1
|
Chin ML, Zhang H, Au CK, Luk WL, Cai Z, Chan W. Aristolochic Acids and Aristoloxazines Are Widespread in the Soil of Aristolochiaceae Herb Cultivation Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22563-22570. [PMID: 39663883 DOI: 10.1021/acs.est.4c09559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The cancer risk associated with aristolochic acid (AA) exposure through the consumption of AA-containing herbal medicine has received tremendous attention in the past decades. However, environmental exposure routes from the associated medicinal herb cultivation fields have received little attention. We reveal through liquid chromatography-tandem mass spectrometry analysis of over 400 soil samples collected from three different Aristolochiaceae herb cultivation fields that AAs, which are nephrotoxic and carcinogenic, and aristoloxazines (AXs), a family of recently identified neurotoxic and genotoxic AA analogues, are widespread pollutants in these areas. In particular, aristoloxazine C was detected for the first time in the environment and was found in 318 out of 320 soil samples, at concentrations as high as 2.8 mg/kg, from an Asarum heterotropoides cultivation field. We show that in fact AXs are ecotoxic, inhibiting plant growth and significantly reducing the soil microorganism population. With the extensive cultivation of Aristolochiaceae herbs in order to meet their market demand, we believe our study points to an important environmental hazard that may place food crops and non-AA/AX-producing medicinal herbs at risk of AA/AX contamination. While previous research focused primarily on the health risks associated with exposure to AAs, this study uncovers environmental exposure as a new human exposure pathway that warrants the attention of both the general public and regulatory agencies.
Collapse
Affiliation(s)
- Man-Lung Chin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Haoyu Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Wing-Laam Luk
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
2
|
Li C, Li X, Niu M, Xiao D, Luo Y, Wang Y, Fang ZE, Zhan X, Zhao X, Fang M, Wang J, Xiao X, Bai Z. Unveiling correlations between aristolochic acids and liver cancer: spatiotemporal heterogeneity phenomenon. Chin Med 2024; 19:132. [PMID: 39342223 PMCID: PMC11439320 DOI: 10.1186/s13020-024-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Aristolochic acids are a class of naturally occurring compounds in Aristolochiaceae that have similar structural skeletons and chemical properties. Exposure to aristolochic acids is a risk factor for severe kidney disease and urinary system cancer. However, the carcinogenicity of aristolochic acids to the liver, which is the main site of aristolochic acid metabolism, is unclear. Although the characteristic fingerprint of aristolochic acid-induced mutations has been detected in the liver and aristolochic acids are known to be hepatotoxic, whether aristolochic acids can directly cause liver cancer is yet to be verified. This review summarizes the findings of long-term carcinogenicity studies of aristolochic acids in experimental animals. We propose that spatiotemporal heterogeneity in the carcinogenicity of these phytochemicals could explain why direct evidence of aristolochic acids causing liver cancer has never been found in adult individuals. We also summarized the reported approaches to mitigate aristolochic acid-induced hepatotoxicity to better address the associated global safety issue and provide directions and recommendations for future investigation.
Collapse
Affiliation(s)
- Chengxian Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xinyu Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Dake Xiao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Ye Luo
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yinkang Wang
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-E Fang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xiaoyan Zhan
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China
| | - Xu Zhao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mingxia Fang
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| | - Zhaofang Bai
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| |
Collapse
|
3
|
Liu X, Luo Y, Fan Y, Cao X, Lu J, Song G, Deng C. Magnetic quaternary ammonium polymer bearing porous agarose for selective extraction of Aristolochic acids in the plasma. J Chromatogr A 2024; 1726:464965. [PMID: 38733925 DOI: 10.1016/j.chroma.2024.464965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Aristolochic acids (AAs) naturally occurring in the herbal genus Aristolochia are associated with a high risk of kidney failure, multiple tumors and cancers. However, approaches with high selectivity and rapidity for measuring AAs in biological samples are still inadequate. Inspired by the mechanism of AAs-induced nephrotoxicity, we designed a hybrid magnetic polymer-porous agarose (denoted as MNs@SiO2M@DNV-A), mimicking the effect of basic and aromatic residues of organic anion transporter 1 (OAT1) for efficient enriching aristolochic acid I (AA I) and aristolochic acid II (AA II) in the plasma. The monomers of vinylbenzyl trimethylammonium chloride (VBTAC), N-vinyl-2-pyrrolidinone (NVP) and divinylbenzene (DVB) were employed to construct the polymer layer, which provided a selective adsorption for AAs by multiple interactions. The porous agarose shell contributed to remove interfering proteins in the plasma samples. A magnetic solid-phase extraction (MSPE) based on the proposed composite enhanced the selectivity toward AA I and AA II in the plasma samples. In combination of HPLC analysis, the proposed method was proved to be applicable to fast and specific quantification of AAs in blood samples, which was characterized by a good linearity, high sensitivity, acceptable recovery, excellent repeatability and satisfactory reusability.
Collapse
Affiliation(s)
- Xueli Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yuan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Research Center of Analysis and Measurement, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Guoxin Song
- Research Center of Analysis and Measurement, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
4
|
Chen X, Wu W, Sun H, Chen L, Wang Y, Xia B, Zhou Y. Development and Application of a Comprehensive Nontargeted Screening Strategy for Aristolochic Acid Analogues. Anal Chem 2024; 96:1922-1931. [PMID: 38264982 DOI: 10.1021/acs.analchem.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Aristolochic acid analogs (AAAs) are naturally occurring carcinogenic and toxic compounds that pose a safety threat to pharmaceuticals and the environment. It is challenging to screen AAAs due to their lack of characteristic mass spectral fragmentation and their presence of structural diversity. A comprehensive nontargeted screening strategy was proposed by taking into account diverse factors and incorporating various self-developed techniques, and a Python3-based toolkit called AAAs_finder was developed for its implementation. The main procedures consist of virtual structure and ultraviolet and visible (UV) spectra database creation, exact mass and UV spectra-based suspect data extraction, tandem mass spectra (MS/MS) anthropomorphic interpretation, and multicondition retention time (RT) prediction-based candidate structures ranking. To initially assess screening feasibility, eight hypothetical unknown samples were subjected to nontargeted screening using the AAAs_finder toolkit and two other advanced tools. The results showed that the former successfully identified all, while the latter two only managed to identify two and three, respectively, indicating that our strategy was more feasible. After that, the strategy was carefully evaluated for false positives and false negatives, instrument dependence, reproducibility, and sensitivity. After the evaluation, the strategy was successfully applied to the screening of AAAs in real samples, such as herbal medicine, spiked soil, and water. Overall, this study proposed a nontargeted screening strategy and toolkit independent of characteristic mass spectral fragmentation and able to overcome challenges posed by structural diversity for the AAAs screening, which is also valuable for other classes of compounds.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlin Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Food Inspection, Chengdu 611130, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China
| | - Hongbing Sun
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Lu Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
5
|
Wang C, Liu Y, Han J, Li W, Sun J, Wang Y. Detection and Removal of Aristolochic Acid in Natural Plants, Pharmaceuticals, and Environmental and Biological Samples: A Review. Molecules 2023; 29:81. [PMID: 38202664 PMCID: PMC10779802 DOI: 10.3390/molecules29010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Aristolochic acids (AAs) are a toxic substance present in certain natural plants. Direct human exposure to these plants containing AAs leads to a severe and irreversible condition known as aristolochic acid nephropathy (AAN). Additionally, AAs accumulation in the food chain through environmental mediators can trigger Balkan endemic nephropathy (BEN), an environmental variant of AAN. This paper presents a concise overview of the oncogenic pathways associated with AAs and explores the various routes of environmental exposure to AAs. The detection and removal of AAs in natural plants, drugs, and environmental and biological samples were classified and summarized, and the advantages and disadvantages of the various methods were analyzed. It is hoped that this review can provide effective insights into the detection and removal of AAs in the future.
Collapse
Affiliation(s)
- Changhong Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yunchao Liu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Jintai Han
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Wenying Li
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China;
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
6
|
Chin ML, Au CK, Chan CK, Jin L, Živković Stošić MZ, Đorđević Zlatković MR, Zlatković D, Pavlović NM, Chan W. Fabrication of a Simple and Efficient HPLC Reduction Column for Online Conversion of Aristolochic Acids to Aristolactams Prior to Sensitive Fluorescence Detection. Anal Chem 2023; 95:12365-12372. [PMID: 37565718 DOI: 10.1021/acs.analchem.3c01874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Aristolochic acids (AAs) are nephrotoxic and carcinogenic nitrophenanthrene carboxylic acids produced naturally by plants from the Aristolochia and Asarum genera, which have been used extensively as herbal medicines. In addition to consuming AA-containing herbal medicinal products, there is emerging evidence that humans are also exposed to AA through the environment. In 2022, the World Health Organization (WHO) called for global action to remove AA exposure sources and to implement preventative measures against the development of AA-associated cancers. Herein, we report the development of a simple and efficient iron powder-packed reduction column that allows online post-column conversion of the nonfluorescing AA to its corresponding strongly fluorescing aristolactam (AL), facilitating the sensitive and selective detection of AA in herbal medicinal products, food grain, arable soil, or groundwater samples by high-performance liquid chromatography with fluorescence detection. Moreover, AL, a group of naturally occurring derivatives of AA that have demonstrated toxicity to cultured bacteria, human cells, and rats, is monitored and quantified simultaneously with AA in one single run without sacrificing sensitivity. In comparison with existing analytical methods for AA measurement, the newly developed method is not only inexpensive and less laborious, but it also offers improved sensitivity. We believe this novel method will find wide application in identifying the presence of AA in food, herbal medicines, and environmental samples, thus assisting in the identification and removal of AA exposure sources.
Collapse
Affiliation(s)
- Man-Lung Chin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Long Jin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Milena Z Živković Stošić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Miljana R Đorđević Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Dragan Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
7
|
Lin CC, Lin PY, Han Z, Tsai CY, Beck DE, Hsieh S. Rapid identification and detection of aristolochic acids in the herbal extracts by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122918. [PMID: 37269653 DOI: 10.1016/j.saa.2023.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Herbs containing aristolochic acids (AAs) have already been proven to be highly carcinogenic and nephrotoxic. In this study, a novel surface-enhanced Raman scattering (SERS) identification method was developed. Ag-APS nanoparticles with a particle size of 3.53 ± 0.92 nm were produced by combining silver nitrate and 3-aminopropylsilatrane. The reaction between the carboxylic acid group of aristolochic acid I (AAI) and amine group of Ag-APS NPs was used to form amide bonds, and thus, concentrate AAI, rendering it easy to detect via SERS and amplified to obtain the best SERS enhancement effect. Detection limit was calculated to be approximately 40 nM. Using the SERS method, AAI was successfully detected in the samples of four Chinese herbal medicines containing AAI. Therefore, this method has a high potential to be applied in the future development of AAI analysis and rapid qualitative and quantitative analysis of AAI in dietary supplements and edible herbs.
Collapse
Affiliation(s)
- Chin-Chung Lin
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Pei-Ying Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Zhenyuan Han
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chen-Yu Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - David E Beck
- Oxford Instruments Asylum Research, Inc., 7416 Hollister Ave., Santa Barbara, CA 93117, USA
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
8
|
Wang X, Lu Q, Dou L, Liu M, Li P, Yu W, Yu X, Wang Z, Wen K. Broad-specificity indirect competitive enzyme-linked immunosorbent assay for aristolochic acids: Computer-aided hapten design and molecular mechanism of antibody recognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159941. [PMID: 36347294 DOI: 10.1016/j.scitotenv.2022.159941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Long-term dietary exposure of aristolochic acids (AAs)-contaminated food proved to be one of the main culprits of Endemic Nephropathy, renal failure; and urothelial cancer. The antibodies utilized in immunoassays for AAs suffer from low affinity and failure of recognition to the family of AAs. This study, we prepared a broad-specificity monoclonal antibody (mAb) 5H5 with highly and uniform affinity for AAs by help of computational chemistry fully exposing the AAs common structures of methoxy and hydroxyl groups. The mAb 5H5 exhibited half inhibitory concentrations of AAA, AAB, AAC, AAD were 0.03, 0.06, 0.05, 0.03 ng/mL. To explain the broad-specificity profile of mAb 5H5, molecular docking was performed. Results shown that multiple conformations of AAs can be flexibly oriented in the spacious cavity of single-chain variable fragment antibody (scFv) 5H5 and the specific hydron bonds were formed by ASN62 and GLY64 of scFV 5H5 to the nitro group of AAs which gave an explanation of the high cross-reactivity of mAb 5H5. The ELISA based on the broad-specificity mAb 5H5with detection limits of 0.04-0.11 μg/kg and 0.02-0.06 μg/kg for four AAs in flour and soil samples, respectively. The study provided a promising method for the family of AAs in environmental and food samples.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Qingpeng Lu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Peipei Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
9
|
Zhang J, Wang Y, Wang C, Li K, Tang W, Sun J, Wang X. Uptake, Translocation, and Fate of Carcinogenic Aristolochic Acid in Typical Vegetables in Soil-Plant Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238271. [PMID: 36500364 PMCID: PMC9739334 DOI: 10.3390/molecules27238271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
When Aristolochia plants wilt and decay, aristolochic acids (AAs) are released into the soil, causing soil contamination. It has been demonstrated that aristolochic acid can be accumulated and enriched in crops through plant uptake. However, there is a lack of systematic studies on the migration and accumulation of AAs in a realistic simulated soil environment. In this study, Aristolochia herbal extracts were mixed with soil for growing three typical vegetables: lettuce, celery, and tomato. The contents of AAs in the above-mentioned plants were determined by an established highly sensitive LC-MS/MS method to study the migration and accumulation of AAs. We found that AAs in the soil can be transferred and accumulated in plants. AAs first entered the roots, which were more likely to accumulate AAs, and partially entered the above-ground parts. This further confirms that AAs can enter the food chain through plants and can have serious effects on human health. It was also shown that plants with vigorous growth and a large size absorbed AAs from the soil at a faster rate. The more AAs present in the soil, the more they accumulated in the plant.
Collapse
Affiliation(s)
- Jinghe Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (Y.W.); or (X.W.)
| | - Changhong Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kan Li
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weifang Tang
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xikui Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (Y.W.); or (X.W.)
| |
Collapse
|
10
|
Liu H, Cheng X, Guan H, Wang C. Rapid and Simultaneous Quantification of Six Aristolochic Acids and Two Lignans in Asari Radix et Rhizoma Using Ultra-Performance Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5269545. [PMID: 36124165 PMCID: PMC9482547 DOI: 10.1155/2022/5269545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Asari Radix et Rhizoma (AR) is a widely-used Chinese herbal medicine containing multiple active lignans and rare nephrotoxic components-aristolochic acids derivatives (AAs). However, the current quality control method carried out by Chinese Pharmacopoeia has defects in trace AAs detection and insufficient marker ingredients, which is unable to comprehensively evaluate the efficacy and safety of AR. To improve the quality control method of AR, a rapid, sensitive, and reliable chromatographic analytic method based on ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS) was established for the simultaneous analysis of multiple AAs and lignans in AR samples. Positive electrospray ionization mode with multiple reaction monitoring (MRM) was applied for the detection of the eight analytes. The method showed available linearity (R 2 ≥ 0.991), the limit of quantification (2-5 ng/mL), precision (RSD <8.12%), and accuracy (89.78-112.16%). A total of 6 AAs and 2 lignans were quantified for their content in 15 AR samples. The content of AA-IVa, AA-VIIa, and aristololactam I (AL-I) was much higher than the AA-I controlled by pharmacopoeia. Considering the potential toxicity of AAs, AA-IVa, AA-VIIa, and AL-I should also be controlled in AR. A considerable amount of active sesamin was detected in AR, suggesting that it could be added as a quality marker for the quality control of AR. The newly developed analytical method could be applied for the fast evaluation of toxic AA's content and quality during quality control of AR or preparations containing AR.
Collapse
Affiliation(s)
- Hanze Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, the MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, the MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, the MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, the MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
11
|
Lukinich-Gruia AT, Nortier J, Pavlović NM, Milovanović D, Popović M, Drăghia LP, Păunescu V, Tatu CA. Aristolochic acid I as an emerging biogenic contaminant involved in chronic kidney diseases: A comprehensive review on exposure pathways, environmental health issues and future challenges. CHEMOSPHERE 2022; 297:134111. [PMID: 35231474 DOI: 10.1016/j.chemosphere.2022.134111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Described in the 1950s, Balkan Endemic Nephropathy (BEN) has been recognized as a chronic kidney disease (CKD) with clinical peculiarities and multiple etiological factors. Environmental contaminants - aromatic compounds, mycotoxins and phytotoxins like aristolochic acids (AAs) - polluting food and drinking water sources, were incriminated in BEN, due to their nephrotoxic and carcinogenic properties. The implication of AAs in BEN etiology is currently a highly debated topic due to the fact that they are found within the Aristolochiaceae plants family, used around the globe as traditional medicine and they were also incriminated in Aristolochic Acid Nephropathy (AAN). Exposure pathways have been investigated, but it is unclear to what extent AAs are acting alone or in synergy with other cofactors (environmental, genetics) in triggering kidney damage. Experimental studies strengthen the hypothesis that AAI, the most studied compound in the AAs class, is a significant environmental contaminant and a most important causative factor of BEN. The aim of this review is to compile information about the natural exposure pathways to AAI, via traditional medicinal plants, soil, crop plants, water, food, air. Data that either supports or contradicts the AAI theory concerning BEN etiology was consolidated and available solutions to reduce human exposure were discussed. Because AAI is a phytotoxin with physicochemical properties that allow its transportation in environmental matrices from different types of areas (endemic, nonendemic), and induce CKDs (BEN, AAN) and urinary cancers through bioaccumulation, this review aims to shed a new light on this compound as a biogenic emerging pollutant.
Collapse
Affiliation(s)
- Alexandra T Lukinich-Gruia
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania.
| | - Joëlle Nortier
- Nephrology Department, Brugmann Hospital & Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Belgium.
| | - Nikola M Pavlović
- Kidneya Therapeutics, Klare Cetkin 11, 11070, Belgrade, Serbia; University of Niš, Univerzitetski Trg 2, 18106, Niš, Serbia.
| | | | - Miloš Popović
- Department for Biology and Ecology, Faculty of Natural Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Lavinia Paula Drăghia
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania.
| | - Virgil Păunescu
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania; Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, 300041, Romania.
| | - Călin A Tatu
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania; Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, 300041, Romania.
| |
Collapse
|
12
|
Zhang J, Chan KKJ, Chan W. Synergistic Interaction of Polycyclic Aromatic Hydrocarbons, Phthalate Esters, or Phenol on DNA Adduct Formation by Aristolochic Acid I: Insights into the Etiology of Balkan Endemic Nephropathy. Chem Res Toxicol 2022; 35:849-857. [PMID: 35471859 DOI: 10.1021/acs.chemrestox.2c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Balkan endemic nephropathy (BEN) is a multifactorial environmental disease, with chronic exposure to aristolochic acids (AAs) through AA-contaminated food being one of the major etiological mechanisms. However, the bulk of previous research has only focused on investigating the possible roles of individual pollutants in disease development and the etiological mechanism of BEN remains controversial. In this study, we investigated the exposure concentration and duration dependence of coexposure to phthalate esters and lignite coal-derived phenol and polycyclic aromatic hydrocarbons (PAHs) on the metabolism and DNA adduct formation of aristolochic acid I (AAI). Results showed that both the metabolic activation and DNA adduct formation of AAI in cultured human kidney cells were affected by their coexposure to the above-mentioned environmental pollutants. Furthermore, our results suggest that chemicals leached from lignite coal likely played a role by triggering AA-activating enzymes to produce more of the promutagenic DNA adducts, thus further elevating the nephrotoxicity and carcinogenicity of AAs and increasing the risk of BEN. It is believed that the results of this study provide a better understanding of the etiological mechanism of BEN and offer insights into methods and policies to lower the risk of this devastating disease.
Collapse
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kwan-Kit Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
13
|
Chen X, Huang T, Huang Z, Han Q. Development of an immunochromatographic test strip for the rapid detection of aristolochic acid A in herbal medicinal materials. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:441-451. [PMID: 34802168 DOI: 10.1002/pca.3100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Plants containing aristolochic acid and its derivatives are nephrotoxic, mutagenic, and carcinogenic to humans; chronic diet poisoning caused by the aristolochic acid is the cause of endemic (Balkan) nephropathy and related cancers. OBJECTIVE To develop a colloidal gold immunochromatographic test strip (ICS) based on the competitive format for the rapid detection of aristolochic acid A (AA-A) in herbal medicinal materials. MATERIALS AND METHODS For the ICS based on gold nanoparticles (AuNPs), the antigen [AA-A-bovine serum albumin (BSA)], and goat anti-mouse IgG were drawn on the nitrocellulose membrane as the test line (T line) and the control line (C line), respectively. Monoclonal antibody (MAb)-AuNP conjugates were sprayed onto the conjugate pad. The sensitivity of the ICS was 6 ng/mL, and the test was completed in 10 min. The analysis of AA-A in traditional Chinese medicine samples showed that the ICS results were in good agreement with those obtained by high-performance liquid chromatography methods. CONCLUSION These results demonstrated that the ICS test could be used as a reliable, rapid, cost-effective, and convenient qualitative tool for on-site screening techniques to detect AA-A in herbal medicinal materials without any special instrumentation.
Collapse
Affiliation(s)
- Xianrui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Ting Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Quanbin Han
- School of Chinese Medicine, and Institute for Research and Continuing Education, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
14
|
Qu M, Xu H, Chen J, Xu B, Li Z, Ma B, Guo L, Ye Q, Xie J. Differential comparison of genotoxic effects of aristolochic acid I and II in human cells by the mass spectroscopic quantification of γ-H2AX. Toxicol In Vitro 2022; 81:105349. [DOI: 10.1016/j.tiv.2022.105349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
15
|
Guo W, Shi Z, Zhang J, Zeng T, He Y, Cai Z. Analysis of aristolochic acid I in mouse serum and tissues by using magnetic solid-phase extraction and UHPLC-MS/MS. Talanta 2021; 235:122774. [PMID: 34517632 DOI: 10.1016/j.talanta.2021.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
A method combining magnetic solid-phase extraction (MSPE) and ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the analysis of aristolochic acids I (AAI) in mouse serum and tissues. The magnetic covalent organic frameworks (MNP@COF)-based MSPE exhibited high adsorption capacity towards AAI (93.1 mg/g) in optimal conditions. After MSPE extraction, AAI was separated with C18 column using gradient elution and quantified (m/z 342.21 → 298.13) by UHPLC-MS/MS with monitor reaction monitoring (MRM) mode. This MSPE-based UHPLC-MS/MS method was validated with respected to lower limit of quantification (LLOQ), linearity, recovery, precision and accuracy of intra- and inter-day, and matrix effect. Good calibration linearities at the range of 1-500 ng/L for AAI in biological matrices (serum, kidney, and liver) with high correlation coefficient (R2) > 0.9970, and high enrichment factors (mean values from 1038 to 1045) were obtained. This method was highly sensitive to determine AAI with LLOQ within the range of 4.62-5.24 ng/L in extracted serum, kidney, and liver samples. Recoveries at 5, 50, 100 and 300 ng/L in biological samples ranged from 93.2 to 104.0%, and intra- and inter day accuracy and precision (defined as bias and coefficient of variation, respectively) were below ± 15%. The method was successfully applied in the analysis of biological samples collected from mice exposed with AAI with concentrations range of 0.007-0.041 μg/L for consecutive four days. The established method might be applied for the investigation of risk assessment and toxicity induced by long-time use of AAI-containing herbs or dietary supplements.
Collapse
Affiliation(s)
- Wenjing Guo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhangsheng Shi
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China
| | - Jing Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China
| | - Ting Zeng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China
| | - Yu He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China.
| |
Collapse
|
16
|
Wang Y, Wang Z, Wu Z, Chen M, Dong D, Yu P, Lu D, Wu B. Involvement of REV-ERBα dysregulation and ferroptosis in aristolochic acid I-induced renal injury. Biochem Pharmacol 2021; 193:114807. [PMID: 34673015 DOI: 10.1016/j.bcp.2021.114807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The molecular events underlying aristolochic acid (AA) nephropathy are poorly understood, and specific therapies for treatment of AA nephropathy are still lacking. Here we aimed to investigate a potential role of REV-ERBα and ferroptosis in renal injury induced by aristolochic acid I (AAI), a typical AA. The regulatory effects of REV-ERBα on AAI-induced renal injury were determined using kidney-specific Rev-erbα knockout mice. Ferroptosis was assessed based on measurements of iron, GSH, and GPX4. Targeted antagonism of REV-ERBα to alleviate AAI-induced renal injury and ferroptosis was assessed using the small molecule antagonist SR8278. mRNAs and proteins were quantified by qPCR and Western blotting, respectively. We first showed that REV-ERBα was upregulated and its target BMAL1 was downregulated in the kidney of mice with AAI nephropathy. Upregulation of REV-ERBα protein was confirmed in aristolactam I (ALI, a nephrotoxic metabolite of AAI)-treated mRTECs. We also observed enhanced ferroptosis (known to be regulated by REV-ERBα) in mice with AAI nephropathy and in ALI-treated mRTECs. Kidney-specific knockout of Rev-erbα reduced the sensitivity of mice to AAI-induced ferroptosis and renal injury. Furthermore, knockdown of Rev-erbα by siRNA or SR8278 (a REV-ERBα antagonist) treatment attenuated ALI-induced ferroptosis in mRTECs. Moreover, REV-ERBα antagonism by SR8278 alleviated ferroptosis and renal injury caused by AAI in mice. In conclusion, we identify REV-ERBα as a regulator of AAI-induced renal injury via promoting ferroptosis. Targeting REV-ERBα may represent a promising approach for management of AAI nephropathy.
Collapse
Affiliation(s)
- Yi Wang
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengping Wu
- School of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Menglin Chen
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
| | - Pei Yu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
17
|
Drăghia LP, Lukinich-Gruia AT, Oprean C, Pavlović NM, Păunescu V, Tatu CA. Aristolochic acid I: an investigation into the role of food crops contamination, as a potential natural exposure pathway. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4163-4178. [PMID: 33796971 DOI: 10.1007/s10653-021-00903-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Aristolochic acid I (AAI) is a potent nephrotoxic and carcinogenic compound produced by plants of the Aristolochiaceae family and thoroughly investigated as a main culprit in the etiology of Balkan endemic nephropathy (BEN). So far, the AAI exposure was demonstrated to occur through the consumption of Aristolochia clematitis plants as traditional remedies, and through the contamination of the surrounding environment in endemic areas: soil, food and water contamination. Our study investigated for the first time the level of AAI contamination in 141 soil and vegetable samples from two cultivated gardens in non-endemic areas, A. clematitis being present in only one of the gardens. We developed and validated a simple and sensitive ultra-high-performance liquid chromatography-ion trap mass spectrometry method for qualitative and quantitative AAI analysis. The results confirmed the presence of AAI at nanogram levels in soil and vegetable samples collected from the non-endemic garden, where A. clematitis grows. These findings provide additional evidence that the presence of A. clematitis can cause food crops and soil contamination and unveil the pathway through which AAI could move from A. clematitis to other plant species via a common matrix: the soil. Another issue regarding the presence of AAI, in a non-endemic BEN area from Romania, could underlie a more widespread environmental exposure to AAI and explain certain BEN-like cases in areas where BEN has not been initially described.
Collapse
Affiliation(s)
- Lavinia Paula Drăghia
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania.
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Alexandra Teodora Lukinich-Gruia
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Camelia Oprean
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
- Department of Environmental and Food Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
| | | | - Virgil Păunescu
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| | - Călin Adrian Tatu
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| |
Collapse
|
18
|
Shu H, Chen G, Wang L, Cui X, Luo Z, Jing W, Chang C, Zeng A, Zhang J, Fu Q. Metal-organic framework grafted with melamine for the selective recognition and miniaturized solid phase extraction of aristolochic acid Ⅰ from traditional Chinese medicine. J Chromatogr A 2021; 1647:462155. [PMID: 33957350 DOI: 10.1016/j.chroma.2021.462155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Aristolochic acid Ⅰ is a nephrotoxic compound and exist in some traditional Chinese medicines at trace level. Up to now, specific enrichment of aristolochic acid Ⅰ remains important procedure and key problem in its analysis. In this study, melamine was proposed as the recognition unit and grafted on the surface of metal-organic framework to fabricate a specific material for aristolochic acid Ⅰ. This material was prepared by using a two-step strategy and the preparation process was optimized. The physical and chemical properties were investigated using scanning electron microscopy, Fourier-transfer infrared spectroscopy, X-ray diffraction and nitrogen adsorption-desorption techniques. Adsorption properties were evaluated by binding experiments. The melamine modified material exhibited a uniform morphology, high specific surface area (460.20 m2 g-1), high adsorption capacity (25.57 mg g-1), fast mass transfer rate and excellent selectivity. Further, a specific and sensitive method was established by using this material as adsorbent of mini-solid phase extraction. The limit of detection was as low as 0.02 μg mL-1. Therefore, melamine modified metal-organic framework is an ideal adsorbent for the recognition and enrichment of aristolochic acid Ⅰ.
Collapse
Affiliation(s)
- Hua Shu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Guoning Chen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lu Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xia Cui
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Zhimin Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wanghui Jing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Chun Chang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Aiguo Zeng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jia Zhang
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd. Hanzhong, Shaanxi 723000, PR China
| | - Qiang Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
19
|
Gao C, Zhang Q, Ma L, Lu X, Wu S, Song P, Xia L. Dual‐spectroscopic real‐time monitoring of the reduction reaction between aristolochic acid I and Fe
2+
and its bio‐application. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ce Gao
- Department of Chemistry Liaoning University Shenyang China
| | - Qijia Zhang
- Department of Chemistry Liaoning University Shenyang China
| | - Liping Ma
- Department of Chemistry Liaoning University Shenyang China
| | - Xuemei Lu
- Department of Physics Liaoning University Shenyang China
| | - Shiwei Wu
- Department of Chemistry Liaoning University Shenyang China
- Experimental Center Shenyang Normal University Shenyang China
| | - Peng Song
- Department of Physics Liaoning University Shenyang China
| | - Lixin Xia
- Department of Chemistry Liaoning University Shenyang China
- College of Chemistry and Environmental Engineering Yingkou Institute of Technology Yingkou China
| |
Collapse
|
20
|
Chan CK, Chan KKJ, Liu N, Chan W. Quantitation of Protein Adducts of Aristolochic Acid I by Liquid Chromatography-Tandem Mass Spectrometry: A Novel Method for Biomonitoring Aristolochic Acid Exposure. Chem Res Toxicol 2021; 34:144-153. [PMID: 33410325 DOI: 10.1021/acs.chemrestox.0c00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Emerging evidence suggests that chronic exposure to aristolochic acids (AAs) is one of the etiological pathways leading to chronic kidney disease (CKD). Due to the traditional practice of herbal medicine and AA-containing plants being used extensively as medicinal herbs, over 100 million East Asians are estimated to be at risk of AA poisoning. Given that the chronic nephrotoxicity of AAs only manifests itself after decades of exposure, early diagnosis of AA exposure could allow for timely intervention and disease risk reduction. However, an early detection method is not yet available, and diagnosis can only be established at the end stage of CKD. The goal of this study was to develop a highly sensitive and selective method to quantitate protein adducts of aristolochic acid I (AAI) as a biomarker of AA exposure. The method entails the release of protein-bound aristolactam I (ALI) by heat-assisted alkaline hydrolysis, extraction of ALI, addition of internal standard, and quantitation by liquid chromatography-tandem mass spectrometric analysis. Accuracy and precision of the method were critically evaluated using a synthetic ALI-containing glutathione adduct. The validated method was subsequently used to detect dose-dependent formation of ALI-protein adducts in human serum albumin exposed to AAI and in proteins isolated from the tissues and sera of AAI-exposed rats. Our time-dependent study showed that ALI-protein adducts remained detectable in rats even at 28 days postdosing. It is anticipated that the developed method will fill the technical gap in diagnosing AA intoxication and facilitate the biomonitoring of human exposures to AAs.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kwan-Kit Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
21
|
Zhang M, Liu H, Han Y, Bai L, Yan H. A review on the pharmacological properties, toxicological characteristics, pathogenic mechanism and analytical methods of aristolochic acids. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1811344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Haiyan Liu
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yamei Han
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ligai Bai
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
22
|
Shu H, Chen G, Wang L, Cui X, Wang Q, Li W, Chang C, Guo Q, Luo Z, Fu Q. Adenine-coated magnetic multiwalled carbon nanotubes for the selective extraction of aristolochic acids based on multiple interactions. J Chromatogr A 2020; 1627:461382. [DOI: 10.1016/j.chroma.2020.461382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023]
|
23
|
Chan CK, Pan G, Chan W. Analysis of aristolochic acids in Houttuynia cordata by liquid chromatography-tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4652. [PMID: 32975339 DOI: 10.1002/jms.4652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Houttuynia cordata (H. cordata) is a popular vegetable in Asian countries and is also used extensively as herbal medicine in treating various diseases. H. cordata contains aristolactams, which have a similar Chinese name as aristolochic acids (AAs); hence, an emerging concern in the greater China region has arisen about the potential linkage between H. cordata and aristolochic acid nephropathy (AAN). However, only a single study has tested for the presence of AAs in H. cordata samples, and the analysis was limited by the analytical sensitivity of the method. Thus, further analysis of AAs in H. cordata using analytical method of higher sensitivity is needed to alleviate public anxiety over the use of this popular vegetable. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to analyze H. cordata samples for the natural existence of aristolochic acid I (AA-I) and aristolochic acid II (AA-II), which are the most carcinogenic and nephrotoxic compounds in the AA family. After evaluating the method performance by fortifying blank samples with three concentrations of AAs, the validated method was applied to identify AA-I and AA-II in both fresh and sun-dried H. cordata samples (n = 20) collected from different cities in China. The LC-MS/MS method achieved method detection limits (MDLs) as low as 2 ng/g of AAs in H. cordata. Analysis of the collected fresh and sun-dried H. cordata samples revealed that AA-I and AA-II either do not exist naturally in H. cordata or exist at concentrations below the MDLs. Therefore, it is not very likely that consumption of H. cordata will result in AAN because AA-I and AA-II, the nephrotoxic and carcinogenic culprits of AAN, are not produced naturally in the plant or are produced at levels that do not pose a risk of AAN.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
24
|
Au CK, Zhang J, Chan CK, Li C, Liu G, Pavlović NM, Yao J, Chan W. Determination of Aristolochic Acids in Vegetables: Nephrotoxic and Carcinogenic Environmental Pollutants Contaminating a Broad Swath of the Food Supply and Driving Incidence of Balkan Endemic Nephropathy. Chem Res Toxicol 2020; 33:2446-2454. [DOI: 10.1021/acs.chemrestox.0c00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | - Jing Yao
- Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China
| | | |
Collapse
|
25
|
Chan CK, Tung KK, Pavlović NM, Chan W. Remediation of aristolochic acid-contaminated soil by an effective advanced oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137528. [PMID: 32143041 DOI: 10.1016/j.scitotenv.2020.137528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Aristolochic acids (AAs) are persistent soil pollutants in the agricultural fields of the Balkan Peninsula that are endemic for Aristolochia clematitis L. This class of carcinogenic and nephrotoxic phytotoxins is taken up by crops through root absorption and contaminates staple foods across the peninsula. Human exposure to AAs via dietary intake has recently been recognized as a cause of Balkan endemic nephropathy. For the sake of public health, human exposure to AAs from all sources should be minimized in a timely manner. However, currently, there is no available remediation method to remove AAs from soil. In this study, we developed the first soil remediation method for AAs using Fenton's reagent (FR), a combination of ferrous ion and hydrogen peroxide, and optimized factors, including pH, temperature, time, and dose of FR, to achieve the best degradation performance. The maximum AA degradation efficiency was found to be >97% in soil with 500 μg kg-1 of AAs. We anticipate that this developed method, mediated via Fenton reaction, will be useful to effectively eliminate AAs from the Balkan farmlands.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ka-Ki Tung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
26
|
Chan CK, Chan KKJ, Pavlović NM, Chan W. Liquid chromatography-tandem mass spectrometry analysis of aristolochic acids in soil samples collected from Serbia: Link to Balkan endemic nephropathy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8547. [PMID: 31392776 DOI: 10.1002/rcm.8547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Over the past six decades, residents of farming villages in multiple countries of the Balkan peninsula have been suffering from a unique type of chronic renal disease, Balkan endemic nephropathy (BEN). It was speculated that environmental pollution by aristolochic acids (AAs) produced naturally by Aristolochia clematitis L., a weed that grows in the area, was causing the disease. However, the human exposure pathway to this class of phytotoxin remains obscure. Knowledge of the sink and stability of AAs in the environment would assist in the formulation of policy reducing exposure risk. METHODS Using our newly developed liquid chromatography/tandem mass spectrometry method of high sensitivity and selectivity, we analysed over 130 soil samples collected from cultivation fields in southern Serbia for the presence of AAs. The environmental stability of AAs was also investigated by incubating soil samples spiked with AAs at various temperatures. RESULTS The analysis detected AA-I in over two-fifths of the tested samples at sub-μg/kg to μg/kg levels, with higher concentrations observed in more acidic farmland soil. Furthermore, analysis of soil samples incubated at various temperatures revealed half-lives of over 2 months, indicating that AAs are relatively resistant to degradation. CONCLUSIONS Cultivation soil in southern Serbia is being extensively contaminated with AAs released from the decomposition of A. clematitis weeds. Since AAs are resistant to degradation, it is possible that AAs could have been taken up by root absorption and transported to the edible part of food crops. Prolonged exposure to AA-contaminated food grown from polluted soil could be one of the main aetiological mechanisms of BEN observed in the area.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - K K Jason Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
27
|
Wang X, Giusti A, Ny A, de Witte PA. Nephrotoxic Effects in Zebrafish after Prolonged Exposure to Aristolochic Acid. Toxins (Basel) 2020; 12:toxins12040217. [PMID: 32235450 PMCID: PMC7232444 DOI: 10.3390/toxins12040217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
With the aim to explore the possibility to generate a zebrafish model of renal fibrosis, in this study the fibrogenic renal effect of aristolochic acid I (AAI) after immersion was assessed. This compound is highly nephrotoxic able to elicit renal fibrosis after exposure of rats and humans. Our results reveal that larval zebrafish at 15 days dpf (days post-fertilization) exposed for 8 days to 0.5 µM AAI showed clear signs of AKI (acute kidney injury). The damage resulted in the relative loss of the functional glomerular filtration barrier. Conversely, we did not observe any deposition of collagen, nor could we immunodetect α-SMA, a hallmark of myofibroblasts, in the tubules. In addition, no increase in gene expression of fibrogenesis biomarkers after whole animal RNA extraction was found. As zebrafish have a high capability for tissue regeneration possibly impeding fibrogenic processes, we also used a tert−/− zebrafish line exhibiting telomerase deficiency and impaired tissue homeostasis. AAI-treated tert−/− larvae displayed an increased sensitivity towards 0.5 µM AAI. Importantly, after AAI treatment a mild collagen deposition could be found in the tubules. The outcome implies that sustained AKI induced by nephrotoxic compounds combined with defective tert−/− stem cells can produce a fibrotic response.
Collapse
|
28
|
Au CK, Chan CK, Tung KK, Zhang J, Chan W. Quantitation of DNA Adducts of Aristolochic Acids in Repair-Deficient Cells: A Mechanistic Study of the DNA Repair Mechanism. Chem Res Toxicol 2020; 33:1323-1327. [DOI: 10.1021/acs.chemrestox.0c00004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ka-Ki Tung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
29
|
Zhang J, Chan CK, Ham YH, Chan W. Identifying Cysteine, N-Acetylcysteine, and Glutathione Conjugates as Novel Metabolites of Aristolochic Acid I: Emergence of a New Detoxification Pathway. Chem Res Toxicol 2020; 33:1374-1381. [DOI: 10.1021/acs.chemrestox.9b00488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
30
|
Tung KK, Chan CK, Zhao Y, Chan KKJ, Liu G, Pavlović NM, Chan W. Occurrence and Environmental Stability of Aristolochic Acids in Groundwater Collected from Serbia: Links to Human Exposure and Balkan Endemic Nephropathy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1554-1561. [PMID: 31884786 DOI: 10.1021/acs.est.9b05337] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aristolochic acids (AAs) have been known as potent nephrotoxins since the use of AA-containing herbal medicines was linked with a series of sporadic renal fibrotic nephropathy cases, and yet an estimated 100 million people worldwide are still at risk today because of continued use of similar medicines. However, a similar nephropathic condition is endemic in the rural Balkan regions (e.g., Serbian farming villages) and AAs were again found to be the causative agents. In the case of this Balkan endemic nephropathy, AAs were found to have originated from a widespread local weed Aristolochia clematitis L. In this study, we tested the hypothesis that AAs released from decomposition of A. clematitis were also being leached into groundwater, thus polluting the drinking water of local residents. We initiated the study by developing a dispersive solid-phase extraction-based sample preparation method for water samples suspected of AA contamination. The validated method was then coupled with a liquid chromatography-tandem mass spectrometric method to measure AAs in groundwater samples collected from Serbia. Our study revealed for the first time that groundwater in Serbia is extensively contaminated with AA-I, at ng/L levels. Results also showed that AAs are long-lived water contaminants, with no observable concentration changes over a 2-month period of sample storage.
Collapse
Affiliation(s)
| | | | | | | | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | | | | |
Collapse
|
31
|
Sidorenko VS. Biotransformation and Toxicities of Aristolochic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:139-166. [PMID: 32383120 DOI: 10.1007/978-3-030-41283-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental and iatrogenic exposures contribute significantly to human diseases, including cancer. The list of known human carcinogens has recently been extended by the addition of aristolochic acids (AAs). AAs occur primarily in Aristolochia herbs, which are used extensively in folk medicines, including Traditional Chinese Medicine. Ingestion of AAs results in chronic renal disease and cancer. Despite importation bans imposed by certain countries, herbal remedies containing AAs are readily available for purchase through the internet. With recent advancements in mass spectrometry, next generation sequencing, and the development of integrated organs-on-chips, our knowledge of cancers associated with AA exposure, and of the mechanisms involved in AA toxicities, has significantly improved. DNA adduction plays a central role in AA-induced cancers; however, significant gaps remain in our knowledge as to how cellular enzymes promote activation of AAs and how the reactive species selectively bind to DNA and kidney proteins. In this review, I describe pathways for AAs biotransformation, adduction, and mutagenesis, emphasizing novel methods and ideas contributing to our present understanding of AA toxicities in humans.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
32
|
Gao Y, Wang B, Yan Y. Self‐Assembling Bifunctional Hydrophilic Magnetic Nanomaterials for Highly Efficient Enrichment of Parabens in Beverages Sample. ChemistrySelect 2019. [DOI: 10.1002/slct.201902055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yiqian Gao
- School of Materials Science and Chemical EngineeringInstitute of Mass SpectrometryNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Baichun Wang
- School of Materials Science and Chemical EngineeringInstitute of Mass SpectrometryNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Yinghua Yan
- School of Materials Science and Chemical EngineeringInstitute of Mass SpectrometryNingbo University, Ningbo Zhejiang 315211 P. R. China
| |
Collapse
|
33
|
Zhao Y, Chan CK, Chan KKJ, Chan W. Quantitation of N6-Formyl-lysine Adduct Following Aristolochic Acid Exposure in Cells and Rat Tissues by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Stable Isotope-Dilution Method. Chem Res Toxicol 2019; 32:2086-2094. [DOI: 10.1021/acs.chemrestox.9b00272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|