1
|
Evans RL, Bryant DJ, Voliotis A, Hu D, Wu H, Syafira SA, Oghama OE, McFiggans G, Hamilton JF, Rickard AR. A Semi-Quantitative Approach to Nontarget Compositional Analysis of Complex Samples. Anal Chem 2024. [PMID: 39508740 DOI: 10.1021/acs.analchem.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Nontarget analysis (NTA) by liquid chromatography coupled to high-resolution mass spectrometry improves the capacity to comprehend the molecular composition of complex mixtures compared to targeted analysis techniques. However, the detection of unknown compounds means that quantification in NTA is challenging. This study proposes a new semi-quantitative methodology for use in the NTA of organic aerosol. Quantification of unknowns is achieved using the average ionization efficiency of multiple quantification standards which elute within the same retention time window as the unknown analytes. In total, 110 authentic standards constructed 25 retention time windows for the quantification of oxygenated (CHO) and organonitrogen (CHON) species. The method was validated on extracts of biomass burning organic aerosol (BBOA) and compared to quantification with authentic standards and had an average prediction error of 1.52 times. Furthermore, 70% of concentrations were estimated within a factor of 2 (prediction errors between 0.5 and 2 times) from the authentic standard quantification. The semi-quantification method also showed good agreement for the quantification of CHO compounds compared to predictive ionization efficiency-based methods, whereas for CHON species, the prediction error of the semi-quantification method (1.63) was significantly lower than the predictive ionization efficiency approach (14.94). Application to BBOA for the derivation of relative abundances of CHO and CHON species showed that using peak area underestimated the relative abundance of CHO by 19% and overestimated that of CHON by 11% compared to the semi-quantification method. These differences could lead to significant misinterpretations of source apportionment in complex samples, highlighting the need to account for ionization differences in NTA approaches.
Collapse
Affiliation(s)
- Rhianna L Evans
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Daniel J Bryant
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Aristeidis Voliotis
- Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
- National Centre for Atmospheric Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Dawei Hu
- Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - HuiHui Wu
- Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sara Aisyah Syafira
- Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Osayomwanbor E Oghama
- Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Gordon McFiggans
- Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jacqueline F Hamilton
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- National Centre for Atmospheric Science, University of York, York YO10 5DD, United Kingdom
| | - Andrew R Rickard
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- National Centre for Atmospheric Science, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
2
|
Adhikari S, Joshi R, Joshi R, Kim M, Jang Y, Tufa LT, Gicha BB, Lee J, Lee D, Cho BK. Rapid and ultrasensitive detection of thiram and carbaryl pesticide residues in fruit juices using SERS coupled with the chemometrics technique. Food Chem 2024; 457:140486. [PMID: 39032478 DOI: 10.1016/j.foodchem.2024.140486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
A gold nanogap substrate was used to measure the thiram and carbaryl residues in various fruit juices using surface-enhanced Raman scattering (SERS). The gold nanogap substrates can detect carbaryl and thiram with limits of detection of 0.13 ppb (0.13 μgkg-1) and 0.22 ppb (0.22 μgkg-1). Raw SERS data were first preprocessed to reduce noise and undesirable effects and, were later used for model creation, implementing classification, and regression analysis techniques. The partial least-squares regression models achieved the highest prediction correlation coefficient (R2) of 0.99 and the lowest root mean square of prediction value below 0.62 ppb for both pesticide-infected juice samples. Furthermore, to differentiate between juice samples contaminated by both pesticides and control (pesticide-free), logistic-regression classification models were produced and achieved the highest classification accuracies of 100% and 99% for contaminated juice containing thiram and 100% accurate results for contaminated juice containing carbaryl. This indicates that the gold nanogap surface has significant potential for achieving high sensitivity in detecting trace contaminants in food samples.
Collapse
Affiliation(s)
- Samir Adhikari
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea; Bright Quantum Incorporated, Daejeon 34133, Republic of Korea
| | - Rahul Joshi
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ritu Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Minjun Kim
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea; Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yudong Jang
- Bright Quantum Incorporated, Daejeon 34133, Republic of Korea; Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Lemma Teshome Tufa
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Birhanu Bayissa Gicha
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaebeom Lee
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea; Bright Quantum Incorporated, Daejeon 34133, Republic of Korea; Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Byoung-Kwan Cho
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Smart Agriculture Systems, College of Agricultural and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Zhao Z, Wang W, Chen J, Chen J, Deng J, Wu G, Zhou C, Jiang G, Guan J, Luo D. Effect of ultrasound-assisted Maillard reaction on functional properties and flavor characteristics of Oyster protein enzymatic hydrolysates. ULTRASONICS SONOCHEMISTRY 2024; 111:107113. [PMID: 39442458 PMCID: PMC11532777 DOI: 10.1016/j.ultsonch.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
To address the delamination phenomenon during storage and flavor characteristics of Oyster protein hydrolysates (OPH). In this study, xylo-oligosaccharides (XOS) were selected to covalently graft with OPH through ultrasound-assisted Maillard reaction, and the effect of ultrasound-assisted Maillard reaction on the structure, functional properties, and flavor characteristics of OPH were investigated. The results revealed that the ultrasound treatment led to a 1.46-fold increase in the degree of grafting compared with the conventional wet-heat Maillard reaction methods. Structural analyses at various levels indicated substantial alterations in the OPH structure following the ultrasound-assisted Maillard reaction. More ordered α-helical secondary structures were shifting to random coiling, the tertiary structure showed more stretching changes, and the surface structure was characterized by loose and porous features. Compared with OPH, the solubility of the ultrasound-assisted Maillard reaction products (OPH-U-M) increased from 54.67% to 70.14%, leading to a notable enhancement in storage stability. Flavor profile analysis demonstrated a decrease in unsaturated aldehydes and ketones presenting fishy and bitter aromas, while an increase in presenting meat aroma compounds was observed in OPH-U-M. Furthermore, OPH-U-M exhibited superior antioxidant properties with DPPH and ABTS radical scavenging abilities enhancing 46.05% and 42.09% in comparison with OPH, respectively. The results demonstrated that covalently binding with XOS under ultrasonication pretreatment endowed OPH with superior functional properties (including solubility, storage stability, and antioxidant activity), and the improvement of flavor profile. This study can provide theoretical guidance and practical implications for promoting the processing applications of oyster protein.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Wenduo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Jianxu Chen
- Guangdong Mei wei yuan Flavors Co., Ltd., Yangjiang 529500, China
| | - Jinying Deng
- Guangdong Mei wei yuan Flavors Co., Ltd., Yangjiang 529500, China
| | - Guixian Wu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Mei wei yuan Flavors Co., Ltd., Yangjiang 529500, China
| | - Guili Jiang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Mei wei yuan Flavors Co., Ltd., Yangjiang 529500, China.
| |
Collapse
|
4
|
Zorzella Fontana ME, Caiel da Silva R, Duarte Dos Santos I, Neu JP, Wouters RD, Babinski PJ, Hoffmann JF, Rossi RC, Essi L, Pizzutti IR. Comprehensive assessment of clean-up strategies for optimizing an analytical multi-method to determine pesticides and mycotoxins in Brazilian medicinal herbs using QuEChERS-LC-TQ-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5082-5104. [PMID: 38990094 DOI: 10.1039/d4ay00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The use of medicinal herbs has increased significantly. However, the presence of pesticide residues and mycotoxins in medicinal herbs has generated constant discussion and concern among regulatory agencies. Developing and validating an analytical method for determining pesticides and mycotoxins in medicinal plants is challenging due to the naturally occurring substances in these plants. The purpose of this work was to develop and to optimize a sensitive, accurate, precise, effective QuEChERS method for simultaneous determination of over 160 pesticide and mycotoxin residues in complex medicinal plant matrices using LC-TQ-MS/MS. A comprehensive comparison of clean-up procedures and other parameters was conducted to achieve this goal. The validation procedure was performed according to SANTE 11312/2021. More polar analytes, such as acephate, methamidophos and omethoate, presented a higher negative matrix effect in both Melissa officinalis L. and Malva sylvestris L. However, other molecules, such as spirodiclofen, showed a 24% signal enhancement in M. officinalis and a 46% signal suppression in M. sylvestris, indicating that a representative matrix-matched calibration would lead to inaccurate quantification of the analyte. Accuracy and precision were satisfactory according to SANTE 11312/2021 for 157 pesticide residues and mycotoxins in M. officinalis and for 152 molecules in M. sylvestris. LOQs at 10 µg kg-1 were achieved for 117 pesticides in M. officinalis and 99 pesticides in M. sylvestris. Among the mycotoxins, all four aflatoxins (B1, B2, G1 and G2) presented LOQs of 5 µg kg-1, and ochratoxin A had an LOQ of 10 µg kg-1 in M. officinalis. The same LOQ values were shown for these mycotoxins in M. sylvestris, except for aflatoxin B2 and ochratoxin A, which had LOQs of 20 µg kg-1. Moreover, in Southern Brazil, there has been no previous study on mycotoxin and pesticide contamination in medicinal herbs. Therefore, the application of this method was assessed through the analysis of forty-two real samples. Imidacloprid was found in M. officinalis, and methyl pirimiphos was found in M. sylvestris. The proposed method not only serves as a helpful tool for routine monitoring but also offers a basis for further research on risk assessment and control in food safety.
Collapse
Affiliation(s)
- Marlos Eduardo Zorzella Fontana
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Rosselei Caiel da Silva
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Ingrid Duarte Dos Santos
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
- UFSM - Federal University of Santa Maria, Food Science and Technology Department, 97105-900, Santa Maria/RS, Brazil
| | - Júlia Paula Neu
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Robson Dias Wouters
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Paola Jennifer Babinski
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Jessica Fernanda Hoffmann
- UNISINOS - University of Vale do Rio dos Sinos, Health School - Professional Master's in Food, Nutrition and Health, 93022-000, São Leopoldo/RS, Brazil
| | - Rochele Cassanta Rossi
- UNISINOS - University of Vale do Rio dos Sinos, Health School - Professional Master's in Food, Nutrition and Health, 93022-000, São Leopoldo/RS, Brazil
| | - Liliana Essi
- UFSM - Federal University of Santa Maria, Biology Department, 97105-900, Santa Maria/RS, Brazil
| | - Ionara Regina Pizzutti
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| |
Collapse
|
5
|
Yang B, Tu M, Wang S, Ma W, Zhu Y, Ma Z, Li X. Neonicotinoid insecticides in plant-derived Foodstuffs: A review of separation and determination methods based on liquid chromatography. Food Chem 2024; 444:138695. [PMID: 38346362 DOI: 10.1016/j.foodchem.2024.138695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Neonicotinoids (NEOs) are the most widely used insecticides globally. They can contaminate or migrate into foodstuffs and exert severe neonic toxicity on humans. Therefore, lots of feasible analytical methods were developed to assure food safety. Nevertheless, there is a lack of evaluation that the impacts of food attributes on the accurate determination of NEOs. This review aims to provide a comprehensive overview of sample preparation methods regarding 6 categories of plant-derived foodstuffs. Currently, QuEChERS as the common strategy can effectively extract NEOs from plant-derived foodstuffs. Various enrichment technologies were developed for trace levels of NEOs in processed foodstuffs, and multifarious novel sorbents provided more possibility for removing complex matrices to lower matrix effects. Additionally, detection methods based on liquid chromatography were summarized and discussed in this review. Finally, some limitations were summarized and new directions were proposed for better advancement.
Collapse
Affiliation(s)
- Bingxin Yang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengling Tu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Sheng Wang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yunxiao Zhu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xianjiang Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
6
|
MacKeown H, Scapuzzi C, Baglietto M, Benedetti B, Di Carro M, Magi E. Wastewater and seawater monitoring in Antarctica: Passive sampling as a powerful strategy to evaluate emerging pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171755. [PMID: 38494027 DOI: 10.1016/j.scitotenv.2024.171755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The Ross Sea, among the least human-impacted marine environments worldwide, recently became the first marine protected area in Antarctica. To assess the impact of the Italian research station Mario Zucchelli (MZS) on the surrounding waters, passive sampling - as well as spot sampling for comparison - took place in the effluent of the wastewater treatment plant (WWTP) and the receiving surface marine waters. Polar Organic Chemical Integrative Samplers (POCIS) were deployed for six consecutive 2-week periods from November to February in a reservoir collecting the wastewater effluent. Passive samplers were also deployed at shallow depth offshore from the wastewater effluent outlet from MZS for two separate 3-week periods (November 2021 and January 2022). Grab water samples were collected alongside each POCIS deployment, for comparison with passive sampling results. POCIS, used for the first time in Antarctica, demonstrated to be advantageous to estimate time-averaged concentrations in waters and the results were comparable to those obtained by repeated spot samplings. Among the 23 studied ECs - including drugs, UV-filters, perfluorinated substances, caffeine - 15 were detected in both grab and passive sampling in the WWTP effluent and followed similar concentration profiles in both types of sampling. High concentrations of caffeine, naproxen and ketoprofen in the dozens of μg L-1 were detected. Other compounds, including drugs and several UV filters, were detected down to sub- μg L-1 concentrations. In marine waters close to the effluent output, only traces of a drug (4.8 ng L-1) and two UV filters (up to 0.04 μg L-1) were quantified.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Matteo Baglietto
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| |
Collapse
|
7
|
Huertas-Pérez JF, Baslé Q, Dubois M, Theurillat X. Multi-residue pesticides determination in complex food matrices by gas chromatography tandem mass spectrometry. Food Chem 2024; 436:137687. [PMID: 37857199 DOI: 10.1016/j.foodchem.2023.137687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
An analytical method for determination of GC-amenable pesticides in complex matrices, was validated based on QuEChERS sample preparation and gas chromatography tandem mass spectrometry. Performance of the method was tested according to the EU SANTE guidelines for 172 pesticides belonging to different chemical classes, in three representative complex matrices. Three concentration levels were tested in order to establish the lowest limit of quantification possible. For some matrix/pesticide combination, careful selection of the quantification/confirmation transitions was key to avoid interferences. Accurate quantification was achieved by standard addition. The number of compounds fulfilling EU SANTE criteria at 10 µg/kg and 100 µg/kg were 93 and 148 for roasted coffee, 93 and 112 for green tea and 98 and 111 for curry respectively. The method was further evaluated in different matrices (chili, clove, cumin, paprika and rosemary) with 50-90 % of the compounds fulfilling the validation criteria depending on the matrix.
Collapse
Affiliation(s)
| | - Quentin Baslé
- Nestlé Quality Assurance Center (NQAC) Singapore, 29 Quality Rd., 618802, Singapore
| | - Mathieu Dubois
- Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | |
Collapse
|
8
|
Ijzerman MM, Raby M, Letwin NV, Kudla YM, Anderson JD, Atkinson BJ, Rooney RC, Sibley PK, Prosser RS. New insights into pesticide occurrence and multicompartmental monitoring strategies in stream ecosystems using periphyton and suspended sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170144. [PMID: 38242468 DOI: 10.1016/j.scitotenv.2024.170144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Streams are susceptible to pesticide pollutants which are transported outside of the intended area of application from surrounding agricultural fields. It is essential to monitor the occurrence and levels of pesticides in aquatic ecosystems to comprehend their effects on the aquatic environment. The common sampling strategy used for monitoring pesticides in stream ecosystems is through the collection and analysis of grab water samples. However, grab water sampling may not effectively monitor pesticides due to its limited ability to capture temporal and spatial variability, potentially missing fluctuations and uneven distribution of pesticides in aquatic environments. Monitoring using periphyton and sediment sampling may offer a more comprehensive approach by accounting for accumulative processes and temporal variations. Periphyton are a collective of microorganisms that grow on hard surfaces in aquatic ecosystems. They are responsive to chemical and biological changes in the environment, and therefore have the potential to act as a cost-effective, integrated sampling tool to monitor pesticide exposures in aquatic ecosystems. The objective of this study was to assess pesticides detected through periphyton, suspended sediment, and conventional grab water sampling methods and identify the matrix that offers a more comprehensive characterization of a stream's pesticide exposure profile. Ten streams across Southern Ontario were sampled in 2021 and 2022. At each stream site, water, sediment and periphyton, colonizing both artificial and natural substrates, were collected and analyzed for the presence of ~500 pesticides. Each of the three matrices detected distinctive pesticide exposure profiles. The frequency of detection in periphyton, sediment and water matrices were related to pesticides' log Kow and log Koc (P < 0.05). In addition, periphyton bioconcentrated 22 pesticides above levels observed in the ambient water. The bioconcentration factors of pesticides in periphyton can be predicted from their log Kow (simple linear regressions, P < 0.05). The results demonstrate that sediment and periphyton accumulate pesticides in stream environments. This highlights the importance of monitoring pesticide exposure using these matrices to ensure a complete and comprehensive characterization of exposure in stream ecosystems.
Collapse
Affiliation(s)
- Moira M Ijzerman
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Melanie Raby
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | - Nicholas V Letwin
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Yaryna M Kudla
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Jenna D Anderson
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Brian J Atkinson
- Laboratory Services Division, University of Guelph, Guelph, ON, Canada
| | - Rebecca C Rooney
- University of Waterloo, Department of Biology, Waterloo, ON, Canada
| | - Paul K Sibley
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Ryan S Prosser
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada.
| |
Collapse
|
9
|
Williams ML, Olomukoro AA, Emmons RV, Godage NH, Gionfriddo E. Matrix effects demystified: Strategies for resolving challenges in analytical separations of complex samples. J Sep Sci 2023; 46:e2300571. [PMID: 37897324 DOI: 10.1002/jssc.202300571] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Matrix effects can significantly impede the accuracy, sensitivity, and reliability of separation techniques presenting a formidable challenge to the analytical process. It is crucial to address matrix effects to achieve accurate and precise measurements in complex matrices. The multifaceted nature of matrix effects which can be influenced by factors such as target analyte, sample preparation protocol, composition, and choice of instrument necessitates a pragmatic approach when analyzing complex matrices. This review aims to highlight common challenges associated with matrix effects throughout the entire analytical process with emphasis on gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, and sample preparation techniques. These techniques are susceptible to matrix effects that could lead to ion suppression/enhancement or impact the analyte signal at various stages of the analytical workflow. The assessment, quantification, and mitigation of matrix effects are necessary in developing any analytical method. Strategies can be implemented to reduce or eliminate the matrix effect by changing the type of ionization, improving extraction and clean-up methods, optimization of chromatography conditions, and corrective calibration methods. While development of an effective strategy to completely mitigate matrix effects remains elusive, an integrated approach that combines sample preparation, analytical extraction, and effective instrumental analysis remains the most promising avenue for identifying and resolving matrix effects.
Collapse
Affiliation(s)
- Madison L Williams
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Aghogho Abigail Olomukoro
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Ronald V Emmons
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Nipunika H Godage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
10
|
Guo M, Qin Y, Sun H, Li Z, Zhang X, Wang X, Yang M, Luo F, Chen Z, Zhou L. Method validation for detection of afidopyropen and M440I007 in tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5738-5746. [PMID: 37144352 DOI: 10.1002/jsfa.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 05/05/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Afidopyropen is a novel biorational insecticide for controlling piercing pests with great potential for application in tea gardens that can form the metabolite M440I007 when utilized for crops. However, because of a lack of analytical method for afidopyropen and M440I007 in tea, there is no means of monitoring the residues. Therefore, method development, validation and simultaneous determination of afidopyropen and M440I007 in fresh tea leaves, dried tea and tea infusion is of prime significance. RESULTS A TPT cartridge-based method was developed for the solid phase extraction of afidopyropen and M440I007 from tea matrices. Extraction and clean-up conditions, including the composition, volume and temperature of elutions, were optimized to achieve the best results. Both targets were extracted using water and acetonitrile, with a water:acetonitrile (v/v) ratio of 4:10 for fresh leaves and 8:10 for dried tea, which were then cleaned and analyzed using ultraperformance liquid chromatography-tandem mass spectrometry. Both analytes demonstrated excellent linearity with a correlation coefficient above 0.998. The optimized analytical method offered limits of quantifications of 0.005, 0.005 and 0.002 mg kg-1 (converted to dried tea) in fresh tea shoots, dried tea and tea infusion for both targets, respectively. Average recoveries of afidopyropen and M440I007 ranged from 79.0% to 101.5%, with relative standard deviations ≤ 14.7%. CONCLUSION The results showed that the method of determination for these insecticides in tea matrices was practical and efficient. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingming Guo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yujie Qin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
11
|
Yang SH, Shin Y, Choi H. Simultaneous analytical method for 296 pesticide multiresidues in root and rhizome based herbal medicines with GC-MS/MS. PLoS One 2023; 18:e0288198. [PMID: 37410759 DOI: 10.1371/journal.pone.0288198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
A method for the simultaneous analysis of pesticide multiresidues in three root/rhizome-based herbal medicines (Cnidium officinale, Rehmannia glutinosa, and Paeonia lactiflora) was developed with GC-MS/MS. To determine the concentrations of pesticide residues, 5 g of dried samples were saturated with distilled water, extracted with 10 mL of 0.1% formic acid in acetonitrile/ethyl acetate (7:3, v/v), and then partitioned using magnesium sulfate and sodium chloride. The organic layer was purified with Oasis PRiME HLB plus light, followed by a cleanup with dispersive solid-phase extraction containing alumina. The sample was then injected into GC-MS/MS (2 μL) using a pulsed injection mode at 15 psi and analyzed using multiple reaction monitoring (MRM) modes. The limit of quantitation for the 296 target pesticides was within 0.002-0.05 mg/kg. Among them, 77.7-88.5% showed recoveries between 70% and 120% with relative standard deviations (RSDs) ≤20% at fortified levels of 0.01, and 0.05 mg/kg. The analytical method was successfully applied to real herbal samples obtained from commercial markets, and 10 pesticides were quantitatively determined from these samples.
Collapse
Affiliation(s)
- Seung-Hyun Yang
- Department of Life & Environmental Sciences, College of Agriculture and Food Sciences, Wonkwang University, Iksan, Republic of Korea
- Department of Healthcare Advanced Chemical Research Institute, Environmental Toxicology & Chemistry Center, Hwasun-gun, Republic of Korea
| | - Yongho Shin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
| | - Hoon Choi
- Department of Life & Environmental Sciences, College of Agriculture and Food Sciences, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
12
|
Song W, Peng C, Liu Y, Han F, Zhu H, Zhou D, Wang Y, Chen L, Meng X, Hou R. Simultaneous Analysis of 53 Pesticides in Safflower ( Carthamus tinctorius L.) by Using LC-MS/MS Coupled with a Modified QuEChERS Technique. TOXICS 2023; 11:537. [PMID: 37368637 DOI: 10.3390/toxics11060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE An optimized quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique was investigated and compared with the conventional QuEChERS technique for the simultaneous analysis of fifty-three pesticide residues in safflower using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). METHOD Graphitic carbon nitride (g-C3N4) consisting of a major amount of carbon and nitrogen with a large surface area was used as a QuEChERS adsorbent instead of graphitized carbon black (GCB) for safflower extraction purification. Validation experiments were performed using spiked pesticide samples, and real samples were analyzed. RESULTS The linearity of the modified QuEChERS technique was evaluated with high coefficients of determination (R-2) being higher than 0.99. The limits of detection were <10 μg/kg. The spiked recoveries ranged from 70.4% to 97.6% with a relative standard deviation of less than 10.0%. The fifty-three pesticides exhibited negligible matrix effects (<20%). Thiamethoxam, acetamiprid, metolachlor, and difenoconazole were detected in real samples using an established method. CONCLUSION This work provides a new g-C3N4-based modified QuEChERS technique for multi-pesticide residue analysis in complex food matrices.
Collapse
Affiliation(s)
- Wei Song
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Chuanyi Peng
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuxin Liu
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Fang Han
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Haitao Zhu
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Dianbing Zhou
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Yu Wang
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Lijun Chen
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Xiaodi Meng
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Ruyan Hou
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
13
|
Araújo da Silva A, Fagnani E, Cristale J. A modified QuEChERS method for determination of organophosphate esters in milk by GC-MS. CHEMOSPHERE 2023; 334:138974. [PMID: 37207896 DOI: 10.1016/j.chemosphere.2023.138974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Organophosphate esters (OPEs) are substances that have been detected in several matrices due to their use as flame retardants and plasticizers. Human exposure to OPEs can cause endocrine disruption, hormonal problems, and reproductive disturbance. Ingestion of contaminated food can be a significant route of exposure to OPEs. Food can be contaminated by OPEs in the food chain, during cultivation, and by contact with plasticizers during the production chain of processed foods. In this study, a method for the determination of 10 OPEs in commercial bovine milk was developed. The procedure was based on QuEChERS extraction and gas chromatography coupled to mass spectrometry (GC-MS) analysis. QuEChERS modification included a freezing-out step after the extraction followed by the concentration of the entire acetonitrile phase before the clean-up step. Calibration linearity, matrix effects, recovery, and precision were evaluated. Significant matrix effects were observed, which could be compensated by the isotopically labeled internal standard quantification and matrix-matched calibration curves. Recoveries ranged from 77 to 105%, with a relative standard deviation ranging from 3 to 38%. The method detection limits (MDLs) were in the range of 0.031-6.7 ng mL-1, while the method quantification limits (MQLs) were within the range from 0.27 to 20 ng mL-1. The proposed method was successfully validated and applied to determine the concentrations of OPEs in bovine milk. The 2-ethylhexyl diphenyl phosphate (EHDPHP) was detected in the analyzed milk samples but at levels below the MQL.
Collapse
Affiliation(s)
- Amanda Araújo da Silva
- School of Technology, University of Campinas (FT-UNICAMP), Rua Paschoal Marmo 1888, 13484-332 Limeira, SP, Brazil
| | - Enelton Fagnani
- School of Technology, University of Campinas (FT-UNICAMP), Rua Paschoal Marmo 1888, 13484-332 Limeira, SP, Brazil
| | - Joyce Cristale
- School of Technology, University of Campinas (FT-UNICAMP), Rua Paschoal Marmo 1888, 13484-332 Limeira, SP, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo (CENA-USP), Av Centenário 303, 13416-000, Piracicaba, SP, Brazil.
| |
Collapse
|
14
|
Damale RD, Dutta A, Shaikh N, Pardeshi A, Shinde R, Babu KD, Gaikwad NN, Banerjee K. Multiresidue analysis of pesticides in four different pomegranate cultivars: Investigating matrix effect variability by GC-MS/MS and LC-MS/MS. Food Chem 2023; 407:135179. [PMID: 36521392 DOI: 10.1016/j.foodchem.2022.135179] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Matrix effect (ME) is unavoidable in multiresidue pesticide analysis, even when using highly advanced instruments, and differences in MEs can affect residue analytical accuracy due to pomegranate cultivar composition variations. However, literature to support this claim is limited.The study used GC-MS/MS and LC-MS/MS to investigate four different Indian pomegranate cultivar extracts and their MEs on multi-class pesticides.The whole fruit and arils of all cultivarswere tested for 22 GC-amenable and 21 LC-amenable pesticides. Principal component analysis of the data confirmed that each cultivar had unique MEs for each pesticide.The majority of pesticides showed acute variations in recovery rates with 95% confidence, while GC-MS/MS-amenablepesticides showed more variation. Although extrapolative dilution reduced the influence of MEs on analytical accuracy, a generalized matrix-matching for all cultivars was not possible to achieve.To reduce the variability in MEs, it is recommended that a cultivar-specific matrix-matched standard should be used.
Collapse
Affiliation(s)
- Rahul D Damale
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412307, India; ICAR-National Research Centre on Pomegranate, Solapur 413255, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Nasiruddin Shaikh
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412307, India
| | - Anita Pardeshi
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412307, India
| | - Raviraj Shinde
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412307, India
| | - K Dhinesh Babu
- ICAR-National Research Centre on Pomegranate, Solapur 413255, India
| | - Nilesh N Gaikwad
- ICAR-National Research Centre on Pomegranate, Solapur 413255, India
| | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412307, India.
| |
Collapse
|
15
|
Tarakhovskaya E, Marcillo A, Davis C, Milkovska-Stamenova S, Hutschenreuther A, Birkemeyer C. Matrix Effects in GC–MS Profiling of Common Metabolites after Trimethylsilyl Derivatization. Molecules 2023; 28:molecules28062653. [PMID: 36985624 PMCID: PMC10053008 DOI: 10.3390/molecules28062653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Metabolite profiling using gas chromatography coupled to mass spectrometry (GC–MS) is one of the most frequently applied and standardized methods in research projects using metabolomics to analyze complex samples. However, more than 20 years after the introduction of non-targeted approaches using GC–MS, there are still unsolved challenges to accurate quantification in such investigations. One particularly difficult aspect in this respect is the occurrence of sample-dependent matrix effects. In this project, we used model compound mixtures of different compositions to simplify the study of the complex interactions between common constituents of biological samples in more detail and subjected those to a frequently applied derivatization protocol for GC–MS analysis, namely trimethylsilylation. We found matrix effects as signal suppression and enhancement of carbohydrates and organic acids not to exceed a factor of ~2, while amino acids can be more affected. Our results suggest that the main reason for our observations may be an incomplete transfer of carbohydrate and organic acid derivatives during the injection process and compound interaction at the start of the separation process. The observed effects were reduced at higher target compound concentrations and by using a more suitable injection-liner geometry.
Collapse
Affiliation(s)
- Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Vavilov Institute of General Genetics RAS, St. Petersburg Branch, 199034 St. Petersburg, Russia
| | - Andrea Marcillo
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Institute of Energy and Climate Research (IEK-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Caroline Davis
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Waters GmbH, 1130 Vienna, Austria
| | - Sanja Milkovska-Stamenova
- Bioanalytics Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- AP Diagnostics GmbH, 04103 Leipzig, Germany
| | - Antje Hutschenreuther
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Claudia Birkemeyer
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Li Y, Wang L, Zheng M, Lin Y, Xu H, Liu A, Hua Y, Jiang Y, Ning K, Hu S. Thin-layer chromatography coupled with HPLC-DAD/UHPLC-HRMS for target and non-target determination of emerging halogenated organic contaminants in animal-derived foods. Food Chem 2023; 404:134678. [PMID: 36444082 DOI: 10.1016/j.foodchem.2022.134678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 11/04/2022]
Abstract
In this study, a simple, solvent-saving, and sensitive method was established using high-performance liquid chromatography coupled with high-resolution mass spectrometry to quantitively determine 16 emerging halogenated organic contaminants (HOCs), including polyhalogenated carbazoles, halogenated phenols, and tetrabromobisphenol-A analogs, and to qualitatively identify non-target HOCs in animal-derived food samples. The sample extracts were physically frozen to remove most lipids and further purified by thin-layer chromatography according to the targets polarity. The method detection limit and method quantification limit of 16 HOCs were in the range of 0.003-9.168 and 0.010-30.601 ng·g-1 dry weight, respectively. The recoveries were within 69.1-111.0 %, the intra/inter-day precisions were 0.1-6.1 % and 0.1-6.7 %, and the matrix effects were between -12.1 and 10.8 %, all within the acceptable range. Finally, 16 HOCs were detected in nine actual samples in range of not detected-307.22 ng·g-1 dry weight. Moreover, five bromides and two chlorides were identified by using non-target analysis in animal-derived foods.
Collapse
Affiliation(s)
- Ying Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ling Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yongfeng Lin
- School of Public Health, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hongyan Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Aifeng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yi Hua
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuqing Jiang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ke Ning
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shanmin Hu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
17
|
Fernandes VC, Podlasiak M, Vieira EF, Rodrigues F, Grosso C, Moreira MM, Delerue-Matos C. Multiple Organic Contaminants Determination Including Multiclass of Pesticides, Polychlorinated Biphenyls, and Brominated Flame Retardants in Portuguese Kiwano Fruits by Gas Chromatography. Foods 2023; 12:foods12050993. [PMID: 36900510 PMCID: PMC10000518 DOI: 10.3390/foods12050993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Global production of exotic fruits has been growing steadily over the past decade and expanded beyond the originating countries. The consumption of exotic and new fruits, such as kiwano, has increased due to their beneficial properties for human health. However, these fruits are scarcely studied in terms of chemical safety. As there are no studies on the presence of multiple contaminants in kiwano, an optimized analytical method based on the QuEChERS for the evaluation of 30 multiple contaminants (18 pesticides, 5 polychlorinated biphenyls (PCB), 7 brominated flame retardants) was developed and validated. Under the optimal conditions, satisfactory extraction efficiency was obtained with recoveries ranging from 90% to 122%, excellent sensitivity, with a quantification limit in the range of 0.6 to 7.4 µg kg-1, and good linearity ranging from 0.991 to 0.999. The relative standard deviation for precision studies was less than 15%. The assessment of the matrix effects showed enhancement for all the target compounds. The developed method was validated by analyzing samples collected from Douro Region. PCB 101 was found in trace concentration (5.1 µg kg-1). The study highlights the relevance of including other organic contaminants in monitoring studies in food samples in addition to pesticides.
Collapse
|
18
|
Ambrus Á, Doan VVN, Szenczi-Cseh J, Szemánné-Dobrik H, Vásárhelyi A. Quality Control of Pesticide Residue Measurements and Evaluation of Their Results. Molecules 2023; 28:molecules28030954. [PMID: 36770626 PMCID: PMC9920035 DOI: 10.3390/molecules28030954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Pesticide residues are monitored in many countries around the world. The main aims of the programs are to provide data for dietary exposure assessment of consumers to pesticide residues and for verifying the compliance of the residue concentrations in food with the national or international maximum residue limits. Accurate residue data are required to reach valid conclusions in both cases. The validity of the analytical results can be achieved by the implementation of suitable quality control protocols during sampling and determination of pesticide residues. To enable the evaluation of the reliability of the results, it is not sufficient to test and report the recovery, linearity of calibration, the limit of detection/quantification, and MS detection conditions. The analysts should also pay attention to and possibly report the selection of the portion of sample material extracted and the residue components according to the purpose of the work, quality of calibration, accuracy of standard solutions, and reproducibility of the entire laboratory phase of the determination of pesticide residues. The sources of errors potentially affecting the measured residue values and the methods for controlling them are considered in this article.
Collapse
Affiliation(s)
- Árpád Ambrus
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence:
| | - Vy Vy Ngoc Doan
- Southern Pesticide Control and Testing Center, Plant Protection Department, 71007 Ho Chi Minh City, Vietnam
| | | | - Henriett Szemánné-Dobrik
- Food Chain Safety Centre, Non-profit Ltd., Pesticide Residue Analytical Laboratory, 3529 Miskolc, Hungary
| | | |
Collapse
|
19
|
A simple approach for pesticide residues determination in green vegetables based on QuEChERS and gas chromatography tandem mass spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Metin B, Güleryüz A, Chormey DS, Zaman BT, Bakirdere S. Determination of diflufenican and azaconazole pesticides in wastewater samples by GC-MS after preconcentration with stearic acid functionalized magnetic nanoparticles-based dispersive solid-phase extraction. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:32. [PMID: 36284003 DOI: 10.1007/s10661-022-10699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
This study presents the preconcentration of diflufenican and azaconazole from domestic wastewater samples by using dispersive solid-phase extraction (dSPE) for determination by gas chromatography-mass spectrometry (GC-MS). Stearic acid-coated magnetic nanoparticles were used as adsorbents for dSPE method. In order to maximize the efficiency of the extraction process, parameters such as magnetic nanoparticle (MNP) type and amount, eluent type and volume, mixing type, and mixing period were all optimized. The linear range obtained for azaconazole and diflufenican was 7.50-500 ng/mL and 7.50-750 ng/mL, and their limits of detection/quantification (LOD/LOQ) were calculated as 1.3/4.3 ng/mL and 1.4/4.7 ng/mL, respectively. By comparing the LOD values of direct GC-MS and the developed dSPE method, azaconazole and diflufenican recorded approximately 35 and 38 folds enhancement in detection power. Recovery experiments with domestic wastewater were carried out to certify the proposed method's accuracy and applicability. By using the matrix matching calibration strategy, the good percent recovery results between 98 and 105% were obtained.
Collapse
Affiliation(s)
- Berfin Metin
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Turkey
| | - Aybüke Güleryüz
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Turkey
| | - Dotse Selali Chormey
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Turkey
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, Istanbul, Turkey
| | - Buse Tuğba Zaman
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Turkey
| | - Sezgin Bakirdere
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Turkey.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, Ankara, Turkey.
| |
Collapse
|
21
|
Evaluation of matrix effects for pesticide residue analysis by QuEChERs coupled with UHPLC-MS/MS in complex herbal matrix. Food Chem 2022; 405:134755. [DOI: 10.1016/j.foodchem.2022.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
|
22
|
Guo Q, Qin Y, Pan L, Xie F, Liu S, Sun X, Wang X, Cai J, Zhao X, Liu H. Accuracy improvement of determination of seven minor tobacco alkaloids in mainstream cigarette smoke using analyte protectants by gas chromatography-mass spectrometry. J Chromatogr A 2022; 1684:463537. [DOI: 10.1016/j.chroma.2022.463537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022]
|
23
|
Wang LJ, Chen ZW, Ma TZ, Qing J, Liu F, Xu Z, Jiao Y, Luo SH, Cheng YH, Ding L. A novel magnetic metal-organic framework absorbent for rapid detection of aflatoxins B 1B 2G 1G 2 in rice by HPLC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2522-2530. [PMID: 35708023 DOI: 10.1039/d2ay00167e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a core-shell-structured magnetic metal-organic framework (MMOF) composite material (Fe3O4@UiO-66-NH2) was synthesized by the solvothermal method. It was employed as a new absorbent in combination with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the simultaneous detection of four aflatoxins (AFs) in rice. This method could shorten the pre-processing time by exploiting the advantageous characteristics of magnetic cores. The impurity was removed quickly. The effects of extraction solution, extraction time, adsorbent types, and amount of adsorbent on the extraction rate of target compounds were optimized. Under optimized conditions, AFs were validated and showed a good linear relationship within the 0.375-20 μg kg-1 concentration range (r2 > 0.9992). The limit of detection (LOD) was 0.0188-0.1250 μg kg-1 and the limit of quantification (LOQ) was 0.0375-0.3750 μg kg-1. At three spiking levels (0.375, 2, and 10 μg kg-1), the average recovery values for the four AFs ranged from 85.1% to 111.0%. The relative standard deviation ranged from 3.4% to 7.7%. The new method proved to be simple, fast, efficient, and suitable for the determination of AFs in rice samples.
Collapse
Affiliation(s)
- Ling-Juan Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Zhi-Wei Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Teng-Zhou Ma
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs, Shanghai 200135, China.
| | - Jiang Qing
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs, Shanghai 200135, China.
| | - Fang Liu
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Shi-Hua Luo
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Yun-Hui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
24
|
Abstract
The extensive use of pesticides represents a risk to human health. Consequently, legal frameworks have been established to ensure food safety, including control programs for pesticide residues. In this context, the performance of analytical methods acquires special relevance. Such methods are expected to be able to determine the largest number of compounds at trace concentration levels in complex food matrices, which represents a great analytical challenge. Technical advances in mass spectrometry (MS) have led to the development of more efficient analytical methods for the determination of pesticides. This review provides an overview of current analytical strategies applied in pesticide analysis, with a special focus on MS methods. Current targeted MS methods allow the simultaneous determination of hundreds of pesticides, whereas non-targeted MS methods are now applicable to the identification of pesticide metabolites and transformation products. New trends in pesticide analysis are also presented, including approaches for the simultaneous determination of pesticide residues and other food contaminants (i.e., mega-methods), or the recent application of techniques such as ion mobility–mass spectrometry (IM–MS) for this purpose.
Collapse
|
25
|
Fu Y, Zhang J, Qin J, Dou X, Luo J, Yang M. Representative matrices for use in matrix-matched calibration in gas chromatography-mass spectrometry for the analysis of pesticide residues in different types of food-medicine plants. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Guo Q, Pan L, Qin Y, Xie F, Wang X, Zhao X, Chen L, Wang B, Cai J, Liu H. Combined use of analyte protectants and precolumn backflushing for a robust, high-throughput quantitative determination of aroma compounds in cigarette mainstream smoke by gas chromatography-tandem mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Duan L, An X, Pan X, Li R, Wang K, Guo L, Zhang B, Dong F, Xiang W, Wu X, Xu J, Zheng Y. Residual levels of five pesticides in peanut oil processing and chips frying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2494-2499. [PMID: 34689325 DOI: 10.1002/jsfa.11590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pesticide contamination in oil crops and processed products is an important food safety concern. The study was aimed to investigate the pesticide residue changes in press processing of peanut oil and frying of chips. RESULTS Five pesticides - chlorpyrifos, deltamethrin, methoxyfenozide, azoxystrobin and propargite - which are often applied during growth period in peanut plants, were selected to investigate their residue changes in cold press processing of peanut oil and frying of potato chips. Results showed that the residues of the five pesticides were decreased by 3.1-42.6% during air-drying before oil pressing. The residues of chlorpyrifos, deltamethrin, methoxyfenozide and propargite in peanut oil were 2.05-3.63 times higher than that in peanut meal after cold pressing of the oil, except for azoxystrobin having a slightly lower residue in peanut oil, with 0.92 times that in peanut meal. The processing factors of the five pesticides in peanut oil ranged from 1.17 to 2.73 and were highly related to the log Kow of the pesticides. The higher the log Kow , the more easily was the pesticide partitioned in the peanut oil. Besides, as frying time increase during preparation of chips, the concentration of pesticides in peanut oil decreased gradually by 6.7-22.1% compared to the first frying. In addition, 0.47-11.06% of the pesticides were transferred to the chips through frying with contaminated oil. CONCLUSION This is first report showing that pesticides can transfer from contaminated oil to chips. There exists a potential dietary health risk by using pesticide-contaminated oil for frying chips. This work could provide basic data for accurate dietary risk assessment of pesticide residues in peanut oil and its frying products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifang Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luyao Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Binbin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Method optimization and validation for the routine analysis of multi-class pesticide residues in Kinnow Mandarin and fruit quality evaluation. Food Chem 2022; 369:130914. [PMID: 34461515 DOI: 10.1016/j.foodchem.2021.130914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
The present study describes the selection of a sensitive multi-residue method that can be used for the routine testing of pesticides in Kinnow Mandarin. The citrate-buffered QuEChERS extraction followed by primary secondary amines and C18 clean-up was found suitable for the analysis of fifty four pesticides. The limit of quantification for the selected pesticides was lower than maximum residue limits (MRLs) set by European Union, Codex Alimentarius Commission (CAC), and twelve other countries. The method's accuracy ranged from 74.4 to 112% and expanded uncertainty ranged from 7.5 to 49.6%. The validated method was applied to Kinnow Mandarin samples, collected from 22 export units of district Sargodha, Pakistan. Almost 27% of the samples (n = 22) were exceeding the CAC-MRLs. The index of quality for residues (IqR), for 64% of the samples, was considered adequate. The study indicates the need for regular monitoring to protect public health and ensure safe and consistent trade.
Collapse
|
29
|
Kim YR, Kang HS. Multi-residue determination of twenty aminoglycoside antibiotics in various food matrices by dispersive solid phase extraction and liquid chromatography-tandem mass spectrometry. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Pan H, Ahmad W, Jiao T, Zhu A, Ouyang Q, Chen Q. Label-free Au NRs-based SERS coupled with chemometrics for rapid quantitative detection of thiabendazole residues in citrus. Food Chem 2021; 375:131681. [PMID: 34863601 DOI: 10.1016/j.foodchem.2021.131681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Citrus is a highly consumed fruit worldwide. However, the excessive use of thiabendazole (TBZ) pesticides during citrus cultivation poses a health risk to people. Hence, a rapid and quantitative method has been established for TBZ determination in citrus by coupling gold nanorods (Au NRs) based surface enhanced Raman scattering (SERS) coupling chemometrics. The results show that support vector machine (SVM) can distinguish TBZ residues of different orders of magnitude with 99.1667% accuracy and that genetic algorithm-partial least squares (GA-PLS) had the best performance in the quantitative prediction of TBZ residues (Rp2 = 0.9737, RMSEP = 0.1179 and RPD = 5.85) in citrus. The limit of detection (LOD) was 0.33 μg mL-1. Furthermore, the proposed method was validated by a standard HPLC method using t-test with no significant difference. Therefore, the proposed Au NRs-based SERS technique can be used for the rapid quantitative analysis of TBZ residues in citrus.
Collapse
Affiliation(s)
- Haihui Pan
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
31
|
Xu ML, Gao Y, Wang X, Han XX, Zhao B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021; 10:2473. [PMID: 34681522 PMCID: PMC8535889 DOI: 10.3390/foods10102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
Food safety and quality have been gaining increasing attention in recent years. Gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), a highly sensitive technique, is gradually being preferred to GC-MS in food safety laboratories since it provides a greater degree of separation on contaminants. In the analysis of food contaminants, sample preparation steps are crucial. The extraction of multiple target analytes simultaneously has become a new trend. Thus, multi-residue analytical methods, such as QuEChERs and adsorption extraction, are fast, simple, cheap, effective, robust, and safe. The number of microorganic contaminants has been increasing worldwide in recent years and are considered contaminants of emerging concern. High separation in MS/MS might be, in certain cases, favored to sample preparation selectivity. The ideal sample extraction procedure and purification method should take into account the contaminants of interest. Moreover, these methods should cooperate with high-resolution MS, and other sensitive full scan MSs that can produce a more comprehensive detection of contaminants in foods. In this review, we discuss the most recent trends in preparation methods for highly effective detection and analysis of food contaminants, which can be considered tools in the control of food quality and safety.
Collapse
Affiliation(s)
- Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Xiao Wang
- Jilin Institute for Food Control, Changchun 130103, China;
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| |
Collapse
|
32
|
Jin X, Kaw HY, Liu Y, Zhao J, Piao X, Jin D, He M, Yan XP, Zhou JL, Li D. One-step integrated sample pretreatment technique by gas-liquid microextraction (GLME) to determine multi-class pesticide residues in plant-derived foods. Food Chem 2021; 367:130774. [PMID: 34390913 DOI: 10.1016/j.foodchem.2021.130774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Gas-liquid microextraction technique (GLME) has been integrated with dispersive solid phase extraction to establish a one-step sample pretreatment approach for rapid analysis of multi-class pesticides in different plant-derived foods. A 50 μL of organic solvent plus 40 mg of PSA were required throughout the 5-minute pretreatment procedure. Good trueness (recoveries of 67.2 - 105.4%) and precision (RSD ≤ 18.9%) were demonstrated by the one-step GLME method, with MLOQs ranged from 0.001 to 0.011 mg kg-1. As high as 93.6% pesticides experienced low matrix effect through this method, and the overall matrix effects (ME%) were generally better or comparable to QuEChERS. This method successfully quantified 2-phenylphenol, quintozene, bifenthrin and permethrin in the range of 0.001 - 0.008 mg kg-1 in real food samples. The multiresidue analysis feature of GLME has been validated, which displays further potential for on-site determination of organic pollutants in order to safeguard food safety and human health.
Collapse
Affiliation(s)
- Xiangzi Jin
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yunan Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
| | - Jinhua Zhao
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
| | - Xiangfan Piao
- Department of Electronic Information Engineering, College of Engineering, Yanbian University, Yanji 133002, Jilin Province, China
| | - Dongri Jin
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
| | - Miao He
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
33
|
Zhang J, Liu Y, Zhang J, Zuo J, Zhang J, Qiu F, Wei C, Miao S. Preparation of mesoporous coal gasification slag and applications in polypropylene resin reinforcement and deodorization. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Oliveira MN, Gonçalves OC, Ahmad SM, Schneider JK, Krause LC, Neng NR, Caramão EB, Nogueira JMF. Application of Bar Adsorptive Microextraction for the Determination of Levels of Tricyclic Antidepressants in Urine Samples. Molecules 2021; 26:3101. [PMID: 34067333 PMCID: PMC8196885 DOI: 10.3390/molecules26113101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022] Open
Abstract
This work entailed the development, optimization, validation, and application of a novel analytical approach, using the bar adsorptive microextraction technique (BAμE), for the determination of the six most common tricyclic antidepressants (TCAs; amitriptyline, mianserin, trimipramine, imipramine, mirtazapine and dosulepin) in urine matrices. To achieve this goal, we employed, for the first time, new generation microextraction devices coated with convenient sorbent phases, polymers and novel activated carbons prepared from biomaterial waste, in combination with large-volume-injection gas chromatography-mass spectrometry operating in selected-ion monitoring mode (LVI-GC-MS(SIM)). Preliminary assays on sorbent coatings, showed that the polymeric phases present a much more effective performance, as the tested biosorbents exhibited low efficiency for application in microextraction techniques. By using BAμE coated with C18 polymer, under optimized experimental conditions, the detection limits achieved for the six TCAs ranged from 0.2 to 1.6 μg L-1 and, weighted linear regressions resulted in remarkable linearity (r2 > 0.9960) between 10.0 and 1000.0 μg L-1. The developed analytical methodology (BAμE(C18)/LVI-GC-MS(SIM)) provided suitable matrix effects (90.2-112.9%, RSD ≤ 13.9%), high recovery yields (92.3-111.5%, RSD ≤ 12.3%) and a remarkable overall process efficiency (ranging from 84.9% to 124.3%, RSD ≤ 13.9%). The developed and validated methodology was successfully applied for screening the six TCAs in real urine matrices. The proposed analytical methodology proved to be an eco-user-friendly approach to monitor trace levels of TCAs in complex urine matrices and an outstanding analytical alternative in comparison with other microextraction-based techniques.
Collapse
Affiliation(s)
- Mariana N. Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
| | - Oriana C. Gonçalves
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
| | - Samir M. Ahmad
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- Forensic and Psychological Sciences Laboratory Egas Moniz, Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Jaderson K. Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, Brazil; (J.K.S.); (L.C.K.); (E.B.C.)
| | - Laiza C. Krause
- Instituto de Química, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, Brazil; (J.K.S.); (L.C.K.); (E.B.C.)
| | - Nuno R. Neng
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Elina B. Caramão
- Instituto de Química, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, Brazil; (J.K.S.); (L.C.K.); (E.B.C.)
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, 49032-490 Aracaju, Brazil
| | - José M. F. Nogueira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
35
|
Dissipation Behavior, Residue, and Risk Assessment of Benziothiazolinone in Apples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094478. [PMID: 33922495 PMCID: PMC8122877 DOI: 10.3390/ijerph18094478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Benziothiazolinone is the first independently developed fungicide in China. It has been used to effectively control fungal diseases in a variety of fruits, vegetables, and crops. In this study, the degradation behavior and final residue of benziothiazolinone in apples is discussed, and the dietary risk to consumers was evaluated. High-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine benziothiazolinone residues in apple samples from eight different regions of China. The average recovery of benziothiazolinone in apples was 85.5-100.2%, and the relative standard deviation (RSD) was 0.8-14.9%. The limits of the method of quantification of benziothiazolinone in apples was 0.01 mg/kg. Under good agricultural practices (GAP) conditions, the final residues of benziothiazolinone in apples were below 0.01 mg/kg, lower than the maximum residual limit (MRL) of China. Although the degradation half-lives of benziothiazolinone were 23.9 d-33.0 d, the risk quotient (RQ) of benziothiazolinone was 15.5% by calculating the national estimated daily intake and comparing it with the acceptable daily intake. These results suggested that under GAP conditions, the intake of benziothiazolinone from apples exhibits an acceptably low health risk on consumers.
Collapse
|
36
|
Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Analysis of 353 Pesticides in the Edible Insect Tenebrio molitor Larvae (Mealworms). Molecules 2020; 25:molecules25245866. [PMID: 33322485 PMCID: PMC7764178 DOI: 10.3390/molecules25245866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Tenebrio molitor larvae (mealworm) is an edible insect and is considered a future food. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a novel method for simultaneous analysis of 353 target analytes was developed and validated. Various sample preparation steps including “quick, easy, cheap, effective, rugged, and safe” (QuEChERS) extraction conditions, number of acetonitrile-hexane partitions, and dispersive-solid phase extraction (dSPE) sorbents were compared, and the optimal conditions were determined. In the established method, 5 g of homogenized mealworms was extracted with acetonitrile and treated with QuEChERS EN 15662 salts. The crude extract was subjected to three rounds of acetonitrile-hexane partitioning, and the acetonitrile layer was cleaned with C18 dSPE. The final solution was matrix-matched and injected into LC-MS/MS (2 μL). For target analytes, the limits of quantitation (LOQs) were ≤10 μg/kg, and the correlation coefficient (r2) of calibration was >0.990. In recovery tests, more than 90% of the pesticides showed an excellent recovery range (70–120%) with relative standard deviation (RSD) ≤20%. For more than 94% of pesticides, a negligible matrix effect (within ±20%) was observed. The analytical method was successfully applied and used for the detection of three urea pesticides in 4 of 11 mealworm samples.
Collapse
|
37
|
Mao X, Xiao W, Wan Y, Li Z, Luo D, Yang H. Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: Improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables. Food Chem 2020; 345:128807. [PMID: 33310261 DOI: 10.1016/j.foodchem.2020.128807] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
An efficient dispersive solid-phase extraction method was developed to trace pesticide residues in commonly consumed vegetables. In this method, UiO-66 with uniform micropores was used as sorbent, and gas chromatography-mass spectrometry was applied to detect the pesticides. Thanks to the size sieving action of uniform micropores, UiO-66 directly extracted the target pesticides from vegetable matrices and excluded the relatively large matrix compounds. This well eliminated the matrix effect. The important experimental conditions were evaluated by orthogonal array experimental design. In optimized conditions, good linearity (R2 ≥ 0.99), detection limits (0.4-2.0 ng/g), recoveries (60.9-117.5%) and precision (relativestandarddeviations < 14.6%) were achieved. Moreover, the sorbent UiO-66 can be reused more than 20 times. These demonstrate a simple, reliable and robust method to screen the pesticide residues in vegetables. Furthermore, the validated method was applied to detect the pesticides in various organic and conventional vegetables.
Collapse
Affiliation(s)
- Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yiqun Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China.
| | - Zhanming Li
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Dongmei Luo
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng 024000, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore.
| |
Collapse
|
38
|
Tang J, Ma X, Yang J, Feng DD, Wang XQ. Recent advances in metal-organic frameworks for pesticide detection and adsorption. Dalton Trans 2020; 49:14361-14372. [PMID: 33030153 DOI: 10.1039/d0dt02623a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The large-scale use of pesticides such as organophosphate pesticides (OPPs) and organochlorine pesticides (OCPs) has led to serious environmental problems worldwide, and their high toxicity could cause serious damage to human health. It is crucial to remove and track them precisely in the environment and food resources. As novel nanomaterials, metal-organic frameworks (MOFs) have attracted significant attention in the fields of adsorption and luminescence sensing due to their rich topology, tunable pore size and shape, high surface area, and abundant active sites. Luminescent metal-organic frameworks (LMOFs) have sprung up as great potential chemical sensors to detect pesticides with fast response, high sensitivity, high selectivity and easy operation. Therefore, in this highlight, we focus on recent progress of MOFs in sensing and adsorbing pesticides, as well as in the possible mechanism of sensing, so as to attract more attention to pesticide detection and adsorption.
Collapse
Affiliation(s)
- Jing Tang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Xuehui Ma
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Dou-Dou Feng
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Xiao-Qing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| |
Collapse
|
39
|
Han M, Lu H, Zhang Z. Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25204662. [PMID: 33066139 PMCID: PMC7587348 DOI: 10.3390/molecules25204662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022]
Abstract
The pesticide residues in agri-foods are threatening people’s health. This study aims to establish a fast and low-cost surface-enhanced Raman scattering (SERS) method for the on-site detection of flumetsulam in wheat. The two-step modified concentrated gold nanoparticles (AuNPs) acted as the SERS substrate with the aid of NaCl and MgSO4. NaCl is served as the activator to modify AuNPs, while MgSO4 is served as the aggregating agent to form high-density hot spots. The activation and aggregation are two essential collaborative procedures to generate remarkable SERS enhancement and achieve the trace-level detection of flumetsulam. This method exhibits good enhancement effect with an enhancement factor of 106 and wide linear range (5–1000 μg/L). With simple pretreatment, the flumetsulam residue in real wheat samples can be successfully detected with the limit of detection (LOD) down to 0.01 μg/g, which is below the maximum residue limit of flumetsulam in wheat (0.05 μg/g) set in China. The recovery of flumetsulam residue in wheat ranges from 88.3% to 95.6%. These results demonstrate that the proposed SERS method is a powerful technique for the detection of flumetsulam in wheat, which implies the great application potential in the rapid detection of other pesticide residues in various agri-foods.
Collapse
|
40
|
Rodríguez-Ramos R, Lehotay SJ, Michlig N, Socas-Rodríguez B, Rodríguez-Delgado MÁ. Critical review and re-assessment of analyte protectants in gas chromatography. J Chromatogr A 2020; 1632:461596. [PMID: 33045497 DOI: 10.1016/j.chroma.2020.461596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2023]
Abstract
Despite nearly 80 years of advancements in gas chromatography (GC), indirect chemical matrix effects (MEs), known as the matrix-induced response enhancement effect, still occur to cause a high bias in the GC analysis of susceptible analytes, unless precautions are taken. Matrix-matched calibration is one common option used in GC to compensate for the MEs, but this approach is usually inconvenient, imprecise, and inefficient. Other options, such as the method of standard additions, surface deactivation techniques, chemical derivatizations, priming the GC, and/or use of internal standards, also have flaws in practice. When methods are accommodating, the use of analyte protectants (APs) can provide the best practical solution to not only overcome MEs, but also to maximize analyte signal by increasing chromatographic and detection efficiencies for the analytes. APs address the source of MEs in every injection by filling active sites in the GC inlet, column, and detector, particularly in GC-MS, rather than the analytes that would otherwise undergo degradation, peak tailing, and/or diminished response due to interactions with the active sites. The addition of an adequate amount of APs (e.g. sugar derivatives) to all calibration standards and final extracts alike often leads to lower detection limits, better accuracy, narrower peaks, and greater robustness than the other options to compensate for MEs in GC. This article consists of a critical review of the scientific literature, proposal of mechanisms and theory, and re-evaluation studies involving APs for the first time in GC-orbitrap and GC-MS/MS with a high-efficiency ion source design. The findings showed that 1 µg each of co-injected shikimic acid and sorbitol in the former case, and 1 µg shikimic acid alone in the latter case, led to high quality results in multi-residue analysis of pesticides and environmental contaminants.
Collapse
Affiliation(s)
- Ruth Rodríguez-Ramos
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avenida Astrofísico Francisco Sánchez, s/n. 38206 San Cristóbal de La Laguna (Tenerife), España
| | - Steven J Lehotay
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - Nicolás Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Bárbara Socas-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avenida Astrofísico Francisco Sánchez, s/n. 38206 San Cristóbal de La Laguna (Tenerife), España
| |
Collapse
|
41
|
Li RX, Li MM, Wang T, Wang TL, Chen JY, Francis F, Fan B, Kong ZQ, Dai XF. Screening of pesticide residues in Traditional Chinese Medicines using modified QuEChERS sample preparation procedure and LC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122224. [DOI: 10.1016/j.jchromb.2020.122224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
|
42
|
Kaczyński P, Łozowicka B. A novel approach for fast and simple determination pyrrolizidine alkaloids in herbs by ultrasound-assisted dispersive solid phase extraction method coupled to liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2020; 187:113351. [PMID: 32388321 DOI: 10.1016/j.jpba.2020.113351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are secondary plant metabolites witch can contaminate food, especially herbs. Due to the fact that alkaloids have a strong adverse effect on human health, it is necessary to use sensitive and selective detection methods. In present study a modified method based on LC-MS/MS was developed and validated for the simultaneous determination of thirty pyrrolizidine alkaloids and their corresponding N-oxides (PANOs) in herbs samples. Sample extraction was based on ultrasound-assisted dispersive solid phase extraction and clean-up using graphene. Method validation showed that the proposed method hold good recoveries (61-128 %) for PAs/PANOs with RSD <15 %. Limits of quantification has been set at 1 μg kg-1 level for all targeted alkaloids. The optimized method yielded a small matrix effect (-20-20 %) for most PAs/PANOs. The uncertainty associated with the analytical method was not higher than 38 %. The method is operationally simple, time-saving, and can be applied to the analysis of real herb samples.
Collapse
Affiliation(s)
- Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland.
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland
| |
Collapse
|
43
|
Nemati M, Farajzadeh MA, Mohebbi A, Khodadadeian F, Afshar Mogaddam MR. Development of a stir bar sorptive extraction method coupled to solidification of floating droplets dispersive liquid–liquid microextraction based on deep eutectic solvents for the extraction of acidic pesticides from tomato samples. J Sep Sci 2020; 43:1119-1127. [DOI: 10.1002/jssc.201901000] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Mahboob Nemati
- Pharmaceutical Analysis Research Center and Faculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Tabriz Tabriz Iran
- Engineering FacultyNear East University Nicosia Turkey
| | - Ali Mohebbi
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Fariba Khodadadeian
- Department of Inorganic ChemistryFaculty of ChemistryAzarbaijan Shahid Madani University Tabriz Iran
| | | |
Collapse
|
44
|
Zhang J, Zuo J, Ai W, Liu S, Zhu D, Zhang J, Wei C. Preparation of a new high-efficiency resin deodorant from coal gasification fine slag and its application in the removal of volatile organic compounds in polypropylene composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121347. [PMID: 31606254 DOI: 10.1016/j.jhazmat.2019.121347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Deodorizing materials are often restricted from large-scale industrial production due to the high preparation cost. By utilizing the simple acid leaching technology, this study made use of the coal gasification fine slag (FS) as raw material to prepare a cost effective FS-based deodorant (FSD) with a specific surface area of 393 m2 g-1 and a pore volume of 0.405 cm3 g-1. The propane adsorption test on FSD showed the maximum adsorption capacity to be as high as 121.61 mg g-1 at 273 K. The partition coefficient values at 10% and 100% breakthrough (BT) for FSD to adsorb propane were 1.5 × 10-3 and 3.2 × 10-4 mol kg-1 Pa-1, respectively. Furthermore, the FSD was applied in the removal of volatile organic compounds (VOCs) pollutants from polypropylene resin (PP). It showed that the deodorizing effect of the FSD was nearly three times as good as the commonly used zeolite deodorants, which was able to decrease 50 percent of the VOCs volatilization amount in PP resin. Moreover, the FSD can better strengthen the mechanical properties of PP resin. This work provides a new method for the industrial production of deodorants as well as a new direction for the recycle of coal gasification wastes.
Collapse
Affiliation(s)
- Jiupeng Zhang
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Jing Zuo
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Weidong Ai
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Shuo Liu
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Dandan Zhu
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Jinyi Zhang
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Cundi Wei
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China.
| |
Collapse
|
45
|
Plasmon-active optical fiber functionalized by metal organic framework for pesticide detection. Talanta 2020; 208:120480. [DOI: 10.1016/j.talanta.2019.120480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022]
|
46
|
Zhang M, Guo W, Wei J, Shi J, Zhang J, Ge H, Tao H, Liu X, Hu Q, Cai Z. Determination of newly synthesized dihydroxylated polybrominated diphenyl ethers in sea fish by gas chromatography-tandem mass spectrometry. CHEMOSPHERE 2020; 240:124878. [PMID: 31563719 DOI: 10.1016/j.chemosphere.2019.124878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Dihydroxylated polybrominated diphenyl ethers (diOH-PBDEs) can be natural products of marine organisms or the metabolites of PBDEs. The optimal determination method and concentration of diOH-PBDEs in seafood are unknown due to a lack of commercially available standards. In the present study, diOH-PBDEs were synthesized, and an efficient measurement method for OH-PBDEs and diOH-PBDEs in sea fish muscle samples, including extraction, clean-up and gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis, was established. Pressurized liquid extraction (PLE) followed by partitioning with a KOH solution and florisil cartridge clean-up proved to be a reliable and robust method for detecting all OH-PBDEs/diOH-PBDEs. GC-MS/MS with an electron ionization (EI) source analysis was a sensitive analytical instrument for OH-PBDEs/diOH-PBDEs. The recovery using this method ranged from 19% to 101%, 28%-88% and 42%-90% for 10 ng, 20 ng and 40 ng spiking levels, respectively. The equipment detection limits (EDLs) were in the range of 0.31-2.78 pg/μL, and the limits of detection (LOD) for the method were in the range of 5.07-38.74 pg/g wet weight. Concentrations of diOH-PBDEs in the marine fish muscle samples were in the range of 32.43-1528.63 pg/g wet weight. Similar compositions of OH-PBDEs/diOH-PBDEs were found within the same family of marine fish.
Collapse
Affiliation(s)
- Mengtao Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; China State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Wei Guo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Juntong Wei
- China State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jianghong Shi
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jiawei Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hui Ge
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huanyu Tao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaowei Liu
- Hefei University of Technology (Xuancheng Campus) Xuancheng, China
| | - Qing Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zongwei Cai
- China State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
47
|
Jankowska M, Kaczyński P, Łozowicka B. Metabolic profile and behavior of clethodim and spirotetramat in herbs during plant growth and processing under controlled conditions. Sci Rep 2020; 10:1323. [PMID: 31992750 PMCID: PMC6987122 DOI: 10.1038/s41598-020-58130-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/23/2019] [Indexed: 11/09/2022] Open
Abstract
Herbs may contain pesticide residues which are an important discriminator of food security and food quality. The challenge of the research was to assess the fate of the herbicide clethodim (CLE) and the insecticide spirotetramat (SPI) applied in herbs (BBCH 11-21) during herb growth and processing under controlled greenhouse trial conditions. The metabolic profile of CLE and SPI and their degradation products in basil (Ocimum basilicum L.), peppermint (Mentha × piperita L.) and sage (Salvia officinalis L.) was also presented. The half-lives of CLE and SPI in herbs were 1.10-1.56 days and 0.51-0.83 days, respectively. The terminal residues of SPI (SPI-enol, SPI-ketohydroxy, SPI-monohydroxy and SPI-enol-glucoside) and CLE (CLE-sulfone and CLE-sulfoxide) in herbal matrices were measured below EU maximum residue limits. In this paper, we aimed to assess the impact of washing and dehydratation pretreatment and calculated processing factors (PFs) which can be applied to more accurate food safety assessments. The PF values of CLE and SPI after drying prior washing was below 1 indicating reduction of initial residues. Drying process without washing demonstrated increases of SPI concentrations (PF up to 1.50). The lowest PFs were obtained when raw herbal plants were washed before drying showing almost complete degradation of parent compound (93-99%).
Collapse
Affiliation(s)
- Magdalena Jankowska
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chełmońskiego 22, Postal code: 15-195, Bialystok, Poland.
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chełmońskiego 22, Postal code: 15-195, Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chełmońskiego 22, Postal code: 15-195, Bialystok, Poland
| |
Collapse
|
48
|
Ramos S, Homem V, Santos L. Analytical methodology to screen UV-filters and synthetic musk compounds in market tomatoes. CHEMOSPHERE 2020; 238:124605. [PMID: 31450107 DOI: 10.1016/j.chemosphere.2019.124605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
A Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) methodology followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis was developed to extract thirteen synthetic musk compounds (SMCs: cashmeran, celestolide, phantolide, traseolide, galaxolide, tonalide, musk ambrette, musk xylene, musk ketone, musk tibetene, musk moskene, ethylene brassylate and exaltolide) and six ultraviolet-filters (UVFs: 2-ethylhexyl 4-dimethylaminobenzoate, 3-(4'-methylbenzylidene) camphor, 2-ethylhexyl 4-methoxycinnamate, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, benzophenone and drometrizole trisiloxane) from tomatoes. The proposed methodology was optimized: 2 g of freeze-dried tomato was extracted with 4 mL of water and 10 mL of ethyl acetate, adding 6 g of MgSO4 and 1.5 g of NaCl, then a dispersive solid-phase extraction was performed using 3 g of MgSO4, 300 mg of primary-secondary amino adsorbent (PSA) and 300 mg of octadecyl-silica (C18). Validation delivered recoveries between 81 (celestolide) and 119% (musk tibetene), with relative standard deviations <10%. The instrumental limit of detection varied from 0.02 (2-ethylhexyl 4-methoxycinnamate) to 3.00 pg (exaltolide and musk xylene). Regarding the method quantification limits, it ranged between 0.4 (celestolide) and 47.9 ng g-1 dw (exaltolide). The method was applied to different varieties of tomatoes (Solanum lycopersicum), revealing UVFs and SMCs between 1 and 210 ng g-1 dw. Higher concentrations were found for benzophenone (29-210 ng g-1 dw) and galaxolide (9-53 ng g-1 dw). The risk associated to the ingestion of contaminated tomatoes has also been estimated, showing that a potential health risk is unlikely.
Collapse
Affiliation(s)
- Sara Ramos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
49
|
Varela‐Martínez DA, González‐Curbelo MÁ, González‐Sálamo J, Hernández‐Borges J. Determination of pesticides in dried minor tropical fruits from Colombia using the Quick, Easy, Cheap, Effective, Rugged, and Safe method‐gas chromatography–tandem mass spectrometry. J Sep Sci 2020; 43:929-935. [DOI: 10.1002/jssc.201900698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Diana Angélica Varela‐Martínez
- Departamento de Ciencias BásicasFacultad de IngenieríaUniversidad EAN Bogotá Colombia
- Departamento de QuímicaUnidad Departamental de Química AnalíticaFacultad de CienciasUniversidad de La Laguna San Cristóbal de La Laguna España
| | | | - Javier González‐Sálamo
- Departamento de QuímicaUnidad Departamental de Química AnalíticaFacultad de CienciasUniversidad de La Laguna San Cristóbal de La Laguna España
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La Laguna San Cristóbal de La Laguna España
| | - Javier Hernández‐Borges
- Departamento de QuímicaUnidad Departamental de Química AnalíticaFacultad de CienciasUniversidad de La Laguna San Cristóbal de La Laguna España
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La Laguna San Cristóbal de La Laguna España
| |
Collapse
|
50
|
Rutkowska E, Łozowicka B, Kaczyński P. Compensation of matrix effects in seed matrices followed by gas chromatography-tandem mass spectrometry analysis of pesticide residues. J Chromatogr A 2019; 1614:460738. [PMID: 31806271 DOI: 10.1016/j.chroma.2019.460738] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022]
Abstract
Despite analytical advances, matrix effects (MEs) in pesticide residue analysis by gas chromatography - tandem mass spectrometry continue to be a challenge, especially in difficult samples such as seeds. In this study, the influence of different clean-up sorbents (chitin, chitosan, Z-Sep+, EMR-Lipid) and different mixtures of primary secondary amine (PSA), C18, graphitized carbon black (GCB) and MgSO4 were investigated in terms of MEs and recoveries in four types of seeds: cress, fennel, flax, and hemp. Additionally, different volumes of water (5, 7.5 and 10 mL) were investigated for QuEChERS extraction. Under the selected conditions: the largest volume of water (10 mL) and PSA/C18/GCB/MgSO4 (50/150/50/50 mg, respectively) as clean-up sorbent yielded acceptable recoveries of 70-120% for most of the pesticides (211-225 out of 248 compounds) and the lowest MEs were between -20%>MEs>20% (27-50 compounds). The final method was validated for 248 pesticides with LOQs equal to 0.005 mg kg-1. Additionally, matrix-matched calibration was used as a practical method to compensate for MEs. Among the 21 pesticides found in 12 of the samples, chlorpyrifos (0.008-1.1 mg kg-1), tebuconazole (0.071-0.96 mg kg-1), and trifloxystrobin (0.007-0.15 mg kg-1) were most commonly determined.
Collapse
Affiliation(s)
- Ewa Rutkowska
- Institute of Plant Protection National Research Institute, Food and Feed Safety Laboratory, Chełmońskiego 22, 15-195 Bialystok, Poland.
| | - Bożena Łozowicka
- Institute of Plant Protection National Research Institute, Food and Feed Safety Laboratory, Chełmońskiego 22, 15-195 Bialystok, Poland.
| | - Piotr Kaczyński
- Institute of Plant Protection National Research Institute, Food and Feed Safety Laboratory, Chełmońskiego 22, 15-195 Bialystok, Poland.
| |
Collapse
|