1
|
Ortiz-Martínez M, Molina González JA, Ramírez García G, de Luna Bugallo A, Justo Guerrero MA, Strupiechonski EC. Enhancing Sensitivity and Selectivity in Pesticide Detection: A Review of Cutting-Edge Techniques. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1468-1484. [PMID: 38726957 DOI: 10.1002/etc.5889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 04/12/2024] [Indexed: 06/27/2024]
Abstract
The primary goal of our review was to systematically explore and compare the state-of-the-art methodologies employed in the detection of pesticides, a critical component of global food safety initiatives. New approach methods in the fields of luminescent nanosensors, chromatography, terahertz spectroscopy, and Raman spectroscopy are discussed as precise, rapid, and versatile strategies for pesticide detection in food items and agroecological samples. Luminescent nanosensors emerge as powerful tools, noted for their portability and unparalleled sensitivity and real-time monitoring capabilities. Liquid and gas chromatography coupled to spectroscopic detectors, stalwarts in the analytical chemistry field, are lauded for their precision, wide applicability, and validation in diverse regulatory environments. Terahertz spectroscopy offers unique advantages such as noninvasive testing, profound penetration depth, and bulk sample handling. Meanwhile, Raman spectroscopy stands out with its nondestructive nature, its ability to detect even trace amounts of pesticides, and its minimal requirement for sample preparation. While acknowledging the maturity and robustness of these techniques, our review underscores the importance of persistent innovation. These methodologies' significance extends beyond their present functions, highlighting their adaptability to meet ever-evolving challenges. Environ Toxicol Chem 2024;43:1468-1484. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mónica Ortiz-Martínez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de México, México
- Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, México
| | - Jorge Alberto Molina González
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, México
| | - Gonzalo Ramírez García
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, México
| | - Andrés de Luna Bugallo
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, México
| | - Manuel Alejandro Justo Guerrero
- Istituto Nanoscienze and Scuola Normale Superiore, National Enterprise for nanoScience and nanoTechnology Consiglio Nazionale della Richerche, Pisa, Italy
| | | |
Collapse
|
2
|
Yu L, Xia A, Hao Y, Li W, He X, Xing C, Shang Z, Zhang Y. COF-SiO 2@Fe 3O 4 Composite for Magnetic Solid-Phase Extraction of Pyrethroid Pesticides in Vegetables. Molecules 2024; 29:2311. [PMID: 38792172 PMCID: PMC11123868 DOI: 10.3390/molecules29102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Pyrethroid pesticides (PYRs) have found widespread application in agriculture for the protection of fruit and vegetable crops. Nonetheless, excessive usage or improper application may allow the residues to exceed the safe limits and pose a threat to consumer safety. Thus, there is an urgent need to develop efficient technologies for the elimination or trace detection of PYRs from vegetables. Here, a simple and efficient magnetic solid-phase extraction (MSPE) strategy was developed for the simultaneous purification and enrichment of five PYRs in vegetables, employing the magnetic covalent organic framework nanomaterial COF-SiO2@Fe3O4 as an adsorbent. COF-SiO2@Fe3O4 was prepared by a straightforward solvothermal method, using Fe3O4 as a magnetic core and benzidine and 3,3,5,5-tetraaldehyde biphenyl as the two building units. COF-SiO2@Fe3O4 could effectively capture the targeted PYRs by virtue of its abundant π-electron system and hydroxyl groups. The impact of various experimental parameters on the extraction efficiency was investigated to optimize the MSPE conditions, including the adsorbent amount, extraction time, elution solvent type and elution time. Subsequently, method validation was conducted under the optimal conditions in conjunction with gas chromatography-mass spectrometry (GC-MS). Within the range of 5.00-100 μg·kg-1 (1.00-100 μg·kg-1 for bifenthrin and 2.5-100 μg·kg-1 for fenpropathrin), the five PYRs exhibited a strong linear relationship, with determination coefficients ranging from 0.9990 to 0.9997. The limits of detection (LODs) were 0.3-1.5 μg·kg-1, and the limits of quantification (LOQs) were 0.9-4.5 μg·kg-1. The recoveries were 80.2-116.7% with relative standard deviations (RSDs) below 7.0%. Finally, COF-SiO2@Fe3O4, NH2-SiO2@Fe3O4 and Fe3O4 were compared as MSPE adsorbents for PYRs. The results indicated that COF-SiO2@Fe3O4 was an efficient and rapid selective adsorbent for PYRs. This method holds promise for the determination of PYRs in real samples.
Collapse
Affiliation(s)
- Ling Yu
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
- Functional Polymer Materials R&D and Engineering Application Technology Innovation Center of Hebei, Xingtai 054001, China
| | - Aiqing Xia
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Yongchao Hao
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Weitao Li
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Xu He
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Cuijuan Xing
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Zan Shang
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Yiwei Zhang
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| |
Collapse
|
3
|
Korrani ZS, Khalili E, Kamyab H, Wan Ibrahim WA, Hashim H. A new solid phase extraction sorbent developed based on cyanopropyl functionalized silica nanoparticles for organophosphorus pesticides determination. ENVIRONMENTAL RESEARCH 2023; 238:117167. [PMID: 37722580 DOI: 10.1016/j.envres.2023.117167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In this work, a simple sol-gel approach was used for the preparation of cyanopropyl (CNPr) functionalized silica nanoparticles (SiO2-CNPr) that tetraethoxysilane (TEOS) and cyanopropyltriethoxysilane (CNPrTEOS) used as precursors. This as-prepared SiO2-CNPr nanoparticle sorbent was first characterized using FESEM, EDX, FTIR, TGA, and BET techniques. Then, the SiO2-CNPr nanoparticle was applied as a new SPE sorbent for determining trace levels of OPPs in environmental water samples. To enhance the simultaneous extraction of non-polar or/and polar OPPs and to obtain the most efficient sorbent, several sol-gel synthesis parameters were studied. In addition, the effect of several effective parameters on SPE performance was investigated toward simultaneous extraction of non-polar or/and polar OPPs. Moreover, the figures of merit such as precision, linearity, LOQ, LOD, and recovery were evaluated for the sorbent. Finally, the designed SiO2-CNPr SPE was used to determine OPPs in real water samples, and its extraction performance was compared to commercial cartridges based on cyanopropyl.
Collapse
Affiliation(s)
| | - Elham Khalili
- Department of Plant Science, Faculty of Science, Tarbiat Modarres University, Tehran, Iran
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| | - Wan Aini Wan Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia.
| | - Haslenda Hashim
- Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
4
|
Megahed SM, Habib AA, Hammad SF, Kamal AH. Novel experimental design paradigm for development of eco-friendly gradient chromatographic method for simultaneous determination of metronidazole and spiramycin. J Sep Sci 2023; 46:e2300216. [PMID: 37654046 DOI: 10.1002/jssc.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
This work describes the innovative experimental design-assisted development of a green gradient chromatographic method for concomitant analysis of metronidazole (MTR) and spiramycin (SPR). Two different designs including fractional factorial and Box-Behnken designs were implemented for screening and optimization steps, respectively. The optimum chromatographic conditions involved a mobile phase consisting of ethanol and 20 mM sodium dihydrogen phosphate solution (pH adjusted to 2.5) in the ratio 2:98 (v/v) for 2 min then the ratio changed to 30:70 (v/v). The flow rate was 1.3 mL/minute. Separation and analysis were performed on X-bridge C18 (150 mm × 4.6 mm × 3.5 μm) column with diode array detector set at 230 nm. Column oven temperature was 40°C. A linear response was acquired over the range of 5-125 μg/mL for both drugs. Detection and quantitation limits were 0.86 and 2.62 μg/mL for MTR and 0.92 and 2.83 μg/mL for SPR, respectively. The method was implemented for determination of both drugs in three tablet formulations. The method was proved to be green as evaluated by three assessment tools. The application of experimental designs assists in development of a robust green chromatographic method in gradient elution mode for determination of both drugs within reasonable time.
Collapse
Affiliation(s)
- Safa M Megahed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed A Habib
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amira H Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Xu J, Li Y, Yu L, Pang Y, Shen X, Liu J. Metal-organic frameworks modified melamine foam in pipette-tip for rapid solid-phase extraction of organophosphorus pesticides in fruits and vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108774-108782. [PMID: 37755595 DOI: 10.1007/s11356-023-30055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
In this work, metal-organic frameworks (MOFs) including Fe-MIL-101 and Ti-MIL-125 were prepared and fixed on the melamine foam (MF) by polyvinylidene fluoride (PVDF) to prepare MF/PVDF/MOFs, which was used as adsorbents in pipette-tip solid-phase extraction (PT-SPE) for rapid extraction of organophosphorus pesticides (OPPs). Then, a gas chromatograph-flame thermionic detector (GC-FTD) was used for simultaneous analysis of Dimethoate (DMT), Iprobenfos (IBF), Parathion-methyl (PAM), and Chlorpyrifos (CPF). The morphology, crystal structure, and functional groups of MF/PVDF/MOFs were characterized, indicating that Ti-MIL-125 and Fe-MIL-101 were successfully synthesized and distributed on MF. The Fe-MIL-101 and Ti-MIL-125 showed good extraction ability for OPPs, which was mainly due to the π-π interaction and the multiple porous structures. Under the optimal conditions, the limit of detection (LODs) of four OPPs was 0.03-0.14 μg L-1 and the RSDs were less than 9.9%. The developed PT-SPE method showed a short extraction time (<3 min). The recoveries in fruits and vegetables (Celery, cabbages, and oranges) ranged from 75.3%-118.8% (RSDs<9.6%). The prepared MF/PVDF/MOFs demonstrated the efficient extraction performance of OPPs, contributing to the rapid pretreatment of OPPs from food and the environment.
Collapse
Affiliation(s)
- Jinjie Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Yongli Li
- Technology Center of Chengdu Customs, Chengdu, 610041, China
| | - Lihong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Yuehong Pang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Xiaofang Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
| | - Jun Liu
- Technology Center of Chengdu Customs, Chengdu, 610041, China
| |
Collapse
|
6
|
Perumal S, Mahesh M, Kottadiyil D, Mehta T, Thasale R. Determination of multi-class pesticide residues in food commodities from Gujarat, India and evaluation of acute and chronic health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60460-60472. [PMID: 37022557 DOI: 10.1007/s11356-023-26651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
An increasing concern for food safety has drawn attention to the overuse of pesticides, which pose a risk to public health. The present study determined 61 pesticide residues in 120 samples of cauliflower, green chili, cucumber, grapes, bananas and mangoes samples, and these were collected from markets in Ahmedabad, Gandhinagar, Surendranagar, Anand and Sabarkantha districts of Gujarat state, India. The samples were extracted and analyzed using ultra-high performance liquid chromatography-time of flight mass spectrometry (UHPLC-q-TOF-MS) and Gas chromatography-tandem mass spectrometry (GC-MS/MS). In addition, the health risk assessment associated with pesticide residues were evaluated by calculating the Hazard Quotient (HQ) and Hazard Index (HI), which indicate a value of less than 1 is safe for consumption. Out of 61 pesticide residues, 29 residues were detected in 107 samples; 68 samples showed multiple residues, and 39 samples found a single residue. Pesticides such as dimethoate, λ-cyhalothrin, fenvalerate, bifenthrin, and cyfluthrin were frequently detected in samples. HI in adults and adolescents confirmed a value less than 1 in cauliflower, cucumber, grapes and mango samples and greater than 1 in green chili and banana samples, respectively. The overall results depicted that, no considerable risk was observed in the selected food commodities. However, green chili and banana samples were found to exhibit marginal risk to human health. As a result, proper application, implementation of control plans, and continuous monitoring are required to prevent the risk and safeguard human health.
Collapse
Affiliation(s)
- Sivaperumal Perumal
- Chemical Science Division, ICMR- National Institute of Occupational Health, Ahmedabad-380016, Gujarat, India.
| | - Meghna Mahesh
- Chemical Science Division, ICMR- National Institute of Occupational Health, Ahmedabad-380016, Gujarat, India
- School of Medico Legal Studies, National Forensic Sciences University, Gandhinagar- 382007, Gujarat, India
| | - Divya Kottadiyil
- Chemical Science Division, ICMR- National Institute of Occupational Health, Ahmedabad-380016, Gujarat, India
- Department of Biochemistry and Forensic Science, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Tejal Mehta
- Chemical Science Division, ICMR- National Institute of Occupational Health, Ahmedabad-380016, Gujarat, India
| | - Rupal Thasale
- Chemical Science Division, ICMR- National Institute of Occupational Health, Ahmedabad-380016, Gujarat, India
| |
Collapse
|
7
|
Li ZC, Li W, Wang R, Wang DX, Tang AN, Wang XP, Gao XP, Zhao GM, Kong DM. Lignin-based covalent organic polymers with improved crystallinity for non-targeted analysis of chemical hazards in food samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130821. [PMID: 36709736 DOI: 10.1016/j.jhazmat.2023.130821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lignin, the most abundant source of renewable aromatic compounds derived from natural lignocellulosic biomass, has great potential for various applications as green materials due to its abundant active groups. However, it is still challenging to quickly construct green polymers with a certain crystallinity by utilizing lignin as a building block. Herein, new green lignin-based covalent organic polymers (LIGOPD-COPs) were one-pot fabricated with water as the reaction solvent and natural lignin as the raw material. Furthermore, by using paraformaldehyde as a protector and modulator, the LIGOPD-COPs prepared under optimized conditions displayed better crystallinity than reported lignin-based polymers, demonstrating the feasibility of preparing lignin-based polymers with improved crystallinity. The improved crystallinity confers LIGOPD-COPs with enhanced application performance, which was demonstrated by their excellent performances in sample treatment of non-targeted food safety analysis. Under optimized conditions, phytochromes, the main interfering matrices, were almost completely removed from different phytochromes-rich vegetables by LIGOPD-COPs, accompanied by "full recovery" of 90 chemical hazards. Green, low-cost, and reusable properties, together with improved crystallinity, will accelerate the industrialization and marketization of lignin-based COPs, and promote their applications in many fields.
Collapse
Affiliation(s)
- Zhan-Chao Li
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiao-Peng Wang
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xiao-Ping Gao
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Gai-Ming Zhao
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
8
|
Zhang M, Ye Z, Xing C, Chen H, Zhang J, Yan W. Degradation of deoxynivalenol in wheat by double dielectric barrier discharge cold plasma: identification and pathway of degradation products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2347-2356. [PMID: 36534079 DOI: 10.1002/jsfa.12393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Deoxynivalenol (DON) produced during the onset of fusarium head blight not only affects the quality and safety of wheat but also causes serious harm to human and livestock health. However, due to the high stability of DON, it is difficult to eliminate it or reduce it naturally after it has been produced. Cold plasma technology is a non-thermophysical processing technology that has been widely used for microbial inactivation and mycotoxin degradation. In this study, the degradation efficiency of double dielectric barrier discharge (DDBD) cold plasma on DON in aqueous solution and wheat was studied; the structures of degradation products of DON and its pathway were clarified, and the effect of DDBD plasma on wheat quality was evaluated. RESULTS Double dielectric barrier discharge cold plasma was used for efficient degradation of DON (0.5 ~ 5 μgmL^-1) solution and achieved a degradation rate of 98.94% within 25 min under the optimal conditions (voltage 100 V, frequency 200 Hz, duty cycle 80%). Furthermore, 10 degradation products (C15 H24 O5 , C15 H22 O6 , C15 H22 O9 , C16 H22 O7 , C15 H20 O7 , C15 H20 O9 , C15 H18 O8 , C15 H22 O5 , C16 H24 O5 , and C15 H18 O9 ) were identified by ultra-performance liquid chromatography-time of flight-mass spectrometry (UPLC-TOF-MS/MS) combined with Metabolitepilot and Peakview software. The degradation pathway of DON was obtained based on the chemical structures and accurate mass of these products. The DON degradation rate of 61% in wheat was achieved after treatment for 15 min, which slightly affects the moisture content, proteins, and wheat starch. CONCLUSION Applying DDBD to wheat could effectively reduce the level of DON contamination, which provides a theoretical basis for applying cold plasma to the degradation of DON in wheat. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Zhang
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhumiao Ye
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Changrui Xing
- China College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - HongJuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210061, China
| | - Jianhao Zhang
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Yan
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Ma L, Cao L, Feng Y, Jia L, Liu C, Ding Q, Liu J, Shao P, Pan C. Automatic Multi-Plug Filtration Cleanup Tip-Filtration with Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry Detection For 22 Pesticide Residues in Typical Vegetables. J Chromatogr Sci 2022:6958658. [PMID: 36563020 DOI: 10.1093/chromsci/bmac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/01/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
An automatic multi-plug filtration cleanup (m-PFC) tip-filtration method was developed to reduce the manual operation workload in sample preparation. In this work, m-PFC was based on multi-walled carbon nanotubes mixed with primary secondary amines and anhydrous magnesium sulfate (MgSO4) in a packed column for analysis of pesticide residues followed by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Method validation was performed on 22 pesticide residues in carrot, spinach and leek, at spiked levels of 5, 10 and 50 μg/kg, respectively. The average recoveries were between 70.1 and 119.5% with associated relative standard deviations <20% (n = 6) indicating satisfactory accuracy and repeatability. Matrix-matched calibration curves were performed with the correlation coefficients (R2) higher than 0.9903 within a linearity range of 5-100 ng/mL. The limits of quantification were 5 μg/kg for all the pesticides in carrot, spinach and leek matrices. The developed method was successfully used to determine pesticide residues in market samples.
Collapse
Affiliation(s)
- Lili Ma
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, No. 27, West Third Ring Road, Haidian District, Beijing 100089, China
| | - Lihua Cao
- Industrial Products Testing Center, Nanjing Customs, No. 39, Chuangzhi Road, Jianye District, Nanjing 210019, China
| | - Yuechao Feng
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, No. 27, West Third Ring Road, Haidian District, Beijing 100089, China
| | - Li Jia
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, No. 27, West Third Ring Road, Haidian District, Beijing 100089, China
| | - Cong Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, No. 27, West Third Ring Road, Haidian District, Beijing 100089, China
| | - Qi Ding
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, No. 27, West Third Ring Road, Haidian District, Beijing 100089, China
| | - Jia Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, No. 27, West Third Ring Road, Haidian District, Beijing 100089, China
| | - Peng Shao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, No. 27, West Third Ring Road, Haidian District, Beijing 100089, China
| | - Canping Pan
- College of Science, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
10
|
Zhou Q, Zhang J, Zhao J, Mao L, Zhao S, Wang B, Wei X, Shi Q, Chen J, Sun J. Ultrasound-enhanced air-assisted liquid-liquid microextraction for the UPLC determination of organophosphorus pesticides in river water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
A Modified QuEChERS-DART-MS/MS Technique for High-Throughput Detection of Organophosphate Nerve Agent Hydrolysis Products in Environmental Samples. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Tian H, Feng Y, Yang X, Li S, Pang C, Ma C. Development of a new and facile method for determination of chlorpyrifos residues in green tea by dispersive liquid-liquid microextraction. Sci Rep 2022; 12:15542. [PMID: 36109661 PMCID: PMC9477813 DOI: 10.1038/s41598-022-20021-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
In this work a simple, rapid, and environmentally friendly method has been established for the determination of chlorpyrifos residue in green tea by dispersive liquid-liquid microextraction and gas chromatography-flame photometric detection. Some experimental parameters that influence extraction efficiency, such as the kind and volume of disperser solvents and extraction solvents, extraction time, addition of salt and pH, were investigated. And the optimal experimental conditions were obtained, quantitative analysis was carried out using external standard method. The correlation coefficient of the calibration curves was 0.999 with in 0.05 mg/kg to 5 mg/kg. The results showed that under the optimum conditions, the enrichment factors of the chlorpyrifos was about 554.51, the recoveries for standard addition fell in the range from 91.94 to 104.70% and the relative standard deviations was 4.61%. The limit of quantification of chlorpyrifos in green tea was 0.02 μg/mL at the signal/noise ratio of 3.
Collapse
Affiliation(s)
- Hai Tian
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Science & Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, China
| | - Yujie Feng
- Institute of Plant Protection, Ministry of Agriculture, Hainan Academy of Agricultural Science & Scientific Observation and Experiment Station of Crop Pests in HaiKou, Haikou, China.
| | - Xinfeng Yang
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Science & Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, China
| | - Shuhuai Li
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Science & Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, China
| | - Chaohai Pang
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Science & Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, China
| | - Chen Ma
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Science & Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, China
| |
Collapse
|
13
|
Khezri A, Ansari M, Amirahmadi M, Shahidi M, Mohamadi N, Kazemipour M. Pesticide residues in dates using a modified QuEChERS method and GC-MS/MS. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:168-176. [PMID: 35414352 DOI: 10.1080/19393210.2022.2062798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to develop a convenient, fast, effective and safe analytical method (QuEChERS) to determine 198 pesticide residues in multi-source date palm fruits using gas chromatography-tandem mass spectrometry (GC-MS/MS). The calibration curves for most pesticides were linear in the range of 15-150 µg/kg, with r2 values higher than 0.9934 and the relative standard deviation for all pesticides was ≤20%. The mean recovery rate of pesticides was 70-120% and limits of detection (LODs) and limits of quantification (LOQs) were in the range of 5-14 µg/kg and 14-40 µg/kg, respectively. The validated procedure was used to monitor pesticide residues in 30 fresh date samples. It could be concluded that the modified QuEChERS extraction method was efficient in analysing pesticide residues in dates palm and none of the samples contained residues above the MRLs.
Collapse
Affiliation(s)
- Azimeh Khezri
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
- Department of Food and Drug Administration, Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Amirahmadi
- Food and Drug Laboratory Research Center, Food and Drug Organization, Tehran, Iran
| | - Mehdi Shahidi
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Kazemipour
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| |
Collapse
|
14
|
Janta P, Wongla B, Phayoonhong W, Intarapanich O, Kokpol S, Mahatheeranont S, Kulsing C. Analysis of low-volatility pesticides in cabbage by high temperature comprehensive two-dimensional gas chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3180-3187. [PMID: 35929731 DOI: 10.1039/d2ay00998f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-temperature comprehensive two-dimensional gas chromatography (HTGC × GC) using a longitudinally modulated cryogenic system (LMCS) was developed for the analysis of low-volatility pesticides in cabbage. The method applied DB-17HT and DB-5HT as the first and second dimensional (1D and 2D) columns, respectively. Twelve pesticides, namely 6 organochlorines (4,4'-DDT, β-endosulfan, endosulfan sulfate, endrin, heptachlor, and dicofol), 4 carbamates (metolcarb, isoprocarb, methiocarb, and carbofuran), 1 organophosphate (chlorpyrifos), and 1 pyrethroid (permethrin), were spiked into cabbage samples and prepared using QuEChERS. The applied oven temperature was up to 340 °C, enabling the elution of all the target pesticides and the matrix. The effects of initial oven temperature program, temperature ramp rate, LMCS trap temperature, and modulation period (PM) on the separation results were investigated, leading to the suitable conditions of 80 °C, 15 °C min-1, 10 °C, and 12 s, respectively. The method detection limits, signal-to-noise ratio, and recoveries of the compounds were within the ranges of 0.01-0.09 mg kg-1, 4.26-32.7, and 78-104%, respectively. Good linearity ranges within the concentration range of 0.1-1 ppm with R2 > 0.9134 were also obtained with the intra and interday precisions of the peak areas of 0.4-9.8% and 1.0-10.2%, respectively.
Collapse
Affiliation(s)
- Pannipa Janta
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Bussaba Wongla
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilai Phayoonhong
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Oraphan Intarapanich
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chadin Kulsing
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Special Task Force for Activating Research (STAR) in Flavor Science, Chulalongkorn University, Phayatai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Wongmaneepratip W, Gao X, Yang H. Effect of food processing on reduction and degradation pathway of pyrethroid pesticides in mackerel fillet (Scomberomorus commerson). Food Chem 2022; 384:132523. [PMID: 35231708 DOI: 10.1016/j.foodchem.2022.132523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Pyrethroid contamination in fish can contribute to the dietary uptake of pesticides. To mitigate this risk, the effects of frozen storage, thermal treatments (boiling and grilling), and non-thermal treatments (pickling and curing) on the reduction of bifenthrin, cypermethrin, deltamethrin, and permethrin in mackerel fillets were investigated. The curing process was the most effective method that significantly depleted 74.82-79.45% of pyrethroid residues from fish fillets, followed by the synergistic effect of eight weeks' frozen storage and grilling method (69.19-78.31%). Moreover, pyrethroid degradation pathways in processed fish were proposed into three major mechanisms of C1-C3 bond cleavage in cyclopropyl, dehalogenation, and double bond cleavage. These identical pathways incorporated with additional four mechanisms of dimerization, ester hydrolysis, oxidation, and reduction. This study recommended simple and effective processing practices for consumers and/or manufacturers to enhance food safety from the potential risks of consuming pyrethroid-contaminated fish.
Collapse
Affiliation(s)
- Wanwisa Wongmaneepratip
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Xianfu Gao
- Shanghai Profleader Biotech Co., Ltd, Jiading District, Shanghai 201805, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
16
|
Yuan S, Yang F, Yu H, Xie Y, Guo Y, Yao W. Degradation mechanism and toxicity assessment of chlorpyrifos in milk by combined ultrasound and ultraviolet treatment. Food Chem 2022; 383:132550. [PMID: 35413755 DOI: 10.1016/j.foodchem.2022.132550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022]
Abstract
The aim of this study was to compare the degradation kinetics of chlorpyrifos by treatment with ultrasound (US), ultraviolet radiation (UV) and a combination of both (US/UV), to evaluate the toxicity of the degradation products and the effect of the treatments on milk quality. US/UV markedly accelerated the degradation of chlorpyrifos. The half-life of chlorpyrifos by US/UV was 6.4 min, which was greatly shortened compared to the treatment with US or UV alone. Five degradation products were identified by GC-MS, and a degradation pathway for chlorpyrifos was proposed, based on density functional theory calculations. According to the luminescent bacteria test and predictions from a structure/activity relationship model, the toxicity of the degradation products was lower than that of chlorpyrifos. In addition, US/UV treatment had little effect on the quality of the treated milk. Therefore, US/UV can be used as a potential non-thermal processing method to degrade pesticide residues in milk.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
17
|
Overview of Different Modes and Applications of Liquid Phase-Based Microextraction Techniques. Processes (Basel) 2022. [DOI: 10.3390/pr10071347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liquid phase-based microextraction techniques (LPµETs) have attracted great attention from the scientific community since their invention and implementation mainly due to their high efficiency, low solvent and sample amount, enhanced selectivity and precision, and good reproducibility for a wide range of analytes. This review explores the different possibilities and applications of LPμETs including dispersive liquid–liquid microextraction (DLLME) and single-drop microextraction (SDME), highlighting its two main approaches, direct immersion-SDME and headspace-SDME, hollow-fiber liquid-phase microextraction (HF-LPME) in its two- and three-phase device modes using the donor–acceptor interactions, and electro membrane extraction (EME). Currently, these LPμETs are used in very different areas of interest, from the environment to food and beverages, pharmaceutical, clinical, and forensic analysis. Several important potential applications of each technique will be reported, highlighting its advantages and drawbacks. Moreover, the use of alternative and efficient “green” extraction solvents including nanostructured supramolecular solvents (SUPRASs, deep eutectic solvents (DES), and ionic liquids (ILs)) will be discussed.
Collapse
|
18
|
Yang Y, Liu W, Hang N, Zhao W, Lu P, Li S. On-site sample pretreatment: Natural deep eutectic solvent-based multiple air-assisted liquid–liquid microextraction. J Chromatogr A 2022; 1675:463136. [DOI: 10.1016/j.chroma.2022.463136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022]
|
19
|
|
20
|
Ma C, Wei D, Liu P, Fan K, Nie L, Song Y, Wang M, Wang L, Xu Q, Wang J, Shi J, Geng J, Zhao M, Jia Z, Huan C, Huo W, Wang C, Mao Z, Huang S, Zeng X. Pesticide Residues in Commonly Consumed Vegetables in Henan Province of China in 2020. Front Public Health 2022; 10:901485. [PMID: 35757605 PMCID: PMC9226416 DOI: 10.3389/fpubh.2022.901485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Pesticides are widely used in agricultural production to control insect pests and regulate plant growth in China, which may result in the presence of some pesticide residues in the vegetables. However, few studies of monitoring pesticides have been conducted in Henan Province. The aim of this study was to evaluate the level of pesticide residues in commonly consumed vegetables in the regions of Henan Province. Methods In this study, we collected 5,576 samples of 15 different vegetables in 17 areas from Henan Province during 2020. Eight kinds of pesticides were analyzed by gas chromatography-mass spectrometry (GC-MS), including procymidone, lambda-cyhalothrin, cypermethrin, pendimethalin, isocarbophos, isazophos, fenthion and deltamethrin. The chi-square test was used to compare the detection rates of pesticide residues in different regions. Results Of all the pesticides above, procymidone, lambda-cyhalothrin, cypermethrin, pendimethalin and isocarbophos were detected in vegetables, the detection rates were 27.0%, 16.2%, 11.4%, 3.5%, and 1.9%, respectively. However, isazophos, fenthion, and deltamethrin were not detected. In addition, procymidone, lambda-cyhalothrin, and cypermethrin were detected in urban areas, while pendimethalin was detected in rural areas. The detection rates of cypermethrin and pendimethalin in rural were 19.8% and 5.4%, respectively, which in urban were at relatively lower levels (13.7% and 1.9%, respectively) (P < 0.05). Compared the differences of pesticide detection rates among five areas of Henan province, we found that there were statistical differences in the detection rates of procymidone, cypermethrin and lambda-cyhalothrin in different regions (all P < 0.05). Conclusion The results have revealed that the pesticide residues are present. Higher detection rates and more types of pesticides were found in rural areas than urban areas. In addition, there were higher detection rates in Eastern Henan. The findings provided valuable information on the current pesticide residues status, which can be a reference of pesticide supervision and management.
Collapse
Affiliation(s)
- Cuicui Ma
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mian Wang
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jiayu Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jintian Geng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengzhen Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zexin Jia
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Changsheng Huan
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shan Huang
- Institute for Special Food Inspection, Henan Province Food Inspection Research Institute, Zhengzhou, China
| | - Xin Zeng
- Department of Social Medicine, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Ionic liquid-based cloud point extraction five organophosphorus pesticides in coarse cereals. Food Chem 2022; 379:132161. [DOI: 10.1016/j.foodchem.2022.132161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
|
22
|
Nemati M, Altunay N, Tuzen M, Farajzadeh MA, Mogaddam MRA. In-situ sorbent formation for the extraction of pesticides from honey. J Sep Sci 2022; 45:2652-2662. [PMID: 35596522 DOI: 10.1002/jssc.202100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022]
Abstract
An organic polymer was re-precipitated in solution to use as an adsorbent in dispersive solid phase extraction of some pesticides from honey samples prior to their determination by high performance liquid chromatography-tandem mass spectrometry. In this approach, different deep eutectic solvents were prepared using lysine and their ability in elution of the analytes from the adsorbent surface were tested. A diluted honey solution was transferred into a glass test tube and then a solution of polystyrene dissolved in dimethylformamide was injected into the solution. By doing this, polystyrene re-precipitated in the solution and dispersed in whole parts of it as many tiny particles. Then the mixture was centrifuged and the adsorbed analytes on the particles were eluted using a proper hydrophilic deep eutectic solvent. Central composite design approach was used for optimization of effective parameters. The limits of detection and quantification were in the ranges of 0.06-0.20 and 0.22-0.69 ng/g, respectively. The calibration curves obtained by matrix-matched standard solutions were linear in the range of 0.69-500 ng/g with coefficient of determinations ≥0.9962. The method provided high extraction recoveries (70-99%) and enrichment factors (140-198), and an acceptable precision (relative standard deviations ≤7.1%). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mahboob Nemati
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nail Altunay
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, TR-58140, Turkey
| | - Mustafa Tuzen
- Art and Science Faculty, Chemistry Department, Tokat Gaziosmanpasa University, Tokat, 60250, Turkey.,Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Research Institute, Dhahran, 31261, Saudi Arabia
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, North Cyprus, Mersin 10, Nicosia, 99138, Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Jin X, Kaw HY, Zhao J, Zou Y, He M, Li Z, Li D. NLow matrix effect pretreatment method based on gas-liquid micro-extraction technique for determining multi-class pesticides in crops. J Chromatogr A 2022; 1675:463178. [DOI: 10.1016/j.chroma.2022.463178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
24
|
Liu X, Song R, Wei R. Rapid Determination of Vitamin D 3 in Aquatic Products by Polypyrrole-Coated Magnetic Nanoparticles Extraction Coupled with High-Performance Liquid Chromatography Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1226. [PMID: 35407344 PMCID: PMC9002580 DOI: 10.3390/nano12071226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
A method using polypyrrole-coated Fe3O4 (Fe3O4@PPy composites) based extraction coupled with high performance liquid chromatography was developed for adsorption and detection of trace vitamin D3 (VD3) in aquatic products. The fabricated Fe3O4@PPy composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Fe3O4@PPy composites showed efficient adsorption of VD3 at pH 9.0 and 25 °C with a dose of 25 mg per 10 mL of sample solution and an adsorption time of 11 min. Methanol was selected as the desorption solvent to recover VD3 from Fe3O4@PPy composites after 3 min of static treatment. Fe3O4@PPy composites can be used for VD3 adsorption at least two times. The developed method showed a good linearity for VD3 determination in the range of 0.1-10 μg/mL with a correlation coefficient of 0.9989. The limits of detection and quantification were 10 ng/mL and 33 ng/mL, respectively. The recovery of VD3 in a spiking test was 97.72% with a relative standard deviation value of 1.78%. The content of VD3 in nine aquatic products was determined with this method. Our results show that Fe3O4@PPy composites provide a convenient method for the adsorption and determination of VD3 from the complex matrix of aquatic products.
Collapse
Affiliation(s)
- Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Rongbian Wei
- School of Chemistry and Bioengineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
| |
Collapse
|
25
|
Wu B, Niu Y, Bi X, Wang X, Jia L, Jing X. Rapid analysis of triazine herbicides in fruit juices using evaporation-assisted dispersive liquid-liquid microextraction with solidification of floating organic droplets and HPLC-DAD. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1329-1334. [PMID: 35285844 DOI: 10.1039/d1ay02130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A rapid and convenient analytical procedure (evaporation-assisted dispersive liquid-liquid microextraction with solidification of floating organic droplets) is advanced for determining the concentrations of triazine herbicide residues (e.g. simazine and atrazine) in fruit juices via HPLC-DAD. The technique involves adding 1-dodecanol (low density) and dichloromethane (high density) to the test solution to act as the extraction and volatile solvents, respectively. Calcium oxide is added to generate heat to accelerate the evaporation of dichloromethane, whereupon the 1-dodecanol quickly disperses into small droplets to complete the microextraction process. Thus, there is no need to use a dispersive solvent and heating equipment is also not required. The floating 1-dodecanol is subsequently frozen using an ice bath to facilitate its separation from the sample. Under optimal conditions (250 μL of 1-dodecanol (extraction solvent), 150 μL of CH2Cl2 (volatile solvent), 1250 mg of CaO, and an extraction time of 60 s) the detection procedure is linear over the range 0.05-5 μg mL-1 (with R > 0.99). The limits of detection (LOD) and quantification (LOQ) were determined to be 0.0022-0.0034 μg mL-1 and 0.0073-0.0113 μg mL-1, respectively. The recovery of simazine and atrazine in three fruit juices ranged between 78.5% and 96.4% with a relative standard deviation <8.2%. Therefore, the proposed approach can be effectively adopted to analyze the triazine herbicide content in fruit juices. The method has been proved to be simple, reliable, and remarkably efficient.
Collapse
Affiliation(s)
- Beiqi Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Yu Niu
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Xinyuan Bi
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
26
|
Zhang Q, Xiao W, Wu Y, Fan Y, Zou W, Xu K, Yuan Y, Mao X, Wang Y. A simple, environmental-friendly and reliable d-SPE method using amino-containing metal-organic framework MIL-125-NH 2 to determine pesticide residues in pomelo samples from different localities. Food Chem 2022; 372:131208. [PMID: 34601418 DOI: 10.1016/j.foodchem.2021.131208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/18/2023]
Abstract
A simple, environmentally-friendly and reliable method was developed to simultaneously monitor the residue of methyl 1-naphthalene acetate, parathion-methyl, fenitrothion, bromophos and phenthoate in pomelo by using dispersive solid-phase extraction technique (d-SPE). In this method, these target analytes were captured by MIL-125-NH2 and detected by GC-MS/MS. The key parameters of d-SPE were optimized by the single factor experiment. Under the optimized conditions, a good determination coefficient (R2 > 0.9922) and extraction recoveries (64.7-116.8%) are obtained. The limit of detections (0.03-1.07 ng/g) is lower than the MRLs in citrus fruits established by EU (10-15000 ng/g) and China (10-10000 ng/g). The precisions of intra-day and inter-day are 1.3-8.9% and 3.8-14.9%, respectively. In addition, the sorbent MIL-125-NH2 is stable and can be reused at least eight times. These results prove the established method is efficient and reliable to detect the pesticide residues in pomelo.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Jiangxi, China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yuqin Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Jiangxi, China
| | - Yunxue Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Jiangxi, China
| | - Wenhaotian Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Jiangxi, China
| | - Kang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Jiangxi, China
| | - Yi Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Jiangxi, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Jiangxi, China.
| |
Collapse
|
27
|
Khojasteh FT, Bazmandegan-Shamili A. Preparation of magnetic molecularly imprinted polymer based on multiwalled carbon nanotubes for selective dispersive micro-solid phase extraction of fenitrothion followed by ion mobility spectrometry analysis. J Sep Sci 2022; 45:1590-1599. [PMID: 35191593 DOI: 10.1002/jssc.202100925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/11/2022]
Abstract
A novel molecularly imprinted polymer based on magnetic multi-walled carbon nanotubes was fabricated and applied for selective dispersive micro-solid phase extraction of fenitrothion prior its determination by ion mobility spectrometry. The composite was synthesized using magnetic multi-walled carbon nanotubes as the support. Methacrylic acid was used as the functional monomer, fenitrothion as the template, ethylene glycol dimethacrylate as the cross-linker and 2,2-azoisobutyronitrile as the initiator. The resultant polymer was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmet-Teller analysis, thermogravimetric analysis and vibrating sample magnetometer techniques. Experimental factors affecting the extraction efficiency such as pH and amount of sorbent were evaluated. Under optimum experimental conditions, the developed method displayed the linear range of 5-220 μg L-1 with a detection limit (LOD) of 1.3 μg L-1 . The intra and inter-day relative standard deviations (RSD%) for determination of fenitrothion were 3.6 and 4.7% (n = 6), respectively. Ultimately, the proposed method was used to monitoring of trace amounts of fenitrothion in fruit,vegetable and water samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Faezeh Tousi Khojasteh
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | | |
Collapse
|
28
|
Chaudhary R, Singh R, Singh M, Mogha NK, Kumari P, Paliwal G, Singh PP, Das M. LC-MS/MS method for the simultaneous quantification of pyriproxyfen and bifenthrin and their dissipation kinetics under field conditions in chili and brinjal. J Food Sci 2022; 87:1331-1341. [PMID: 35170049 DOI: 10.1111/1750-3841.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Bifenthrin, a synthetic pyrethroid, and pyriproxyfen, a plant growth regulator, are used extensively in agriculture for controlling the different insect pests. The present study was undertaken to examine the dissipation behavior of a formulation with a combination of pyriproxyfen and bifenthrin on chili and brinjal under field conditions at four different locations. Dissipation study of combination of pyriproxyfen and bifenthrin revealed swift degradation in both crops with a half-life of 2.5-2.6 and 2.0-2.1 days in brinjal and chili, respectively. Also, a simple method for simultaneous quantification of pyriproxyfen and bifenthrin was developed and validated using modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique on liquid chromatography with tandem mass spectrometry (LC-MS/MS). Recovery of the method was found to be under an acceptable range of 90.0%-93.5% and 88.7%-94.3% in chili and 92.4%-96.6% and 97.4%-100.9% in brinjal for pyriproxyfen and bifenthrin, respectively. At harvest time, the terminal residues of bifenthrin and pyriproxyfen were below the maximum residue limits set by European Union in chili and brinjal, respectively, suggesting that the use of this pesticide formulation is safe and does not impose harmful effects on human health. PRACTICAL APPLICATION: In this paper, dissipation behavior of a pesticide formulation with a combination of pyriproxyfen and bifenthrin was undertaken under field conditions at four different locations on chili and brinjal in India. The simultaneous quantification of pyriproxyfen and bifenthrin using LC-MS/MS technique has been validated incorporating modified QuEChERS extraction method with limit of detection at 0.005 µg/g and limit of quantification at 0.01 µg/g, which is well below the EU-MRLs (European Union legislation Maximum Residue Level) of pyriproxyfen and bifenthrin in both chili and brinjal. Furthermore, dissipation kinetics of a formulation undertaken under field conditions at four different locations on chili and brinjal suggested that the terminal residues of both bifenthrin and pyriproxyfen were below the maximum residue limits set by European Union in chili and brinjal, respectively, at the time of harvest and that the use of this pesticide formulation is safe.
Collapse
Affiliation(s)
- Reema Chaudhary
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | - Rakhi Singh
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | - Monica Singh
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | - Navin Kumar Mogha
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | - Premlata Kumari
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | | | | | - Mukul Das
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| |
Collapse
|
29
|
Bhattu M, Kathuria D, Billing BK, Verma M. Chromatographic techniques for the analysis of organophosphate pesticides with their extraction approach: a review (2015-2020). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:322-358. [PMID: 34994766 DOI: 10.1039/d1ay01404h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In agriculture, a wide range of OPPs has been employed to boost crop yield, quality, and storage life. However, due to the ever-increasing population and rapid urbanization, pesticide use has surged in recent years. These compounds are exceedingly poisonous to humans, and despite the fact that specific legislation prohibits their use, the frequency of toxic and/or fatal incidents, as well as current statistics, suggest that they are currently accessible. As a result, determining the exposure to these substances as well as their detection (and that of their metabolites) in different types of exposed samples has become a hot issue in terms of quality and safety concerns. However, developing tools for the evaluation of these substances is a critical challenge for laboratories. Various chromatographic-based methods reported in the period of 2015-2020 have been developed, which are summarized and critically reviewed in this article, including the extraction of the target OPPs from different kinds of matrices. A comparison among the extraction and analysis techniques has been made in the current review article.
Collapse
Affiliation(s)
- Monika Bhattu
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Beant Kaur Billing
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| |
Collapse
|
30
|
Chen C, Yu G, Guo Z, Yang Q, Su W, Xie Q, Yang G, Ren Y, Li H. Expression, Characterization, Fermentation, Immobilization, and Application of a Novel Esterase Est804 From Metagenomic Library in Pesticide Degradation. Front Microbiol 2022; 13:922506. [PMID: 35875571 PMCID: PMC9301488 DOI: 10.3389/fmicb.2022.922506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Esterase, as a type of powerful catabolic enzyme for the degradation of pyrethroid pesticides (PYRs), appears promising in improving the quality of crops and the environment contaminated by pesticide residues. The purpose of this research is to provide a detailed introduction to the enzymatic properties, optimal production and immobilization conditions, and the degradation ability of Est804 for PYRs. The study on enzymatic properties indicated that Est804 was an alkaline esterase with an optimal pH of 8.0 and a broad optimal temperature in the range of 35-50°C. The optimal activity of free Est804 was calculated to be 112.812 U, and the specific enzyme activity was 48.97 U/mg. The kinetic parameters of Est804 were K m = 0.613 mM, k cat = 12,371 s-1, and V m = 0.095 mM/min. The results of the fermentative optimization demonstrated that the optimal conditions included 1.5% of inoculation amount, 30 mL of liquid volume, 28°C of the fermentation temperature, and 18 h of the fermentation time. The optimal medium consists of 15.87 g of yeast powder, 8.00 g of glycerol, and 9.57 g of tryptone in 1 L of liquid. The optimized enzyme activity was 1.68-fold higher than that before optimization. Immobilized Est804 exhibited the highest activity under the optimum preparation conditions, including 0.35 g of chitosan dosage, 0.4 mL of an enzyme, and 4 h at 40°C for adsorption. The degradation rates of Cypermethrin (CYP), fenpropathrin (FE), and lambda-cyhalothrin (LCT) by Est804 within 30 min were 77.35%, 84.73%, and 74.16%, respectively. The present study indicated that Est804 possesses great potential for the treatment of pesticide residues on crops and environmental remediation, conducive to the development of SGNH family esterase against pyrethroid accumulation.
Collapse
Affiliation(s)
- Cuihua Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gen Yu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenyu Guo
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qihao Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Su
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingfen Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guandong Yang
- CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yifei Ren
- Guangzhou Hua shuo Biotechnology Co., Ltd., Guangzhou, China
| | - He Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: He Li,
| |
Collapse
|
31
|
López-Ruiz R, Marín-Sáez J, Garrido Frenich A, Romero-González R. Recent applications of chromatography for analysis of contaminants in cannabis products: a review. PEST MANAGEMENT SCIENCE 2022; 78:19-29. [PMID: 34390132 DOI: 10.1002/ps.6599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
In the last few years, the cultivation of cannabis has been increasing due to greater use in foods, recreational use, creams, oils, and other applications. Thus, analysis of contaminants (e.g. pesticides and mycotoxins) in cannabis products is necessary to ensure consumer safety. This review is focused on the analytical procedures, based on chromatographic techniques, used for the determination of contaminants in cannabis and related products, developed from 2015 to 2020. QuEChERS (acronym of quick, easy, cheap, effective, rugged and safe) was mainly used for the extraction of pesticides and other contaminants from cannabis because its versatility and capacity to extract a wide range of substances, and therefore, increasing the scope of the analysis. The most employed technique to determine pesticides and mycotoxins in cannabis products was liquid chromatography (LC) coupled to mass spectrometry (MS), although gas chromatography (GC) coupled to MS was also employed for the analysis of non-polar compounds, using triple quadrupole (QqQ) as mass analyzer. Nevertheless, new advances in cannabis analysis are also discussed, introducing techniques such as high-resolution mass spectrometry (HRMS), which allows for performing both targeted and untargeted (unknown and suspect) analyses. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rosalía López-Ruiz
- Research Group 'Analytical Chemistry of Contaminants', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, Almeria, Spain
| | - Jesús Marín-Sáez
- Research Group 'Analytical Chemistry of Contaminants', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group 'Analytical Chemistry of Contaminants', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, Almeria, Spain
| | - Roberto Romero-González
- Research Group 'Analytical Chemistry of Contaminants', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, Almeria, Spain
| |
Collapse
|
32
|
Guo Z, Chen P, Wang M, Zuo M, El-Seedi HR, Chen Q, Shi J, Zou X. Rapid enrichment detection of patulin and alternariol in apple using surface enhanced Raman spectroscopy with coffee-ring effect. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Lin X, Mei Y, He C, Luo Y, Yang M, Kuang Y, Ma X, Zhang H, Huang Q. Electrochemical Biosensing Interface Based on Carbon Dots-Fe 3O 4 Nanomaterial for the Determination of Escherichia coli O157:H7. Front Chem 2021; 9:769648. [PMID: 34869216 PMCID: PMC8640100 DOI: 10.3389/fchem.2021.769648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli (E. coli) O157:H7 can cause many food safety incidents, which seriously affect human health and economic development. Therefore, the sensitive, accurate, and rapid determination of E. coli O157:H7 is of great significance for preventing the outbreak and spread of foodborne diseases. In this study, a carbon dots-Fe3O4 nanomaterial (CDs-Fe3O4)-based sensitive electrochemical biosensor for E. coli O157:H7 detection was developed. The CDs have good electrical conductivity, and the surface of carbon dots contains abundant carboxyl groups, which can be used to immobilize probe DNA. Meanwhile, the CDs can be used as a reducing agent to prepare CDs-Fe3O4 nanomaterial. The Fe3O4 nanomaterial can improve the performance of the electrochemical biosensor; it also can realize the recovery of CDs-Fe3O4 due to its magnetism. As expected, the electrochemical biosensor has excellent specificity of E. coli O157:H7 among other bacteria. The electrochemical biosensor also exhibited good performance for detecting E. coli O157:H7 with the detection range of 10-108 CFU/ml, and the detection limit of this electrochemical biosensor was 6.88 CFU/ml (3S/N). Furthermore, this electrochemical biosensor was successfully used for monitoring E. coli O157:H7 in milk and water samples, indicating that this electrochemical biosensor has good application prospect. More importantly, this research can provide a new idea for the detection of other bacteria and viruses.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Yanqiu Mei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Chen He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Min Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Ying Kuang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, China
| | - Huifang Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, China
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| |
Collapse
|
34
|
Akbari M, Mirzaei M, Amiri A. Synergistic effect of lacunary polyoxotungstates and carbon nanotubes for extraction of organophosphorus pesticides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Au@Ag nanoflowers based SERS coupled chemometric algorithms for determination of organochlorine pesticides in milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Zhang Y, Zhang M, Dong L, Chang J, Wang H, Shen Q. Lipidomics Screening of Polyunsaturated Phospholipid Molecular Species in Crab (
Portunus trituberculatus
) Muscular Tissue: A Nontarget Approach by HILIC‐MS. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yunfeng Zhang
- Ministry of Public Security Institute of Forensic Science Beijing 100038 China
| | - Min Zhang
- Collaborative Innovation Center of Seafood Deep Processing Zhejiang Province Joint Key Laboratory of Aquatic Products Processing Institute of Seafood Zhejiang Gongshang University Hangzhou Zhejiang 310018 China
| | - Linpei Dong
- Ministry of Public Security Institute of Forensic Science Beijing 100038 China
| | - Jing Chang
- Ministry of Public Security Institute of Forensic Science Beijing 100038 China
| | - Haixing Wang
- Collaborative Innovation Center of Seafood Deep Processing Zhejiang Province Joint Key Laboratory of Aquatic Products Processing Institute of Seafood Zhejiang Gongshang University Hangzhou Zhejiang 310018 China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing Zhejiang Province Joint Key Laboratory of Aquatic Products Processing Institute of Seafood Zhejiang Gongshang University Hangzhou Zhejiang 310018 China
| |
Collapse
|
37
|
Zhang Z, Lu Z, Fang N, Hou Z, Ren W, Li Y, Lu Z. Rapid Determination of 21 Chinese Domestically Registered Pesticides in Ginseng Using Cleanup Based on Zirconium-Oxide-Modified Silica and Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:5516563. [PMID: 34422433 PMCID: PMC8378960 DOI: 10.1155/2021/5516563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/24/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, an analytical method was developed for the rapid determination of 21 pesticides used in ginseng cultivation. All pesticides covered by this method have been registered by 2020 in China for use on ginseng. The extracts were cleaned up using zirconium-oxide-modified silica (Z-Sep) and primary secondary amine (PSA). The combination of Z-Sep and PSA provided good recovery for all analytes and the cleanest matrix background out of a number of PSA-based sorbent combinations, as indicated by high-performance liquid chromatography (HPLC) and gas chromatography (GC). Instrumental analysis was completed in 5 min using the ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The linearity (r > 0.99) for all analytes was satisfactory over the calibration range of 0.002-0.1 μg mL-1. Intraday recoveries (n = 5) at ginseng-spiked levels of 0.02, 0.05, 0.1, and 1 mg kg-1 ranged between 72% and 119%, with the corresponding relative standard deviations (RSDs), were less than 19%, while the interday recoveries (n = 15) ranged between 77% and 103%, and RSDs were less than 22%. Limits of quantitation (LOQs) ranged between 0.02 and 0.05 mg kg-1 for all 21 pesticides. This is a seminal study using Z-Sep for the efficient cleanup of ginseng samples, and it could present a practical method for future monitoring of pesticide residues in ginseng produced in China.
Collapse
Affiliation(s)
- Zhongbei Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zhou Lu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
- Laboratory of Quality & Safety Risk Assessment for Ginseng and Antler Products, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Nan Fang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Weiming Ren
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yueru Li
- Laboratory of Quality & Safety Risk Assessment for Ginseng and Antler Products, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zhongbin Lu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| |
Collapse
|
38
|
Jin X, Kaw HY, Liu Y, Zhao J, Piao X, Jin D, He M, Yan XP, Zhou JL, Li D. One-step integrated sample pretreatment technique by gas-liquid microextraction (GLME) to determine multi-class pesticide residues in plant-derived foods. Food Chem 2021; 367:130774. [PMID: 34390913 DOI: 10.1016/j.foodchem.2021.130774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Gas-liquid microextraction technique (GLME) has been integrated with dispersive solid phase extraction to establish a one-step sample pretreatment approach for rapid analysis of multi-class pesticides in different plant-derived foods. A 50 μL of organic solvent plus 40 mg of PSA were required throughout the 5-minute pretreatment procedure. Good trueness (recoveries of 67.2 - 105.4%) and precision (RSD ≤ 18.9%) were demonstrated by the one-step GLME method, with MLOQs ranged from 0.001 to 0.011 mg kg-1. As high as 93.6% pesticides experienced low matrix effect through this method, and the overall matrix effects (ME%) were generally better or comparable to QuEChERS. This method successfully quantified 2-phenylphenol, quintozene, bifenthrin and permethrin in the range of 0.001 - 0.008 mg kg-1 in real food samples. The multiresidue analysis feature of GLME has been validated, which displays further potential for on-site determination of organic pollutants in order to safeguard food safety and human health.
Collapse
Affiliation(s)
- Xiangzi Jin
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yunan Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
| | - Jinhua Zhao
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
| | - Xiangfan Piao
- Department of Electronic Information Engineering, College of Engineering, Yanbian University, Yanji 133002, Jilin Province, China
| | - Dongri Jin
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
| | - Miao He
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
39
|
Novel extraction methods and potential applications of polyphenols in fruit waste: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00901-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Chen S, Liu Y, Zhai F, Jia M. Novel label-free fluorescence aptasensor for chloramphenicol detection based on a DNA four-arm junction-assisted signal amplification strategy. Food Chem 2021; 366:130648. [PMID: 34325245 DOI: 10.1016/j.foodchem.2021.130648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 07/17/2021] [Indexed: 11/27/2022]
Abstract
A novel label-free fluorescence aptasensor was established for chloramphenicol (CAP) detection by DNA four-arm junction-assisted target recycling and SYBR Green I dye-aided fluorescence-signal amplification. The CAP aptamer was hybridized to its complementary strand (primer) to form a double-stranded primer/aptamer complex. In the presence of CAP, aptamers can specifically bind with CAP to dissociate primers, which can trigger the self-assembly of four hairpins to continuously generate DNA four-arm junctions. After digesting the excess hairpins using T7 exonuclease, SYBR Green I was inserted into the base pair-rich DNA four-arm junctions, which led to a significant increase in fluorescence intensity. Under optimal conditions, the developed aptasensor can detect CAP in a linear range of 1.0 pg mL-1 to 10 ng mL-1 with a detection limit of 0.72 pg mL-1. The recovery rates in milk and honey ranged from 90.3% to 106.6%. Thus, the method shows substantial potential for CAP detection in food products.
Collapse
Affiliation(s)
- Shuang Chen
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Yujie Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Fei Zhai
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Min Jia
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
41
|
Farajzadeh MA, Kiavar L, Pezhhanfar S. Development of a method based on dispersive liquid-liquid microextraction followed by partial vaporization of the extract for ultra-preconcentration of some pesticide residues in fruit juices. J Chromatogr A 2021; 1653:462427. [PMID: 34332315 DOI: 10.1016/j.chroma.2021.462427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
A new simple and efficient method has been developed for the ultra-preconcentration of multiclass pesticide residues including penconazole, chlorpyrifos, ametryn, clodinafop-propargyl, diniconazole, oxadiazon, and fenpropathrin from some fruit juice samples based on evaporation of the sedimented organic phase obtained from dispersive liquid-liquid microextraction. The enriched target analytes were analyzed by gas chromatography-flame ionization detection. In the microextraction procedure, a mixture of iso-propanol as a disperser and 1,2-dibromoethane as an extraction solvent is quickly injected into an aqueous phase containing the analytes and centrifuged. Afterward, the sedimented phase is transferred into a special shaped vaporization vessel and vaporized with nitrogen gas stream until remaining about 2 µL of it. Eventually, 1 µL of the remained sedimented phase is removed and analyzed by separation system. The optimum extraction and disperser solvents were found to be 1,2-dibromoethane and iso-propanol, respectively. In addition, the optimum pH range was 6-8, and nitrogen gas stream at a flow rate of 90 mL min-1 in a downward oriented vessel was applied. Eventually, the limits of detection and quantification were obtained in the ranges of 45-78 and 149-261 ng L-1, respectively. Relative standard deviations at the concentrations of 300, 500 and 1000 ng L-1 of each analyte were ranged between 2.2% and 5.8% for intra-day (n = 6) precision. Inter-day (n = 3) precision at a concentration of 500 ng L-1 of each analyte was obtained in the range of 4.9-7.1%. In addition, enrichment factors and extraction recoveries were ranged from 1382-2246 and 55-89%, respectively. Finally, the method was successfully utilized in analysis of the target pesticides in the selected juices.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Laleh Kiavar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Bakhshizadeh Aghdam M, Farajzadeh MA, Afshar Mogaddam MR. Partially carbonized cellulose filter paper as a green adsorbent for the extraction of pesticides from fruit juices. J Chromatogr A 2021; 1648:462220. [PMID: 33992997 DOI: 10.1016/j.chroma.2021.462220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/10/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022]
Abstract
In this study, a new solid phase extraction method based on the use of a low-cost funnel-shaped partially carbonized cellulose filter paper as a sorbent has been developed. The sorbent is easily prepared by heating the folded filter paper wetted with sulfuric acid solution and can be reused for several times. It is combined with dispersive liquid-liquid microextraction and used for the extraction of some pesticide residues from fruit juice samples prior to their analysis by gas chromatography-flame ionization detection. In this work, limits of detection and quantification were in the ranges of 0.30-0.61 and 1.0-2.0 µg L-1, respectively, and relative standard deviations ranged between 3 and 6% for intra- (n=5) and inter-day (n=5) precisions at a concentration of 25 µg L-1 of each pesticide. The enrichment factors of 452-751 were achieved. Extraction recoveries were in the range of 45-75%. The calibration curves had wide linear ranges with a good linearity (coefficient of determination ≥ 0.994). Finally, efficiency of the method was apprised by determining the analytes in fruit juice samples and relative recoveries were found to be in the range of 85-101%.
Collapse
Affiliation(s)
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
43
|
Martins RO, de Araújo GL, de Freitas CS, Silva AR, Simas RC, Vaz BG, Chaves AR. Miniaturized sample preparation techniques and ambient mass spectrometry as approaches for food residue analysis. J Chromatogr A 2021; 1640:461949. [PMID: 33556677 DOI: 10.1016/j.chroma.2021.461949] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Analytical methods such as liquid chromatography (LC) and mass spectrometry (MS) are widely used techniques for the analyses of different classes of compounds. This is due to their highlighted capacity for separating and identifying components in complex matrices such food samples. However, in most cases, effective analysis of the target analyte becomes challenging due to the complexity of the sample, especially for quantification of trace concentrations. In this case, miniaturized sample preparation methods have been used as a strategy for analysis of complex matrices. This involves removing the interferents and concentrating the analytes in a sample. These methods combine simplicity and effectiveness and given their miniaturized scale, they are in accordance with green chemistry precepts. Besides, ambient mass spectrometry represents a new trend in fast and rapid analyses, especially for qualitative and screening analysis. However, for complex matrix analyses, sample preparation is still a difficult step and the miniaturized sample preparation techniques show great potential for an improved and widespread use of ambient mass spectrometry techniques. . This review aims to contribute as an overview of current miniaturized sample preparation techniques and ambient mass spectrometry methods as different approaches for selective and sensitive analysis of residues in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | | |
Collapse
|
44
|
Simultaneous selective enrichment of methylparaben, propylparaben, and butylparaben from cosmetics samples based on syringe-to-syringe magnetic fluid phase microextraction. Talanta 2021; 221:121547. [DOI: 10.1016/j.talanta.2020.121547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/25/2023]
|
45
|
Jamil LA, Sami HZ, Aghaei A, Moinfar S, Ataei S. Combination of modified ultrasound-assisted extraction with continuous sample drop flow microextraction for determination of pesticides in vegetables and fruits. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Mao X, Xiao W, Wan Y, Li Z, Luo D, Yang H. Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: Improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables. Food Chem 2020; 345:128807. [PMID: 33310261 DOI: 10.1016/j.foodchem.2020.128807] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
An efficient dispersive solid-phase extraction method was developed to trace pesticide residues in commonly consumed vegetables. In this method, UiO-66 with uniform micropores was used as sorbent, and gas chromatography-mass spectrometry was applied to detect the pesticides. Thanks to the size sieving action of uniform micropores, UiO-66 directly extracted the target pesticides from vegetable matrices and excluded the relatively large matrix compounds. This well eliminated the matrix effect. The important experimental conditions were evaluated by orthogonal array experimental design. In optimized conditions, good linearity (R2 ≥ 0.99), detection limits (0.4-2.0 ng/g), recoveries (60.9-117.5%) and precision (relativestandarddeviations < 14.6%) were achieved. Moreover, the sorbent UiO-66 can be reused more than 20 times. These demonstrate a simple, reliable and robust method to screen the pesticide residues in vegetables. Furthermore, the validated method was applied to detect the pesticides in various organic and conventional vegetables.
Collapse
Affiliation(s)
- Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yiqun Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China.
| | - Zhanming Li
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Dongmei Luo
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng 024000, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore.
| |
Collapse
|
47
|
Dinali LAF, de Oliveira HL, Teixeira LS, de Souza Borges W, Borges KB. Mesoporous molecularly imprinted polymer core@shell hybrid silica nanoparticles as adsorbent in microextraction by packed sorbent for multiresidue determination of pesticides in apple juice. Food Chem 2020; 345:128745. [PMID: 33302105 DOI: 10.1016/j.foodchem.2020.128745] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
In this work, we report the synthesis of a mesoporous molecularly imprinted polymer on the surface of silica nanoparticles (core@mMIP) to be applied as adsorbent in microextraction by packed sorbent (MEPS) for selective determination of pesticides in apple juice. The core@mMIP was properly characterized, showing good adhesion of the polymer to the silica core. The best extraction conditions were: 200 µL of ultrapure water as washing solvent, 150 µL of acetonitrile as eluent, 100 µL of sample at pH 2.5, five draw-eject cycles and 8 mg of adsorbent. Thereby, recoveries of 96.12 ± 1.05%, 76.88 ± 6.18% and 76.18 ± 5.57% were obtained for pyriproxyfen (PPX), deltamethrin (DTM) and etofenprox (ETF), respectively. After validation, the method presented linearity in the range of 0.02-10 µg mL-1 (r > 0.99), limit of detection of 0.005 µg mL-1, satisfactory selectivity, and proper precision and accuracy. The method was successfully applied real samples of processed and fresh apple juice.
Collapse
Affiliation(s)
- Laíse Aparecida Fonseca Dinali
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Hanna Leijoto de Oliveira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Leila Suleimara Teixeira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Warley de Souza Borges
- Departamento de Ciências Exatas, Universidade Federal do Espírito Santo (UFES), 29075-910 Vitória, Espírito Santo, Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil.
| |
Collapse
|
48
|
Xu Y, Wang H, Li X, Zeng X, Du Z, Cao J, Jiang W. Metal-organic framework for the extraction and detection of pesticides from food commodities. Compr Rev Food Sci Food Saf 2020; 20:1009-1035. [PMID: 33443797 DOI: 10.1111/1541-4337.12675] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Pesticide residues in food matrices, threatening the survival and development of humanity, is one of the critical challenges worldwide. Metal-organic frameworks (MOFs) possess excellent properties, which include excellent adsorption capacity, tailorable shape and size, hierarchical structure, numerous surface-active sites, high specific surface areas, high chemical stabilities, and ease of modification and functionalization. These promising properties render MOFs as advantageous porous materials for the extraction and detection of pesticides in food samples. This review is based on a brief introduction of MOFs and highlights recent advances in pesticide extraction and detection through MOFs. Furthermore, the challenges and prospects in this field are also described.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Hui Wang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xiangquan Zeng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Zhenjiao Du
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
49
|
Ferreira C, Lopes F, Costa R, Komora N, Ferreira V, Cruz Fernandes V, Delerue-Matos C, Teixeira P. Microbiological and Chemical Quality of Portuguese Lettuce-Results of a Case Study. Foods 2020; 9:E1274. [PMID: 32932798 PMCID: PMC7555633 DOI: 10.3390/foods9091274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022] Open
Abstract
In addition to environmental pollution issues, social concerns about the sustainability, safety, and quality of conventionally grown fruits and vegetables have been increasing. In order to evaluate if there were any microbiological differences between samples of organic and conventional lettuce, a wide range of parameters were tested, including pathogens and indicator organisms: the enumeration of Escherichia coli; the detection of Salmonella spp.; the detection/enumeration of Listeria monocytogenes; the enumeration of lactic acid bacteria, Pseudomonas spp. yeasts and molds, and Enterobacteriaceae. This study also evaluated the chemical safety of the lettuce samples, quantifying the nitrate concentration and 20 pesticides (14 organochlorine and 6 organophosphorus pesticides). Significant differences (p < 0.05) between the conventional and organic samples were only detected for the counts of total microorganisms at 30 °C. Pathogens were absent in all the samples. The analytical method, using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach for pesticide extraction, was suitable for detecting the targeted analytes; the limit of quantification (LOQ) was between 0.6 and 1.8 µg/kg (lower than the Maximum Residue Levels (MRLs) established by EU legislation). In three organic lettuce samples, one organochlorine pesticide (α-HCH) was observed below the MRLs. For the samples analyzed and for the parameters investigated, except for the total mesophilic counts, the organic and conventional lettuces were not different.
Collapse
Affiliation(s)
- Catarina Ferreira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.F.); (F.L.); (R.C.); (N.K.); (V.F.)
| | - Filipa Lopes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.F.); (F.L.); (R.C.); (N.K.); (V.F.)
| | - Reginaldo Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.F.); (F.L.); (R.C.); (N.K.); (V.F.)
| | - Norton Komora
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.F.); (F.L.); (R.C.); (N.K.); (V.F.)
| | - Vânia Ferreira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.F.); (F.L.); (R.C.); (N.K.); (V.F.)
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; (V.C.F.); (C.D.-M.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; (V.C.F.); (C.D.-M.)
| | - Paula Teixeira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.F.); (F.L.); (R.C.); (N.K.); (V.F.)
| |
Collapse
|
50
|
Ionic Liquid–Based Dispersive Liquid–Liquid Micro-extraction of Five Organophosphorus Pesticides in Coarse Cereals. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01851-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|