] Open
Abstract
In this work the scavenging capacities of biologically active phloroglucinol (1,3,5-trihydroxybenzene, THB-OH) and structurally similar 2,4,6-trihydroxypyridine (THP-OH) towards HO˙ were examined. This task was realized by means of density functional theory, through investigation of all favorable antioxidative pathways in two solvents of different polarity: benzene and water. It was found that in benzene both compounds conform to the hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms. In water, the mechanisms of antioxidative action of the investigated compounds are far more complex, especially those of THB-OH. This compound and HO˙ undergo all four investigated mechanisms: HAT, RAF, sequential proton loss electron transfer (SPLET), and single electron transfer-proton transfer (SET-PT). HAT, RAF and SPLET are operative mechanisms in the case of THP-OH. Independently of solvent polarity, both investigated compounds are more reactive towards HO˙ in comparison to Trolox. Our final remark is as follows: the electron-withdrawing effect of the nitrogen is stronger than the electron-donating effect of the OH groups in the molecule of THP-OH. As a consequence, THB-OH is more powerful antioxidant than THP-OH, thus implying that the presence of nitrogen decreases the scavenging capacity of the respective compound.
Collapse
Affiliation(s)
- Žiko Milanović
- Department of Chemistry, Faculty of Science, University of Kragujevac 12 Radoja Domanovića 34000 Kragujevac Serbia
| | - Jelena Tošović
- Department of Chemistry, Faculty of Science, University of Kragujevac 12 Radoja Domanovića 34000 Kragujevac Serbia
| | - Svetlana Marković
- Department of Chemistry, Faculty of Science, University of Kragujevac 12 Radoja Domanovića 34000 Kragujevac Serbia
| | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac Jovana Civijića bb 34000 Kragujevac Serbia
| |
Collapse
|
23
|
Xue Y, Liu Y, Xie Y, Cong C, Wang G, An L, Teng Y, Chen M, Zhang L. Antioxidant activity and mechanism of dihydrochalcone C-glycosides: Effects of C-glycosylation and hydroxyl groups. PHYTOCHEMISTRY 2020; 179:112393. [PMID: 32836068 DOI: 10.1016/j.phytochem.2020.112393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Dihydrochalcones (DHCs), an important subgroup of flavonoids, have recently received much attention due to their diverse biological activities. In contrast to their O-glycosides, understanding of the antioxidant property and mechanism of DHC C-glycosides remains limited. Herein, the free radical scavenging activity and mechanism of two representative C-glycosyl DHCs, aspalathin (ASP) and nothofagin (NOT) as well as their aglycones, 3-hydroxyphloretin (HPHL) and phloretin (PHL) were evaluated using the density functional theory (DFT) calculations. The results revealed the crucial role of sugar moiety on the conformation and the activity. The o-dihydroxyl in the B-ring and the 2',6'-dihydroxyacetophenone moiety were found significant in determining the activity. Our results showed that hydrogen atom transfer (HAT) is the dominant mechanism for radical-trapping in the gas and benzene phases, while the sequential proton loss electron transfer (SPLET) is more preferable in the polar environments. Also, the results revealed the feasibility of the double HAT and double SPLET as well as the SPLHAT mechanisms, which provide alternative pathways to trap radical for the studied DHCs. These results could deepen the understanding of the antiradical activity and mechanism of DHCs, which will facilitate the design of novel efficient antioxidants.
Collapse
Affiliation(s)
- Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Yunping Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yuxin Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Chunxue Cong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Guirong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lin An
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yangxin Teng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Mohan Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
24
|
Jeon S, Liu QF, Cai H, Jeong HJ, Kim SH, Kim DI, Lee JH. Administration of a herbal formulation enhanced blastocyst implantation via IκB activation in mouse endometrium. Chin Med 2020; 15:112. [PMID: 33093859 PMCID: PMC7576727 DOI: 10.1186/s13020-020-00395-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 02/04/2023] Open
Abstract
Background BaelanChagsangBang (BCB), a herbal formulation consisting of eleven herbs, may be prescribed as a reproductive functional supplement to improve ovulation and implantation during the treatment of infertility and recurrent abortion in Korean Medicine. This study aimed to investigate the effects and action mechanisms of water-extracted BCB on endometrial receptivity and blastocyst implantation under normal conditions and in a mifepristone (RU486)-induced implantation failure murine model. Methods In vitro, the antioxidant potentials of BCB were evaluated using DPPH and superoxide anion radical scavenging assays and a DCFH-DA assay, and the cytotoxic and cytoprotective effects of BCB were confirmed using an MTT assay. In vivo, C57BL/6 female mice (n = 6 per group) orally received BCB (300 mg/kg/day), a dose similar to that used clinically, from 7 days before pregnancy until the end of the experiment. On day 4 of pregnancy, RU486 (4 mg/kg) was injected subcutaneously to induce implantation failure. The effect of BCB on embryo implantation was evaluated by implantation rate analysis, histological examination, and western blotting of uterus tissues. Results BCB water extract showed strong anti-oxidative and cytoprotective effects in vitro. In vivo administration of BCB water extract increased the number of newborn pups in BCB-treated mice versus sham-treated mice under normal conditions and improved the number of implantation sites in pregnant mice despite RU486 injection. BCB increased the protein levels of cyclooxygenase-2 and inducible nitric oxide synthase through IκB activation. Moreover, the expression levels of matrix metalloproteinases at uterus implantation sites were up-regulated in the BCB-treated group as compared with those in the RU486-treated group. Conclusion These results show BCB improved embryo implantation through IκB activation in our mouse model and suggest that BCB has therapeutic potential in the context of poor endometrial receptivity.
Collapse
Affiliation(s)
- Songhee Jeon
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469 Republic of Korea
| | - Quan Feng Liu
- Department of Neuropsychiatry, Graduate School of Korean Medicine, Dongguk University, Gyeongju, 38066 Republic of Korea
| | - Hua Cai
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469 Republic of Korea
| | - Ha Jin Jeong
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469 Republic of Korea
| | - Su-Hyun Kim
- Department of Obstetrics & Gynecology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26338 Republic of Korea
| | - Dong-Il Kim
- Department of Obstetrics & Gynecology, College of Korean Medicine, Dongguk University Ilsan Hospital of Korean Medicine, Goyang, Gyeonggi-do 10326 Republic of Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
25
|
Antioxidative Action of Ellagic Acid-A Kinetic DFT Study. Antioxidants (Basel) 2020; 9:antiox9070587. [PMID: 32640518 PMCID: PMC7402119 DOI: 10.3390/antiox9070587] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Although one can find numerous studies devoted to the investigation of antioxidative activity of ellagic acid (EA) in the scientific literature, the mechanisms of its action have not yet been fully clarified. Therefore, further kinetic studies are needed to understand its antioxidative capacity completely. This work aims to reveal the underlying molecular mechanisms responsible for the antioxidative action of EA. For this purpose, its reactions with HO• and CCl3OO• radicals were simulated at physiological conditions using the quantum mechanics-based test for overall free-radical scavenging activity. The density functional theory in combination with the conductor-like polarizable continuum solvation model was utilized. With HO• radical EA conforms to the hydrogen atom transfer and radical adduct formation mechanisms, whereas sequential proton loss electron transfer mechanism is responsible for scavenging of CCl3OO• radical. In addition, compared to trolox, EA was found more reactive toward HO•, but less reactive toward CCl3OO•. The calculated rate constants for the reactions of EA with both free radicals are in a very good agreement with the corresponding experimental values.
Collapse
|
26
|
Maksimović JP, Tošović J, Pagnacco MC. Insight into the Origin of Pyrocatechol Inhibition on Oscillating Bray-Liebhafsky Reaction: Combined Experimental and Theoretical Study. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jelena P. Maksimović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Jelena Tošović
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Maja C. Pagnacco
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Center of Catalysis and Chemical Engineering, Njegoseva 12, Belgrade, Serbia
| |
Collapse
|
27
|
Tomac I, Šeruga M, Labuda J. Evaluation of antioxidant activity of chlorogenic acids and coffee extracts by an electrochemical DNA-based biosensor. Food Chem 2020; 325:126787. [PMID: 32387938 DOI: 10.1016/j.foodchem.2020.126787] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 04/09/2020] [Indexed: 01/14/2023]
Abstract
Sensitivity of dsDNA structure towards OH radicals as the pro-oxidants has been utilized as the detection principle of an analytical procedure applied for the first time to the evaluation of antioxidant activity (AOA) of 6 chlorogenic acids (CGAs) and extracts of 10 coffees. A nanostructured electrochemical DNA-based biosensor was prepared using a commercial electrode assembly and treated in the DNA cleavage agent formed by the Fenton type reaction. An addition of CGAs and aqueous coffee extracts significantly diminishes the degree of DNA degradation determined using cyclic voltammetry (CV) with the redox indicator [Fe(CN)6]3-/4-. The AOA decreases in order caffeic acid, CFA, >caffeoylquinic acids, CQAs, >dicaffeoylquinic acids, diCQAs, exhibiting the relative portion of survived DNA of about 71%, 70% and 69%, respectively, and of about 72% for C. robusta, Cherry, India (green bean) to 49% for Nescafé Espresso. Mechanisms of antioxidative properties are discussed.
Collapse
Affiliation(s)
- Ivana Tomac
- Department of Applied Chemistry and Ecology, Faculty of Food Technology, University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia.
| | - Marijan Šeruga
- Department of Applied Chemistry and Ecology, Faculty of Food Technology, University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia.
| | - Jan Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
28
|
Galviz-Quezada A, Ochoa-Aristizábal AM, Arias Zabala ME, Ochoa S, Osorio-Tobón JF. Valorization of iraca (Carludovica palmata, Ruiz & Pav.) infructescence by ultrasound-assisted extraction: An economic evaluation. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Cui Q, Ma F, Tao J, Jiang M, Bai G, Luo G. Efficacy evaluation of Qingyan formulation in a smoking environment and screening of anti-inflammatory compounds. Biomed Pharmacother 2019; 118:109315. [PMID: 31545256 DOI: 10.1016/j.biopha.2019.109315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Qingyan formulation (QF) is a common preparation that is often used to control inflammation in the haze environment. However, the efficacy and effective constituents of QF are still uncertain and difficult to identify. This paper aims to evaluate the efficacy by simulating a haze environment and determine its anti-inflammatory compounds by UPLC/Q-TOF-MS/MS combing with bioactivity screening. The therapeutic effect of QF in the simulated haze environment was confirmed from the aspects of lung histomorphology and inflammatory factor expression levels. QF showed strong anti-inflammatory activity with the minimum effective concentration reaching 1.5 g/kg. Potential anti-inflammatory components were screened by the NF-κB activity assay system and simultaneously identified based on mass spectral data. Then, the potential active compounds were verified by molecular biological methods, the minimum effective concentration can reach 0.1 mg/L. Six structural types of NF-κB inhibitors (phenolic acid, scopolamine, hydroxycinnamic acid, flavonoid, dihydroflavone and steroid) were identified. Further cytokine assays confirmed their potential anti-inflammatory effects of NF-κB inhibitors. This strategy clearly demonstrates that QF has a significant therapeutic effect on respiratory diseases caused by haze, so it is necessary to promote its commercialization and wider application.
Collapse
Affiliation(s)
- Qingxin Cui
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Fang Ma
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jin Tao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Min Jiang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Gang Bai
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Guoan Luo
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Gupta N, Poddar K, Sarkar D, Kumari N, Padhan B, Sarkar A. Fruit waste management by pigment production and utilization of residual as bioadsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 244:138-143. [PMID: 31121500 DOI: 10.1016/j.jenvman.2019.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Dry powder of fruit wastes including pomegranate, grapes, lime, apple, and papaya was used to examine their pigment extraction capability. Solvent combination of hexane and acetone (1:1) produced the maximum extraction for lime waste with a yield of 1.65%. Gas Chromatography and Mass Spectrometry analysis of the crude pigment of lime exhibited the abundance of compounds like chlorogenic acid, caffeic acid, and coumaric acid. Three major bands were obtained in Thin Layer Chromatography. Column Chromatographic purification using ethyl acetate and hexane mixture as eluting phase showed a retention factor of 0.62 for the major band. Nuclear Magnetic Resonance revealed the final structure of the compound as chlorogenic acid. Slight inhibition was exhibited by the compound against Escherichia coli. Adsorption of arsenate by residual fruit waste revealed the highest adsorption in grapes with 92% efficiency. This study enlightens an alternative approach of fruit waste management with the production of value-added products and its utilization of residue as bioadsorbent.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Nitya Kumari
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Bhagyashree Padhan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|