1
|
Mello FV, Marmelo I, Fogaça FHS, Déniz FL, Alonso MB, Maulvault AL, Torres JPM, Marques A, Fernandes JO, Cunha SC. Behavior of diclofenac from contaminated fish after cooking and in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5964-5972. [PMID: 38437521 DOI: 10.1002/jsfa.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Seafood consumers are widely exposed to diclofenac due to the high contamination levels often present in aquatic organisms. It is a potential risk to public health due its endocrine disruptor properties. Limited information is available about diclofenac behavior after food digestion to enable a more realistic scenario of consumer exposure. This study aimed to evaluate cooking effects on diclofenac levels, and determine diclofenac bioaccessibility by an in vitro digestion assay, using commercial fish species (seabass and white mullet) as models. The production of the main metabolite 4'-hydroxydiclofenac was also investigated. Fish hamburgers were spiked at two levels (150 and 1000 ng g-1) and submitted to three culinary treatments (roasting, steaming and grilling). RESULTS The loss of water seems to increase the diclofenac levels after cooking, except in seabass with higher levels. The high bioaccessibility of diclofenac (59.1-98.3%) observed in both fish species indicates that consumers' intestines are more susceptible to absorption, which can be worrisome depending on the level of contamination. Contamination levels did not affect the diclofenac bioaccessibility in both species. Seabass, the fattest species, exhibited a higher bioaccessibility of diclofenac compared to white mullet. Overall, cooking decreased diclofenac bioaccessibility by up to 40% in seabass and 25% in white mullet. The main metabolite 4'-hydroxydiclofenac was not detected after cooking or digestion. CONCLUSION Thus, consumption of cooked fish, preferentially grilled seabass and steamed or baked white mullet are more advisable. This study highlights the importance to consider bioaccessibility and cooking in hazard characterization studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Flávia V Mello
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
| | - Isa Marmelo
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
- 4UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology - NOVA University of Lisbon, Caparica, Portugal
- CIIMAR, Universidade do Porto, Porto, Portugal
| | - Fabíola H S Fogaça
- Laboratory of Bioaccessibility, Embrapa Food Agroindustry, Rio de Janeiro, Brazil
| | - Fernando Lafont Déniz
- SCAI, Mass Spectrometry and Chromatography Lab, Campus Universitario de Rabanales. Edificio Ramón y Cajal, Córdoba, Spain
| | - Mariana B Alonso
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luísa Maulvault
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
- 4UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology - NOVA University of Lisbon, Caparica, Portugal
| | - João Paulo M Torres
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Marques
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
- CIIMAR, Universidade do Porto, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Zhou Q, Chen H, Li L, Wu Y, Yang X, Jiang A, Wu W. The Bioaccessibility and Bioavailability of Pentachlorophenol in Five Animal-Derived Foods Measured by Simulated Gastrointestinal Digestion. Foods 2024; 13:1254. [PMID: 38672926 PMCID: PMC11049475 DOI: 10.3390/foods13081254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pentachlorophenol (PCP) is a ubiquitous emerging persistent organic pollutant detected in the environment and foodstuffs. Despite the dietary intake of PCP being performed using surveillance data, the assessment does not consider the bioaccessibility and bioavailability of PCP. Pork, beef, pork liver, chicken and freshwater fish Ctenopharyngodon Idella-fortified by three levels of PCP were processed by RIVM and the Caco-2 cell model after steaming, boiling and pan-frying, and PCP in foods and digestive juices were detected using isotope dilution-UPLC-MS/MS. The culinary treatment and food matrix were significantly influenced (p < 0.05) in terms of the bioaccessibility and bioavailability of PCP. Pan-frying was a significant factor (p < 0.05) influencing the digestion and absorption of PCP in foods, with the following bioaccessibility: pork (81.37-90.36%), beef (72.09-83.63%), pork liver (69.11-78.07%), chicken (63.43-75.52%) and freshwater fish (60.27-72.14%). The bioavailability was as follows: pork (49.39-63.41%), beef (40.32-53.43%), pork liver (33.63-47.11%), chicken (30.63-40.83%) and freshwater fish (17.14-27.09%). Pork and beef with higher fat content were a key factor in facilitating the notable PCP bioaccessibility and bioavailability (p < 0.05). Further, the exposure of PCP to the population was significantly reduced by 42.70-98.46% after the consideration of bioaccessibility and bioavailability, with no potential health risk. It can improve the accuracy of risk assessment for PCP.
Collapse
Affiliation(s)
- Quan Zhou
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Huiming Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| | - Liangliang Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| | - Yongning Wu
- Key Laboratory of Food Safety Risk Assessment, National Center for Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China;
| | - Xingfen Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| | - Aimin Jiang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Weiliang Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| |
Collapse
|
3
|
Gonçalves A, Viegas O, Faria MA, Ferreira IMPLVO, Rocha F, Estevinho BN. In vitro bioaccessibility and intestinal transport of retinoic acid in ethyl cellulose-based microparticles and impact of meal co-ingestion. Int J Biol Macromol 2024; 258:128991. [PMID: 38158063 DOI: 10.1016/j.ijbiomac.2023.128991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The development of carrier-based delivery systems for oral administration of retinoic acid (RA), that provides its release and absorption at intestinal level, is of major relevance in the treatment of acute promyelocytic leukemia. The aim of this work was to evaluate RA bioaccessibility and intestinal transport on ethyl cellulose (EC)- and EC + polyethylene glycol (ECP)-based microparticles and to understand the impact of meal co-ingestion by applying in vitro assays. RA-loaded microparticles were produced by spray-drying with an encapsulation efficiency higher than 90 % for both formulations. The gastric bioaccessibility of RA (after in vitro static digestion of RA-loaded particles) was lower than 3 % for both types of microparticles, with and without meal co-ingestion. Whereas after intestinal digestion, RA bioaccessibility was significantly higher and affected by the type of microparticles and the presence of meal. The digestion of EC- and ECP-based microparticles without diet enabled a significantly higher bioaccessibility of RA when compared to the one recorded for the co-digestion of these microparticles with diet. Herein, RA bioaccessibility decreased from 84 ± 1 to 24 ± 6 % (p < 0.0001) for microparticles EC and 54 ± 4 to 25 ± 5 % (p < 0.001) for microparticles ECP. Moreover, comparing both types of microparticles, RA bioaccessibility was significantly higher for EC-based microparticles digested without diet (p < 0.0001). At last, the bioaccessibility of RA was similar among EC- and ECP-based microparticles when co-digested with diet. Intestinal transport experiments performed in Caco-2 monolayers evidenced that after 2 h of transport the amount of RA retained in the apical compartment was higher than the amount that reached the basolateral compartment evidencing a slow transport at intestinal level that was higher when RA is spiked in the blank of digestion and the meal digestion samples compared to RA dissolved in HBSS (44 ± 6 (p < 0.01) and 38 ± 1 (p < 0.05) vs 26 ± 2 %, respectively).
Collapse
Affiliation(s)
- Antónia Gonçalves
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga Viegas
- LAQV/REQUIMTE/Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, 4200-465 Porto, Portugal
| | - Miguel A Faria
- LAQV/REQUIMTE/Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE/Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
4
|
Sundhar S, Shakila RJ, Shalini R, Aanand S, Jayakumar N, Arisekar U, Surya T. First report on the exposure and health risk assessment of organochlorine pesticide residues in Caulerpa racemosa, and their potential impact on household culinary processes. Food Res Int 2023; 174:113559. [PMID: 37986437 DOI: 10.1016/j.foodres.2023.113559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Seaweeds are widely consumed as natural seafood in various Asian countries. Chemical contaminants, such as pesticide residues (PRs), can contaminate it due to its high bio-accumulation nature. Limited research exists on the presence of PRs in edible seaweeds, their decrease in levels during cooking processes, and the evaluation of hazard indices and associated health risks to humans. This study investigated the effects of different cooking methods on the levels of organochlorine pesticides in Caulerpa racemosa seaweed. It also assessed the potential health risks associated with consuming seaweed by estimating daily intake, hazard quotient, and hazard index. The PRs were reduced after different cooking methods. The impact of thermal cooking on PRs in C. racemosa was found to be notably beneficial. The PRs decreased following MWC, boiling, and steam cooking. Several PRs were analyzed, and endrin, DDT, endosulfan, and cypermethrin were found to be the most prevalent. The HQ and HI values for raw and cooked seaweeds were found to be below one, suggesting that the PRs in C. racemosa pose no risk to consumers of seaweed. In summary, thermal cooking proves to be an efficient method for minimizing PRs, while the cooking of seaweeds ensures a high level of safety during consumption.
Collapse
Affiliation(s)
- Shanmugam Sundhar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| | - Samraj Aanand
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Erode Bhavanisagar Centre for Sustainable Aquaculture, Erode 638451, Tamil Nadu, India
| | - Natarajan Jayakumar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fisheries Biology and Resource Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| | - Ulaganathan Arisekar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| | - Tamizselvan Surya
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|
5
|
Cheng Y, Geng Z, Li Y, Song X, Li L, Wen A, Yin Z. Effects of "Shi Ying Zi" powder and osthole on immune and antioxidant function of Eimeria tenella-infected broilers. Exp Parasitol 2023; 246:108451. [PMID: 36584786 DOI: 10.1016/j.exppara.2022.108451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
"Shi Ying Zi" powder is a traditional Chinese herbal formula for preventing and treating coccidiosis. In our previous studies, it showed anticoccidial effects and exhibited the potential to control Eimeria tenella infection. In this research, we evaluated the antioxidation and immune effect of "Shi Ying Zi" powder and its effective active ingredient osthole on coccidiosis-infected broilers to explore the mechanism of its anticoccidial effect. We analyzed changes in the antioxidant index, the pathological changes in cecum, immune index of serum and composition of cecal flora. The results showed that the use of "Shi Ying Zi" powder and osthole alleviated the pathological changes in the cecum, spleen and bursa of Fabricius, upregulated the spleen and bursal weigh index. "Shi Ying Zi" powder of 10 g/kg effectively rocovered the contents of interleukins and immunoglobulin in serum. Osthole increased the proportion of Firmicutes, Actino-bacteria and Lactobacillus in the cecum. In summary, "Shi Ying Zi" powder and osthole have anticoccidial effects, and they also can active the immunity, antioxidant functions and upregulate the beneficial bacteria population in Eimeria tenella-infected broilers.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Physical Education, Chengdu University of Information Technology, Chengdu, China
| | - Zhe Geng
- Department of Physical Education, Chengdu University of Information Technology, Chengdu, China
| | - Yunhe Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anxiang Wen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Bello A, Henri J, Viel A, Mochel JP, Poźniak B. Ionophore coccidiostats - disposition kinetics in laying hens and residues transfer to eggs. Poult Sci 2022; 102:102280. [PMID: 36410065 PMCID: PMC9676626 DOI: 10.1016/j.psj.2022.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022] Open
Abstract
Poultry production is linked with the use of veterinary medicinal products to manage diseases. Ionophore coccidiostats have been permitted for use as feed additives within the European Union (EU) for the prevention of coccidiosis in various species of poultry with except of laying hens. The presence of chemical residues in eggs is a matter of major concern for consumers' health. Despite such prohibition of use in laying hens, they were identified as the most common non-target poultry species being frequently exposed to these class of coccidiostats. Many factors can influence the presence of residues in eggs. Carryover of these class of coccidiostat feed additives in the feed of laying hens has been identified as the main reason of their occurrence in commercial poultry eggs. The physicochemical properties of individual compounds, the physiology of the laying hen, and the biology of egg formation are believed to govern the residue transfer rate and its distribution between the egg white and yolk compartments. This paper reviews the causes of occurrence of residues of ionophore coccidiostats in eggs within the EU with special emphasis on their disposition kinetics in laying hens, and residue transfer into eggs. Additional effort was made to highlight future modeling perspectives on the potential application of pharmacokinetic modeling in predicting drug residue transfer and its concentration in eggs.
Collapse
Affiliation(s)
- Abubakar Bello
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland
| | - Jérôme Henri
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, 35306, Fougères Cedex, France
| | - Alexis Viel
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, 35306, Fougères Cedex, France
| | - Jonathan Paul Mochel
- SMART Pharmacology, Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Błażej Poźniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland,Corresponding author:
| |
Collapse
|
7
|
Baesu A, Bayen S. Application of Nontarget Analysis and High-Resolution Mass Spectrometry for the Identification of Thermal Transformation Products of Oxytetracycline in Pacific White Shrimp. J Food Prot 2022; 85:1469-1478. [PMID: 35723565 DOI: 10.4315/jfp-22-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Oxytetracycline (OTC) is an antibiotic authorized for use in aquaculture; it is often detected in seafood products, especially shrimp. Previous studies investigating the fate of OTC in shrimp tissues after cooking were limited to quantification of parent compound residues and did not describe any potential transformation products formed. Hence, the main objective of this study was to apply a nontarget analysis workflow to study the fate of OTC in shrimp muscle. Furthermore, "water" and "spiked" models were evaluated for their suitability to track the transformation of OTC in incurred muscle and to determine whether the matrix plays a role in the transformation pathway. First, four different extraction methods were compared for the determination of OTC in muscle. Second, raw and cooked samples were then extracted using a suitable method (acidified water-methanol-acetonitrile, with cleanup of samples achieved using freezing) and were analyzed by high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. OTC levels were reduced by 75 and 87% in muscle and water, respectively. Identification of thermal transformation products was limited to formula generation, but results showed that different compounds were identified in spiked and incurred muscle. HIGHLIGHTS
Collapse
Affiliation(s)
- Anca Baesu
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| |
Collapse
|
8
|
Planche C, Chevolleau S, Noguer-Meireles MH, Jouanin I, Mompelat S, Ratel J, Verdon E, Engel E, Debrauwer L. Fate of Sulfonamides and Tetracyclines in Meat during Pan Cooking: Focus on the Thermodegradation of Sulfamethoxazole. Molecules 2022; 27:6233. [PMID: 36234772 PMCID: PMC9571958 DOI: 10.3390/molecules27196233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Although antimicrobials are generally found in trace amounts in meat, the human health risk they bear cannot be ignored. With the ultimate aim of making a better assessment of consumer exposure, this study explored the effects of pan cooking on sulfonamides and tetracyclines in meat. Screening of these antimicrobials in cooked meat was first performed by the European Union Reference Laboratory on the basis of HPLC-MS/MS analyses. A proof of concept approach using radiolabeling was then carried out on the most cooking-sensitive antimicrobial-sulfamethoxazole-to assess if a thermal degradation could explain the observed cooking losses. Degradation products were detected thanks to separation by HPLC and monitoring by online radioactivity detection. HPLC-Orbitrap HRMS analyses completed by 1D and 2D NMR experiments allowed the structural characterization of these degradation compounds. This study revealed that cooking could induce significant antimicrobial losses of up to 45% for sulfamethoxazole. Six potential degradation products of 14C-sulfamethoxazole were detected in cooked meat, and a thermal degradation pattern was proposed. This study highlights the importance of considering the cooking step in chemical risk assessment procedures and its impact on the level of chemical contaminants in meat and on the formation of potentially toxic breakdown compounds.
Collapse
Affiliation(s)
- Christelle Planche
- INRAE, UR370 QuaPA, MASS Group, F-63122 Saint-Genès-Champanelle, France
- Toxalim, Université de Toulouse, INRAE UMR 1331, INP-ENVT, INP-EI-Purpan, UPS, F-31027 Toulouse, France
- Axiom Platform, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, F-31027 Toulouse, France
| | - Sylvie Chevolleau
- Toxalim, Université de Toulouse, INRAE UMR 1331, INP-ENVT, INP-EI-Purpan, UPS, F-31027 Toulouse, France
- Axiom Platform, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, F-31027 Toulouse, France
| | - Maria-Hélèna Noguer-Meireles
- Toxalim, Université de Toulouse, INRAE UMR 1331, INP-ENVT, INP-EI-Purpan, UPS, F-31027 Toulouse, France
- Axiom Platform, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, F-31027 Toulouse, France
| | - Isabelle Jouanin
- Toxalim, Université de Toulouse, INRAE UMR 1331, INP-ENVT, INP-EI-Purpan, UPS, F-31027 Toulouse, France
- Axiom Platform, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, F-31027 Toulouse, France
| | - Sophie Mompelat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory of Fougères, Javené, F-35306 Fougères, France
| | - Jérémy Ratel
- INRAE, UR370 QuaPA, MASS Group, F-63122 Saint-Genès-Champanelle, France
| | - Eric Verdon
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory of Fougères, Javené, F-35306 Fougères, France
| | - Erwan Engel
- INRAE, UR370 QuaPA, MASS Group, F-63122 Saint-Genès-Champanelle, France
| | - Laurent Debrauwer
- Toxalim, Université de Toulouse, INRAE UMR 1331, INP-ENVT, INP-EI-Purpan, UPS, F-31027 Toulouse, France
- Axiom Platform, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, F-31027 Toulouse, France
| |
Collapse
|
9
|
Coccidiostats and Poultry: A Comprehensive Review and Current Legislation. Foods 2022; 11:foods11182738. [PMID: 36140870 PMCID: PMC9497773 DOI: 10.3390/foods11182738] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Coccidiosis remains one of the major problems of the poultry industry. Caused by Eimeria species, Coccidiosis is a contagious parasitic disease affecting poultry with great economic significance. Currently, in order to prevent health problems caused by this disease, broiler farmers make extensive use of coccidiostats in poultry feed, maintaining animal health and, in some cases, enhancing feed conversion. The presence of unauthorized substances, residues of veterinary products and chemical contaminants in the food industry is of concern, since they may pose a risk to public health. As the use of coccidiostats has been increasing without any requirements for veterinary prescription, research and surveillance of coccidiostat residues in poultry meat is becoming imperative. This review presents an up-to-date comprehensive discussion of the state of the art regarding coccidiosis, the most used anticoccidials in poultry production, their mode of action, their prophylactic use, occurrence and the European Union (EU) applicable legislation.
Collapse
|
10
|
Cunha SC, Menezes-Sousa D, Mello FV, Miranda JAT, Fogaca FHS, Alonso MB, Torres JPM, Fernandes JO. Survey on endocrine-disrupting chemicals in seafood: Occurrence and distribution. ENVIRONMENTAL RESEARCH 2022; 210:112886. [PMID: 35150711 DOI: 10.1016/j.envres.2022.112886] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Currently, the presence of endocrine disrupting chemicals (EDCs) in the marine environment pose а potential risk to both wildlife and human health. The occurrence of EDCs in seafood depends of several factors such as source and amounts of EDCs that reach the aquatic environment, physicochemical features of EDCs, and its accumulation in trophic chain. This review highlights the occurrence and distribution of EDCs along the seafood in the last 6 years. The following EDCs were included in this review: brominated flame retardants (PBDEs, PBBs, HBCDDs, TBBPA, and novel flame retardants); pharmaceuticals (paracetamol, ibuprofen, diclofenac, carbamazepine), bisphenols, hormones, personal care products (Musk and UV Filters), and pesticides (organochlorides, organophosphates, and pyrethroids). Some of them were found above the threshold that may cause negative effects on human, animal, and environmental health. More control in some countries, as well as new legislation and inspection over the purchase, sale, use, and production of these compounds, are urgently needed. This review provides data to support risk assessment and raises critical gaps to stimulate and improve future research.
Collapse
Affiliation(s)
- Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Dhoone Menezes-Sousa
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Flávia V Mello
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Joyce A T Miranda
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Fabiola H S Fogaca
- Bioacessiblity Laboratory, Embrapa Agroindustria de Alimentos, Av. Das Americas, 29501, 23020-470, Guaratiba, Rio de Janeiro, RJ, Brazil
| | - Mariana B Alonso
- Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - João Paulo M Torres
- Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
11
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Padmavathy P. Effect of household culinary processes on organochlorine pesticide residues (OCPs) in the seafood (Penaeus vannamei) and its associated human health risk assessment: Our vision and future scope. CHEMOSPHERE 2022; 297:134075. [PMID: 35218780 DOI: 10.1016/j.chemosphere.2022.134075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/05/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Food safety is crucial in today's competitive trading market, as it directly affects human health and promotes seafood exports. The effects of thermal processing (boiling, frying, grilling, and microwave cooking) on pesticide residues (PR) in P. vannamei were assessed. The PR in raw and processed shrimp ranged from 0.007 to 0.703 μg/kg for uncooked/raw, not detected (ND) to 0.917 μg/kg for boiled, ND to 0.506 μg/kg for fried, ND to 0.573 μg/kg for grilled and ND to 0.514 μg/kg for microwave cooked shrimps. The Endrin, endosulfan sulfate, and heptachlor were predominant PR found in the raw and processed shrimp. The PR content in raw and cooked shrimps were below the maximum residue limits (MRL) set by the Codex Alimentarius Commission (2021) and the European Commission (86/363/1986 and 57/2007). The estimated daily intake (EDI) of PR from raw and processed shrimps were below the ADI prescribed by CAC. The hazard quotient (HQ) and hazard ratio (HR) values were <1, indicating no non-carcinogenic or carcinogenic health implications through shrimp consumption. The estimated maximum allowable shrimp consumption rate (CRlim) suggests an adult can eat >100 shrimp meals/month, which is over the USEPA's (2000)recommendation of >16 meals/month without health issues. The Effect of thermal processing was detected in the following order: boiling < grilling < frying < microwave cooking. The processing factor (PF < 0.7), paired t-test (t < 0.05), Tukey post hoc (p < 0.05) test, Bray-Curtis similarity index, and matrix plot exhibited that all the four thermal processing methods have a considerable impact on pesticides in the processed shrimps. But frying (59.4%) and microwave cooking (60.3%) reduced PR far beyond boiling (48.8%) and grilling (51.3%). Hence, we recommend frying and microwave processing are better methods for minimizing PR in seafood than boiling or grilling.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India
| | - Geevaretnam Jeyasekaran
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam, 611002, Tamil Nadu, India
| | - Pandurangan Padmavathy
- Department of Aquatic Environment and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| |
Collapse
|
12
|
Liang W, Zheng F, Chen T, Zhang X, Xia Y, Li Z, Lu X, Zhao C, Xu G. Nontargeted screening method for veterinary drugs and their metabolites based on fragmentation characteristics from ultrahigh-performance liquid chromatography-high-resolution mass spectrometry. Food Chem 2022; 369:130928. [PMID: 34469842 DOI: 10.1016/j.foodchem.2021.130928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Nontargeted screening of both veterinary drugs and their metabolites is important for comprehensive safety evaluation of animal-derived foods. In this study, a novel nontargeted screening strategy was developed for veterinary drugs and their metabolites based on fragmentation characteristics from ultrahigh-performance liquid chromatography-high-resolution mass spectrometry. First, an in-house database of mass spectra including 3,710 veterinary drugs and their metabolites was constructed. Second, fragmentation characteristics of parent drugs and their metabolites in mass spectrometry were investigated and summarized. Then, a nontargeted screening procedure was established based on fragmentation characteristics to screen unknown parent drugs and their metabolites. Finally, the strategy was applied to 33 egg samples, and four veterinary drugs and three drug metabolites were determined and identified. These results showed that the developed strategy can realize suspect and nontargeted screening of veterinary drugs and their metabolites, and can also be applied to other animal-derived foods.
Collapse
Affiliation(s)
- Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueyi Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Serrano MJ, Mata L, García-Gonzalo D, Antón A, Razquin P, Condón S, Pagán R. Optimization and Validation of a New Microbial Inhibition Test for the Detection of Antimicrobial Residues in Living Animals Intended for Human Consumption. Foods 2021; 10:foods10081897. [PMID: 34441674 PMCID: PMC8393348 DOI: 10.3390/foods10081897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Even though antibiotics are necessary in livestock production, they can be harmful not only due to their toxicity, but also in view of their contribution to the emergence of antimicrobial resistance. Screening tests based on microbial growth inhibition appeared to be useful tools to prevent its entry into the food chain. They have nevertheless been traditionally carried out post mortem, leading to great economical loss and harm to the environment in case a positive sample is found. Hence, the objective was to evaluate the use of a screening test as an ante mortem alternative for the detection of antibiotic residues in meat: thus, Explorer®-Blood test was optimized and validated. After adapting the procedure for matrix preparation, the assay parameters were assessed from 344 antibiotic-free blood serum samples. Limits of Detection (LoDs) were defined by spiking blood serum with several of the most common antimicrobials used in veterinary practice. LoDs were similar to those obtained for meat and were at or below the maximum residue limits set by EU legislation for muscle. Analyses of in vivo injected samples, previously characterized by LC-MS/MS, demonstrated the method’s accuracy and proved that Explorer®-Blood can be considered a suitable alternative to conventional post mortem screening methods.
Collapse
Affiliation(s)
- María Jesús Serrano
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (S.C.)
| | - Luis Mata
- Department of R&D, ZEULAB S.L., 50197 Zaragoza, Spain; (L.M.); (A.A.); (P.R.)
| | - Diego García-Gonzalo
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (S.C.)
| | - Alejandra Antón
- Department of R&D, ZEULAB S.L., 50197 Zaragoza, Spain; (L.M.); (A.A.); (P.R.)
| | - Pedro Razquin
- Department of R&D, ZEULAB S.L., 50197 Zaragoza, Spain; (L.M.); (A.A.); (P.R.)
| | - Santiago Condón
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (S.C.)
| | - Rafael Pagán
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (S.C.)
- Correspondence: ; Tel.: +34-97-676-2675
| |
Collapse
|
14
|
Trujillo-Rodríguez MJ, Rosende M, Miró M. Combining in vitro oral bioaccessibility methods with biological assays for human exposome studies of contaminants of emerging concern in solid samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|