1
|
Zhu W, Qin Z, Huang Y, Fu Q, Wang H, Zhang Z, Gao X, Liu Y, Lin H, Li Z. Specific detection of crustacean allergens in food: Development of indirect competitive and sandwich ELISA targeting sarcoplasmic calcium binding protein. FOOD BIOSCI 2024; 62:105093. [DOI: 10.1016/j.fbio.2024.105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Xu R, Qin Q, Bi H. Microfluidic Chip Coupled with MALDI-TOF MS for Multitarget Detection of Allergens in Crucian Carp ( Carassius auratus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39012169 DOI: 10.1021/acs.jafc.4c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The goal of the present study was to establish a rapid, simple method for simultaneous allergy testing of sera from multiple fish-allergic patients. Sera from fish-allergic patients were pooled and used for capturing allergens in fish muscle of crucian carp (Carassius auratus), which was studied as a fish model. Sarcoplasmic proteins of crucian carp (Carassius auratus) were extracted for the analysis of allergens. Anti-human IgE antibody-functionalized magnetic beads were utilized to collect IgE antibodies from human pooled sera. The isolation of allergenic proteins was immunomagnetically performed in microfluidic channels, and the elution of the captured allergenic proteins was done with 5% (v/v) acetic acid aqueous solution. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and peptide mass fingerprinting were used for the analysis of tryptic digests of eluted proteins. Ten potential allergenic proteins were identified from crucian carp (Carassius auratus). The present protocol provides a rapid, efficient, and simple method for simultaneous detection of multiple allergens, based on multitargeted antibodies from pooled sera of allergic patients. The constructed multiple antibody-modified MBs can be applied for the deallergenicity of food matrices. The efficiency of allergen detection can be greatly improved, with promising application in allergen discovery and filtration for other muscle-based foods.
Collapse
Affiliation(s)
- Ruirui Xu
- College of Food Science and Technology, Shanghai Ocean University (SHOU), 999 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
| | - Qin Qin
- Changhai Hospital, Naval Military Medical University, Yangpu District, Shanghai 200433, China
| | - Hongyan Bi
- College of Food Science and Technology, Shanghai Ocean University (SHOU), 999 Hucheng Ring Road, Pudong New District, Shanghai 201306, China
| |
Collapse
|
3
|
Mousavi Khaneghah A, Mostashari P. Decoding food reactions: a detailed exploration of food allergies vs. intolerances and sensitivities. Crit Rev Food Sci Nutr 2024:1-45. [DOI: 10.1080/10408398.2024.2349740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Zhao J, Liu Y, Xu L, Sun L, Chen G, Wang H, Zhang Z, Lin H, Li Z. Influence of linoleic acid on the immunodetection of shrimp (Litopenaeus vannamei) tropomyosin and the mechanism investigation via multi-spectroscopic and molecular modeling techniques. Food Chem 2024; 434:137339. [PMID: 37699311 DOI: 10.1016/j.foodchem.2023.137339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
The effect of linoleic acid (LA) on the IgG/IgE recognition, in vitro digestibility and immunodetection of shrimp tropomyosin (TM) was investigated. Subsequently, the simultaneous binding of LA-TM was explored using multi-spectroscopic and molecular modeling techniques. Our findings reveled that the addition of LA significantly reduced TM's IgG/IgE immunoreactivity, digestibility, and immunodetection. Further analysis using multi-spectroscopic and molecular modeling techniques indicated that while TM's secondary structure remained largely unchanged, its 3-D structure showed significant alterations such as increased particle size and hydrophobic surface area, and a higher number of buried hydrophobic residues exposed due to the binding of LA to TM. These structural changes rendered it difficult for target antibodies and digestive enzymes to interact with related epitopes and cleavage sites buried inside the molecule. The results obtained in this study provide valuable insights into the molecular mechanism of poor immunodetection caused by food matrix interference.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Nanjing, Jiangsu Province, 210009, China
| | - Yuhai Liu
- Dawning International Information Industry Co., Ltd., No.169, Songling Road, Qingdao City, Shandong Province, 266101, PR China
| | - Lili Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, No.202 Gongye North Road, Jinan 250100, China
| | - Lirui Sun
- School of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City, Shandong Province 266003, China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China.
| |
Collapse
|
5
|
Li X, Deng Y, Qiu W, Feng Y, Jin Y, Chen L, Li L, Wang AL, Tao N, Jin Y. Effects of different ohmic heating treatments on parvalbumin structure and reduction of allergenicity in Japanese eel (Anguilla japonica). Food Chem 2024; 432:137257. [PMID: 37659327 DOI: 10.1016/j.foodchem.2023.137257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
We investigated the effects of ohmic heating (OH) on the structural properties and allergenicity of parvalbumin (PV). Compared to other heating methods (water bath heating (WH), OH combined with WH, and OH combined with air thermostatic heating (AH)), pure OH heating expended the least time and total energy. PV sensitization was reduced by approximately 65% by pure OH heating. SDS-PAGE, tricine-SDS-PAGE, and western blotting analyses revealed a molecular weight of sensitized β-PV of about 12 kDa. Band intensity decreased with increasing OH time, and significant changes were observed in amino acid content, secondary structure, microstructure, and dielectric properties. Reducing PV, allergenicity through protein unfolding and secondary structural changes, thereby possibly reducing the allergenicity of eel, provides a theoretical basis for developing hypoallergenic products.
Collapse
Affiliation(s)
- Xiaomin Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Yun Deng
- Department of Food Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiqiang Qiu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Yuhui Feng
- Jilin Tobacco Industry Co., Ltd., Changbai Dong Road 2099, Yanji City, Jilin 133000, China
| | - Yingshan Jin
- College of Bioscience and Biotechnology, Yangzhou University, Wenhui Dong Road 48, Yangzhou City, Jiangsu 277600, China
| | - Lanming Chen
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Ashily Ling Wang
- ADM(Shanghai) Management Co. Ltd., Room 220, 2nd Floor, Juyang Building, 1200 Pudong Avenue, China (Shanghai) Pilot Free Trade Zone, Shanghai 200135, China
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Yinzhe Jin
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China.
| |
Collapse
|
6
|
Xu Y, Ahmed I, Zhao Z, Lv L. A comprehensive review on glycation and its potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2023; 64:12184-12206. [PMID: 37683268 DOI: 10.1080/10408398.2023.2248510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Food allergens are a major concern for individuals who are susceptible to food allergies and may experience various health issues due to allergens in their food. Most allergenic foods are subjected to heat treatment before being consumed. However, thermal processing and prolonged storage can cause glycation reactions to occur in food. The glycation reaction is a common processing method requiring no special chemicals or equipment. It may affect the allergenicity of proteins by altering the structure of the epitope, revealing hidden epitopes, concealing linear epitopes, or creating new ones. Changes in food allergenicity following glycation processing depend on several factors, including the allergen's characteristics, processing parameters, and matrix, and are therefore hard to predict. This review examines how glycation reactions affect the allergenicity of different allergen groups in allergenic foods.
Collapse
Affiliation(s)
- Yue Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Qingdao, China
| | - Zhengxi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Lu J, Luan H, Wang C, Zhang L, Shi W, Xu S, Jin Y, Lu Y. Molecular and allergenic properties of natural hemocyanin from Chinese mitten crab (Eriocheir sinensis). Food Chem 2023; 424:136422. [PMID: 37229897 DOI: 10.1016/j.foodchem.2023.136422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Hemocyanin in crustaceans is an allergen for humans. However, little information was available on its molecular, structural and allergenic properties. In this study, the purified natural protein was identified as Eriocheir sinensis HC by LC-MS/MS, which was allergenic because its reaction with the serum IgE of crustacean patients. Results of the molecular properties showed that, HC was resistant to trypsin digestion, but not a heat-stable protein. Boiling (55.05 ± 3.50 %) and steaming (66.84 ± 1.65 %) induced an increase in β-sheet and decreased allergenicity of HC. By comparing the amino acid sequences of eight crustaceans, HC was found to be highly conserved. Five epitopes of HC were identified and validated by murine sensitization model, and two of them (P3 and P10) were exactly as the predicted by six types of bioinformatics. Multiple bioinformatics analysis combining with murine sensitization model seemed to be effective way for identification of allergenic epitopes.
Collapse
Affiliation(s)
- Jiada Lu
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| | - Hongwei Luan
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| | - Change Wang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Lili Zhang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Wenzheng Shi
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, PR China.
| | - Shuang Xu
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Yinzhe Jin
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology (Shanghai), Shanghai 201306, PR China
| | - Ying Lu
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| |
Collapse
|
8
|
Yang H, Gao Y, Sun S, Qu Y, Ji S, Wu R, Wu J. Formation, characterization, and antigenicity of lecithin-β-conglycinin complexes. Food Chem 2023; 407:135178. [PMID: 36525804 DOI: 10.1016/j.foodchem.2022.135178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lipid binding has been proposed to represent a functional property of many allergenic proteins. This study investigated the formation, characterization, and antigenicity of lecithin-β-conglycinin complexes. The results indicate that lecithin was combined with β-conglycinin via static quenching and primarily driven by hydrogen bonds and van der Waals forces. In addition, heat treatment reduced the antigenicity of complexes, as evidenced by changes in molecular weight and secondary and tertiary structures. It revealed that large aggregates developed and more hydrophobic regions were exposed for complexes after heat treatment, as well as a decrease in the β-sheet contents and an increase in the β-turn and random coil contents. Furthermore, the average particle size of the complexes increased with increased temperature treatment, and the morphology of the complexes exhibited an amorphous polymer. These findings shedlight on the interaction between lecithin and β-conglycinin and help us understand the role of lecithin in allergic reactions.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yaran Gao
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Shuyuan Sun
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yezhi Qu
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| |
Collapse
|
9
|
Huang Y, Li Z, Wu Y, Li Y, Pramod S, Chen G, Zhu W, Zhang Z, Wang H, Lin H. Comparative analysis of allergenicity and predicted linear epitopes in α and β parvalbumin from turbot (Scophthalmus maximus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2313-2324. [PMID: 36606403 DOI: 10.1002/jsfa.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Parvalbumin (PV) can be subdivided into two phylogenetic lineages, αPV and βPV. The bony fish βPV is considered a major fish allergen. However, there is no available report on the immunological property and epitope mapping of bony fish αPV. RESULTS To characterize the allergenic property of bony fish αPV and investigate the difference in allergenic property of bony fish αPV and βPV, turbot (Scophthalmus maximus) αPV and βPV were identified by mass spectrometry and were expressed in Escherichia coli system in this study. Spectra analysis and three-dimensional (3D) modeling showed the similar structure between αPV and βPV. However, αPV exhibited lower immunoglobulin E/immunoglobulin G (IgE/IgG) binding capacity than βPV. Three identified βPV epitopes possessed higher IgE reactivity and more hydrophobic residues than three identified αPV epitopes. In addition, less similarity in sequence homology of αPV epitopes was observed with allergen sequences in database. CONCLUSION These finding expanded information on fish PV epitopes and substantiated the difference in allergenicity and epitope mapping between fish αPV and βPV, which will improve the epitope-based detection tools of PV and diagnostic of PV induced fish allergy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
- Department of Research and Development, HOB Biotech Group Corp., Ltd, Suzhou, P. R. China
| | - Siddanakoppalu Pramod
- Department of Studies and Research in Biochemistry, Davangere University, Davangere, India
| | - Guanzhi Chen
- Department of Dermatology, Affiliated Hospital of Medical College Qingdao University, Qingdao, P. R. China
| | - Wenjia Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
10
|
Jiang S, Wang T, Chen K, Wang H, Meng X. Assessment of the effect of glycation on the allergenicity of sesame proteins. Food Res Int 2023; 168:112771. [PMID: 37120220 DOI: 10.1016/j.foodres.2023.112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023]
Abstract
Sesame allergy is a growing concern worldwide. In this study, sesame proteins was glycated with glucose, galactose, lactose and sucrose respectively, and the allergenicity of different glycated sesame proteins were assessed by a comprehensive strategy, including simulated gastrointestinal digestion in vitro, a BALB/c mice model, a rat basophilic leukemia (RBL)-2H3 cell degranulation model and a serological experiment. Firstly, simulated gastrointestinal digestion in vitro showed that glycated sesame proteins were more easily to digest than raw sesame. Subsequently, the allergenicity of sesame proteins was assessed in vivo by detecting the allergic indexes of mice, and results showed that the levels of total immunoglobulin E (IgE) and histamine were reduced in glycated sesame proteins treated mice. Meanwhile, the Th2 cytokines (IL-4, IL-5, and IL-13) were downregulated significantly, demonstrating that sesame allergy was relieved in glycated sesame treated mice. Thirdly, the RBL-2H3 cell degranulation model results showed that the release of β-hexosaminidase and histamine were decreased to different degrees in glycated sesame proteins treated groups. Notably, the monosaccharide glycated sesame proteins exhibited lower allergenicity both in vivo and in vitro. Furthermore, the study also analyzed the structure alteration of sesame proteins, and the results showed that the secondary structure of glycated sesame proteins were changed (the content of α-helix and β-sheet were reduced), and the tertiary structure of sesame proteins after glycation modification was also changed (microenvironment around aromatic amino acids was altered). Besides, the surface hydrophobicity of glycated sesame proteins was also reduced except sucrose glycated sesame proteins. In conclusion, this study demonstrated that glycation reduced the allergenicity of sesame proteins effectively, especially glycation with monosaccharides, and the allergenicity reduction might be related to structural changes. The results will provide a new reference for developing hypoallergenic sesame products.
Collapse
|
11
|
Xu L, Zhang XM, Wen YQ, Zhao JL, Xu TC, Yong L, Lin H, Zhang HW, Li ZX. Comparison of tropomyosin released peptide and epitope mapping after in vitro digestion from fish (Larimichthys crocea), shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum) through SWATH-MS based proteomics. Food Chem 2023; 403:134314. [DOI: 10.1016/j.foodchem.2022.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
|
12
|
Gastrointestinal digestion products of shrimp (Penaeus vannamei) proteins retain an allergenic potential. Food Res Int 2022; 162:111916. [DOI: 10.1016/j.foodres.2022.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
|
13
|
Schrama D, Raposo de Magalhães C, Cerqueira M, Carrilho R, Revets D, Kuehn A, Engrola S, Rodrigues PM. Fish Processing and Digestion Affect Parvalbumins Detectability in Gilthead Seabream and European Seabass. Animals (Basel) 2022; 12:ani12213022. [PMID: 36359146 PMCID: PMC9654892 DOI: 10.3390/ani12213022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Consumption of aquatic food, including fish, accounts for 17% of animal protein intake. However, fish consumption might also result in several side-effects such as sneezing, swelling and anaphylaxis in sensitized consumers. Fish allergy is an immune reaction to allergenic proteins in the fish muscle, for instance parvalbumin (PV), considered the major fish allergen. In this study, we characterize PV in two economically important fish species for southern European aquaculture, namely gilthead seabream and European seabass, to understand its stability during in vitro digestion and fish processing. This information is crucial for future studies on the allergenicity of processed fish products. PVs were extracted from fish muscles, identified by mass spectrometry (MS), and detected by sandwich enzyme-linked immunosorbent assay (ELISA) after simulated digestion and various food processing treatments. Secondary structures were determined by circular dichroism (CD) after purification by anion exchange and gel filtration chromatography. In both species, PVs presented as α-helical and β-sheet structures, at room temperature, were shown to unfold at boiling temperatures. In European seabass, PV detectability decreased during the simulated digestion and after 240 min (intestinal phase) no detection was observed, while steaming showed a decrease (p < 0.05) in PVs detectability in comparison to raw muscle samples, for both species. Additionally, freezing (−20 °C) for up to 12 months continued to reduce the detectability of PV in tested processing techniques. We concluded that PVs from both species are susceptible to digestion and processing techniques such as steaming and freezing. Our study obtained preliminary results for further research on the allergenic potential of PV after digestion and processing.
Collapse
Affiliation(s)
- Denise Schrama
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Dominique Revets
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence:
| |
Collapse
|
14
|
Sun N, Liu Y, Liu K, Wang S, Liu Q, Lin S. Gastrointestinal fate of food allergens and its relationship with allergenicity. Compr Rev Food Sci Food Saf 2022; 21:3376-3404. [PMID: 35751399 DOI: 10.1111/1541-4337.12989] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
Food allergens are closely related to their gastrointestinal digestion fate, but the changes in food allergens during digestion and related mechanisms are quite complicated. This review presents in detail digestion models for predicting allergenicity, the fates of food allergens in oral, gastric and duodenal digestion, and the applications of digestomics in mapping IgE-binding epitopes of digestion-resistant peptides. Moreover, this review highlights the structure-activity relationships of food allergens during gastrointestinal digestion. Digestion-labile allergens may share common structural characteristics, such as high flexibility, rendering them easier to be hydrolyzed into small fragments with decreased or eliminated allergenicity. In contrast, the presence of disulfide bonds, tightly wound α-helical structures, or hydrophobic domains in food allergens helps them resist gastrointestinal digestion, stabilizing IgE-binding epitopes, thus maintaining their sensitization. In rare cases, digestion leads to increased allergenicity due to exposure of new epitopes. Finally, the action of the food matrix and processing on the digestion and allergenicity of food allergens as well as the underlying mechanisms was overviewed. The food matrix can directly act on the allergen by forming complexes or new epitopes to affect its gastrointestinal digestibility and thereby alter its allergenicity or indirectly affect the allergenicity by competing for enzymatic cleavage or influencing gastrointestinal pH and microbial flora. Several processing techniques attenuate the allergenicity of food proteins by altering their conformation to improve susceptibility to degradation by digestive enzymes. Given the complexity of food components, the food itself rather than a single allergen should be used to obtain more accurate data for allergenicity assessment. PRACTICAL APPLICATION: The review article will help to understand the relationship between food protein digestion and allergenicity, and may provide fundamental information for evaluating and reducing the allergenicity of food proteins.
Collapse
Affiliation(s)
- Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
15
|
Yang H, Qu Y, Gao Y, Sun S, Ding R, Cang W, Wu R, Wu J. Role of the dietary components in food allergy: A comprehensive review. Food Chem 2022; 386:132762. [PMID: 35334324 DOI: 10.1016/j.foodchem.2022.132762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/18/2022]
Abstract
Currently, the increasing incidence of food allergy is considered a major public health and food safety concern. Importantly, food-induced anaphylaxis is an acute, life-threatening, systemic reaction with varied clinical presentations and severity that results from the release of mediators from mast cells and basophils. Many factors are blamed for the increasing incidence of food allergy, including hygiene, microbiota (composition and diversity), inopportune complementary foods (a high-fat diet), and increasing processed food consumption. Studies have shown that different food components, including lipids, sugars, polyphenols, and vitamins, can modify the immunostimulating properties of allergenic proteins and change their bioavailability. Understanding the role of the food components in allergy might improve diagnosis, treatment, and prevention of food allergy. This review considers the role of the dietary components, including lipids, sugars, polyphenols, and vitamins, in the development of food allergy as well as results of mechanistic investigations in in vivo and in vitro models.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yezhi Qu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yaran Gao
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Shuyuan Sun
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Ruixue Ding
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| |
Collapse
|
16
|
Analysis of the Factors Affecting Static In Vitro Pepsinolysis of Food Proteins. Molecules 2022; 27:molecules27041260. [PMID: 35209049 PMCID: PMC8878058 DOI: 10.3390/molecules27041260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
In this meta-analysis, we collected 58 publications spanning the last seven decades that reported static in vitro protein gastric digestion results. A number of descriptors of the pepsinolysis process were extracted, including protein type; pepsin activity and concentration; protein concentration; pH; additives; protein form (e.g., ‘native’, ‘emulsion’, ‘gel’, etc.); molecular weight of the protein; treatment; temperature; and half-times (HT) of protein digestion. After careful analysis and the application of statistical techniques and regression models, several general conclusions could be extracted from the data. The protein form to digest the fastest was ‘emulsion’. The rate of pepsinolysis in the emulsion was largely independent of the protein type, whereas the gastric digestion of the native protein in the solution was strongly dependent on the protein type. The pepsinolysis was shown to be strongly dependent on the structural components of the proteins digested—specifically, β-sheet-inhibited and amino acid, leucine, methionine, and proline-promoted digestion. Interestingly, we found that additives included in the digestion mix to alter protein hydrolysis had, in general, a negligible effect in comparison to the clear importance of the protein form or additional treatment. Overall, the findings allowed for the targeted creation of foods for fast or slow protein digestion, depending on the nutritional needs.
Collapse
|
17
|
Foo ACY, Mueller GA. Abundance and Stability as Common Properties of Allergens. FRONTIERS IN ALLERGY 2021; 2:769728. [PMID: 35386965 PMCID: PMC8974735 DOI: 10.3389/falgy.2021.769728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 01/06/2023] Open
Abstract
There have been many attempts to identify common biophysical properties which differentiate allergens from their non-immunogenic counterparts. This review will focus on recent studies which examine two such factors: abundance and stability. Anecdotal accounts have speculated that the elevated abundance of potential allergens would increase the likelihood of human exposure and thus the probability of sensitization. Similarly, the stability of potential allergens dictates its ability to remain a viable immunogen during the transfer from the source to humans. This stability could also increase the resilience of potential allergens to both gastric and endosomal degradation, further skewing the immune system toward allergy. Statistical analyses confirm both abundance and stability as common properties of allergens, while epidemiological surveys show a correlation between exposure levels (abundance) and allergic disease. Additional studies show that changes in protein stability can predictably alter gastric/endosomal processing and immunogenicity, providing a mechanistic link between stability and allergenicity. However, notable exceptions exist to both hypotheses which highlight the multifaceted nature of immunological sensitization, and further inform our understanding of some of these other factors and their contribution to allergic disease.
Collapse
Affiliation(s)
| | - Geoffrey A. Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
18
|
Wu Y, Lin H, Lu Y, Huang Y, Dasanayaka BP, Ahmed I, Chen G, Chen Y, Li Z. Allergenicity determination of Turbot parvalbumin for safety of fish allergy via dendritic cells, RBL‐2H3 cell and mouse model. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03763-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Fish muscle processing into seafood products reduces β-parvalbumin allergenicity. Food Chem 2021; 364:130308. [PMID: 34157591 DOI: 10.1016/j.foodchem.2021.130308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023]
Abstract
Fish is one of the eight major foods causing type-I food allergy, and the prevalence of its allergy is increasing in part due to changes in consumption habits. One of the main drivers for these changes has been the processing developments transforming the fish muscle into seafood products. Most fish allergic patients react to the Ca2+-binding protein β-parvalbumin (β-PV) abundant in muscle. Here we have analyzed the effect of processing in the content and allergenic properties of the β-PV. We found that the transformation process decreases the β-PV content (4.7 ± 0.3 mg/g muscle, 0.24 ± 0.03 mg/g surimi, ≤0.003 ± 0.001 mg/g in seafood products), reduces the specific-IgE binding and prevents allergy relevant properties such the protease resistance and amyloid aggregation. These results suggest seafood products as potentially tolerable foods for fish allergic patients, but milk and egg allergic patients should be aware of the presence relevant additives.
Collapse
|
20
|
Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Clin Rev Allergy Immunol 2021; 62:1-36. [DOI: 10.1007/s12016-020-08826-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
|
21
|
Luo C, Chen G, Ahmed I, Sun L, Li W, Pavase TR, Li Z. Immunostimulatory and allergenic properties of emulsified and non-emulsified digestion products of parvalbumin ( Scophthalmus maximus) in RBL-2H3 cells and BALB/c mouse models. Food Funct 2021; 12:5351-5360. [PMID: 33982680 DOI: 10.1039/d1fo00575h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, the influence of lipid emulsion on the allergenicity of digestion products of fish parvalbumin (PV) was investigated, which was initially subjected to simulated gastric/intestinal digestion both under emulsified and non-emulsified conditions. The release of β-hexosaminidase (β-hex), histamine (His), tryptase (TPS), interleukin 4 (IL-4), and IL-13 in RBL cells was decreased by 79.32, 26.19, 41.67, 53.95 and 54.40%, respectively, following stimulation with the gastric digestion products of PV. Whereas, lipid emulsified digestion products of PV (e-PV) significantly enhanced the release of active mediators and cytokines. The digestion products of emulsified PV at 180 min resulted in a higher release of β-hex (197.60%), His (12.18%), TPS (38.85%), IL-4 (48.19%) and IL-13 (59.40%), as compared to that of PV. However, no obvious differences in the release of active substances and cytokines were noted between intestinal digestion products of PV and intestinal digestion products of emulsified PV. In the mouse model studies, digested PV products reduced the anaphylactic scores, whereas e-PV manifested a higher level of allergic symptoms. Moreover, mice treated with 50% e-PV had significantly higher levels of specific IgE (32.56%), total IgE (16.67%) and total IgG1 (5.15%) than those treated with 50% PV. Mice treated with 50% e-PV had significantly higher levels of His (8.50%) and TPS (10.07%) compared with mice treated with 50% PV. Lipid emulsions altered the digestibility of PV in gastrointestinal digestion and enhanced the allergenicity of PV digestion products at the cellular levels, subsequently posing a higher risk of allergic reactions in susceptible individuals.
Collapse
Affiliation(s)
- Chen Luo
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China. and College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Ishfaq Ahmed
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Lirui Sun
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Wenjie Li
- Qingdao Women & Children Hospital, Clinical Laboratory, Qingdao, Shandong Province 266003, PR China
| | - Tushar Ramesh Pavase
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Zhenxing Li
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China. and College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| |
Collapse
|
22
|
Comparison of digestibility and potential allergenicity of raw shrimp (Litopenaeus vannamei) extracts in static and dynamic digestion systems. Food Chem 2020; 345:128831. [PMID: 33326890 DOI: 10.1016/j.foodchem.2020.128831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022]
Abstract
In this work, a simplified dynamic digestion system was developed, and used for comparing the digestibility and potential allergenicity of raw shrimp extracts (RSE) in static and dynamic digestion systems. Protein hydrolysis was analyzed by electrophoresis, and the potential allergenicity was reflected in IgG/IgE binding ability and activation of basophils. In comparison with static digestion, protein hydrolysis indicated different kinetic behaviors, especially tropomyosin (TM) showed better digestion stability during dynamic digestion. The potential allergenicity of RSE exhibited different changing trends with digestion in the two systems. However, the apparent molecular weight (Mw) of immune fragments (>11 kDa) showed good approximation, and the IgE-binding fragment near 70 kDa revealed outstanding digestion stability than primordial protein in both systems. In conclusion, the dynamic conditions had a significant impact on the assessment of the persistence and potential allergenicity of digestion-resistant allergens, while the apparent Mw of IgG/IgE binding hydrolysate was not affected.
Collapse
|
23
|
Xu LL, Zhang HW, Zhang XM, Lin H, Guo YM, Yu C, Sun LR, Li ZX. Natural Shrimp ( Litopenaeus vannamei) Tropomyosin Shows Higher Allergic Properties than Recombinant Ones as Compared through SWATH-MS-Based Proteomics and Immunological Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11553-11567. [PMID: 32941022 DOI: 10.1021/acs.jafc.0c03840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tropomyosin (TM) is the major shrimp allergen that could trigger anaphylactic reactions. Recently, recombinant TM (rTM) has been accepted widely in the field of allergen-specific immunotherapy, but the allergenicity of rTM has not been compared with natural TM (nTM) based on an in vitro digestion profile. In this work, IgG-/IgE binding, allergen peptides, and degranulation ability of the digested samples in simulated gastric fluid/simulated intestinal fluid/gastrointestinal models from nTM and rTM were evaluated by immunoassays, proteomics, and basophil degranulation assay. Results showed that pepsin-digested and trypsin-digested samples of rTM exhibited lower IgG-/IgE binding and degranulation than those of nTM. More peptides of the digested samples from rTM (57.8%) matched shrimp allergic epitopes than those from nTM (33.3%). However, the peptide SITDELDQTF (269-278) appeared most frequently. These findings would supply foundation data for epitope-based immunotherapy to shrimp allergic individuals.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Hong Wei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, P. R. China
| | - Xiao Mei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, P. R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Yu Man Guo
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Li Rui Sun
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
24
|
Ahmed I, Lin H, Li Z, Xu L, Qazi IM, Luo C, Gao X, Khan MU, Iqbal A, Guo Y, Pavase TR, Sun L. Tyrosinase/caffeic acid cross-linking alleviated shrimp (Metapenaeus ensis) tropomyosin-induced allergic responses by modulating the Th1/Th2 immunobalance. Food Chem 2020; 340:127948. [PMID: 32896779 DOI: 10.1016/j.foodchem.2020.127948] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023]
Abstract
In this study, the effect of enzymatic cross-linking of shrimp tropomyosin (TM) with tyrosinase and caffeic acid (TM-Tyr/CA) on the allergic response were assessed using in vitro and in vivo models. The RBL-2H3 and KU812 cell lines were employed to evaluate the changes in the stimulation abilities of TM-Tyr/CA that showed significant inhibition of mediators and cytokines. The digestibility of cross-linked TM was improved and the recognitions of IgG/IgE were markedly reduced, as revealed by western blotting. TM-Tyr/CA decreased anaphylactic symptoms, and hindered the levels of IgG1, IgE, histamine, tryptase and mouse mast-cell protease-1 (mMCP-1) in mice sera. Cross-linked TM downregulated the production of interleukin (IL)-4, IL-5, and IL-13 by 51.36, 12.24 and 20.55%, respectively, whereas, IL-10 and IFN-γ were upregulated by 20.71 and 19.0%. TM-Tyr/CA showed reduced allergenicity and may have preventive effect in relieving TM induced allergic response via immunosuppression and positive modulation of T-helper (Th)1/Th2 immunobalance.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Ihsan Mabood Qazi
- Department of Food Science and Technology, The University of Agriculture Peshawar-Pakistan, Peshawar, Pakistan
| | - Chen Luo
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong Province 266003, PR China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Amjad Iqbal
- Department of Agriculture, Garden Campus, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yuman Guo
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Tushar Ramesh Pavase
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Lirui Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| |
Collapse
|