1
|
Zhang J, Li P, Zhang P, Wang T, Sun J, Wang L, Bai Z, Yuan J, Zhao L, Gu S. Effects of Different Non- Saccharomyces Strains in Simultaneous and Sequential Co-Fermentations with Saccharomyces cerevisiae on the Quality Characteristics of Kiwi Wine. Foods 2024; 13:2599. [PMID: 39200526 PMCID: PMC11353757 DOI: 10.3390/foods13162599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
With the increasing awareness of health, more people have shown a preference for low-alcohol beverages. Seeking various methods to improve the quality of kiwi wine is now a major research interest in the wine industry. In this study, kiwi wine was fermented by Saccharomyces cerevisiae and different non-Saccharomyces strains (Torulaspora delbrueckii, Kluyveromyces thermotolerans, Pichia fermentans) in three methods (pure fermentation, simultaneous, and sequential co-fermentation). The physicochemical characteristics, color parameters, phenolic profiles, total phenolic content (TPC), antioxidant activities, organic acids, and taste sense of the different wines were evaluated to determine the effects of different yeasts and fermentation methods on the quality of the kiwi wine. Results indicated that co-fermentation reduced the contents of alcohol while enhancing the lightness of the kiwi wine. The TPC of sequential co-fermentation with K. thermotolerans/S. cerevisiae was significantly higher than that of their simultaneous co-fermentation. Compared to K. thermotolerans/S. cerevisiae, the antioxidant activities were increased by co-fermentation of T. delbrueckii/S. cerevisiae and P. fermentans/S. cerevisiae. Principal component analysis showed that kiwi wines fermented by different yeasts and inoculation methods could be separated and grouped. Correlation analysis presented positive correlations of phenolic composition, antioxidant activities, and color intensity. This study provided theoretical guidance for co-fermentation of non-Saccharomyces/S. cerevisiae and accelerated the industrialization process of kiwi wine.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Pengyan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Peiyao Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Tieru Wang
- College of Food Science and Engineering, Northwest A & F University, Xianyang 712100, China;
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Libo Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Zhouya Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Jiangfeng Yuan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| |
Collapse
|
2
|
Zhang B, Liu D, Liu H, Shen J, Zhang J, He L, Li J, Zhou P, Guan X, Liu S, Shi K. Impact of indigenous Oenococcus oeni and Lactiplantibacillus plantarum species co-culture on Cabernet Sauvignon wine malolactic fermentation: Kinetic parameters, color and aroma. Food Chem X 2024; 22:101369. [PMID: 38633743 PMCID: PMC11021843 DOI: 10.1016/j.fochx.2024.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
Malolactic fermentation (MLF) is a crucial process to enhance wine quality, and the utilization of indigenous microorganisms has the potential to enhance wine characteristics distinct to a region. Here, the MLF performance of five indigenous Oenococcus oeni strains and six synthetic microbial communities (SynComs), were comparatively evaluated in Cabernet Sauvignon wine. In terms of malate metabolism rate and wine aroma diversity, the strain of O. oeni Oe114-46 demonstrated comparable MLF performance to the commercial strain of O. oeni Oe450 PreAc. Furthermore, the corresponding SynComs (Oe144-46/LpXJ25) exhibited improved fermentation properties, leading to increased viable cell counts of both species, more rapid and thorough MLF, and increased concentrations of important aroma compounds, such as linalool, 4-terpinenol, α-terpineol, diethyl succinate, and ethyl lactate. These findings highlight the remarkable MLF performance of indigenous O. oeni and O. oeni-L. plantarum microbial communities, emphasizing their immense potential in improving MLF efficiency and wine quality.
Collapse
Affiliation(s)
- Biying Zhang
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Doudou Liu
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Liu
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiaxin Shen
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiaxuan Zhang
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Ling He
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin Li
- COFCO GreatWall wine, Penglai, Shandong, China
| | | | - Xueqiang Guan
- Shandong Academy of Grape / Shandong Technology Innovation Center of Wine Grape and Wine, Jinan, Shandong, China
| | - Shuwen Liu
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Kan Shi
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
He J, Duan J, Yu P, Li Y, Wang M, Zhang X, Chen Z, Shi P. Characterization of a novel cold-adapted GH1 β-glucosidase from Psychrobacillus glaciei and its application in the hydrolysis of soybean isoflavone glycosides. Curr Res Food Sci 2024; 8:100777. [PMID: 38840809 PMCID: PMC11150966 DOI: 10.1016/j.crfs.2024.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
The novel β-glucosidase gene (pgbgl1) of glycoside hydrolase (GH) family 1 from the psychrotrophic bacterium Psychrobacillus glaciei sp. PB01 was successfully expressed in Escherichia coli BL21 (DE3). The deduced PgBgl1 contained 447 amino acid residues with a calculated molecular mass of 51.4 kDa. PgBgl1 showed its maximum activity at pH 7.0 and 40 °C, and still retained over 10% activity at 0 °C, suggesting that the recombinant PgBgl1 is a cold-adapted enzyme. The substrate specificity, Km, Vmax, and Kcat/Km for the p-Nitrophenyl-β-D-glucopyranoside (pNPG) as the substrate were 1063.89 U/mg, 0.36 mM, 1208.31 U/mg and 3871.92/s, respectively. Furthermore, PgBgl1 demonstrated remarkable stimulation of monosaccharides such as glucose, xylose, and galactose, as well as NaCl. PgBgl1 also demonstrated a high capacity to convert the primary soybean isoflavone glycosides (daidzin, genistin, and glycitin) into their respective aglycones. Overall, PgBgl1 exhibited high catalytic activity towards aryl glycosides, suggesting promising application prospects in the food, animal feed, and pharmaceutical industries.
Collapse
Affiliation(s)
- Jinjian He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jiajing Duan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pinglian Yu
- Key Laboratory of Yunnan University for Plateau Characteristic Functional Food, School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong,657000, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xiu Zhang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Zishu Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| |
Collapse
|
4
|
Zhao Y, Zhang B, Gu H, Xu T, Chen Q, Li J, Zhou P, Guan X, He L, Liang Y, Zhang K, Liu S, Shi K. A mutant GH3 family β-glucosidase from Oenococcus oeni exhibits superior adaptation to wine stresses and potential for improving wine aroma and phenolic profiles. Food Microbiol 2024; 119:104458. [PMID: 38225057 DOI: 10.1016/j.fm.2023.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
In this study, we conducted a comprehensive investigation into a GH3 family β-glucosidase (BGL) from the wild-type strain of Oenococcus oeni and its mutated counterpart from the acid-tolerant mutant strain. Our analysis revealed the mutant BGL's remarkable capacity to adapt to wine-related stress conditions, including heightened tolerance to low pH, elevated ethanol concentrations, and metal ions. Additionally, the mutant BGL exhibited superior hydrolytic activity towards various substrates. Through de novo modeling, we identified specific amino acid mutations responsible for its resilience to low pH and high ethanol environments. In simulated wine conditions, the mutant BGL outperformed both wild-type and commercial BGLs, efficiently releasing terpene and phenolic aglycones from glycosides in wine grapes. These findings not only expand our understanding of O. oeni BGLs but also highlight their potential in enhancing wine production. The mutant BGL's enhanced adaptation to wine stress conditions opens promising avenue for improving wine quality and flavor.
Collapse
Affiliation(s)
- Yuzhu Zhao
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Biying Zhang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Huawei Gu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Tongxin Xu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiling Chen
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jin Li
- COFCO GreatWall Wine, Penglai, Shandong, China
| | | | - Xueqiang Guan
- Shandong Academy of Grape / Shandong Technology Innovation Center of Wine Grape and Wine, Jinan, Shandong, China
| | - Ling He
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanying Liang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Kekun Zhang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuwen Liu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kan Shi
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Yao Q, Xu J, Tang N, Chen W, Gu Q, Li H. Screening, cloning, immobilization and application prospects of a novel β-glucosidase from the soil metagenome. ENVIRONMENTAL RESEARCH 2024; 244:117676. [PMID: 37996002 DOI: 10.1016/j.envres.2023.117676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The soil environment for straw return is a rich and valuable library containing many microorganisms and proteins. In this study, we aimed to screen a high-quality β-glucosidase (BGL) from the soil metagenomic library and to overcome the limitation of the low extraction rate of resveratrol in Polygonum cuspidatum. This includes the construction of a soil metagenomic library, screening of BGL, bioinformatics analysis, cloning, expression, immobilization, enzymatic property analysis, and application for the transformation of polydatin. The results showed that the soil metagenomic library of straw return was successfully constructed, and a novel BGL was screened. The identified 1356 bp long BGL belonged to the glycoside hydrolase 1 (GH1) family and was named Bgl1356. After successful cloning and expression of Bgl1356, it was immobilized using chitosan. The optimum temperature of immobilized Bgl1356 was 50 °C, and the pH was 5. It exhibited good tolerance for various metal ions (CO2+, Ni2+, Cu2+, Mn2+, Na2+, Ca2+, and Ag+) and organic solvents (DMSO, Triton-X-10, and ethanol). Enzymatic kinetics assays showed that Bgl1356 had good affinity for the substrate, and the specific enzyme activity was 234.03 U/mg. The conversion rate of polydatin by immobilized Bgl1356 was 95.70 ± 1.08%, facilitating the production of high amounts of resveratrol. Thus, this paper reports a novel temperature-, organic solvent-, and metal ion-tolerant BGL that has good application prospects in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qian Yao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Jin Xu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Nan Tang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Weiji Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Quliang Gu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - He Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Mu Y, Meng F, Ju X, Li L. Inactivation and process intensification of β-glucosidase in biomass utilization. Appl Microbiol Biotechnol 2023; 107:3191-3204. [PMID: 37058231 DOI: 10.1007/s00253-023-12483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/15/2023]
Abstract
Lignocellulosic biomass has emerged as a promising environmental resource. Enzyme catalysis, as one of the most environmentally friendly and efficient tools among various treatments, is used for the conversion of biomass into chemicals and fuels. Cellulase is a complex enzyme composed of β-glucosidase (BGL), endo-β-1,4-glucanase (EG), and exo-β-1,4-glucanase (CBH), which synergistically hydrolyzes cellulose into monosaccharides. BGL, which further deconstructs cellobiose and short-chain cellooligosaccharides obtained by EG and CBH catalysis into glucose, is the most sensitive component of the synergistic enzyme system constituted by the three enzymes and is highly susceptible to inactivation by external conditions, becoming the rate-limiting component in biomass conversion. This paper firstly introduces the source and catalytic mechanism of BGL used in the process of biomass resource utilization. The focus is on the review of various factors affecting BGL activity during hydrolysis, including competitive adsorption of lignin, gas-liquid interface inactivation, thermal inactivation, and solvent effect. And the methods to improve BGL inactivation are proposed from two aspects-substrate initiation and enzyme initiation. In particular, the screening, modification, and alteration of the enzyme molecules themselves are discussed with emphasis. This review can provide novel ideas for studies of BGL inactivation mechanism, containment of inactivation, and activity enhancement. KEY POINTS: • Factors affecting β-glucosidase inactivation are described. • Process intensification is presented in terms of substrate and enzyme. • Solvent selection, protein engineering, and immobilization remain topics of interest.
Collapse
Affiliation(s)
- Yinghui Mu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Fanjin Meng
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Xin Ju
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Liangzhi Li
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| |
Collapse
|
7
|
Xu J, Guo L, Zhao N, Meng X, Zhang J, Wang T, Wei X, Fan M. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 2023; 43:258-274. [PMID: 35114869 DOI: 10.1080/07388551.2021.2025335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acid-resistant bacteria are more and more widely used in industrial production due to their unique acid-resistant properties. In order to survive in various acidic environments, acid-resistant bacteria have developed diverse protective mechanisms such as sensing acid stress and signal transduction, maintaining intracellular pH homeostasis by controlling the flow of H+, protecting and repairing biological macromolecules, metabolic modification, and cross-protection. Acid-resistant bacteria have broad biotechnological application prospects in the food field. The production of fermented foods with high acidity and acidophilic enzymes are the main applications of this kind of bacteria in the food industry. Their acid resistance modules can also be used to construct acid-resistant recombinant engineering strains for special purposes. However, they can also cause negative effects on foods, such as spoilage and toxicity. Herein, the aim of this paper is to summarize the research progress of molecular mechanisms against acid stress of acid-resistant bacteria. Moreover, their effects on the food industry were also discussed. It is useful to lay a foundation for broadening our understanding of the physiological metabolism of acid-resistant bacteria and better serving the food industry.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Guo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tieru Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Madjirebaye P, Xiao M, Mahamat B, Xiong S, Mueed A, Wei B, Huang T, Peng F, Xiong T, Peng Z. In vitro characteristics of lactic acid bacteria probiotics performance and antioxidant effect of fermented soymilk. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Zhao H, Li Y, Liu L, Zheng M, Feng Z, Hu K, Tao Y. Effects of inoculation timing and mixed fermentation with Pichia fermentans on Oenococcus oeni viability, fermentation duration and aroma production during wine malolactic fermentation. Food Res Int 2022; 159:111604. [DOI: 10.1016/j.foodres.2022.111604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
|
10
|
He Y, Wang C, Jiao R, Ni Q, Wang Y, Gao Q, Zhang Y, Xu G. Biochemical characterization of a novel glucose-tolerant GH3 β-glucosidase (Bgl1973) from Leifsonia sp. ZF2019. Appl Microbiol Biotechnol 2022; 106:5063-5079. [PMID: 35833950 DOI: 10.1007/s00253-022-12064-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/25/2022]
Abstract
Beta-glucosidase (Bgl) is an enzyme with considerable food, beverage, and biofuel processing potential. However, as many Bgls are inhibited by their reaction end product glucose, their industrial applications are greatly limited. In this study, a novel Bgl gene (Bgl1973) was cloned from Leifsonia sp. ZF2019 and heterologously expressed in E. coli. Sequence analysis and structure modeling revealed that Bgl1973 was 748 aa, giving it a molecular weight of 78 kDa, and it showed high similarity with the glycoside hydrolase 3 (GH3) family Bgls with which its active site residues were conserved. By using pNPGlc (p-nitrophenyl-β-D-glucopyranoside) as substrate, the optimum temperature and pH of Bgl1973 were shown to be 50 °C and 7.0, respectively. Bgl1973 was insensitive to most metal ions (12.5 mM), 1% urea, and even 0.1% Tween-80. This enzyme maintained 60% of its original activity in the presence of 20% NaCl, demonstrating its excellent salt tolerance. Furthermore, it still had 83% residual activity in 1 M of glucose, displaying its outstanding glucose tolerance. The Km, Vmax, and kcat of Bgl1973 were 0.22 mM, 44.44 μmol/min mg, and 57.78 s-1, respectively. Bgl1973 had a high specific activity for pNPGlc (19.10 ± 0.59 U/mg) and salicin (20.43 ± 0.92 U/mg). Furthermore, molecular docking indicated that the glucose binding location and the narrow and deep active channel geometry might contribute to the glucose tolerance of Bgl1973. Our results lay a foundation for the studying of this glucose-tolerant β-glucosidase and its applications in many industrial settings. KEY POINTS: • A novel β-glucosidase from GH3 was obtained from Leifsonia sp. ZF2019. • Bgl1973 demonstrated excellent glucose tolerance. • The glucose tolerance of Bgl1973 was explained using molecular docking analysis.
Collapse
Affiliation(s)
- Yi He
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Chenxi Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ronghu Jiao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Qinxue Ni
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yan Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Qianxin Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Youzuo Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Guangzhi Xu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| |
Collapse
|
11
|
Enzymatic Characterization of Purified β-Glucosidase from Non-Saccharomyces Yeasts and Application on Chardonnay Aging. Foods 2022; 11:foods11060852. [PMID: 35327274 PMCID: PMC8950599 DOI: 10.3390/foods11060852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
The application of β-glucosidase from non-Saccharomyces yeasts to improve wine aroma has been widely explored. However, few enzymes are active under the severe conditions of wine aging (high ethanol concentration, low temperature, and low pH). Therefore, the application of β-glucosidase in wine aging needs further research. In this study, the β-glucosidases Mg-βgl and Hu-βgl extracted from Meyerozyma guilliermondii NM218 and Hanseniaspora uvarum BF345 were purified and used in young Chardonnay wines aged for 50 days. The enzyme activity of the two enzymes was measured. The effects of the two enzymes and a commercial β-glucosidase (An-βgl) on the volatile composition and sensory quality of the wine were also determined. The results showed that Mg-βgl and Hu-βgl had high specific activity of 1.95 U/mg and 2.11 U/mg, respectively, maintaining the activity of 70–80% at 20 °C, pH of 3.0–4.0, and 15% ethanol, corresponding to wine aging conditions. Analysis of volatiles with GC-MS showed a 65–70% increase in total terpenoids and new detection of C13-norisoprenoids when the wines were treated with the three β-glucosidases. In addition, wines treated with Mg-βgl and Hu-βgl had more hexanol, phenylethanol, ethyl octanoate, ethyl heptanoate, and ethyl caprate than wines treated without and with An-βgl. In sensory analysis, the judges showed a greater preference for Hu-βgl-treated wines, to which they attributed pleasant sweet, floral, honey, pomelo, and banana aromas. The results of this study not only offer a way to improve flavor complexity in wine but also provide a reference for the use of other edible sources of β-glucosidase in wine aging.
Collapse
|
12
|
Metabolomic and transcriptional profiling of oleuropein bioconversion into hydroxytyrosol during table olive fermentation by Lactiplantibacillus plantarum. Appl Environ Microbiol 2022; 88:e0201921. [PMID: 35170988 PMCID: PMC8939334 DOI: 10.1128/aem.02019-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
This study aims to elucidate the mechanisms responsible for the bioconversion of oleuropein into low-molecular-weight phenolic compounds in two selected Lactiplantibacillus plantarum strains, namely, C11C8 and F3.5, under stress brine conditions and at two different temperatures (16°C and 30°C). For this purpose, we adopted an experimental strategy that combined high-resolution mass spectrometry, in silico functional analysis of glycoside hydrolase family 1 (GH1)-encoding candidate genes, and gene expression studies. The oleuropein hydrolysis products and the underlying enzymatic steps were identified, and a novel putative bgl gene was detected, using seven strains belonging to the same species as controls. According to metabolomic analysis, a new intermediate compound (decarboxymethyl dialdehydic form of oleuropein aglycone) was revealed. In addition, strain C11C8 showed a decrease in the oleuropein content greater than that of the F3.5 strain (30% versus 15%) at a temperature of 16°C. The highest increase in hydroxytyrosol was depicted by strain C11C8 at a temperature of 30°C. PCR assays and sequencing analyses revealed that both strains possess bglH1, bglH2, and bglH3 genes. Furthermore, a reverse transcription-PCR (RT-PCR) assay showed that bglH3 is the only gene transcribed under all tested conditions, while bglH2 is switched off in strain C11C8 grown at cold temperatures, and no transcription was detected for the bglH1 gene. The bglH3 gene encodes a 6-phospho-β-glucosidase, suggesting how phospho-β-glucosidase activity could belong to the overall metabolic strategy undertaken by L. plantarum to survive in an environment poor in free sugars, like table olives. IMPORTANCE In the present study, a new candidate gene, bglH3, responsible for the β-glucosidase-positive phenotype in L. plantarum was detected, providing the basis for the future marker-assisted selection of L. plantarum starter strains with a β-glucosidase-positive phenotype. Furthermore, the ability of selected strains to hydrolyze oleuropein at low temperatures is important for application as starter cultures on an industrial scale.
Collapse
|
13
|
Fan T, Jing S, Zhang H, Yang X, Jin G, Tao Y. Localization, purification, and characterization of a novel β-glucosidase from Hanseniaspora uvarum Yun268. J Food Sci 2022; 87:886-894. [PMID: 35142373 DOI: 10.1111/1750-3841.16068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
β-Glucosidase is a key enzyme that hydrolyzes nonvolatile glycosylated precursors of aroma compounds and enhances the organoleptic quality of wines. In this study, a novel β-glucosidase from Hanseniaspora uvarum Yun268 was localized, purified, and characterized. Results indicated that β-glucosidase activity was mainly distributed within the cells. After purification via ammonium sulfate precipitation combined with chromatography, β-glucosidase specific activity increased 8.36 times, and the activity recovery was 56.90%. The enzyme had a molecular mass of 74.22 kDa. It has a Michaelis constant (Km ) of 0.65 mmol/L, and a maximum velocity (Vmax ) of 5.1 nmol/min under optimum conditions; and Km of 0.94 mmol/L, and Vmax of 2.8 nmol/min under typical winemaking conditions. It exhibited the highest activity at 50°C and pH 5.0 and was stable at a temperature range of 20-80°C and pH range of 3.0-8.0. The enzyme has good tolerance to Fe3+ , especially maintaining 93.68% of its activity with 10 mmol/L of Fe3+ . Ethanol (<20%) and glucose (<150 g/L) inhibited its activity only slightly. Therefore, β-glucosidase from H. uvarum Yun268 has excellent biochemical properties and a good application potential in winemaking. PRACTICAL APPLICATION: Winemaking is a biotechnological process in which exogenous β-glucosidase is used to overcome the deficiency of endogenous β-glucosidase activity in grapes. By localizing, purifying, and characterizing of β-glucosidase from Hanseniaspora uvarum Yun268, it is expected to reveal its physical and chemical characteristics to evaluate its oenological properties in winemaking. The results may provide the basis for promoting the release of varietal aroma and improving wine sensory quality in the wine industry.
Collapse
Affiliation(s)
- Tongtong Fan
- College of Enology, Northwest A&F University, Yangling, China
| | - Siyu Jing
- College of Enology, Northwest A&F University, Yangling, China
| | - Hongyan Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaobing Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Guojie Jin
- College of Enology, Northwest A&F University, Yangling, China.,Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, Yangling, China.,Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
| |
Collapse
|
14
|
Li X, Xia X, Wang Z, Wang Y, Dai Y, Yin L, Xu Z, Zhou J. Cloning and expression of
Lactobacillus brevis
β‐glucosidase
and its effect on the aroma of strawberry wine. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaonan Li
- School of Food and Biological Engineering, Jiangsu University Zhenjiang China
- Institute of Agro‐Product Processing, Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Xiudong Xia
- School of Food and Biological Engineering, Jiangsu University Zhenjiang China
- Institute of Agro‐Product Processing, Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Zhe Wang
- Institute of Agro‐Product Processing, Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology, Nanjing Agricultural University Nanjing China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University Zhenjiang China
| | - Yiqiang Dai
- Institute of Agro‐Product Processing, Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology, Nanjing Agricultural University Nanjing China
| | - Liqing Yin
- Institute of Agro‐Product Processing, Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology, Nanjing Agricultural University Nanjing China
| | - Zhuang Xu
- School of Food and Biological Engineering, Jiangsu University Zhenjiang China
- Institute of Agro‐Product Processing, Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Jianzhong Zhou
- School of Food and Biological Engineering, Jiangsu University Zhenjiang China
- Institute of Agro‐Product Processing, Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology, Nanjing Agricultural University Nanjing China
| |
Collapse
|
15
|
Fungal cellulases: protein engineering and post-translational modifications. Appl Microbiol Biotechnol 2021; 106:1-24. [PMID: 34889986 DOI: 10.1007/s00253-021-11723-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Enzymatic degradation of lignocelluloses into fermentable sugars to produce biofuels and other biomaterials is critical for environmentally sustainable development and energy resource supply. However, there are problems in enzymatic cellulose hydrolysis, such as the complex cellulase composition, low degradation efficiency, high production cost, and post-translational modifications (PTMs), all of which are closely related to specific characteristics of cellulases that remain unclear. These problems hinder the practical application of cellulases. Due to the rapid development of computer technology in recent years, computer-aided protein engineering is being widely used, which also brings new opportunities for the development of cellulases. Especially in recent years, a large number of studies have reported on the application of computer-aided protein engineering in the development of cellulases; however, these articles have not been systematically reviewed. This article focused on the aspect of protein engineering and PTMs of fungal cellulases. In this manuscript, the latest literatures and the distribution of potential sites of cellulases for engineering have been systematically summarized, which provide reference for further improvement of cellulase properties. KEY POINTS: •Rational design based on virtual mutagenesis can improve cellulase properties. •Modifying protein side chains and glycans helps obtain superior cellulases. •N-terminal glutamine-pyroglutamate conversion stabilizes fungal cellulases.
Collapse
|
16
|
Huang H, Peng F, Li J, Liu Z, Xie M, Xiong T. Isolation and characteristics of lactic acid bacteria with antibacterial activity against Helicobacter pylori. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Performance of a novel β-glucosidase BGL0224 for aroma enhancement of Cabernet Sauvignon wines. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Su H, Xiao Z, Yu K, Zhang Q, Lu C, Wang G, Wang Y, Liang J, Huang W, Huang X, Wei F. High Diversity of β-Glucosidase-Producing Bacteria and Their Genes Associated with Scleractinian Corals. Int J Mol Sci 2021; 22:ijms22073523. [PMID: 33805379 PMCID: PMC8037212 DOI: 10.3390/ijms22073523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
β-Glucosidase is a microbial cellulose multienzyme that plays an important role in the regulation of the entire cellulose hydrolysis process, which is the rate-limiting step in bacterial carbon cycling in marine environments. Despite its importance in coral reefs, the diversity of β-glucosidase-producing bacteria, their genes, and enzymatic characteristics are poorly understood. In this study, 87 β-glucosidase-producing cultivable bacteria were screened from 6 genera of corals. The isolates were assigned to 21 genera, distributed among three groups: Proteobacteria, Firmicutes, and Actinobacteria. In addition, metagenomics was used to explore the genetic diversity of bacterial β-glucosidase enzymes associated with scleractinian corals, which revealed that these enzymes mainly belong to the glycosidase hydrolase family 3 (GH3). Finally, a novel recombinant β-glucosidase, referred to as Mg9373, encompassing 670 amino acids and a molecular mass of 75.2 kDa, was classified as a member of the GH3 family and successfully expressed and characterized. Mg9373 exhibited excellent tolerance to ethanol, NaCl, and glucose. Collectively, these results suggest that the diversity of β-glucosidase-producing bacteria and genes associated with scleractinian corals is high and novel, indicating great potential for applications in the food industry and agriculture.
Collapse
Affiliation(s)
- Hongfei Su
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Zhenlun Xiao
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China
- Correspondence:
| | - Qi Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Chunrong Lu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Guanghua Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Fen Wei
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| |
Collapse
|