1
|
Mummaleti G, Udo T, Mohan A, Kong F. Synthesis, characterization and application of microbial pigments in foods as natural colors. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39466660 DOI: 10.1080/10408398.2024.2417802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Colorants have played a crucial role in various applications, particularly in food processing, with natural sources such as mineral ores, plants, insects, and animals being commonly used. However, the nineteenth century saw the development of synthetic dyes, which replaced these natural colorants. In recent years, there has been a growing demand for natural products, driving an increased interest in natural colorants. Microbial pigments have emerged as promising sources of natural pigments due to their numerous health benefits. They can be produced in large quantities rapidly and from more affordable substrates, making them economically attractive. This review focuses on the current advancements in the low-cost synthesis of microbial pigments, exploring their biological activities and commercial applications. Microbial pigments offer a sustainable and economically viable alternative to natural and synthetic colorants, meeting the growing demand for natural products. These pigments are relatively nontoxic and exhibit significant health benefits, making them suitable for a wide range of applications. As interest in natural products continues to rise, microbial pigments hold great potential in shaping the future of colorant production across various sectors.
Collapse
Affiliation(s)
- Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Kumar S, Møller AH, Ilmjärv T, Dalsgaard TK. Stability of R-phycoerythrin from Furcellaria lumbricalis - Dependence on purification strategies and purity. Food Res Int 2024; 190:114595. [PMID: 38945610 DOI: 10.1016/j.foodres.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
R-phycoerythrin (R-PE) is the most abundant, naturally occurring phycobiliproteins found in red algae. The spectroscopic and structural properties of phycobiliproteins exhibit unique absorption characteristics with two significant absorption maxima at 498 and 565 nm, indicating two different chromophores of R-PE, phycourobilin and phycoerythrobilin respectively. This study aimed to clarify how the stability of R-PE purified from F. lumbricalis was affected by different purification strategies. Crude extracts were compared to R-PE purified by i) microfiltration, ii) ultrafiltration, and iii) multi-step ammonium sulphate precipitation followed by dialysis. The stability of the different R-PE preparations was evaluated with respect to pH (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 40, 60, 80 and 100 °C). The absorbance spectra indicated higher stability of phycourobilin as compared to phycoerythrobilin for heat and pH stability in the samples. All preparations of R-PE showed heat stability till 40 °C from the findings of color, concentration of R-PE and fluorescence emission. The crude extract showed stability from pH 6 to 8, whereas R-PE purified by ultrafiltration and multi-step ammonium sulphate precipitation were both stable from pH 4 to 8 and R-PE purified by microfiltration exhibited stability from pH 4 to 10 from the results of color, SDS-PAGE, and concentration of R-PE. At pH 2, the color changed to violet whereas a yellow color was observed at pH 12 in the samples along with the precipitation of the protein.
Collapse
Affiliation(s)
- Sruthi Kumar
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark.
| | - Anders Hauer Møller
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark; CiFOOD, Aarhus University Centre for Innovative Food Research, 8000 Aarhus C, Denmark.
| | - Tanel Ilmjärv
- Vetik OÜ, Lahe Farm, Muratsi Village, Saaremaa Parish, 93859 Saare County, Estonia.
| | - Trine K Dalsgaard
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark; CiFOOD, Aarhus University Centre for Innovative Food Research, 8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
Piera A, Espada JJ, Morales V, Rodríguez R, Vicente G, Bautista LF. Optimised phycoerythrin extraction method from Porphyridium sp. combining imidazolium-based ionic liquids. Heliyon 2024; 10:e34957. [PMID: 39149077 PMCID: PMC11325355 DOI: 10.1016/j.heliyon.2024.e34957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Phycoerythrin (PE) extraction from Porphyridium sp. was studied employing ultrasound-assisted extraction combined with aqueous mixtures of two imidazolium-based ionic liquids (ILs) simultaneously, marking a significant novelty. A face-centred central composite design and response surface optimised PE yield (EPE), considering the effects of ionic liquid concentration (IL), [Emim][EtSO4]/[Bmim][EtSO4] mass ratio (E/B), biomass concentration (BM), and time (t). Improvements in EPE by 300 % and 115 % were achieved compared to a phosphate buffer solution and the freeze-thaw method, respectively. Temperature and pH effects were examined independently, leading to the determination of optimal operating conditions: BM = 10 mg mL-1, IL = 18.6 wt%, E/B = 0.78/0.22, t = 10 min, T = 35 °C, and pH = 7.5. Results indicated the potential for reusing the ILs for at least five consecutive extraction cycles, maintaining an EPE of 94.2 % compared to fresh ones. This underscores the success and innovation of the developed technology in enhancing PE extraction from Porphyridium sp.
Collapse
Affiliation(s)
- Alejandro Piera
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Juan J Espada
- Department of Chemical, Energy and Mechanical Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Victoria Morales
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Rosalía Rodríguez
- Department of Chemical, Energy and Mechanical Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Gemma Vicente
- Department of Chemical, Energy and Mechanical Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
- Instituto de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
- Instituto de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| |
Collapse
|
4
|
Sohn JS, Choi YE, Choi JS. Designing starch-based fenofibrate formulations using the melting method. Int J Biol Macromol 2024; 272:132903. [PMID: 38848840 DOI: 10.1016/j.ijbiomac.2024.132903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Fenofibrate (FNF) is used to treat hyperlipidemia. However, FNF is a poorly water-soluble drug, and the dosage of commercial products is relatively high at 160 mg in a Lipidil® tablet. Therefore, this study aimed to develop an FNF-solid dispersion (SD) that solubilizes and stabilizes FNF. The melting method that uses the low melting point of FNF was employed. The dissolution percentage of FNF in the optimal formulation (SD2) increased by 1.2-, 1.3-, and 1.3-fold at 5 min compared to that of Lipidil® and increased by 2.0-, 2.1-, and 2.0-fold compared to the pure FNF in pH 1.2 media, distilled water, and pH 6.8 buffer, which included 0.025 M sodium lauryl sulfate, respectively. The SD2 formulation showed a dissolution percentage of nearly 100 % in all dissolution media after 60 min. The physicochemical properties of the SD2 formulation exhibited slight changes in the melting point and crystallinity of FNF. Moreover, the stability of the SD2 formulation was maintained for six months. In particular, it was challenging to secure stability when starch#1500 was excluded from the SD2 formulation. In conclusion, the dissolution percentage of FNF in the SD2 formulation was improved owing to the weak binding force between FNF and the excipients, stability was secured, and favorable results are expected in future animal experiments.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- Division of Interdisciplinary Studies, Chosun University, Ph.D, Associate Professor, Gwangju 61452, Republic of Korea
| | - Ye Eun Choi
- School of Medicine, St. George's University, Student, West Indies, Grenada
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, Ph.D, Assistant Professor, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
5
|
Horta A, Duarte AM, Barroso S, Pinto FR, Mendes S, Lima V, Saraiva JA, Gil MM. Extraction of Antioxidants from Brown Macroalgae Fucus spiralis. Molecules 2024; 29:2271. [PMID: 38792132 PMCID: PMC11124032 DOI: 10.3390/molecules29102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, different extraction methods and conditions were used for the extraction of antioxidants from brown macroalgae Fucus spiralis. The extraction methodologies used were ultrasound-assisted extraction (ultrasonic bath and ultrasonic probe), extraction with a vortex, extraction with an Ultra-Turrax® homogenizer, and high-pressure-assisted extraction. The extracts were analyzed for their total phenolic content (TPC) and their antioxidant activity, and evaluated through the 2,2-difenil-1-picrilhidrazil (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay. Ultrasonic probe-assisted extraction yielded the highest values of TPC (94.78-474.16 mg gallic acid equivalents/g extract). Regarding the antioxidant activity, vortex-assisted extraction gave the best DPPH results (IC50 1.89-16 µg/mL), while the highest FRAP results were obtained using the Ultra-Turrax® homogenizer (502.16-1188.81 μmol ascorbic acid equivalents/g extract). For each extraction method, response surface methodology was used to analyze the influence of the experimental conditions "extraction time" (t), "biomass/solvent ratio" (R), "solvent" (S, water % in water/ethanol mixture), and "pressure" (P) on TPC, DPPH, and FRAP of the F. spiralis extracts. In general, higher TPC content and higher antioxidant capacity (lower IC50 and higher FRAP) were obtained with higher R, t, and P, and lower S (higher ethanol %). The model regarding the combined effects of independent variables t, R, and S on the FRAP response values for vortex-assisted extractions best fitted the experimental data (R2 0.957), with optimal extraction conditions of t = 300 s, R = 50 g, and S = 25%.
Collapse
Affiliation(s)
- André Horta
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Avenida Magalhães Ramalho, 6, 1495-165 Lisbon, Portugal
- Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana M. Duarte
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| | - Sónia Barroso
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| | - Filipa R. Pinto
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| | - Susana Mendes
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| | - Vasco Lima
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria M. Gil
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal (F.R.P.)
| |
Collapse
|
6
|
Jiang Y, Sun J, Chandrapala J, Majzoobi M, Brennan C, Zeng XA, Sun B. Current situation, trend, and prospects of research on functional components from by-products of baijiu production: A review. Food Res Int 2024; 180:114032. [PMID: 38395586 DOI: 10.1016/j.foodres.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
In the present scenario marked by energy source shortages and escalating concerns regarding carbon dioxide emissions, there is a growing emphasis on the optimal utilization of biomass resources. Baijiu, as the Chinese national spirit, boasts remarkably high sales volumes annually. However, the production of baijiu yields various by-products, including solid residues (Jiuzao), liquid wastewater (Huangshui and waste alcohol), and gaseous waste. Recent years have witnessed dedicated research aimed at exploring the composition and potential applications of these by-products, seeking sustainable development and comprehensive resource utilization. This review systematically summarizes recent research, shedding light on both the baijiu brewing process and the bioactive compounds present baijiu production by-products (BPBPs). The primary focus lies in elucidating the potential extraction methods and applications of BPBPs, offering a practical approach to comprehensive utilization of by-products in functional food, medicine, cosmetic, and packaging fields. These applications not only contribute to enhancing production efficiency and mitigating environmental pollution, but also introduce innovative concepts for the sustainable advancement of associated industries. Future research avenues may include more in-depth compositional analysis, the development of utilization technologies, and the promotion of potential industrialization.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China; Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| | - Jayani Chandrapala
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Charles Brennan
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Fatima I, Munir M, Qureshi R, Hanif U, Gulzar N, Sheikh AA. Advanced methods of algal pigments extraction: A review. Crit Rev Food Sci Nutr 2023; 64:9771-9788. [PMID: 37233148 DOI: 10.1080/10408398.2023.2216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Algae are exclusively aquatic photosynthetic organisms that are microscopic or macroscopic, unicellular or multicellular and distributed across the globe. They are a potential source of food, feed, medicine and natural pigments. A variety of natural pigments are available from algae including chlorophyll a, b, c d, phycobiliproteins, carotenes and xanthophylls. The xanthophylls include acyloxyfucoxanthin, alloxanthin, astaxanthin, crocoxanthin, diadinoxanthin, diatoxanthin, fucoxanthin, loroxanthin, monadoxanthin, neoxanthin, nostoxanthin, perdinin, Prasinoxanthin, siphonaxanthin, vaucheriaxanthin, violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, while carotenes include echinenone, α-carotene, β-carotene, γ-carotene, lycopene, phytoene, phytofluene. These pigments have applications as pharmaceuticals and nutraceuticals and in the food industry for beverages and animal feed production. The conventional methods for the extraction of pigments are solid-liquid extraction, liquid-liquid extraction and soxhlet extraction. All these methods are less efficient, time-consuming and have higher solvent consumption. For a standardized extraction of natural pigments from algal biomass advanced procedures are in practice which includes Supercritical fluid extraction, Pressurized liquid extraction, Microwave-assisted extraction, Pulsed electric field, Moderate electric field, Ultrahigh pressure extraction, Ultrasound-assisted extraction, Subcritical dimethyl ether extraction, Enzyme assisted extraction and Natural deep eutectic solvents. In the present review, these methods for pigment extraction from algae are discussed in detail.
Collapse
Affiliation(s)
- Ishrat Fatima
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Nabila Gulzar
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Ahmad Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Kolackova M, Janova A, Dobesova M, Zvalova M, Chaloupsky P, Krystofova O, Adam V, Huska D. Role of secondary metabolites in distressed microalgae. ENVIRONMENTAL RESEARCH 2023; 224:115392. [PMID: 36746204 DOI: 10.1016/j.envres.2023.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Proficient photosynthetic microalgae/cyanobacteria produce a remarkable amount of various biomolecules. Secondary metabolites (SM) represent high value products for global biotrend application. Production improvement can be achieved by nutritional, environmental, and physiological stress as a first line tools for their stimulation. In recent decade, an increasing interest in algal stress biology and omics techniques have deepened knowledge in this area. However, deep understanding and connection of specific stress elucidator are missing. Hence, the present review summarizes recent evidence with an emphasis on the carotenoids, phenolic, and less-discussed compounds (glycerol, proline, mycosporins-like amino acids). Even when they are synthesized at very low concentrations, it highlights the need to expand knowledge in this area using genome-editing tools and omics approaches.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Monika Zvalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
9
|
Goutzourelas N, Kevrekidis DP, Barda S, Malea P, Trachana V, Savvidi S, Kevrekidou A, Assimopoulou AN, Goutas A, Liu M, Lin X, Kollatos N, Amoutzias GD, Stagos D. Antioxidant Activity and Inhibition of Liver Cancer Cells' Growth of Extracts from 14 Marine Macroalgae Species of the Mediterranean Sea. Foods 2023; 12:foods12061310. [PMID: 36981236 PMCID: PMC10048654 DOI: 10.3390/foods12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Macroalgae exhibit beneficial bioactivities for human health. Thus, the aim of the present study was to examine the antioxidant and anticancer potential of 14 macroalgae species' extracts, namely, Gigartina pistillata, Gigartina teedei, Gracilaria gracilis, Gracilaria sp., Gracilaria bursa pastoris, Colpomenia sinuosa, Cystoseira amentacea, Cystoseira barbata, Cystoseira compressa, Sargassum vulgare, Padina pavonica, Codium fragile, Ulva intestinalis, and Ulva rigida, from the Aegean Sea, Greece. The antioxidant activity was assessed using DPPH, ABTS•+, •OH, and O2•- radicals' scavenging assays, reducing power (RP), and protection from ROO•-induced DNA plasmid damage assays. Moreover, macroalgae extracts' total polyphenol contents (TPCs) were assessed. Extracts' inhibition against liver HepG2 cancer cell growth was assessed using the XTT assay. The results showed that G. teedei extract's IC50 was the lowest in DPPH (0.31 ± 0.006 mg/mL), ABTS•+ (0.02 ± 0.001 mg/mL), •OH (0.10 ± 0.007 mg/mL), O2•- (0.05 ± 0.003 mg/mL), and DNA plasmid breakage (0.038 ± 0.002 mg/mL) and exhibited the highest RP (RP0.5AU 0.24 ± 0.019 mg/mL) and TPC (12.53 ± 0.88 mg GAE/g dw). There was also a significant correlation between antioxidant activity and TPC. P. pavonica (IC50 0.93 ± 0.006 mg/mL) exhibited the highest inhibition against HepG2 cell growth. Conclusively, some of the tested extracts exhibited significant chemopreventive properties, and so they may be used for food products.
Collapse
Affiliation(s)
- Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sofia Barda
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Stavroula Savvidi
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Alkistis Kevrekidou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Grigorios D Amoutzias
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
10
|
Perez-Vazquez A, Carpena M, Barciela P, Cassani L, Simal-Gandara J, Prieto MA. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants (Basel) 2023; 12:antiox12030612. [PMID: 36978860 PMCID: PMC10045370 DOI: 10.3390/antiox12030612] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Seaweeds are an underutilized food in the Western world, but they are widely consumed in Asia, with China being the world’s larger producer. Seaweeds have gained attention in the food industry in recent years because of their composition, which includes polysaccharides, lipids, proteins, dietary fiber, and various bioactive compounds such as vitamins, essential minerals, phenolic compounds, and pigments. Extraction techniques, ranging from more traditional techniques such as maceration to novel technologies, are required to obtain these components. Pressurized liquid extraction (PLE) is a green technique that uses high temperatures and pressure applied in conjunction with a solvent to extract components from a solid matrix. To improve the efficiency of this technique, different parameters such as the solvent, temperature, pressure, extraction time and number of cycles should be carefully optimized. It is important to note that PLE conditions allow for the extraction of target analytes in a short-time period while using less solvent and maintaining a high yield. Moreover, the combination of PLE with other techniques has been already applied to extract compounds from different matrices, including seaweeds. In this way, the combination of PLE-SFE-CO2 seems to be the best option considering both the higher yields obtained and the economic feasibility of a scaling-up approximation. In addition, the food industry is interested in incorporating the compounds extracted from edible seaweeds into food packaging (including edible coating, bioplastics and bio-nanocomposites incorporated into bioplastics), food products and animal feed to improve their nutritional profile and technological properties. This review attempts to compile and analyze the current data available regarding the application of PLE in seaweeds to determine the use of this extraction technique as a method to obtain active compounds of interest for food industry application.
Collapse
Affiliation(s)
- Ana Perez-Vazquez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Paula Barciela
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| |
Collapse
|
11
|
Kovaleski G, Kholany M, Dias LMS, Correia SFH, Ferreira RAS, Coutinho JAP, Ventura SPM. Extraction and purification of phycobiliproteins from algae and their applications. Front Chem 2022; 10:1065355. [PMID: 36531328 PMCID: PMC9752866 DOI: 10.3389/fchem.2022.1065355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 09/02/2023] Open
Abstract
Microalgae, macroalgae and cyanobacteria are photosynthetic microorganisms, prokaryotic or eukaryotic, living in saline or freshwater environments. These have been recognized as valuable carbon sources, able to be used for food, feed, chemicals, and biopharmaceuticals. From the range of valuable compounds produced by these cells, some of the most interesting are the pigments, including chlorophylls, carotenoids, and phycobiliproteins. Phycobiliproteins are photosynthetic light-harvesting and water-soluble proteins. In this work, the downstream processes being applied to recover fluorescent proteins from marine and freshwater biomass are reviewed. The various types of biomasses, namely macroalgae, microalgae, and cyanobacteria, are highlighted and the solvents and techniques applied in the extraction and purification of the fluorescent proteins, as well as their main applications while being fluorescent/luminescent are discussed. In the end, a critical perspective on how the phycobiliproteins business may benefit from the development of cost-effective downstream processes and their integration with the final application demands, namely regarding their stability, will be provided.
Collapse
Affiliation(s)
- Gabriela Kovaleski
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariam Kholany
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Lília M. S. Dias
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Rute A. S. Ferreira
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - João A. P. Coutinho
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Sónia P. M. Ventura
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
12
|
Brain-Isasi S, Correa S, Amado-Hinojosa J, Buschmann AH, Camus C, Lienqueo ME. Combined extraction methodology for simultaneous recovery of phycobiliproteins and agar from the red alga Gracilaria chilensis C. J. Bird, McLachlan & E. C. Oliveira. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
13
|
Microalgae Strain Porphyridium purpureum for Nutrient Reduction in Dairy Wastewaters. SUSTAINABILITY 2022. [DOI: 10.3390/su14148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper has approached the study of dairy wastewater treatment and the simultaneous biocompound production by Porphyridium purpureum under continuous light and under a day–night cycle. The main goals were to achieve a reduction in the lactose content of the cheese wastewater that was tested and, at the same time, to obtain added value from the produced compounds, so as to increase the economic value of the process. The results show that biomass production increases proportionally with the concentration of lactose for both of the illumination options. The lactose concentration in the waste stream was reduced over 90% in just 7 days. The exopolysaccharide concentration in the growth medium increased with lactose availability. For the samples that were under constant light stress, the concentration of phycobiliproteins was highest when there was small amounts of lactose in the medium. The content of pigments was higher in the case of the day–night cycle of illumination; these being affected by stress factors such as continuous light and high lactose concentration. The results that were obtained prove that dairy wastewaters that are rich in lactose can be used efficiently for the growth of Porphyridium purpureum, achieving an increase in the biomass concentration and a large reduction of the lactose from this waste stream while obtaining a microalgae biomass that is rich in valuable compounds.
Collapse
|
14
|
Ramu Ganesan A, Kannan M, Karthick Rajan D, Pillay AA, Shanmugam M, Sathishkumar P, Johansen J, Tiwari BK. Phycoerythrin: a pink pigment from red sources (rhodophyta) for a greener biorefining approach to food applications. Crit Rev Food Sci Nutr 2022; 63:10928-10946. [PMID: 35648055 DOI: 10.1080/10408398.2022.2081962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phycoerythrin (PE) is a photosensitive red pigment from phycobiliprotein family predominantly present in the red algae. The concentration of PE depends on photon flux density (PFD) and the quality of light absorbed by the algae tissue. This necessitates robust techniques to extract PE from the embedded cell-wall matrix of the algal frond. Similarly, PE is sensitive to various factors which influence its stability and purity of PE. The PE is extracted from Red algae through different extraction techniques. This review explores an integrative approach of fractionating PE for the scaling-up process and commercialization. The mechanism for stabilizing PE pigment in food was critically evaluated for further retaining this pigment within the food system. The challenges and possibilities of employing efficient extraction for industrial adoption are meticulously estimated. The techniques involved in the sustainable way of extracting PE pigments improved at a laboratory scale in the past decade. Although, the complexity of industrial-scale biorefining was found to be a bottleneck. The extraction of PE using benign chemicals would be safe for food applications to promote health benefits. The precise selection of encapsulation technique with enhanced sensitivity and selectivity of the membrane would bring better stability of PE in the food matrix.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Bodø, Norway
| | - Mohan Kannan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, India
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India
| | - Arti A Pillay
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, Nasinu, Fiji
| | - Munisamy Shanmugam
- Research and Development Division (DSIR- Lab), Aquagri Processing Private Limited, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Department of Biomaterials, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Johan Johansen
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Bodø, Norway
| | - Brijesh K Tiwari
- Food Chemistry & Technology, Teagasc Food Research Centre, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Sinurat E, Fransiska D, Utomo BSB, Subaryono, Nurhayati, Sihono. Characteristics of Nori-Like Product Prepared from Seaweeds Growing in Indonesia. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2077677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ellya Sinurat
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| | - Dina Fransiska
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| | | | - Subaryono
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| | - Nurhayati
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| | - Sihono
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| |
Collapse
|
16
|
Ge M, Shen J, Liu C, Xia W, Xu Y. Effect of acidification and thermal treatment on quality characteristics of high‐moisture laver (
Porphyra
spp.). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengmeng Ge
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Jiandong Shen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Cikun Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
17
|
Pai S, Hebbar A, Selvaraj S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35518-35541. [PMID: 35233673 PMCID: PMC9079019 DOI: 10.1007/s11356-022-19423-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 05/27/2023]
Abstract
Bioactive compounds refer to secondary metabolites extracted from plants, fungi, microbes, or animals. Besides having pharmacological or toxicological effects on organisms leading to utilization in food and pharmaceutical industries, the discovery of novel properties of such compounds has led to the diversification of their applications, ranging from cosmetics and functionalized biomaterials to bioremediation and alternate fuels. Conventional time-consuming and solvent-intensive methods of extraction are increasingly being replaced by green solvents such as ionic liquids, supercritical fluids, and deep eutectic solvents, as well as non-conventional methods of extraction assisted by microwaves, pulse electric fields, enzymes, ultrasound, or pressure. These methods, along with advances in characterization and optimization strategies, have boosted the commercial viability of extraction especially from agrowastes and organic residues, promoting a sustainable circular economy. Further development of microfluidics, optimization models, nanoencapsulation, and metabolic engineering are expected to overcome certain limitations that restrict the growth of this field, in the context of improving screening, extraction, and economy of processes, as well as retaining biodiversity and enhancing the stability and functionality of such compounds. This review is a compilation of the various extraction and characterization methods employed for bioactive compounds and covers major applications in food, pharmacy, chemicals, energy, and bioremediation. Major limitations and scope of improvement are also discussed.
Collapse
Affiliation(s)
- Sanidhya Pai
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Subbalaxmi Selvaraj
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|
18
|
Optimization of Phycobiliprotein Solubilization from a Thermotolerant Oscillatoria sp. Processes (Basel) 2022. [DOI: 10.3390/pr10050836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The present study evaluated the effect of multiple variables (drying time, drying temperature, biomass/solvent ratio, glass beads/biomass ratio, extraction time, and extraction speed) in the solubilization of three different phycobiliproteins (C-PC, APC, and PE) from a thermotolerant Oscillatoria sp. The strain was grown in BG11 media (28 °C, light: dark cycle of 12:12 h at 100 µmol·m−2·s−1, 20 days) and the experiments were conducted according to a two-level randomized factorial design with six center points (38 runs). Results show that biomass/solvent ratio, glass beads/biomass ratio, and extraction time, are the most significant variables in the extraction of all three proteins, whereas the glass beads/biomass ratio and extraction time significantly affect their purity. The optimized conditions allow a statistical increase in the concentration of C-PC, APC, and PE extracted from the biomass; however, the purity was lower in comparison with the expected value. The latter occurs due to a larger biomass/solvent ratio and longer extraction times, which enhanced the solubility of other hydrophilic metabolites (proteins and carbohydrates, etc.).
Collapse
|
19
|
Gomes L, Monteiro P, Cotas J, Gonçalves AMM, Fernandes C, Gonçalves T, Pereira L. Seaweeds' pigments and phenolic compounds with antimicrobial potential. Biomol Concepts 2022; 13:89-102. [PMID: 35247041 DOI: 10.1515/bmc-2022-0003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Recently, there has been increased interest in the development of novel antimicrobial compounds for utilization in a variety of sectors, including pharmaceutical, biomedical, textile, and food. The use, overuse, and misuse of synthetic compounds or derivatives have led to an increase of pathogenic microorganisms gaining resistance to the traditional antimicrobial therapies, which has led to an increased need for alternative therapeutic strategies. Seaweed are marine organisms that can be cultivated sustainably, and they are a source of polar molecules, such as pigments and phenolic compounds, which demonstrated antimicrobial potential. This review focuses on current knowledge about pigments and phenolic compounds isolated from seaweeds, their chemical characteristics, antimicrobial bioactivity, and corresponding mechanism of action.
Collapse
Affiliation(s)
- Louisa Gomes
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Pedro Monteiro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Cotas
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Chantal Fernandes
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Teresa Gonçalves
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Leonel Pereira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
20
|
Vladkova T, Georgieva N, Staneva A, Gospodinova D. Recent Progress in Antioxidant Active Substances from Marine Biota. Antioxidants (Basel) 2022; 11:439. [PMID: 35326090 PMCID: PMC8944465 DOI: 10.3390/antiox11030439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The well-recognized but not fully explored antioxidant activity of marine-biota-derived, biologically active substances has led to interest in their study as substitutes of antibiotics, antiaging agents, anticancer and antiviral drugs, and others. The aim of this review is to present the current state of the art of marine-biota-derived antioxidants to give some ideas for potential industrial applications. METHODS This review is an update for the last 5 years on the marine sources of natural antioxidants, different classes antioxidant compounds, and current derivation biotechnologies. RESULTS New marine sources of antioxidants, including byproducts and wastes, are presented, along with new antioxidant substances and derivation approaches. CONCLUSIONS The interest in high-value antioxidants from marine biota continues. Natural substances combining antioxidant and antimicrobial action are of particular interest because of the increasing microbial resistance to antibiotic treatments. New antioxidant substances are discovered, along with those extracted from marine biota collected in other locations. Byproducts and wastes provide a valuable source of antioxidant substances. The application of optimized non-conventional derivation approaches is expected to allow the intensification of the production and improvement in the quality of the derived substances. The ability to obtain safe, high-value products is of key importance for potential industrialization.
Collapse
Affiliation(s)
- Todorka Vladkova
- Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy (UCTM), 8 “St. Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Nelly Georgieva
- Department of Biotechnology, University of Chemical Technology and Metallurgy (UCTM), 1756 Sofia, Bulgaria;
| | - Anna Staneva
- Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy (UCTM), 8 “St. Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana Gospodinova
- Department of Electrical Apparatus, Technical University of Sofia, 1756 Sofia, Bulgaria;
| |
Collapse
|
21
|
Khazi MI, Li C, Liaqat F, Malec P, Li J, Fu P. Acclimation and Characterization of Marine Cyanobacterial Strains Euryhalinema and Desertifilum for C-Phycocyanin Production. Front Bioeng Biotechnol 2021; 9:752024. [PMID: 34858957 PMCID: PMC8631506 DOI: 10.3389/fbioe.2021.752024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
This study involves evaluation of two native cyanobacterial strains Euryhalinema and Desertifilum isolated from a mangrove pond in Haikou (China) for their possible phycocyanin (C-PC) production. Maximal growth rate with highest chlorophyll and C-PC accumulation were observed at 28°C and 60 μmol photons m-2 s-1 photon flux density for Euryhalinema sp., while for Desertifilum sp. at 32°C and 80 μmol photons m-2 s-1. Nitrogen and iron concentration trails revealed that double strength concentration of sodium nitrate and ferric ammonium citrate in original BG11 media increased growth rate and accumulation of C-PC for both strains. Three different C-PC extraction methods were tested. The combined extraction protocol of freeze-thaw and ultrasonication markedly increased the C-PC extraction efficiency and attained the food grade purity (A 620/A 280 ratio >0.7), whereas a higher C-PC yield was found with Na-phosphate buffer. Furthermore, the clarified crude extract was used to purify C-PC by fractional ammonium sulfate [(NH₄)₂SO₄] precipitation, Sephadex G-25 gel filtration chromatography, and DEAE-sephadex ion exchange chromatography and attained analytical grade purity (A 620/A 280 ratio >3.9). Taken together, both strains showed their potential to be domesticated for valuable phycocyanin production.
Collapse
Affiliation(s)
- Mahammed Ilyas Khazi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Chenshuo Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Fakhra Liaqat
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Przemyslaw Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
22
|
R-Phycoerythrin from Colaconema formosanum (Rhodophyta), an Anti-Allergic and Collagen Promoting Material for Cosmeceuticals. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
R-phycoerythrin (R-PE), a pigment complex found in red algae, was extracted and purified from a newly identified red alga, Colaconema formosanum, and its bioactivities were examined. It was revealed that R-PE treatment resulted in high cell viability (>70%) to the mammalian cell lines NIH-3T3, RBL-2H3, RAW264.7, and Hs68, and had no effect on cell morphology in NIH-3T3 cells. Its suppression effect was insignificant on the production of IL-6 and TNF-α in lipopolysaccharides-stimulated RAW264.7 cells. However, calcium ionophore A23187-induced β-hexosaminidase release was effectively inhibited in a dose-dependent manner in RBL-2H3 cells. Additionally, it was revealed to be non-irritating to bionic epidermal tissues. Notably, procollagen production was promoted in Hs68 cells. Overall, the data revealed that R-PE purified from C. formosanum exhibits anti-allergic and anti-aging bioactivities with no observed consequential toxicity on multiple mammalian cell lines as well as epidermal tissues, suggesting that this macromolecule is a novel material for potential cosmetic use.
Collapse
|
23
|
Carreira-Casais A, Otero P, Garcia-Perez P, Garcia-Oliveira P, Pereira AG, Carpena M, Soria-Lopez A, Simal-Gandara J, Prieto MA. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9153. [PMID: 34501743 PMCID: PMC8431298 DOI: 10.3390/ijerph18179153] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
The increase in life expectancy has led to the appearance of chronic diseases and interest in healthy aging, in turn promoting a growing interest in bioactive compounds (BCs) and functional ingredients. There are certain foods or products rich in functional ingredients, and algae are one of them. Algae consumption has been nominal in Europe until now. However, in recent years, it has grown significantly, partly due to globalization and the adoption of new food trends. With the aim of obtaining BCs from foods, multiple methods have been proposed, ranging from conventional ones, such as maceration or Soxhlet extraction, to more innovative methods, e.g., ultrasound-assisted extraction (UAE). UAE constitutes a novel method, belonging to so-called green chemistry, that enables the extraction of BCs requiring lower amounts of solvent and energy costs, preserving the integrity of such molecules. In recent years, this method has been often used for the extraction of different BCs from a wide range of algae, especially polysaccharides, such as carrageenans and alginate; pigments, including fucoxanthin, chlorophylls, or β-carotene; and phenolic compounds, among others. In this way, the application of UAE to marine algae is an efficient and sustainable strategy to pursue their deep characterization as a new source of BCs, especially suitable for vegetarian and vegan diets.
Collapse
Affiliation(s)
- Anxo Carreira-Casais
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Anton Soria-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
24
|
Lee MC, Yeh HY, Jhang FJ, Lee PT, Lin YK, Nan FH. Enhancing growth, phycoerythrin production, and pigment composition in the red alga Colaconema sp. Through optimal environmental conditions in an indoor system. BIORESOURCE TECHNOLOGY 2021; 333:125199. [PMID: 33930673 DOI: 10.1016/j.biortech.2021.125199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Phycoerythrin (PE) is a compound with strong potential for both basic research and industrial applications, but short supply and high prices have so far hindered its development. One common problem is a shortage of biomass for extraction. The aim of the present study was to determine a cultivation strategy (optimizing temperature, irradiance, photoperiod, and light quality) to produce greater biomass and higher PE concentrations in the alga Colaconema sp. We found that an optimized culture process could increase algae growth 7-9 fold while allowing extraction of 9-10 mg g-1 total phycobiliproteins, containing 60%-65% PE. Low energy costs make this approach economically feasible and competitive when compared with existing methods. Our results suggest an improved strategy for the large-scale production of PE and offer valuable applications in the algae industry.
Collapse
Affiliation(s)
- Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Han-Yang Yeh
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Fu-Jie Jhang
- Home Algae Biotechnology Corp. Ltd., Keelung City 20224, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Yung-Kai Lin
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City 202, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan
| |
Collapse
|
25
|
Wani FA, Rashid R, Jabeen A, Brochier B, Yadav S, Aijaz T, Makroo HA, Dar BN. Valorisation of food wastes to produce natural pigments using non‐thermal novel extraction methods: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Faiqa A. Wani
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - Rukhsana Rashid
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - Abida Jabeen
- Division of Food Science and Technology SKUAST Srinagar Kashmir 190 025 India
| | - Bethania Brochier
- Escola Politécnica UNISINOS Avenida Unisinos, 950 São Leopoldo RS 93022‐750 Brazil
| | | | - Thameed Aijaz
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - H. A. Makroo
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - B. N. Dar
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| |
Collapse
|
26
|
Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 2021; 11:296. [PMID: 34136333 DOI: 10.1007/s13205-021-02825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Algae have gained substantial importance as the most promising potential green fuel source across the globe and is on growing demand due to their antioxidant, anticancer, antiviral, antihypertensive, cholesterol reducing and thickening properties. Therefore, it has vast range of application in medicines, pharmaceutical, cosmetics, paper and nutraceutical industries. In this work, the remarkable ability of algae to convert CO2 and other toxic compounds in atmosphere to potential biofuels, foods, feeds and high-value bioactive compounds is reviewed. Algae produce approximately 50% of the earth's oxygen using its photosynthetic activity, thus acting as a potent tool to mitigate the effects of air pollution. Further, the applicability of algae as a desirable energy source has also been discussed, as they have the potential to serve as an effective alternative to intermittent renewable energy; and also, to combustion-based fossil fuel energy, making them effective for advanced biofuel conversions. This work also evaluates the current applications of algae and the implications of it as a potential substrate for bioplastic, natural alternative to inks and for making paper besides high-value products. In addition, the scope for integrated biorefinery approach is also briefly explored in terms of economic aspects at the industrial scale, as such energy conversion mechanisms are directly linked with sustainability, thus providing a positive overall energy outlook.
Collapse
|
27
|
New Insights on the Sporulation, Germination, and Nutritional Profile of Gracilaria gracilis (Rhodophyta) Grown under Controlled Conditions. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9060562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The red seaweed Gracilaria gracilis is a widely cultivated species known for its high agar content. It is also an important source of proteins, minerals, and vitamins. The chemical profile of seaweed depends on the cultivation methods used and the growing conditions to which they are exposed. Thus, two independent methods of sporulation and germination were tested upon Gracilaria gracilis grown in controlled conditions. During the tests, different substrates, culture media and incubation times were tested to induce cystocarp maturation. The results showed that cystocarp maturation and spore release were successful, with a visible volume increase and format change in the protruding cystocarps. Furthermore, the process of maturation to germination was accomplished, fulfilling the complete life cycle. In parallel, the nutritional profile of the biomass obtained was evaluated and compared with the nutritional values of biomass collected from the environment. Results showed no significant differences between wild specimens and cultivated ones in organic matter, ash content, lipid content, carbohydrates, or phycocolloid content. The present work, therefore, presents two simple alternative methods with potential applications in start-ups aimed at the cultivation of seaweed. Through these methods, it is possible to obtain biomass with nutritional characteristics similar to those obtained in the wild.
Collapse
|
28
|
Zuorro A, Leal-Jerez AG, Morales-Rivas LK, Mogollón-Londoño SO, Sanchez-Galvis EM, García-Martínez JB, Barajas-Solano AF. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization. ACS OMEGA 2021; 6:10527-10536. [PMID: 34056207 PMCID: PMC8153776 DOI: 10.1021/acsomega.0c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/11/2021] [Indexed: 05/06/2023]
Abstract
Phycobiliproteins (PBPs) are a group of brilliant pigment proteins found in cyanobacteria and red algae; their synthesis and accumulation depend on several factors such as the type of strain employed, nutrient concentration, light intensity, light regimes, and others. This study evaluates the effect of macronutrients (citrate buffer, NaNO3, K2HPO4, MgSO4, CaCl2, Na2CO3, and EDTA) and the concentration of trace metals in BG-11 media on the accumulation of PBPs in a thermotolerant strain of Oscillatoria sp. The strain was grown in BG-11 media at 28 °C with a light:dark cycle of 12:12 h at 100 μmol m-2 s-1 for 15 days, and the effect of nutrients was evaluated using a Plackett-Burman Design followed by optimization using a response surface methodology. Results from the concentration of trace metals show that it can be reduced up to half-strength in its initial concentration without affecting both biomass and PBPs. Results from the Plackett-Burman Design revealed that only NaNO3, Na2CO3, and K2HPO4 show a significant increase in PBP production. Optimization employed a central Non-Factorial Response Surface Design with three levels and four factors (34) using NaNO3, Na2CO3, K2HPO4, and trace metals as variables, while the other components of BG-11 media (citrate buffer, MgSO4, CaCl2, and EDTA) were used in half of their initial concentration. Results from the optimization show that interaction between Na2CO3 and K2HPO4 highly increased PBPs' concentration, with values of 15.21, 3.95, and 1.89 (% w/w), respectively. These results demonstrate that identifying and adjusting the concentration of critical nutrients can increase the concentration of PBPs up to two times for phycocyanin and allophycocyanin while four times for phycoerythrin. Finally, the reduction in non-key nutrients' concentration will reduce the production costs of colorants at an industrial scale and increase the sustainability of the process.
Collapse
Affiliation(s)
- Antonio Zuorro
- Department
of Chemical Engineering, Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Angela G. Leal-Jerez
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Leidy K. Morales-Rivas
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Sandra O. Mogollón-Londoño
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Edwar M. Sanchez-Galvis
- Grupo
Ambiental de Investigación Aplicada-GAIA, Facultad de Ingeniería,
Universidad de Santander (UDES), Campus Universitario Lagos del Cacique, Cll 70 No 55-210, Bucaramanga 680003, Colombia
| | - Janet B. García-Martínez
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Andrés F. Barajas-Solano
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| |
Collapse
|
29
|
Ummat V, Sivagnanam SP, Rajauria G, O'Donnell C, Tiwari BK. Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Matos GS, Pereira SG, Genisheva ZA, Gomes AM, Teixeira JA, Rocha CMR. Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality. Foods 2021; 10:foods10030516. [PMID: 33801287 PMCID: PMC7998159 DOI: 10.3390/foods10030516] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023] Open
Abstract
Seaweeds are a renewable natural source of valuable macro and micronutrients that have attracted the attention of the scientists in the last years. Their medicinal properties were already recognized in the ancient traditional Chinese medicine, but only recently there has been a considerable increase in the study of these organisms in attempts to demonstrate their health benefits. The extraction process and conditions to be used for the obtention of value-added compounds from seaweeds depends mainly on the desired final product. Thermochemical conversion of seaweeds, using high temperatures and solvents (including water), to obtain high-value products with more potential applications continues to be an industrial practice, frequently with adverse impact on the environment and products’ functionality. However more recently, alternative methods and approaches have been suggested, searching not only to improve the process performance, but also to be less harmful for the environment. A biorefinery approach display a valuable idea of solving economic and environmental drawbacks, enabling less residues production close to the much recommended zero waste system. The aim of this work is to report about the new developed methods of seaweeds extractions and the potential application of the components extracted.
Collapse
Affiliation(s)
- Gabriela S. Matos
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Sara G. Pereira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Zlatina A. Genisheva
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Ana Maria Gomes
- Centro de Biotecnologia e Química Fina—Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, 4169-005 Porto, Portugal;
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
- Correspondence: ; Tel.: +315-253-604-400
| |
Collapse
|
31
|
Ozogul F, Elabed N, Ceylan Z, Ocak E, Ozogul Y. Nano-technological approaches for plant and marine-based polysaccharides for nano-encapsulations and their applications in food industry. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:187-236. [PMID: 34311900 DOI: 10.1016/bs.afnr.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Novel food preservation methods, along with preservatives have been employed to prevent food products from spoilage. There is an increasing demand to substitute synthetic preservatives with natural bioactive compounds since they are safe and environmentally friendly. Bioactive compounds with functional and therapeutic properties are found in foods and have also beneficial physiological and immunological health effects. However, there are some issues associated with bioactive compounds, such as low stability, solubility, and permeability. Encapsulation techniques, especially nano-encapsulation, are a promising technique to overcome these restrictions. A range of the plants' constituents can be converted into bio-nanomaterials. Major plant constituents are polysaccharides which have good biocompatibility properties and therapeutic activities, such as antioxidant, antiviral, anti-inflammatory, anti-allergic, and anti-tumor. Among plant and marine-based polysaccharides, cellulose, starch, alginates, chitosan, and carrageenans have been used as carrier materials to preserve core material. Moreover, many studies indicated that favorable sources such as plant and marine based polysaccharides are emerging. This chapter will cover plant and marine-based polysaccharides for nano-encapsulation and their application in the food industry.
Collapse
Affiliation(s)
- Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, Van, Turkey
| | - Elvan Ocak
- Faculty of Engineering, Department of Food Engineering, Yuzuncu Yil University, Van, Turkey
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
32
|
Ho KKHY, Redan BW. Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit Rev Food Sci Nutr 2020; 62:508-526. [DOI: 10.1080/10408398.2020.1821598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kacie K. H. Y. Ho
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Bedford Park, Illinois, USA
| |
Collapse
|
33
|
Optimization of Extraction Conditions for Gracilaria gracilis Extracts and Their Antioxidative Stability as Part of Microfiber Food Coating Additives. Molecules 2020; 25:molecules25184060. [PMID: 32899518 PMCID: PMC7570979 DOI: 10.3390/molecules25184060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022] Open
Abstract
Incorporation of antioxidant agents in edible films and packages often relies in the usage of essential oils and other concentrated hydrophobic liquids, with reliable increases in antimicrobial and antioxidant activities of the overall composite, but with less desirable synthetic sources and extraction methods. Hydroethanolic extracts of commercially-available red macroalgae Gracilaria gracilis were evaluated for their antioxidant potential and phenolic content, as part of the selection of algal biomass for the enrichment of thermoplastic film coatings. The extracts were obtained through use of solid-liquid extractions, over which yield, DPPH radical reduction capacity, total phenolic content, and FRAP activity assays were measured. Solid-to-liquid ratio, extraction time, and ethanol percentages were selected as independent variables, and response surface methodology (RSM) was then used to estimate the effect of each extraction condition on the tested bioactivities. These extracts were electrospun into polypropylene films and the antioxidant activity of these coatings was measured. Similar bioactivities were measured for both 100% ethanolic and aqueous extracts, revealing high viability in the application of both for antioxidant coating purposes, though activity losses as a result of the electrospinning process were above 60% in all cases.
Collapse
|
34
|
Pereira T, Barroso S, Mendes S, Gil MM. Stability, kinetics, and application study of phycobiliprotein pigments extracted from red algae Gracilaria gracilis. J Food Sci 2020; 85:3400-3405. [PMID: 32885442 DOI: 10.1111/1750-3841.15422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023]
Abstract
Phycobiliprotein (PBP) pigments were extracted from red algae Gracilaria gracilis through maceration in phosphate buffer using previously optimized conditions. The stability of PBPs in the extracts was assessed by monitoring the extracts at different pHs and temperatures for 10 days. Since phycoerythrin (PE) is the main PBP present in G. gracilis, PE content was spectroscopically determined and used as a response factor. Kinetic modeling was used to describe PE degradation under different ranges of T and pH. The pigment extracts presented higher stability at pH 6.9 and -20 °C. PE was semipurified by precipitation with ammonium sulphate 65% followed by dialysis against water until a purity index of 0.7. The pigment was successfully applied as colorant in pancakes and yogurts with a pigment concentration of 0.15%. This study highlights the potential of PE pigments extracted from G. gracilis for applications in food products. PRACTICAL APPLICATION: Phycobiliprotein pigments were extracted from red algae Gracilaria gracilis through maceration in phosphate buffer. The stability of the pigment was evaluated at different pHs and temperatures, presenting higher stability at neutral pH and low temperatures. The pigment was successfully applied as colorant in pancakes and yogurts with a low pigment concentration. This study highlights the potential of phycobiliprotein pigments extracted from G. gracilis for applications in food products.
Collapse
Affiliation(s)
- Tatiana Pereira
- MARE-Marine and Environmental Sciences Centre, Polytechnic of Leiria, Cetemares, Peniche, 2520-620, Portugal
| | - Sónia Barroso
- MARE-Marine and Environmental Sciences Centre, Polytechnic of Leiria, Cetemares, Peniche, 2520-620, Portugal
| | - Susana Mendes
- MARE-Marine and Environmental Sciences Centre, Polytechnic of Leiria, Cetemares, Peniche, 2520-620, Portugal
| | - Maria M Gil
- MARE-Marine and Environmental Sciences Centre, Polytechnic of Leiria, Cetemares, Peniche, 2520-620, Portugal
| |
Collapse
|
35
|
Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. SEPARATIONS 2020. [DOI: 10.3390/separations7020033] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Algae are a complex, polyphyletic group of organisms, affordable and naturally rich in nutrients, but also valuable sources of structurally diverse bioactive substances such as natural pigments. The aim of this work was to evaluate the polar and non-polar pigment contents of different commercial dried algae (brown: Himanthalia elongata, Undaria pinnatifida, Laminaria ochroleuca; red: Porphyra spp.; and a blue-green microalga: Spirulina spp.). The pigment extraction was carried out using different solvents (100% methanol, 100% methanol acid free, 100% ethanol, 90% acetone, N,N-dimethylformamide, dimethyl sulfoxide-water (4:1, v/v) and pH 6.8 phosphate buffer), selected according to their affinity for each class of pigments. Acetone proved to be an efficient solvent to extract chlorophylls from brown and red algae, but not from Spirulina spp. Porphyra spp. presented considerably higher levels of all pigments compared to brown algae, although Spirulina spp. presented significantly higher (p < 0.05) levels of chlorophylls, carotenoids and phycobiliproteins, compared to all macroalgae. The content of fucoxanthin extracted from the three brown algae was highly correlated to the carotenoid content. Within this group, Himanthalia elongata presented the highest fucoxanthin/total carotenoids ratio. Although the yield of extraction depended on the solvent used, the algae studied herein are an interesting source of pigments of great value for a wide range of applications.
Collapse
|