1
|
Khan KY, Ali B, Ghani HU, Cui X, Luo X, Ali Z, Ahmed W, Tan J, Lysenko V, Guo Y. Polyvinyl chloride microplastics and drought co-exposure alter rice growth by affecting metabolomics and proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177002. [PMID: 39427893 DOI: 10.1016/j.scitotenv.2024.177002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Microplastics, interacting with drought stress, have become threat to crops by altering soil environment. Currently, the effect of combined microplastic and drought stress on crop growth remain poorly understood. In this work, the mechanism of multi-stress responses was investigated under the exposure of polvinylchloride microplastic (PV) and drought (D) individually and in combination (DPV) on rice varieties Hanyou73 and Q280 through proteomics and metabolomic analysis. All treatments negatively affect chlorophyll content, antioxidant enzyme activities, rice grain composition, metabolome and proteomic profiling of both rice varieties. Full rice grain yield was decreased under all treatments except PV treatment in which it was increased in both rice varieties. DPV treatment shows the lowest grain yield and more adverse effects on metabolome by affecting glycerophospholipid metabolism, tryptophan metabolism and alanine, aspartate and glutamate metabolism. Soluble sugar contents were decreased in H73 but in Q280 increased by 159 % under DPV and 123 % in PV treatment, compared to their control group. The results from metabolomics illustrate that glycerophospholipid metabolism is commonly altered in both rice types under all treatments. PV and drought alone and in combination induce extensive alterations in proteomics of rice leaves especially impacting proteins related to binding, translation and photosynthetic process. The results reveal that PV and DPV treatments highly distort the abundance of metabolites and proteins in both rice types, demonstrating that microplastic toxicity effects on rice plants become more severe when combined with drought stress.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Barkat Ali
- Food Science Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | | | - Xiaoqiang Cui
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Xiaohan Luo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zeshan Ali
- Ecotoxicology Research Program, Institute of Plant and Environmental Protection, National Agriculture Research Center, Islamabad 44000, Pakistan
| | - Waqar Ahmed
- Food Science Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | - Jinglu Tan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Vladimir Lysenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don 344041, Russia
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China; International Joint Research Center for Intelligent Optical Sensing and Applications at Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Khan KY, Ali B, Ghani HU, Cui X, Zhang S, Xia Q, Fu L, Tan J, Lysenko V, Guo Y. Metabolomics combined with proteomics reveals phytotoxic effects of norfloxacin under drought stress on Oryza sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109130. [PMID: 39293142 DOI: 10.1016/j.plaphy.2024.109130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
In recent decades, plants enduring abiotic stresses such as drought and chemical stresses. Currently, the mechanism of combined antibiotic and drought stress response and its impact on crop growth and food security remains poorly understood. Here, the mechanism of stress responses under the exposure of norfloxacin (NF) and drought (D) individually and in combination (DNF) were explored on rice (Oryza sativa) cultivar Hanyou73 through proteomics and metabolomic analysis. All treatments adversely affected chlorophyll fluorescence kinetics, antioxidant enzyme activities, rice grain composition and yield. The results showed that in DNF the antibiotic was accumulated 627% more than NF treatment in rice grains while in leaves there was no significant difference under both treatments. The proteomic revealed that differentially expressed identified proteins were involved in carbohydrate metabolism, amino acid metabolism, photosynthesis and mRNA binding. However, the metabolomics results showed that the abundance of metabolites related to RNA biosynthesis and amino acid metabolism were more affected. The disruptions caused in rice plant under DNF treatment become more severe, this makes it more susceptible than individual D and NF treatment. These findings improve our knowledge about the response of rice plant to cope with antibiotic contamination alone and in combination with drought.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Barkat Ali
- National Agricultural Research Centre. Islamabad, 44000, Pakistan
| | | | - Xiaoqiang Cui
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Shuang Zhang
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qian Xia
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lijiang Fu
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jinglu Tan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Vladimir Lysenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344041, Russia
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Wang W, Long J, Wang H, Huang W, Zhang Y, Duan T. Insights into the effects of anilofos on direct-seeded rice production system through untargeted metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124668. [PMID: 39103033 DOI: 10.1016/j.envpol.2024.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Weed infestation is the major biological threat in direct-seeded rice production and can cause significant yield losses. The effective use of herbicides is particularly important in direct-seeded rice production. Anilofos, a pre-emergence herbicide, has been shown to be effective against the weed barnyardgrass. However, its impacts on crop yield and the direct-seeded rice production ecosystem remain underexplored. In this study, we conducted field trials and used untargeted metabolomics to investigate systemic effects of two different treatments (40 g/acre and 60 g/acre) on rice shoot and root as well as the rhizosphere soil during the critical tillering stage. Here, a total of 400 metabolites were determined in the crop and soil, with differential metabolites primarily comprising lipids and lipid-like molecules as well as phenylpropanoids and polyketides. Spearman correlation network analysis and a Zi-Pi plot revealed 7 key differential metabolites with significant topological roles, including succinic acid semialdehyde and riboflavin. KEGG pathway analysis showed that anilofos downregulated the amino acid metabolism while mainly promoted carbohydrate metabolism and secondary metabolites biosynthesis of the crop, which made minimal disruption on soil metabolism. Notably, we found 40 g/acre anilofos application could significantly improve the rice yield, potentially linked to the improved activity of flavonoid biosynthesis and starch and sucrose metabolism. This research provides a comprehensive evaluation of anilofos effects in the direct-seeded rice production system, offering new insights into optimizing herbicide use to improve agricultural sustainability and productivity.
Collapse
Affiliation(s)
- Weitao Wang
- Earth, Ocean and Atmospheric Sciences Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511457, China; Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Jiahuan Long
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Huaixu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenyuan Huang
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Ying Zhang
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China.
| | - Tingting Duan
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| |
Collapse
|
4
|
Yogendra K, Sanivarapu H, Avuthu T, Gupta SK, Durgalla P, Banerjee R, Raman A, Tyagi W. Comparative Metabolomics to Unravel the Biochemical Mechanism Associated with Rancidity in Pearl Millet ( Pennisetum glaucum L.). Int J Mol Sci 2024; 25:11583. [PMID: 39519135 PMCID: PMC11547105 DOI: 10.3390/ijms252111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Despite being a highly nutritious and resilient cereal, pearl millet is not popular among consumers and food industries due to the short shelf-life of flour attributed to rapid rancidity development. The biochemical mechanism underlying rancidity, a complex and quantitative trait, needs to be better understood. The present study aims to elucidate the differential accumulation of metabolites in pearl millet that impact the rancidity process. Metabolite profiling was conducted on ten pearl millet genotypes with varying levels of rancidity-comprising high, low, and medium rancid genotypes-utilizing liquid chromatography and high-resolution mass spectrometry (LC-HRMS) at different accelerated ageing conditions. Through non-targeted metabolomic analysis, crucial metabolites associated with rancidity were identified across various biochemical pathways, including fatty acids, glycerophospholipids, sphingolipids, glycerol lipids, flavonoids, alkaloids, and terpenoids. Notably, metabolites such as fatty aldehydes, fatty alcohols, fatty esters, fatty acyls, fatty esters, and fatty amides were significantly elevated in high rancid genotypes, indicating their involvement in the rancidity process. These fatty acids-related metabolites further break down into saturated and unsaturated fatty acids. Four key fatty acids-stearic, palmitic, linoleic and linolenic acid-were quantified in the ten pearl millet genotypes, confirming their role in rancidity development. This investigation promises novel insights into utilizing metabolomics to understand the biochemical processes and facilitate precision breeding for developing low-rancidity pearl millet lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wricha Tyagi
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (K.Y.); (H.S.); (T.A.); (S.K.G.); (P.D.); (R.B.); (A.R.)
| |
Collapse
|
5
|
Zhao J, Shao J, Zeng Z, Li Z, Sun S, Peng L, Huang Z, Wang Z, He Y. Knocking out isopropylmalate synthase simultaneously improves grain appearance and nutritional quality in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:159-173. [PMID: 39145531 DOI: 10.1111/tpj.16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Grain appearance and nutritional quality are critical traits for rice marketing. However, how to simultaneously improve grain appearance (slender grain and low chalkiness) and nutritional quality (improved protein and amino acid contents) in rice remains a major challenge. Here, we show that knocking out rice isopropylmalate synthase genes OsIPMS1 and OsIPMS2 can improve both grain appearance and nutritional quality. We find that OsIPMS1 directly interacts with OsIPMS2 to form heterodimers. Meanwhile, we observe that OsIPMS1 and OsIPMS2 influence the expression of genes previously reported to be involved in the determination of grain size and nutritional quality in the developing panicles and grains. Furthermore, we show that Osipms1/2 double mutants exhibit significantly improved grain appearance and nutritional quality in polished rice in both the japonica (Wuyungeng 23) and indica (Huanghuazhan) varieties. Our findings indicate that OsIPMS is a useful target gene for breeding of rice varieties appealing for marketing and with health-benefiting properties.
Collapse
Affiliation(s)
- Jia Zhao
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Jie Shao
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Zixuan Zeng
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Zihe Li
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Shan Sun
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Liling Peng
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Zhibo Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, 510642, Guangzhou, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Yongqi He
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, 510642, Guangzhou, China
| |
Collapse
|
6
|
Ahmad I, Mashwani ZUR, Younas Z, Yousaf T, Raish M, Arif M. Chemometric Modeling Revealed Oleic and Linoleic Acids as Varietal Biomarkers for Six Sesame Varieties-In Vitro and UHPLC Analyses. ACS OMEGA 2024; 9:37213-37224. [PMID: 39246474 PMCID: PMC11375699 DOI: 10.1021/acsomega.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024]
Abstract
Pakistan once considered self-sufficient for edible oil production now became the major importer with 88.6% imports and producing only the minor portion. Scientific negligence in oil seed crops led to a dramatic decrease in edible oil production depending mainly on only the imports. Sesamum indicum L., "Queen of Oil seeds" with 50-55% oil, is cultivated in various geographical regions of Pakistan, but farmers are not considering this crop because of insufficient knowledge, poor crop management practices, and low yielding varieties. This study was conducted to check the nutritional, biochemical, antioxidant, and yield potentials of six major varieties, i.e., TS-5, TH-6, Til-18, NIAB-Mil, NIAB-Pearl, and NS-16, and to compare the nutritionals, oil quality, and oil yield potential of these varieties. Field experiment was conducted, and various crop growth biomarkers were analyzed. Chlorophyll content and superoxide dismutase activity were found to be highest in NIAB-Mil followed by NIAB-Pearl and comparable to those of Til-18, while APX, Cat, and GPX activity was found to be highest in Til-18 with 25.6 and 5.9 and 6.02 mg/g, respectively. Seed antioxidant parameters showed a mixed response, but NIAB-Mil, NIAB pearl, and Til-18 were found to be highest in all antioxidant parameters. UHPLC analysis of seed oil resulted in a total of 14 triacylglycerols (TAGs), and principal component analysis and OPLS-Da analysis showed seven TAG biomarkers responsible for the separation of sesame varieties. Til-18 was found to be highest in oil content (53.3%) more abundant with oleic acid, while NIAB-Pearl, NIAB-Mil, and NS-16 were found to be abundant with linoleic acid, both considered as potential TAG biomarkers for sesame oil separation. This study concluded that, in general, Til-18 variety is more resistant with high nutritional status, high antioxidant activity, and oil yielding variety, followed by NIAB-Mil and NIAB-Pearl.
Collapse
Affiliation(s)
- Ilyas Ahmad
- Department of Food Science and Nutrition, College of Food, Agriculture and Natural Resources, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
- Pakistan Academy of Sciences, Islamabad 44010, Pakistan
| | - Zohaib Younas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Tayyaba Yousaf
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Arif
- College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
7
|
Wang X, Li X, Dong S. Biochemical characterization and metabolic reprogramming of amino acids in Soybean roots under drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14319. [PMID: 38693848 DOI: 10.1111/ppl.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Amino acids play important roles in stress resistance, plant growth, development, and quality, with roots serving as the primary organs for drought response. We conducted biochemical and multi-omics analyses to investigate the metabolic processes of root amino acids in drought-resistant (HN44) and drought-sensitive (HN65) soybean (Glycine max) varieties. Our analysis revealed an increase in total amino acid content in both varieties, with phenylalanine, proline, and methionine accumulating in both. Additionally, several amino acids exhibited significant decreases in HN65 but slight increases in HN44. Multi-omics association analysis identified 13 amino acid-related pathways. We thoroughly examined the changes in genes and metabolites involved in various amino acid metabolism/synthesis and determined core genes and metabolites through correlation networks. The phenylalanine, tyrosine, and tryptophan metabolic pathways and proline, glutamic acid and sulfur-containing amino acid pathways were particularly important for drought resistance. Some candidate genes, such as ProDH and P4HA family genes, and metabolites, such as O-acetyl-L-serine, directly affected up- and downstream metabolism to induce drought resistance. This study provided a basis for soybean drought resistance breeding.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaomei Li
- College of Agriculture, Heilongjiang Agricultural Engineering Vocational College, Harbin, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Fayaz U, Hussain SZ, Naseer B, Mahdi SS, Mir JI, Ghosh A, Jana A, Wani NR, Jabeen A, Wani FJ, Manzoor S. Flavor profiling and gene expression studies of indigenous aromatic rice variety (Mushk Budiji) grown at different altitudes of Highland Himalayan regions. Sci Rep 2024; 14:1010. [PMID: 38200065 PMCID: PMC10781667 DOI: 10.1038/s41598-024-51467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Mushk Budiji-an indigenous aromatic rice variety is usually grown at an altitude ranging from 5000 to 7000 ft above mean sea level in Highland Himalayas. This study was conducted to investigate the effects of altitude, soil nitrogen content and climatic conditions (temperature) of the selected locations on the flavor profile of Mushk Budiji using gas chromatography-mass spectroscopy (GC-MS) and electronic nose (E-nose). E-nose being rapid and non-destructive method was used to validate the results of volatile aromatic compounds obtained using GC-MS in Mushk Budiji. Around 35 aromatic compounds were identified in Mushk Budiji rice samples. Highest volatile peak area percentage (105.41%) was recorded for Mushk Budji grown at an altitude of 5216.53 ft. Highest E-nose score (2.52) was obtained at an altitude of 6299.21 ft. Over-expression of fatty acid degradation and linoleic acid metabolism genes was observed at higher altitudes, whereas lipid biosynthesis was negatively influenced by higher altitude. Fatty acid degradation and linoleic acid metabolism is responsible for the synthesis of volatile aromatic compounds in Mushk Budiji. This study will therefore be the path finder for investigating the intricate mechanism behind the role of altitude on aroma development in Mushk Budiji rice for future studies.
Collapse
Affiliation(s)
- Ufaq Fayaz
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India.
| | - Bazila Naseer
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India.
| | - Syed Sheraz Mahdi
- Division of Agronomy, Faculty of Agriculture, SKUAST-Kashmir, Wadura, J&K, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture, Kashmir, Rangreth, J&K, 190005, India
| | - Alokesh Ghosh
- Centre for Development of Advanced Computing (C-DAC), Kolkata, 700001, India
| | - Arun Jana
- Centre for Development of Advanced Computing (C-DAC), Kolkata, 700001, India
| | - Nazrana Rafique Wani
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India
| | - Abida Jabeen
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India
| | - Fehim J Wani
- Division of Agricultural Economics & Statistics, Faculty of Agriculture, SKUAST-Kashmir, Wadura, J&K, India
| | - Sobiya Manzoor
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India
| |
Collapse
|
9
|
Shi S, Ma Y, Zhao D, Li L, Cao C, Jiang Y. The differences in metabolites, starch structure, and physicochemical properties of rice were related to the decrease in taste quality under high nitrogen fertilizer application. Int J Biol Macromol 2023; 253:126546. [PMID: 37643670 DOI: 10.1016/j.ijbiomac.2023.126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Nitrogen fertilizer application is one of the key cultivation practices to improve rice yields. However, the application of high nitrogen fertilizers often leads to a reduction in the stickiness of the rice after cooking, thus reducing the taste quality of rice. Moreover, there are differences in taste quality among rice varieties, and the mechanism has not been studied in depth. In this study, two rice varieties (Meixiangzhan2hao and Exiang2hao) were planted under two nitrogen fertilizer levels. The physicochemical properties and taste quality of the rice were determined after maturity. Our results showed that high nitrogen fertilizer level alters tryptophan metabolism in rice, increasing most amino acid content and protein content in rice. The high content of protein and the higher short-range ordered structure of starch inhibited the gelatinization characteristics of starch and reduced the taste quality of rice. Under high nitrogen fertilizer application, Exiang2hao showed smaller increases in protein content, lower level of amylose and relative crystallinity, and higher content of lipid metabolites. These differences in chemical substances resulted in a less pronounced reduction in the taste quality of Exiang2hao. In this study, the taste quality of different rice varieties under different levels of nitrogen fertilizer application was analyzed, providing new ideas for future improvement of rice taste quality.
Collapse
Affiliation(s)
- Shijie Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yingying Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Dan Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lina Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Dossou SSK, Deng Q, Li F, Jiang N, Zhou R, Wang L, Li D, Tan M, You J, Wang L. Comparative Metabolomics Analysis of Different Perilla Varieties Provides Insights into Variation in Seed Metabolite Profiles and Antioxidant Activities. Foods 2023; 12:4370. [PMID: 38231865 DOI: 10.3390/foods12234370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Perilla seeds are essential functional foods and key ingredients in traditional medicine. Herein, we investigated the variation in phytochemical profiles and antioxidant activities of twelve different perilla seeds. The seeds showed significant variations in total phenolic and flavonoid contents ranging from 16.92 to 37.23 mg GAE/g (GAE, gallic acid equivalent) and 11.6 to 19.52 mg CAE/g (CAE, catechin equivalent), respectively. LC-QqQ-MS (liquid chromatography triple quadrupole tandem mass spectrometry)-based widely targeted metabolic profiling identified a total of 975 metabolites, including 68-269 differentially accumulated metabolites (DAMs). Multivariate analyses categorized the seeds into four groups based on the seed coat and leaf colors. Most key bioactive DAMs, including flavonoids (quercetin-3'-O-glucoside, prunin, naringenin, naringenin chalcone, butin, genistin, kaempferol-3-O-rutinoside, etc.), amino acids (valine, lysine, histidine, glutamine, threonine, etc.), and vitamins (B1, B3, B6, U, etc.) exhibited the highest relative content in PL3 (brown seed, purple leaf), PL1 (white seed, green-purple leaf), and PL4 (white seed, green leaf) groups, respectively. Meanwhile, key differentially accumulated phenolic acids showed a higher relative content in PL1 and PL4 than in other groups. Both seeds exhibited high antioxidant activities, although those of PL2 (brown seed, green leaf) group seeds were the lowest. Our results may facilitate the comprehensive use of perilla seeds in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Li
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Nanjun Jiang
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Meilian Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
11
|
Kefale H, Segla Koffi Dossou S, Li F, Jiang N, Zhou R, Wang L, Zhang Y, Li D, You J, Wang L. Widely targeted metabolic profiling provides insights into variations in bioactive compounds and antioxidant activity of sesame, soybean, peanut, and perilla. Food Res Int 2023; 174:113586. [PMID: 37986527 DOI: 10.1016/j.foodres.2023.113586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Oilseeds are important sources of diversified nutraceuticals with marked health attributes. Thus, a better understanding of metabolome differences between common oilseeds will be conducive to the food pharmacy. This study aimed to compare the metabolite profiles and antioxidant activity of sesame, soybean, peanut, and perilla seeds and reveal the variation in bioactive compounds. LC-MS-based widely targeted metabolic profiling identified a total of 975 metabolites, of which 753 were common to the four crops. Multivariate analyses unveiled a crop-specific accumulation of metabolites, with 298-388 DAMs (differentially accumulated metabolites) identified. Amino acid metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and lipid metabolism were the most differentially regulated pathways. Furthermore, we revealed the variation in the relative content of 48, 20, 18, 9, 18, 11, and 6 differentially accumulated bioactive flavonoids, phenolic acids, amino acids, vitamins, terpenoids, alkaloids, and coumarins, respectively. Most of the flavonoids accumulated highly in soybean, followed by perilla. Sesame exhibited a better amino acid profile than other oilseeds. DPPH and FRAP assays showed that the antioxidant activity of perilla seed extracts was the highest, followed by soybean, peanut, and sesame. Our results provide data support for the comprehensive use of sesame, perilla, soybean, and peanut seeds in food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Department of Plant Science, College of Agriculture & Natural Resources, Debre Markos University, Ethiopia
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Li
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Nanjun Jiang
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
12
|
Su S, Tang P, Zuo R, Chen H, Zhao T, Yang S, Yang J. Exogenous Jasmonic Acid Alleviates Blast Resistance Reduction Caused by LOX3 Knockout in Rice. Biomolecules 2023; 13:1197. [PMID: 37627262 PMCID: PMC10452216 DOI: 10.3390/biom13081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Lipoxygenase 3 (LOX3) is a lipid peroxidase found in rice embryos that is known to affect seed quality. Interestingly, deletion of the LOX3 gene has been shown to improve rice seed quality but decrease resistance to rice blast disease and drought. To investigate these opposing effects, we generated a LOX3 knockout construct (ΔLox3) in rice (Oryza sativa L.) plants. Blast resistance and transcription levels of rice genes in ΔLox3 rice plants and the effects of exogenous jasmonic acid (JA) on resistance and transcriptional levels of rice genes in Magnaporthe oryzae-infected ΔLox3 rice plants were further elucidated. The results showed that the ΔLox3 plants exhibited normal phenotypes, with high levels of methyl-linolenate and reactive oxygen species (ROS), and the genes involved in three Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways contributed to rice seed quality. M. oryzae-infected ΔLox3 plants exhibited serious blast symptoms with a reduced defense response but increased ROS-mediated cell death, and the genes involved in seven KEGG pathways contributed to rice seed quality. Exogenous JA treatment alleviated blast symptoms in infected ΔLox3 plants by hindering hyphal expansion, inhibiting ROS-mediated cell death, and increasing the defense response, and genes involved in 12 KEGG pathways contributed to rice seed quality. These findings demonstrate that LOX3 plays an important role in rice growth and defense, and its knockout improves rice quality at the expense of disease resistance. Exogenous JA provides a means to compensate for the reduction in defense responses of LOX3 knockout rice lines, suggesting potential applications in agricultural production.
Collapse
Affiliation(s)
- Shunyu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Rubin Zuo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Hongfeng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Tianqi Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shumin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (P.T.); (R.Z.); (H.C.); (T.Z.); (S.Y.)
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
13
|
Wang G, Shen X, Bai C, Zhuang Z, Jiang H, Yang M, Wei X, Wu Z. Metabolomic study on the quality differences and physiological characteristics between rice cultivated in drought and flood conditions. Food Chem 2023; 425:135946. [PMID: 37300996 DOI: 10.1016/j.foodchem.2023.135946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 06/12/2023]
Abstract
The differences between dry- and flood-cultivated rice and the reason behind low-quality dry-cultivated rice were clarified. The physiological traits, starch synthase activity, and grain metabolomics of 'Longdao 18' were measured and analyzed at four growth stages. The brown, milled, and whole-milled rice rates and AGPase, SSS, and SBE activity were lower after drought treatment than during flood cultivation, while the chalkiness, chalky grain rate, amylose (16.57-20.999%), protein (7.99-12.09%), and GBSS activity were higher. Related enzymatic gene expression showed significant differences. Metabolic results showed pyruvate, glycine, and methionine upregulation at 8DAF and higher citric, pyruvic, and α-ketoglutaric acid content at 15DAF. Therefore, 8DAF-15DAF represented the crucial quality formation period for dry-cultivated rice. At 8DAF, the respiratory pathways used amino acids as signaling molecules and alternative substrates to adapt to energy shortages, arid environments and rapid protein accumulation and synthesis. Excessive amylose synthesis at 15DAF accelerated reproductive growth, promoting rapid premature aging.
Collapse
Affiliation(s)
- Guan Wang
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Xinru Shen
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Chenyang Bai
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Zixin Zhuang
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Hao Jiang
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Meiying Yang
- College of Life Science, Jilin Agricultural University Changchun, 130118, China
| | - Xiaoshuang Wei
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Zhihai Wu
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China.
| |
Collapse
|
14
|
Chen G, Peng L, Gong J, Wang J, Wu C, Sui X, Tian Y, Hu M, Li C, He X, Yang H, Zhang Q, Ouyang Y, Lan Y, Li T. Effects of water stress on starch synthesis and accumulation of two rice cultivars at different growth stages. FRONTIERS IN PLANT SCIENCE 2023; 14:1133524. [PMID: 37180383 PMCID: PMC10166795 DOI: 10.3389/fpls.2023.1133524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Rice is a water intensive crop and soil water conditions affect rice yield and quality. However, there is limited research on the starch synthesis and accumulation of rice under different soil water conditions at different growth stages. Thus, a pot experiment was conducted to explore the effects of IR72 (indica) and Nanjing (NJ) 9108 (japonica) rice cultivars under flood-irrigated treatment (CK, 0 kPa), light water stress treatment (L, -20 ± 5 kPa), moderate water stress treatment (M, -40 ± 5 kPa) and severe water stress treatment (S, -60 ± 5 kPa) on the starch synthesis and accumulation and rice yield at booting stage (T1), flowering stage (T2) and filling stage (T3), respectively. Under LT treatment, the total soluble sugar and sucrose contents of both cultivars decreased while the amylose and total starch contents increased. Starch synthesis-related enzyme activities and their peak activities at mid-late growth stage increased as well. However, applying MT and ST treatments produced the opposite effects. The 1000-grain weight of both cultivars increased under LT treatment while the seed setting rate increased only under LT3 treatment. Compared with CK, water stress at booting stage decreased grain yield. The principal component analysis (PCA) showed that LT3 got the highest comprehensive score while ST1 got lowest for both cultivars. Furthermore, the comprehensive score of both cultivars under the same water stress treatment followed the trend of T3 > T2 > T1, and NJ 9108 had a better drought-resistant ability than IR72. Compared with CK, the grain yield under LT3 increased by 11.59% for IR72 and 16.01% for NJ 9108, respectively. Overall, these results suggested that light water stress at filling stage could be an effective method to enhance starch synthesis-related enzyme activities, promote starch synthesis and accumulation and increase grain yield.
Collapse
Affiliation(s)
- Guangyi Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ligong Peng
- College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jing Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chaoyue Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaodong Sui
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Tian
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingming Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Congmei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xingmei He
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Hong Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Qiuqiu Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuyuan Ouyang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yan Lan
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tian Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Dubey PK, Chaurasia R, Pandey KK, Bundela AK, Singh A, Singh GS, Mall RK, Abhilash PC. Double transplantation as a climate resilient and sustainable resource management strategy for rice production in eastern Uttar Pradesh, north India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117082. [PMID: 36577302 DOI: 10.1016/j.jenvman.2022.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
-Enhancing the productivity of rainfed crops, especially rice, while coping with climate adversities and saving critical natural resources is essential for ensuring the food and nutrition security of a growing population. With this context, the present study was undertaken to validate promising farm innovation and adaptation practices used by small-medium landholding farmers for rice cultivation in eastern Uttar Pradesh (UP), north India, as well as to examine the sustainability of innovative practices for large-scale adoption. For this, a 3-year study comprising extensive field surveys and experiments was undertaken to compare single transplantation (ST) and double transplantation (DT) in rice along with organic addition (farm-yard manure, FYM) on crop growth, yield, climate resilience, soil quality, and overall sustainability i.e., social (women involvements and labour productivity), environmental (water productivity and nutrient use efficiency), and economic (benefit:cost ratio) dimensions of sustainability. Field experiments were conducted in triplicate using two local rice varieties (MotiNP-360 and Sampurna Kaveri) in two agroclimatic zones, namely the middle Gangetic plains and the Vindhyan zone, in the Mirzapur district of eastern Uttar Pradesh. The DT practices of rice with and without farm yard manure (FYM) (replacing at a dose of 25% NPK) were evaluated over conventional methods of rice cultivation (i.e., ST, as control) and analysis was done periodically. The DT practice improved growth (p < 0.05), percent fertile tiller and grain (p < 0.05), and rice yield (15-20% higher than ST), while also improving soil quality, yield indices, water and labour productivity, and the benefit-cost ratio. The DT practice also resulted in early maturity (10-15 days earlier than ST), created more labour days for women, decreased lodging and pest/disease incidence, as well as a subsequent reduction in the use of synthetic chemical pesticides and associated environmental costs. Importantly, the residual effects of FYM application significantly improved (p < 0.05) the grain yield in subsequent years of cropping. Optimizing DT cultivation practices, preferably with FYM input for various agro-climatic regions, is essential for large-scale sustainable rice production under changing climatic conditions.
Collapse
Affiliation(s)
- Pradeep Kumar Dubey
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Rajan Chaurasia
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Krishna Kumar Pandey
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India; DST-Mahamana Centre of Excellence in Climate Change Research (DST-MCECCR), Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Amit Kumar Bundela
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Ajeet Singh
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gopal Shankar Singh
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India; DST-Mahamana Centre of Excellence in Climate Change Research (DST-MCECCR), Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Rajesh Kumar Mall
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India; DST-Mahamana Centre of Excellence in Climate Change Research (DST-MCECCR), Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Purushothaman Chirakkuzhyil Abhilash
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India; DST-Mahamana Centre of Excellence in Climate Change Research (DST-MCECCR), Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
16
|
Mahmood N, Liu Y, Saleemi MA, Munir Z, Zhang Y, Saeed R. Investigation of Physicochemical and Textural Properties of Brown Rice by Hot Air Assisted Radio Frequency Drying. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
17
|
Zhu J, Li A, Sun C, Zhang J, Hu J, Wang S, Zhou N, Xiong Q. Rice Quality-Related Metabolites and the Regulatory Roles of Key Metabolites in Metabolic Pathways of High-Quality Semi-Glutinous japonica Rice Varieties. Foods 2022; 11:foods11223676. [PMID: 36429268 PMCID: PMC9689214 DOI: 10.3390/foods11223676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
We explored the related metabolites produced by different quality semi-glutinous japonica rice varieties and the modulatory role of key metabolites in metabolic mechanisms. In this study, three high-quality edible semi-glutinous rice varieties were employed as investigational materials, the metabolites of the three varieties were detected using LC-MS metabolomics technology, and the rice quality traits of the three rice varieties were determined. The taste value (TV) of Yangnongxiang 28 (YNX28H) was substantially higher than that of Hongyang 5 hao (HY5H) and Nanjing 5718 (NJ5718), and the hardness (HA) of YNX28H was significantly lower than that of HY5H and NJ5718. The HA was significantly negatively correlated with the TV. The highest chalkiness rate (CR) and chalkiness degree (CD) were observed for NJ5718, and the lowest CR and CD were observed for HY5H. HY5H had a substantially lower protein content (PC) than YNX28H and NJ5718 and a markedly higher amylose content (AC) than those two varieties. Overall, 188 differential metabolites (DMs) were recognized between HY5H and NJ5718. A total of 136 DMs were detected between YNX28H and NJ5718, and 198 DMs were recognized between HY5H and YNX28H. The metabolites with a strong correlation with rice quality were mainly associated with amino acid metabolism, lipid metabolism and the citrate cycle. The key metabolites in the metabolic pathway include lipid metabolites (sagittariol, glycerophosphocholine, gamma-eudesmol rhamnoside, goshonoside F1, diosbulbinoside F, and corchorifatty acid F), amino acid metabolites (pantothenic acid, L-serine, L-proline, L-aspartic acid, L-glutamate, L-asparagine, and glutathione) and carbohydrate metabolites (sucrose, levan, D-maltose, and amylose). These key metabolites play important regulatory roles in metabolic mechanisms, providing a theoretical basis for breeding new high-quality edible rice varieties.
Collapse
Affiliation(s)
- Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Changhui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jiao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jinlong Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuai Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Nianbing Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
18
|
Yaghoubi Khanghahi M, AbdElgawad H, Verbruggen E, Korany SM, Alsherif EA, Beemster GTS, Crecchio C. Biofertilisation with a consortium of growth-promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions. PHYSIOLOGIA PLANTARUM 2022; 174:e13800. [PMID: 36250979 DOI: 10.1111/ppl.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
We investigated the effect of plant growth-promoting bacterial strains (PGPB) as biofertilisers on the grain metabolic composition of durum wheat (Triticum durum Desf.). To this aim, we conducted a greenhouse experiment where we grew durum wheat plants supplied with a biofertiliser consortium of four PGPB and/or chemical fertiliser (containing nitrogen, phosphorus, potassium, and zinc), under non-stress, drought (at 40% field capacity), or salinity (150 mM NaCl) conditions. Nutrient accumulations in the grain were increased in plants treated with the biofertiliser consortium, alone or with a half dose of chemical fertilisers, compared to those in no fertilisation treatment. A clear benefit of biofertiliser application in the improvement of protein, soluble sugar, starch, and lipid contents in the grains was observed in comparison with untreated controls, especially under stress conditions. The most striking observation was the absence of significant differences between biofertiliser and chemical fertiliser treatments for most parameters. Moreover, the overall response to the biofertiliser consortium was accompanied by greater changes in amino acids, organic acids, and fatty acid profiles. In conclusion, PGPB improved the metabolic and nutrient status of durum wheat grains to a similar extent as chemical fertilisers, particularly under stress conditions, demonstrating the value of PGPB as a sustainable fertilisation treatment.
Collapse
Affiliation(s)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Erik Verbruggen
- Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1C, Wilrijk, Belgium
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emad A Alsherif
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Carmine Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
19
|
Zhang L, Dong W, Yao Y, Chen C, Li X, Yin B, Li H, Zhang Y. Analysis and Research on Starch Content and Its Processing, Structure and Quality of 12 Adzuki Bean Varieties. Foods 2022; 11:3381. [PMID: 36359994 PMCID: PMC9656587 DOI: 10.3390/foods11213381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 10/17/2023] Open
Abstract
Investigating starch properties of different adzuki beans provides an important theoretical basis for its application. A comparative study was conducted to evaluate the starch content, processing, digestion, and structural quality of 12 adzuki bean varieties. The variation ranges of the 12 adzuki bean varieties with specific analyzed parameters, including the amylose/amylopectin (AM/AP) ratio, bean paste rate, water separation rate, solubility, swelling power and resistant starch (RS) content level, were 5.52-39.05%, 44.7-68.2%, 45.56-54.29%, 6.79-12.07%, 11.83-15.39%, and 2.02-14.634%, respectively. The crystallinity varied from 20.92 to 37.38%, belonging to type BC(The starch crystal type is mainly type C, supplemented by type B). In correlation analysis, red and blue represent positive and negative correlation, respectively. Correlation analysis indicated that the termination temperature of adzuki bean starch was positively correlated with AM/AP ratio. Therefore, the higher the melting temperature, the better the freeze-thaw stability. The 12 varieties were divided into Class I, Class II, and Class III by cluster analysis, based on application field. Class I was unsuitable for the diabetics' diet; Class II was suitable for a stabilizer; and Class III was suitable for bean paste, mixtures, and thickeners. The present study could provide a theoretical basis for their application in the nutritional and nutraceutical field.
Collapse
Affiliation(s)
- Lei Zhang
- Hebei Province Crop Growth Control Laboratory, Hebei Agricultural University, Baoding 071001, China
| | - Weixin Dong
- Teaching Support Department, Hebei Open University, Shijiazhuang 050080, China
| | - Yaya Yao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Congcong Chen
- Hebei Province Crop Growth Control Laboratory, Hebei Agricultural University, Baoding 071001, China
| | - Xiangling Li
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Baozhong Yin
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Huijing Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yuechen Zhang
- Hebei Province Crop Growth Control Laboratory, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
20
|
Li F, Liu Y, Zhang X, Liu L, Yan Y, Ji X, Kong F, Zhao Y, Li J, Peng T, Sun H, Du Y, Zhao Q. Transcriptome and Metabolome Analyses Reveals the Pathway and Metabolites of Grain Quality Under Phytochrome B in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2022; 15:52. [PMID: 36302917 PMCID: PMC9613846 DOI: 10.1186/s12284-022-00600-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Grain size and chalkiness is a critical agronomic trait affecting rice yield and quality. The application of transcriptomics to rice has widened the understanding of complex molecular responsive mechanisms, differential gene expression, and regulatory pathways under varying conditions. Similarly, metabolomics has also contributed drastically for rice trait improvements. As master regulators of plant growth and development, phys influence seed germination, vegetative growth, photoperiodic flowering, shade avoidance responses. OsPHYB can regulate a variety of plant growth and development processes, but little is known about the roles of rice gene OsPHYB in modulating grain development. RESULTS In this study, rice phytochrome B (OsPHYB) was edited using CRISPR/Cas9 technology. We found that OsPHYB knockout increased rice grain size and chalkiness, and increased the contents of amylose, free fatty acids and soluble sugar, while the gel consistency and contents of proteins were reduced in mutant grains. Furthermore, OsPHYB is involved in the regulation of grain size and chalk formation by controlling cell division and complex starch grain morphology. Transcriptomic analysis revealed that loss of OsPHYB function affects multiple metabolic pathways, especially enhancement of glycolysis, fatty acid, oxidative phosphorylation, and antioxidant pathways, as well as differential expression of starch and phytohormone pathways. An analysis of grain metabolites showed an increase in the free fatty acids and lysophosphatidylcholine, whereas the amounts of sugars, alcohols, amino acids and derivatives, organic acids, phenolic acids, alkaloids, nucleotides and derivatives, and flavonoids decreased, which were significantly associated with grain size and chalk formation. CONCLUSIONS Our study reveals that, OsPHYB plays an important regulatory role in the growth and development of rice grains, especially grain size and chalkiness. Furthermore, OsPHYB regulates grain size and chalkiness formation by affecting gene metabolism interaction network. Thus, this study not only revealed that OsPHYB plays a vital role in regulating grain size and chalkiness of rice but reveal new functions and highlighted the importance and value of OsPHYB in rice grain development and provide a new strategy for yield and quality improvement in rice breeding.
Collapse
Affiliation(s)
- Fei Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Ye Liu
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Xiaohua Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Lingzhi Liu
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Yun Yan
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Xin Ji
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Fanshu Kong
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Yafan Zhao
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Junzhou Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Ting Peng
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China
| | - Yanxiu Du
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China.
| | - Quanzhi Zhao
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, No. 15, Longzihu University Park, Zhengdong New Area, Zhengzhou, China.
| |
Collapse
|
21
|
Analysis of Related Metabolites Affecting Taste Values in Rice under Different Nitrogen Fertilizer Amounts and Planting Densities. Foods 2022; 11:foods11101508. [PMID: 35627078 PMCID: PMC9141971 DOI: 10.3390/foods11101508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to explore the differences in metabolites related to rice quality formation under different nitrogen (N) fertilizers and planting densities. In this study, Yangnongxiang 28 was used as the experimental material with the following conditions: high nitrogen and low density (HNLD; high nitrogen: 360 kg·hm−2, low density: the row spacing of rice plants was 16 cm × 30 cm), medium nitrogen and medium density (MNMD; medium nitrogen: 270 kg·hm−2, medium density: the row spacing of rice plants was 13 cm × 30 cm), and low nitrogen and high density (LNHD; low nitrogen: 270 kg·hm−2, high density: the row spacing of rice plants was 10 cm × 30 cm). The rice quality indexes, including the processing quality, amylose content, and taste value, were compared under different treatments, and we analyzed their relationship with the metabolites. The results show that the milled rice rate of HNLD was 13.85% and was 1.89% higher than that of LNHD and MNMD, respectively. The head milled rice rate of HNLD was 32.45% and 6.39% higher than that of LNHD and MNMD, respectively. The milled rice rate and head milled rice rate of HNLD and MNMD were significantly higher than those of LNHD. This study identified 22 differential metabolites (DMs) in HNLD and LNHD, 38 DMs in HNLD and MNMD, and 23 DMs in LNHD and MNMD. Most of the identified differential metabolites were lipid metabolites, which were mainly enriched in the lipid metabolic pathways and amino acid metabolic pathways. The correlation analysis showed that the lipid metabolite physapubescin was significantly negatively correlated with the taste value. The lipid metabolites 2-undecen-1-ol, lucidenic acid F, and 8-deoxy-11,13-dihydroxygrosheimin were significantly positively correlated with the taste value. Lipids may be important substances that lead to differences in taste under different nitrogen fertilizer and density treatments.
Collapse
|
22
|
Chen Z, Du Y, Mao Z, Zhang Z, Li P, Cao C. Grain starch, fatty acids, and amino acids determine the pasting properties in dry cultivation plus rice cultivars. Food Chem 2022; 373:131472. [PMID: 34740046 DOI: 10.1016/j.foodchem.2021.131472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022]
Abstract
A field experiment was conducted to explore the effects of cultivars under flooding irrigation and dry cultivation (D) on starch, fatty acids, and amino acids metabolism, starch physicochemical traits, and pasting properties of rice flour. In this study, high-quality cultivar (HH) had better pasting properties among all other cultivars in D treatment. DHH supported higher short-branch chain amylopectin to develop the crystalline regions. Besides, DHH increased C16:0, C16:1, C18:1, C18:2, glutamate, aspartate, lysine, and threonine, and reduced glutelin and prolamine levels in head rice. Higher pasting properties in DHH was also supported by higher CO in esters and ketones, CO in carboxylic acid, esters, alcohols, and ethers, OH in alcohols before pasting and lower CO and CO in carboxylic acid, CO in aldehydes, and CO, CO and OH in carboxylic acid after pasting. Overall, these findings improve pasting properties to maintain a higher cooking quality in dry cultivation.
Collapse
Affiliation(s)
- Zongkui Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yunfeng Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zilin Mao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhijuan Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ping Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
23
|
Hu H, Fei X, He B, Luo Y, Qi Y, Wei A. Integrated Analysis of Metabolome and Transcriptome Data for Uncovering Flavonoid Components of Zanthoxylum bungeanum Maxim. Leaves Under Drought Stress. Front Nutr 2022; 8:801244. [PMID: 35187022 PMCID: PMC8855068 DOI: 10.3389/fnut.2021.801244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
Zanthoxylum bungeanum Maxim. leaves (ZBLs) are rich in flavonoids and have become popular in nutrition, foods and medicine. However, the flavonoid components in ZBLs and the mechanism of flavonoid biosynthesis under drought stress have received little attention. Here, we performed an integrative analysis of the metabolome and transcriptome of ZBLs from HJ (Z. bungeanum cv. “Hanjiao”) and FJ (Z. bungeanum cv. “Fengjiao”) at four drought stages. A total of 231 individual flavonoids divided into nine classes were identified and flavones and flavonols were considered the most abundant flavonoid components in ZBLs. The total flavonoid content of ZBLs was higher in FJ; it increased in FJ under drought stress but decreased in HJ. Nine-quadrant analysis identified five and eight differentially abundant flavonoids in FJ and HJ leaves, respectively, under drought stress. Weighted gene correlation network analysis (WGCNA) identified nine structural genes and eight transcription factor genes involved in the regulation of flavonoid biosynthesis. Moreover, qRT-PCR results verified the accuracy of the transcriptome data and the reliability of the candidate genes. Taken together, our results reveal the flavonoid components of ZBLs and document changes in flavonoid metabolism under drought stress, providing valuable information for nutrition value and food utilization of ZBLs.
Collapse
Affiliation(s)
- Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Beibei He
- College of Horticulture, Northwest Agriculture and Forestry University, Xianyang, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
- *Correspondence: Anzhi Wei
| |
Collapse
|
24
|
Wu X, Hou H, Liu Y, Yin S, Bian S, Liang S, Wan C, Yuan S, Xiao K, Liu B, Hu J, Yang J. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: A field study. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126834. [PMID: 34390954 DOI: 10.1016/j.jhazmat.2021.126834] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Microplastic accumulation in agricultural soils can stress plants and affects quality of the products. Current research on the effects of microplastics on plants is not consistent and the underlying mechanisms are yet unknown. Here, the molecular mechanisms of the stress response were investigated via metabolomic and transcriptomic analyses of rice Oryza sativa L. II Y900 and XS123 under the exposure of polystyrene microplastics (PS-MPs) in a field study. Distinct responses were obtained in these two rice subspecies, showing decreased head rice yield by 10.62% in Y900 and increase by 6.35% in XS123. The metabolomics results showed that PS-MPs exposure inhibited 29.63% of the substance accumulation-related metabolic pathways and 43.25% of the energy expenditure-related metabolic pathways in the Y900 grains; however, these related pathways were promoted in the XS123 grains. The transcriptomics results indicated that the expression of genes encoding proteins involved in the tricarboxylic acid cycle in the Y900 grains was inhibited, but it was enhanced in the XS123 grains. The XS123 subspecies could response against microplastic exposure stress through the metabolite accumulation and energy expenditure pathways, while the Y900 could not. The results provide insight into the perturbation of rice grains in farmlands with microplastics contamination.
Collapse
Affiliation(s)
- Xiang Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei 430065, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Chaofan Wan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
25
|
Tao Y, Mohi Ud Din A, An L, Chen H, Li G, Ding Y, Liu Z. Metabolic Disturbance Induced by the Embryo Contributes to the Formation of Chalky Endosperm of a Notched-Belly Rice Mutant. FRONTIERS IN PLANT SCIENCE 2022; 12:760597. [PMID: 35069619 PMCID: PMC8767064 DOI: 10.3389/fpls.2021.760597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Grain chalkiness is a key quality trait of the rice grain, whereas its underlying mechanism is still not thoroughly understood because of the complex genetic and environmental interactions. We identified a notched-belly (NB) mutant that has a notched-line on the belly of grains. The line dissects the endosperm into two distinct parts, the upper translucent part, and the bottom chalky part in the vicinity of the embryo. Using this mutant, our previous studies clued the negative influence of embryo on the biochemical makeup of the endosperm, suggesting the need for the in-depth study of the embryo effect on the metabolome of developing endosperm. This study continued to use the NB mutant to evolve a novel comparison method to clarify the role of embryo in the formation of a chalky endosperm. Grain samples of the wild-type (WT) and NB were harvested at 10, 20, and 30 days after fertilization (DAF), and then divided into subsamples of the embryo, the upper endosperm, and the bottom endosperm. Using non-targeted metabolomics and whole-genome RNA sequencing (RNA-seq), a nearly complete catalog of expressed metabolites and genes was generated. Results showed that the embryo impaired the storage of sucrose, amino acid, starch, and storage proteins in the bottom endosperm of NB by enhancing the expression of sugar, amino acids, and peptide transporters, and declining the expression of starch, prolamin, and glutelin synthesis-related genes. Importantly, the competitive advantage of the developing embryo in extracting the nutrients from the endosperm, transformed the bottom endosperm into an "exhaustive source" by diverting the carbon (C) and nitrogen (N) metabolism from synthetic storage to secondary pathways, resulting in impaired filling of the bottom endosperm and subsequently the formation of chalky tissue. In summary, this study reveals that embryo-induced metabolic shift in the endosperm is associated with the occurrence of grain chalkiness, which is of relevance to the development of high-quality rice by balancing the embryo-endosperm interaction.
Collapse
Affiliation(s)
- Yang Tao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Atta Mohi Ud Din
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lu An
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hao Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhenghui Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Segla Koffi Dossou S, Xu F, You J, Zhou R, Li D, Wang L. Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities. Food Res Int 2022; 151:110850. [PMID: 34980388 DOI: 10.1016/j.foodres.2021.110850] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022]
Abstract
Sesame seeds are considered worldwide as a functional food due to their nutritional and therapeutical values. Several physiological functions are being associated with sesame seeds and their derived products. However, the phytochemicals responsible for these various proprieties are not well understood. Thus, to acknowledge the diversity and variability of metabolites in sesame seeds of different colors and reveal key metabolites and pathways contributing to differences in antioxidant activities, black, brown, yellow, and white sesame seeds from 12 varieties were subjected to LC-MS/MS-based widely targeted metabolomics analysis. Totally, 671 metabolites were identified and chemically classified. The metabolic compounds varied significantly with the seed coat color and genotype. Many flavonoids, amino acids, and terpenoids were up-regulated in dark seeds. Sixty key differential metabolites were filtered out. Phenylpropanoid biosynthesis, amino acids biosynthesis, and tyrosine metabolism were the main differently regulated pathways. The DPPH, ABTS, and FRAP assays showed that the antioxidant activities of the seeds increased with the seed coat darkness. Therefore, the pharmacological proprieties of black seeds might be related to their high content of flavonoids and essential amino acids mostly. These findings expand phytochemicals composition information of different colored sesame seeds and provide resources for their comprehensive use and quality improvement.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Fangtao Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
27
|
Chen Z, Li P, Xiao J, Jiang Y, Cai M, Wang J, Li C, Zhan M, Cao C. Dry cultivation with ratoon system impacts rice quality using rice flour physicochemical traits, fatty and amino acids contents. Food Res Int 2021; 150:110764. [PMID: 34865781 DOI: 10.1016/j.foodres.2021.110764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
A field experiment was conducted to explore the impact on rice quality using high-quality (HH) or drought-resistant (HY) cultivars under flooding irrigation (F) or dry cultivation (D) in ratooning rice system by evaluating the metabolism or physicochemical traits of starch, fatty acids, and amino acids affecting grain quality. Compared to FHY and DHY in the main or ratoon season, DHH in ratoon season (DHHR) exhibited a higher appearance and processing quality but lower cooking quality. DHHR mainly synthesized long branch chain amylopectin to construct the crystalline regions with increased crystallinity, crystallites size, interplanar spacing, dislocation density, Asp and Thr in brown and head rice. Also, it accumulated more of C16:0, C18:0, C18:1, C18:2, and C18:3 but reduced glutelin in head rice. An increase in functional groups and diversity was seen in brown and head rice, respectively. Overall, these traits improved the processing, appearance, and pasting quality of DHHR.
Collapse
Affiliation(s)
- Zongkui Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ping Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junchen Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingli Cai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chengfang Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ming Zhan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
28
|
Chen Z, Li P, Du Y, Jiang Y, Cai M, Cao C. Dry cultivation and cultivar affect starch synthesis and traits to define rice grain quality in various panicle parts. Carbohydr Polym 2021; 269:118336. [PMID: 34294346 DOI: 10.1016/j.carbpol.2021.118336] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
A pot experiment was conducted to explore the effects of high-quality (Huanghuazhan, HH), drought-resistant (IR, IRAT109) and drought-susceptible cultivars (ZS, Zhenshan97) under flooding irrigation and dry cultivation (D) on the starch accumulation and synthesis, physicochemical traits of starch granules and rice grain quality at the upper (U) and lower panicle. Under D treatment, IR and ZS had lower rice quality, especially the appearance and cooking quality. DHH-U had the highest appearance, nutritional and cooking quality among all cultivars under D treatment, which could be ascribed to the synthesis of more short-branch chain amylopectin and correspondingly higher starch granule tightness. DHH-U also maintained ordered carbohydrate structure, crystalline regions, and many hydrophilic and hydrophobic functional groups in starch granules before pasting. It could prevent the polymerization of small molecules to avoid the formation of macromolecules after pasting. Overall, these findings may facilitate the improvement of grain quality in rice dry cultivation.
Collapse
Affiliation(s)
- Zongkui Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ping Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yunfeng Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingli Cai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
29
|
Jie Y, Shi T, Zhang Z, Yan Q. Identification of Key Volatiles Differentiating Aromatic Rice Cultivars Using an Untargeted Metabolomics Approach. Metabolites 2021; 11:metabo11080528. [PMID: 34436469 PMCID: PMC8400254 DOI: 10.3390/metabo11080528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/13/2023] Open
Abstract
Non-aromatic rice is often sold at the price of aromatic rice to increase profits, seriously impairing consumer experience and brand credibility. The assessment of rice varieties origins in terms of their aroma traits is of great interest to protect consumers from fraud. To address this issue, the study identified differentially abundant metabolites between non-aromatic rice varieties and each of the three most popular aromatic rice varieties in the market using an untargeted metabolomics approach. The 656 metabolites of five rice grain varieties were determined by headspace solid-phase extraction gas chromatography-mass spectrometry, and the multivariate analyses were used to identify differences in metabolites among rice varieties. The metabolites most differentially abundant between Daohuaxiang 2 and non-aromatic rice included 2-acetyl-1-pyrroline and acetoin; the metabolites most differentially abundant between Meixiangzhan 2 and non-aromatic rice included acetoin and 2-methyloctylbenzene,; and the metabolites most differentially abundant between Yexiangyoulisi and non-aromatic rice included bicyclo[4.4.0]dec,1-ene-2-isopropyl-5-methyl-9-methylene and 2-methylfuran. Overall, acetoin was the metabolite that was most differentially abundant between the aromatic and non-aromatic rice. This study provides direct evidence of the outstanding advantages of aromatic rice and acts a reference for future rice authentication processes in the marketplace.
Collapse
Affiliation(s)
- Yu Jie
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road Haidian District, Beijing 100083, China;
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Beijing 100037, China;
| | - Tianyu Shi
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Beijing 100037, China;
| | - Zhongjei Zhang
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Beijing 100037, China;
- Correspondence: (Z.Z.); (Q.Y.)
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road Haidian District, Beijing 100083, China;
- Correspondence: (Z.Z.); (Q.Y.)
| |
Collapse
|
30
|
Yamuangmorn S, Prom-u-Thai C. The Potential of High-Anthocyanin Purple Rice as a Functional Ingredient in Human Health. Antioxidants (Basel) 2021; 10:833. [PMID: 34073767 PMCID: PMC8225073 DOI: 10.3390/antiox10060833] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Purple rice is recognized as a source of natural anthocyanin compounds among health-conscious consumers who employ rice as their staple food. Anthocyanin is one of the major antioxidant compounds that protect against the reactive oxygen species (ROS) that cause cellular damage in plants and animals, including humans. The physiological role of anthocyanin in plants is not fully understood, but the benefits to human health are apparent against both chronic and non-chronic diseases. This review focuses on anthocyanin synthesis and accumulation in the whole plant of purple rice, from cultivation to the processed end products. The anthocyanin content in purple rice varies due to many factors, including genotype, cultivation, and management as well as post-harvest processing. The cultivation method strongly influences anthocyanin content in rice plants; water conditions, light quantity and quality, and available nutrients in the soil are important factors, while the low stability of anthocyanins means that they can be dramatically degraded under high-temperature conditions. The application of purple rice anthocyanins has been developed in both functional food and other purposes. To maximize the benefits of purple rice to human health, understanding the factors influencing anthocyanin synthesis and accumulation during the entire process from cultivation to product development can be a path for success.
Collapse
Affiliation(s)
| | - Chanakan Prom-u-Thai
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|