1
|
Wang Z, Hao C, Li N, Jiang C, Xiao Z, Wang L, Pan T, Liao J, Tian Y. Visual colorimetric label for real-time monitoring of SO 2 concentration change in grape and mango during storage. Food Chem 2025; 463:141530. [PMID: 39393114 DOI: 10.1016/j.foodchem.2024.141530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Sulfur dioxide (SO2) is widely utilized as a preservative in food transportation and storage, but excessive consumption poses health risks. This study presents a novel and efficient method for the real-time detection of SO2 using a sensor named TK, synthesized from triphenylamine and 2-cyanomethyl-1-methyl-quinolinium. The core mechanism involves the Michael addition reaction of the CC bond in TK with SO2, which disrupts the intramolecular charge transfer process, resulting in a significant color change and a blue shift in fluorescence emission. Methodologically, the sensor's response was quantified by the change in fluorescence intensity ratio (I425/I647) within a SO2 concentration range of 0-180 μM. The sensor exhibited high sensitivity and selectivity. For practical application, TK was incorporated into hydrophilic polyvinyl alcohol to create a smart label capable of visual colorimetry and fluorescence analysis. SO2 concentration changes were monitored by using this label, demonstrated by the color transition from burgundy red to colorless, yielding a maximum color difference (ΔE) of 73.6. The smart label was successfully used to monitor the quality of various grapes and mangoes during long-term storage, providing a reliable, equipment-independent method suitable for household use. The study offers a new tool for enhancing food safety and mitigating health risks associated with SO2 exposure.
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Medicine, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Changxiang Hao
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Nanxin Li
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 51000, China
| | - Chengwei Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Ziyu Xiao
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Liyang Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Tingting Pan
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen 518038, China.
| | - Jianxiang Liao
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen 518038, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Li K, Guo Z, Wu Y, Xu H, Jiang J, Wu H, Sun C, Li Q. Assessing the effects of dual functional V-type cornstarch films added with kiwifruit peel extracts on preservation of fresh-cut kiwifruits: A metabolomics study. Int J Biol Macromol 2024; 291:138833. [PMID: 39708893 DOI: 10.1016/j.ijbiomac.2024.138833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Fresh-cut fruit, with nutrition and convenience, has a broad market demand. However, its shelf life is shortened due to its tissue damage. Therefore, the development of cost-effective and eco-friendly multifunctional packaging materials to extend the shelf life of fresh-cut fruits is urgently needed. A cornstarch-based film (CS film) was successfully prepared using V-type corn starch as an ethylene scavenger and kiwifruit peel extract (KPE) as an antioxidant. The film containing 4.00 % (v/v) KPE had a DPPH radical scavenging capability of 52.1 % ± 2.4 % and ABTS radical scavenging capability of 70.4 % ± 4.4 %. The amount of ethylene harvested was 17.27 cm3 g-1. In addition, the malondialdehyde content of fresh-cut kiwifruits covered by CS film decreased by 42.82 % compared with PE film after 72 h, and the hardness increased 71.20 %. And the CS film could regulate ethylene and oxygen concentration, and extending the fresh life of kiwifruit from 3 days to 15 days. Metabolomics and transcriptomic analyses revealed that the CS film regulated ethylene self-promotion and the balance of reactive oxygen species metabolism. As a result, these reduced sugar synthesis and metabolism, which helped to maintain the freshness of fresh-cut kiwifruit. These findings can serve as a reference for developing techniques to preserve the packaging of fresh-cut fruits.
Collapse
Affiliation(s)
- Kexin Li
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhenlong Guo
- Business Comprehensive Service Center, Baiguan Street, Shangyu District, Shaoxing City, Zhejiang 312399, China
| | - Yi Wu
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Xu
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Juanjuan Jiang
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Wu
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Changxia Sun
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Li
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Mwelase S, Adeyemi JO, Fawole OA. Recent Advances in Postharvest Application of Exogenous Phytohormones for Quality Preservation of Fruits and Vegetables. PLANTS (BASEL, SWITZERLAND) 2024; 13:3255. [PMID: 39599464 PMCID: PMC11598769 DOI: 10.3390/plants13223255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The increasing global population has heightened the demand for food, leading to escalated food production and, consequently, the generation of significant food waste. Factors such as rapid ripening, susceptibility to physiological disorders, and vulnerability to microbial attacks have been implicated as contributing to the accelerated senescence associated with food waste generation. Fruits and vegetables, characterized by their high perishability, account for approximately half of all food waste produced, rendering them a major area of concern. Various postharvest technologies have thus been employed, including the application of phytohormone treatments, to safeguard and extend the storability of highly perishable food products. This review, therefore, explores the physicochemical properties and biological aspects of phytohormones that render them suitable for food preservation. Furthermore, this review examines the effects of externally applied phytohormones on the postharvest physiology and quality attributes of fresh produce. Finally, the review investigates the mechanisms by which exogenous phytohormones preserve food quality and discusses the associated limitations and safety considerations related to the use of these compounds in food applications.
Collapse
Affiliation(s)
- Sbulelo Mwelase
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (S.M.); (J.O.A.)
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Jerry O. Adeyemi
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (S.M.); (J.O.A.)
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi A. Fawole
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (S.M.); (J.O.A.)
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
4
|
Du C, Jiang Y, Junejo SA, Jia X, Zhang B, Huang Q. Metal-anchored oxidized starch-pullulan nanofiber films enhance ethylene adsorption and banana preservation. Int J Biol Macromol 2024; 282:137399. [PMID: 39521234 DOI: 10.1016/j.ijbiomac.2024.137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The development of novel strategies to control ethylene accumulation of fruit is crucial for improving food preservation and reducing spoilage-related losses. In this study, an oxidized starch-pullulan (OS-PUL) nanofiber films were prepared with silver, copper, and iron to control ethylene accumulation. The starch nanofiber film exhibited an average diameter of 96 nm at an OS-PUL concentration of 25 % (wt/wt). Adsorption test showed the maximum ethylene adsorption capacity (21.86 mg·m-2) of metal-nanofiber film with typical hierarchical microporous and mesoporous structure. Oxidized starch-pullulan-metal-nanofiber film extended the shelf life of bananas from 8 to 15 days by efficiently absorbing ethylene. This work will contribute to the development of innovative packaging materials with ethylene adsorption properties, which can help reduce food waste.
Collapse
Affiliation(s)
- Chunwei Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China.
| |
Collapse
|
5
|
Dey B, Prabhakar MR, Jayaraman S, Gujjala LKS, Venugopal AP, Balasubramanian P. Biopolymer-based solutions for enhanced safety and quality assurance: A review. Food Res Int 2024; 191:114723. [PMID: 39059918 DOI: 10.1016/j.foodres.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The improper disposal of petroleum-based plastics has been associated with detrimental environmental consequences, such as the proliferation of microplastic pollution and increased emissions of greenhouse gases (GHGs). Consequently, biopolymers have emerged as a highly regarded alternative due to their environmental-friendly attributes and versatile range of applications. In response to consumer demands for safer food options, sustainable packaging, and escalating environmental concerns, the food sector is increasingly adopting biopolymers. Further, in the recent decade, the usage of active or functional biopolymers has evolved into smart biopolymers that can transmit real-time data to consumers. This review covers key topics such as antimicrobial and biodegradable packaging, edible coatings and films, incorporation of scavengers and bioactive substances that prolong the shelf life and guard against moisture and microbial contamination. The paper also discusses the development of edible cutlery as a sustainable substitute for plastic, the encapsulation of bioactive substances within biopolymers, 3-D food printing for regulated nutrition delivery and thickening and gelling agents that improve food texture and stability. It also discusses the integration of smart polymer functions, demonstrating their importance in guaranteeing food safety and quality, such as biosensing, pH and gas detection, antibacterial characteristics, and time-temperature monitoring. By shedding light on market trends, future scope, and potentialities, this review aims to elucidate the prospects of utilizing biopolymers to address sustainability and quality concerns within the food industry effectively.
Collapse
Affiliation(s)
- Baishali Dey
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Muhil Raj Prabhakar
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Sivaraman Jayaraman
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | | | - Arun Prasath Venugopal
- Department of Food Process Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Paramasivan Balasubramanian
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India.
| |
Collapse
|
6
|
de Morais EG, Silva MA, Quispe APV, Machado GGL, Prado DT, Benevenute PAN, Lima JDS, de Sousa GF, de Barros Vilas Boas EV, Guilherme LRG. Foliar Sprays of Multi-Nutrient Fertilizer Containing Selenium Produce Functional Tomato Fruits with Higher Shelf Life. PLANTS (BASEL, SWITZERLAND) 2024; 13:2288. [PMID: 39204724 PMCID: PMC11358990 DOI: 10.3390/plants13162288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Selenium (Se) is a nutrient whose daily intake is often below the recommended levels in people. Biofortification with Se is a method to increase this intake by raising the Se concentration in tomato fruits, an effect dependent on sources and modes of application. Additionally, Se application can promote the enhancement of other compounds in tomato fruits, altering their metabolism, which may increase the fruit's shelf life. This study aimed to determine how different strategies of applying a multi-nutrient fertilizer containing Se (SeMNF) can increase the Se content and other bioactive compounds and enhance the shelf life of tomato (Solanum lycopersicum L.) fruits. Different foliar fertilization strategies involving the use of SeMNF were evaluated in field trials conducted on commercial tomato crops. Indeterminate-growth tomatoes were used, and different Se doses and application strategies were tested. Harvesting was conducted in three phases according to fruit ripening. Each harvested fruit was assessed for the Se content, macro and micronutrients, total phenolic compounds, vitamin C, antioxidant activity, carotenoids, pH, total titratable acidity, and total soluble solids in tomato fruits. Doses of 15 g ha-1 of Se, split into three applications, increased the Se content in the fruits at 1 and 2 harvests. The application of SeMNF at Se doses above 10 g of Se ha-1 increased firmness, days of ripening, and the nutritional quality of the tomatoes (higher contents of carotenoids (+39%), lycopene (+33%), antioxidant activity (+16%), total phenolic compounds (+38%), and vitamin C (+14%) in a dose-dependent effect of the application strategy used. These results contributed to an increase in the shelf life of tomatoes, consequently reducing food waste.
Collapse
Affiliation(s)
- Everton Geraldo de Morais
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | - Maila Adriely Silva
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | - Anyela Pierina Vega Quispe
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | - Gilson Gustavo Lucinda Machado
- Department of Food Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil; (G.G.L.M.)
| | - Debora Teixeira Prado
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | | | - Jucelino de Sousa Lima
- Department of Biology, Institute of Natural Sciences, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | - Gustavo Ferreira de Sousa
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| | | | - Luiz Roberto Guimarães Guilherme
- Department of Soil Science, Federal University of Lavras, University Campus, P.O. Box 3037, Lavras 37203-202, Minas Gerais, Brazil
| |
Collapse
|
7
|
Sapna, Sharma C, Pathak P, Yadav SP, Gautam S. Potential of emerging “all-natural” edible coatings to prevent post-harvest losses of vegetables and fruits for sustainable agriculture. PROGRESS IN ORGANIC COATINGS 2024; 193:108537. [DOI: 10.1016/j.porgcoat.2024.108537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Hu Y, Li T. Smart food packaging: Recent advancement and trends. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:1-33. [PMID: 39103211 DOI: 10.1016/bs.afnr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Food packaging plays an important role in protecting the safety and quality of food products and enables communication with consumers. With the improved consumers' awareness of safety and quality of food products, the changes in consumers' lifestyle, and the growing demand for transparency of food products along the supply chain, food packaging technologies have evolved from only providing the four fundamental functions (i.e., protection and preservation, containment, communication and marketing, and convenience) to possessing additional functions including active modification of the inside microenvironment (i.e., active packaging) and monitoring the safety and quality of products in real-time (i.e., intelligent packaging). A variety of active and intelligent packaging systems have been developed to better protect and monitor the quality and safety of food products during the past several decades. Recently, advanced versions of smart packaging technologies, such as smart active packaging and smart intelligent packaging technologies have also been developed to enhance the effectiveness of conventional smart packaging systems. Additionally, smart packaging systems that harvest the advantages of both active packaging and intelligent packaging have also been developed. In this chapter, a brief overview of smart packaging technologies was provided. Specific technologies being covered include conventional smart packaging technologies and advanced smart packaging technologies, such as smart active packaging, smart intelligent packaging and dual-function smart packaging.
Collapse
Affiliation(s)
- Yaxi Hu
- Food Science Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada.
| | - Tianqi Li
- Food Science Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
9
|
Oliveira ACDJ, Rodrigues CAP, de Almeida MC, Mársico ET, Scalize PS, de Oliveira TF, Solar VA, Valdés H. Ethylene Elimination Using Activated Carbons Obtained from Baru ( Dipteryx alata vog.) Waste and Impregnated with Copper Oxide. Molecules 2024; 29:2717. [PMID: 38930782 PMCID: PMC11206033 DOI: 10.3390/molecules29122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Ethylene is a plant hormone regulator that stimulates chlorophyll loss and promotes softening and aging, resulting in a deterioration and reduction in the post-harvest life of fruit. Commercial activated carbons have been used as ethylene scavengers during the storage and transportation of a great variety of agricultural commodities. In this work, the effect of the incorporation of copper oxide over activated carbons obtained from baru waste was assessed. Samples were characterized by X-ray diffraction (XRD), N2 adsorption-desorption at -196 °C, field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), and infrared (IR) spectroscopy. The results showed that the amount of ethylene removed using activated carbon obtained from baru waste and impregnated with copper oxide (1667 μg g-1) was significantly increased in comparison to the raw activated carbon (1111 μg g-1). In addition, carbon impregnated with copper oxide exhibited better adsorption performance at a low ethylene concentration. Activated carbons produced from baru waste are promising candidates to be used as adsorbents in the elimination of ethylene during the storage and transportation of agricultural commodities at a lower cost.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Sérgio Scalize
- School of Civil and Environmental Engineering, Federal University of Goiás, Goiania 74605-220, Brazil
| | | | - Victor Andrés Solar
- Clean Technologies Laboratory, Engineering Faculty, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepcion 4030000, Chile
| | - Héctor Valdés
- Clean Technologies Laboratory, Engineering Faculty, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepcion 4030000, Chile
| |
Collapse
|
10
|
Regadera-Macías AM, Morales-Torres S, Pastrana-Martínez LM, Maldonado-Hódar FJ. Optimizing filters of activated carbons obtained from biomass residues for ethylene removal in agro-food industry devices. ENVIRONMENTAL RESEARCH 2024; 248:118247. [PMID: 38253198 DOI: 10.1016/j.envres.2024.118247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
A series of adsorbents (activated carbons, ACs) were synthesized by physical and chemical activation of olive stones (OS) and their textural and chemical characteristics determined by complementary techniques such as N2 and CO2 physisorption, pH of the point zero of charge (pHPZC), HRSEM or XPS. Samples with a wide range of physicochemical properties were obtained by fitting the activation procedure. The performance of these adsorbents in filters working under dynamic conditions was studied by determining the corresponding breakthrough curves for the ethylene removal. The physicochemical transformations of OS during activation were related with the adsorptive performance of derivative ACs. Results were compared to those obtained using commercial carbons, in particular ACs, carbon black or carbon fibers, in order to identify the properties of these materials on influencing the adsorptive performance. In general, ACs from OS perform better than the commercial samples, being also easily regenerated and properly used during consecutive adsorption cycles. CO2-activation showed to be the best synthesis option, leading to granular ACs with a suitable microporosity and surface chemistry. These results could favour the integration of this type of inexpensive materials on devices for the preservation of climacteric fruits, in a clear example of circular economy by reusing the agricultural residues.
Collapse
Affiliation(s)
- Ana M Regadera-Macías
- NanoTech - Nanomaterials and Sustainable Chemicals Technologies, Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, s/n, ES18071, Granada, Spain
| | - Sergio Morales-Torres
- NanoTech - Nanomaterials and Sustainable Chemicals Technologies, Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, s/n, ES18071, Granada, Spain
| | - Luisa M Pastrana-Martínez
- NanoTech - Nanomaterials and Sustainable Chemicals Technologies, Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, s/n, ES18071, Granada, Spain.
| | - Francisco J Maldonado-Hódar
- NanoTech - Nanomaterials and Sustainable Chemicals Technologies, Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, s/n, ES18071, Granada, Spain
| |
Collapse
|
11
|
Ma Y, Xiong H, Zhang J. Proposals for gas-detection improvement of the FeMPc monolayer towards ethylene and formaldehyde by using bimetallic synergy. Phys Chem Chem Phys 2024; 26:12070-12083. [PMID: 38586982 DOI: 10.1039/d3cp05325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Development and fabrication of a novel gas sensor with superb performance are crucial for enabling real-time monitoring of ethylene (C2H4) and formaldehyde (H2CO) emissions from industrial manufacture. Herein, first-principles calculations and AIMD simulations were carried out to investigate the effect of the Fe-M dimer on the adsorption of C2H4 and H2CO on metal dimer phthalocyanine (FeMPc, M = Ti-Zn) monolayers, and the electronic structures and sensing properties of the above adsorption systems were systematically discussed. The results show that the FeMPc (M = Ti, V, Cr, Mn) monolayers interact with C2H4 and H2CO by chemisorption except for the FeMnPc/H2CO system, while the other adsorption systems are all characterized by physisorption. Interestingly, the adsorption strength of C2H4 and H2CO can be effectively regulated by the bimetallic synergy of the Fe-M dimer. Moreover, the FeCrPc and FeMnPc monolayers exhibit excellent sensitivity towards C2H4 and H2CO, and have short recovery time (4.69 ms-2.31 s) for these gases at room temperature due to the effective surface diffusion at 300 K. Consequently, the FeCrPc and FeMnPc materials can be utilized as high-performance, reusable gas sensors for detecting C2H4 and H2CO, and have promising applications in monitoring the release of ethylene and formaldehyde from industrial processes.
Collapse
Affiliation(s)
- Yingying Ma
- School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China.
- Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, GanZhou 34100, China
| | - Huihui Xiong
- School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China.
- Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, GanZhou 34100, China
| | - Jianbo Zhang
- Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, GanZhou 34100, China
| |
Collapse
|
12
|
Xiao F, Xiao Y, Ji W, Li L, Zhang Y, Chen M, Wang H. Photocatalytic chitosan-based bactericidal films incorporated with WO 3/AgBr/Ag and activated carbon for ethylene removal and application to banana preservation. Carbohydr Polym 2024; 328:121681. [PMID: 38220356 DOI: 10.1016/j.carbpol.2023.121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Ethylene (C2H4) and pathogenic microorganisms are the two major causes of the deterioration of postharvest fruits and vegetables (F&V). Hence, the development of active packaging with C2H4 scavenging and bactericidal activities is urgently desirable. Herein, a novel photocatalytic active film (CS-PC-AC) is developed for banana preservation by incorporating WO3/AgBr/Ag photocatalyst (PC) and activated carbon (AC) into chitosan (CS). The fabricated PC is a ternary Z-scheme heterojunction and its high photocatalytic activity is achieved by the bridge of Ag between WO3 and AgBr through rapid transfer and separation of photogenerated electrons and holes. AC plays an indispensable role in the photocatalytic reaction through molecule adsorption and transport. PC and AC are hydrogen bonded with chitosan and their incorporation has slight effect on film's thermal stability but decreases the film's mechanical and barrier properties to some extent. CS-PC-AC exhibits strong bactericidal activity (killing ~100 % of Escherichia coli and Staphylococcus aureus within 3 h) and good C2H4 scavenging activity (C2H4 scavenging rate of 49 ± 2 %) under visible light irradiation, which can extend the banana shelf-life by at least 50 % at 25 °C. These results indicate the good perspective of CS-PC-AC in the delay of the deterioration of postharvest F&V.
Collapse
Affiliation(s)
- Feng Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yewen Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Wei Ji
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yimeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Minmin Chen
- School of Biological and Environmental Engineering, Chaohu University, 238000 Hefei, Anhui, China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, China.
| |
Collapse
|
13
|
Qi Y, Yang H, Li C, Li H. Enhanced Adsorption of Trace Ethylene on Ag/NZ5 Modified with Ammonia: Hierarchical Structure and Metal Dispersion Effects. Molecules 2024; 29:981. [PMID: 38474493 DOI: 10.3390/molecules29050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Trace ethylene poses a significant challenge during the storage and transportation of agricultural products, causing over-ripening, reducing shelf life, and leading to food waste. Zeolite-supported silver adsorbents show promise for efficiently removing trace ethylene. Herein, hierarchical Ag/NZ5(X) adsorbents were prepared via different ammonia modifications, which featured enhanced ethylene adsorption ability. Ag/NZ5(2.5) exhibited the largest capacity and achieved near-complete removal at room temperature with prolonged efficacy. Characterization results indicated that the ammonia modification led to the formation of a hierarchical structure in the zeolite framework, reducing diffusion resistance and increasing the accessibility of the active sites. Additionally, desilication effects increased the defectiveness, generating a stronger metal-support interaction and resulting in a higher metal dispersion rate. These findings provide valuable insights into the development of efficient adsorbents for removing trace ethylene, thereby reducing food waste and extending the shelf life of agricultural products.
Collapse
Affiliation(s)
- Ying Qi
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Huaming Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
14
|
Mohammad ZH, Ahmad F. Nanocoating and its application as antimicrobials in the food industry: A review. Int J Biol Macromol 2024; 254:127906. [PMID: 37935295 DOI: 10.1016/j.ijbiomac.2023.127906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Nanocoatings are ultra-thin layers on the nanoscale (<100 nm) that are deposited on the substrate to improve their properties and functionality. These nanocoatings provide significant advantages compared to traditional coating, including stain resistance, antimicrobial and antioxidant activities, odor control and delivery of active agents, and liquid repellence properties. In the food industry, nanocoating is widely used in the food packaging sector. In this regard, nanocoating offers antimicrobials and antioxidant properties to active food packaging by incorporating active bioactive compounds into materials used in already existing packaging. The application of nanocoating is applied to these kinds of food packaging with nano coating to improve shelf life, safety, and quality of food packaging. In smart/intelligent packaging, the active packaging coating is promising food packaging, which is designed by releasing preservatives and nanocoating as an antimicrobial, antifungal, antioxidant, barrier coating, and self-cleaning food contact surfaces. In addition, nanocoating can be used for food contact surfaces, kitchen utensils, and food processing equipment to create antimicrobial, antireflective, and dirt-repellent properties. These are critical properties for food processing, especially for meat and dairy processing facilities, which can reduce biofilm formation and prevent cross-contamination. Recently, appreciable growth in the development of the application of nanocoating as edible films for coating food products has emerged to improve food safety issues. In this regard, much scientific research in the area of nanocoating fruits and vegetables, and other food products was performed to address food safety issues. Hence, this promising technology can be a great addition to the agricultural and food industries. Thus, this review addresses the most relevant information about this technology and the applications of nanocoating in the food industry.
Collapse
Affiliation(s)
- Zahra H Mohammad
- Conrad N. Hilton College of Hotel and Restaurant Management, University of Houston, Houston, TX 77204-3028, USA
| | - Faizan Ahmad
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
15
|
Lagarda-Clark EA, Goulet C, Duarte-Sierra A. Biochemical dynamics during postharvest: Highlighting the interplay of stress during storage and maturation of fresh produce. Biomol Concepts 2024; 15:bmc-2022-0048. [PMID: 38587059 DOI: 10.1515/bmc-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The lifecycle of fresh produce involves a sequence of biochemical events during their ontology, and these events are particularly significant for climacteric fruits. A high demand during ripening is observed in these plant products, which is reflected in a high rate of respiration and ethylene production. Increased respiratory demand triggers the activation of secondary pathways such as alternate oxidase, which do not experience critical increases in energy consumption in non-climacteric fruit. In addition, biochemical events produced by external factors lead to compensatory responses in fresh produce to counteract the oxidative stress caused by the former. The dynamics of these responses are accompanied by signaling, where reactive oxygen species play a pivotal role in fresh product cell perception. This review aims to describe the protection mechanisms of fresh produce against environmental challenges and how controlled doses of abiotic stressors can be used to improve quality and prolong their shelf-life through the interaction of stress and defense mechanisms.
Collapse
Affiliation(s)
- Ernesto Alonso Lagarda-Clark
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 8 0A6, Canada
| | - Charles Goulet
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Department of Phytology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Arturo Duarte-Sierra
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 8 0A6, Canada
| |
Collapse
|
16
|
Bhat SA, Rizwan D, Mir SA, Wani SM, Masoodi FA. Advances in apple packaging: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1847-1859. [PMID: 37206415 PMCID: PMC10188779 DOI: 10.1007/s13197-022-05447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 05/21/2023]
Abstract
Apple (Malus domestica) belongs to the family Rosaceae. It is one of the most commonly cultivated fruit in all temperate zones of the world and holds an equally important place in the global economy. Apple is a climacteric fruit and undergoes metabolic changes even after the harvest and thus prone to post-harvest losses. The packaging of apples plays an important role in extending the shelf life of the apples and also maintains the quality during distribution and transport. The prime role of packaging is to contain the food commodity and protect the enclosed product from external damage. But other functions such as traceability, convenience and temper evidence are of secondary importance. Different packaging techniques are employed for the packaging of apples which include both conventional (wooden boxes, corrugated fiber boxes, crates) and non-conventional packaging like modified atmosphere packaging (MAP), active packaging, edible coatings, etc.
Collapse
Affiliation(s)
- Saiqa Aziz Bhat
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Danish Rizwan
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Sajad Ahmad Mir
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Shoib Mohmad Wani
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - F. A. Masoodi
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| |
Collapse
|
17
|
Alonso-Salinas R, López-Miranda S, González-Báidez A, Pérez-López AJ, Noguera-Artiaga L, Núñez-Delicado E, Carbonell-Barrachina Á, Acosta-Motos JR. Effect of Potassium Permanganate, Ultraviolet Radiation and Titanium Oxide as Ethylene Scavengers on Preservation of Postharvest Quality and Sensory Attributes of Broccoli Stored with Tomatoes. Foods 2023; 12:2418. [PMID: 37372629 DOI: 10.3390/foods12122418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This study introduces an effective solution to enhance the postharvest preservation of broccoli, a vegetable highly sensitive to ethylene, a hormone produced by climacteric fruits such as tomatoes. The proposed method involves a triple combination of ethylene elimination techniques: potassium permanganate (KMnO4) filters combined with ultraviolet radiation (UV-C) and titanium oxide (TiO2), along with a continuous airflow to facilitate contact between ethylene and these oxidizing agents. The effectiveness of this approach was evaluated using various analytical techniques, including measurements of weight, soluble solids content, total acidity, maturity index, color, chlorophyll, total phenolic compounds, and sensory analysis conducted by experts. The results demonstrated a significant improvement in the physicochemical quality of postharvest broccoli when treated with the complete system. Notably, broccoli subjected to this innovative method exhibited enhanced organoleptic quality, with heightened flavors and aromas associated with fresh green produce. The implementation of this novel technique holds great potential for the food industry as it reduces postharvest losses, extends the shelf life of broccoli, and ultimately enhances product quality while minimizing waste. The successful development and implementation of this new technique can significantly improve the sustainability of the food industry while ensuring the provision of high-quality food to consumers.
Collapse
Affiliation(s)
- Ramiro Alonso-Salinas
- Plant Biotechnology for Food and Agriculture Group (BioVegA2), Universidad Católica San Antonio de Murcia, Avenida de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Plant Biotechnology, Agriculture and Climate Resilience Group, UCAM-CEBAS-CSIC, Associated Unit to CSIC by CEBAS-CSIC, DP, 30100 Murcia, Spain
| | - Santiago López-Miranda
- Plant Biotechnology for Food and Agriculture Group (BioVegA2), Universidad Católica San Antonio de Murcia, Avenida de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Plant Biotechnology, Agriculture and Climate Resilience Group, UCAM-CEBAS-CSIC, Associated Unit to CSIC by CEBAS-CSIC, DP, 30100 Murcia, Spain
| | - Ana González-Báidez
- Plant Biotechnology for Food and Agriculture Group (BioVegA2), Universidad Católica San Antonio de Murcia, Avenida de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Plant Biotechnology, Agriculture and Climate Resilience Group, UCAM-CEBAS-CSIC, Associated Unit to CSIC by CEBAS-CSIC, DP, 30100 Murcia, Spain
| | - Antonio José Pérez-López
- Plant Biotechnology for Food and Agriculture Group (BioVegA2), Universidad Católica San Antonio de Murcia, Avenida de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Plant Biotechnology, Agriculture and Climate Resilience Group, UCAM-CEBAS-CSIC, Associated Unit to CSIC by CEBAS-CSIC, DP, 30100 Murcia, Spain
| | - Luis Noguera-Artiaga
- Research Group "Food Quality and Safety", Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel, Km 3.2, 03312 Orihuela, Spain
| | - Estrella Núñez-Delicado
- Molecular Recognition and Encapsulation Group (REM), UCAM Universidad Católica de Murcia, Avenida de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ángel Carbonell-Barrachina
- Research Group "Food Quality and Safety", Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel, Km 3.2, 03312 Orihuela, Spain
| | - José Ramón Acosta-Motos
- Plant Biotechnology for Food and Agriculture Group (BioVegA2), Universidad Católica San Antonio de Murcia, Avenida de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Plant Biotechnology, Agriculture and Climate Resilience Group, UCAM-CEBAS-CSIC, Associated Unit to CSIC by CEBAS-CSIC, DP, 30100 Murcia, Spain
| |
Collapse
|
18
|
Khedr EH, Al-Khayri JM. Synergistic Effects of Tragacanth and Anti-ethylene Treatments on Postharvest Quality Maintenance of Mango ( Mangifera indica L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091887. [PMID: 37176945 PMCID: PMC10180912 DOI: 10.3390/plants12091887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Mango (Mangifera indica L.) is one of the most popular tropical fruits grown in Egypt and several other countries, making it a potential export commodity. Excessive deterioration after harvest requires various treatments to maintain fruit quality. We evaluated the treatments effects of melatonin (MT) as an anti-ethylene agent and tragacanth gum (TRG) as an edible coating individually and together (MT-TRG) before storing mangoes at 12 °C for 32 days under 85-90% relative humidity. Compared with control, all treatments were significantly effective in preserving fruit quality. Fruits treated with MT-TRG showed significantly lower decay values, respiration rates, ethylene production, and weight loss than untreated fruits. MT-TRG treatment significantly enhanced fruit quality, thereby maintaining fruit appearance, flesh color, firmness, total soluble solids and phenolic contents, and pectin methyl esterase, polyphenol oxidase, and peroxidase activities during the storage period. We propose 200 µM MT + 1% TRG as a safe postharvest treatment to reduce the deterioration of mangoes and maintain fruit quality.
Collapse
Affiliation(s)
- Emad Hamdy Khedr
- Department of Pomology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Jameel Mohammed Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
19
|
Zheng B, Kou X, Liu C, Wang Y, Yu Y, Ma J, Liu Y, Xue Z. Effect of nanopackaging on the quality of edible mushrooms and its action mechanism: A review. Food Chem 2023; 407:135099. [PMID: 36508864 DOI: 10.1016/j.foodchem.2022.135099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
With higher demands for food packaging and the development of nanotechnology, nanopackaging is becoming a research hotspot in the field of food packaging because of its superb preservation effect, and it can effectively resist oxidation and regulates energy metabolism to maintain the quality and prolong the shelf life of mushrooms. Furthermore, under the background of SARS-CoV-2 pandemic, nanomaterials could be a potential tool to prevent virus transmission because of their excellent antiviral activities. However, the investigation and application of nanopackaging are facing many challenges including costs, environmental pollution, poor in-depth genetic research for mechanisms and so on. This article reviews the preservation effect and mechanisms of nanopackaging on the quality of mushrooms and discusses the trends and challenges of using these materials in food packaging technologies with the focus on nanotechnology and based on recent studies.
Collapse
Affiliation(s)
- Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Dynamiker Biotechnology(Tianjin) Co., Ltd., China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
20
|
Ahmad A, Qurashi A, Sheehan D. Nano packaging – Progress and future perspectives for food safety, and sustainability. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Kusuma HS, Yugiani P, Himana AI, Aziz A, Putra DAW. Reflections on food security and smart packaging. Polym Bull (Berl) 2023; 81:1-47. [PMID: 36852383 PMCID: PMC9947446 DOI: 10.1007/s00289-023-04734-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Estimating the number of COVID-19 cases in 2020 exacerbated the food contamination and food supply issues. These problems make consumers more concerned about food and the need to access accurate information on food quality. One of the main methods for preserving the quality of food commodities for export, storage, and finished products is food packaging itself. In the food industry, food packaging has a significant role in the food supply which acts as a barrier against unwanted substances and preserves the quality of the food. Meanwhile, packaging waste can also harm the environment; namely, it can become waste in waterways or become garbage that accumulates because it is nonrenewable and nonbiodegradable. The problem of contaminated food caused by product packaging is also severe. Therefore, to overcome these challenges of safety, environmental impact, and sustainability, the role of food packaging becomes very important and urgent. In this review, the authors will discuss in more detail about new technologies applied in the food industry related to packaging issues to advance the utilization of Smart Packaging and Active Packaging.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Puput Yugiani
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Ayu Iftah Himana
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Amri Aziz
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Deva Afriga Wardana Putra
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| |
Collapse
|
22
|
Nian L, Xie Y, Sun X, Wang M, Cao C. Chitosan quaternary ammonium salt/gelatin-based biopolymer film with multifunctional preservation for perishable products. Int J Biol Macromol 2023; 228:286-298. [PMID: 36581024 DOI: 10.1016/j.ijbiomac.2022.12.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The postharvest physiological and metabolic activities caused fruits and vegetables (F&V) quality deterioration. Therefore, developing an efficient preservation strategy is a promising approach to relieve this issue. In this study, a modified metal-organic framework (MOF; i.e., Cer@MHKUST-1) was encapsulated into a blended matrix of chitosan quaternary ammonium salt (CQAS)/gelatin to fabricate a multifunctional (water-locking, ethylene-removing, and antibacterial) packaging biopolymer-based film (i.e., CMCGF), the characteristics and preservative effects of the packaging were investigated. Results indicated that the physicochemical (e.g., mechanical, gas/light barrier, wettability) properties of CMCGF were improved compared with the control film (i.e., CGF). CMCGF have a higher ethylene adsorption performance of 65-69 cm3/g STP compared with CGF (7.8 cm3/g STP). Cu ions released from CMCGF destroyed the cell wall and membrane, resulting in the death of bacteria, and the antibacterial efficiency of CMCGF against E. coli and S. aureus was 97-100 % and 98-100 %, respectively. Postharvest storage experiments on tomato and winter jujube confirmed the high-efficiency preservation effect of CMCGF packaging. Therefore, CMCGF provides a multifunctional approach to extending the shelf-life of perishable products to decrease food wastage.
Collapse
Affiliation(s)
- Linyu Nian
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Xie
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyang Sun
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Mengjun Wang
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
23
|
Nian L, Wang M, Zeng Y, Jiang J, Cheng S, Cao C. Modified HKUST-1-based packaging with ethylene adsorption property for food preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Wang C, Ajji A. Development and application of low-density polyethylene-based multilayer film incorporating potassium permanganate and pumice for avocado preservation. Food Chem 2023; 401:134162. [DOI: 10.1016/j.foodchem.2022.134162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
|
25
|
Alves J, Gaspar PD, Lima TM, Silva PD. What is the role of active packaging in the future of food sustainability? A systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1004-1020. [PMID: 35303759 DOI: 10.1002/jsfa.11880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the strong increase in products consumption, the purchase of products on online platforms as well as the requirements for greater safety and food protection are a concern for food and packaging industries. Active packaging brings huge advances in the extension of product shelf-life and food degradation and losses reduction. This systematic work aims to collect and evaluate all existing strategies and technologies of active packaging that can be applied in food products, with a global view of new possibilities for food preservation. Oxygen scavengers, carbon dioxide emitters/absorbers, ethylene scavengers, antimicrobial and antioxidant active packaging, and other active systems and technologies are summarized including the products commercially available and the respective mechanisms of action. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Alves
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Gaspar
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Tânia M Lima
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Silva
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
26
|
NaY-Ag Zeolite Chitosan Coating Kraft Paper Applied as Ethylene Scavenger Packaging. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Kim SJ, Lee Y, Choi EJ, Lee JM, Kim KH, Oh JW. The development progress of multi-array colourimetric sensors based on the M13 bacteriophage. NANO CONVERGENCE 2023; 10:1. [PMID: 36595116 PMCID: PMC9808696 DOI: 10.1186/s40580-022-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Techniques for detecting chemicals dispersed at low concentrations in air continue to evolve. These techniques can be applied not only to manage the quality of agricultural products using a post-ripening process but also to establish a safety prevention system by detecting harmful gases and diagnosing diseases. Recently, techniques for rapid response to various chemicals and detection in complex and noisy environments have been developed using M13 bacteriophage-based sensors. In this review, M13 bacteriophage-based multi-array colourimetric sensors for the development of an electronic nose is discussed. The self-templating process was adapted to fabricate a colour band structure consisting of an M13 bacteriophage. To detect diverse target chemicals, the colour band was utilised with wild and genetically engineered M13 bacteriophages to enhance their sensing abilities. Multi-array colourimetric sensors were optimised for application in complex and noisy environments based on simulation and deep learning analysis. The development of a multi-array colourimetric sensor platform based on the M13 bacteriophage is likely to result in significant advances in the detection of various harmful gases and the diagnosis of various diseases based on exhaled gas in the future.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon, Republic of Korea
- Korea and Nano Convergence Technology Center, Hallym University, Chuncheon, Republic of Korea
| | - Kwang Ho Kim
- School of Materials Science and Engineering, Pusan National University, Busan, Republic of Korea
- Global Frontier Research and Development Center for Hybrid Interface Materials, Pusan National University, Busan, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
28
|
Li N, Zhai K, Yin Q, Gu Q, Zhang X, Melencion MG, Chen Z. Crosstalk between melatonin and reactive oxygen species in fruits and vegetables post-harvest preservation: An update. Front Nutr 2023; 10:1143511. [PMID: 36937352 PMCID: PMC10020600 DOI: 10.3389/fnut.2023.1143511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Fruits and vegetables contain numerous nutrients, such as vitamins, minerals, phenolic compounds, and dietary fibers. They reduce the incidence of cardiovascular diseases and the risk of certain chronic diseases, and improve the antioxidant and anti-inflammatory capacity. Moreover, melatonin was found in various fruits and vegetables species. Melatonin acts as a multifunctional compound to participate in various physiological processes. In recent years, many advances have been found that melatonin is also appraised as a key modulator on the fruits and vegetables post-harvest preservation. Fruits and vegetables post-harvest usually elicit reactive oxygen species (ROS) generation and accumulation. Excess ROS stimulate cell damage, protein structure destruction, and tissue aging, and thereby reducing their quality. Numerous studies find that exogenous application of melatonin modulates ROS homeostasis by regulating the antioxidant enzymes and non-enzymatic antioxidants systems. Further evidences reveal that melatonin often interacts with hormones and other signaling molecules, such as ROS, nitric oxide (NO), hydrogen sulfide (H2S), and etc. Among these 'new' molecules, crosstalks of melatonin and ROS, especially the H2O2 produced by RBOHs, are provided in fruits and vegetables post-harvest preservation in this review. It will provide reference for complicated integration of both melatonin and ROS as signal molecules in future study.
Collapse
Affiliation(s)
- Na Li
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou, China
| | - Qin Yin
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Merced G. Melencion
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| | - Ziping Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| |
Collapse
|
29
|
Electrospun biopolymer material for antimicrobial function of fresh fruit and vegetables: Application perspective and challenges. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Yu F, Wang K, Li H, Peng L. Superhydrophobic and ethylene scavenging paper doped with halloysite nanotubes for food packaging applications. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Cocetta G, Natalini A. Ethylene: Management and breeding for postharvest quality in vegetable crops. A review. FRONTIERS IN PLANT SCIENCE 2022; 13:968315. [PMID: 36452083 PMCID: PMC9702508 DOI: 10.3389/fpls.2022.968315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
Ethylene is a two-carbon gaseous plant growth regulator that involved in several important physiological events, including growth, development, ripening and senescence of fruits, vegetables, and ornamental crops. The hormone accelerates ripening of ethylene sensitive fruits, leafy greens and vegetables at micromolar concentrations, and its accumulation can led to fruit decay and waste during the postharvest stage. Several strategies of crops management and techniques of plant breeding have been attempted in the last decades to understand ethylene regulation pathways and ethylene-dependent biochemical and physiological processes, with the final aim to extend the produce shelf-life and improve the postharvest quality of fruits and vegetables. These investigation approaches involve the use of conventional and new breeding techniques, including precise genome-editing. This review paper aims to provide a relevant overview on the state of the art related to the use of modern breeding techniques focused on ethylene and ethylene-related metabolism, as well as on the possible postharvest technological applications for the postharvest management of ethylene-sensitive crops. An updated view and perspective on the implications of new breeding and management strategies to maintain the quality and the marketability of different crops during postharvest are given, with particular focus on: postharvest physiology (ethylene dependent) for mature and immature fruits and vegetables; postharvest quality management of vegetables: fresh and fresh cut products, focusing on the most important ethylene-dependent biochemical pathways; evolution of breeding technologies for facing old and new challenges in postharvest quality of vegetable crops: from conventional breeding and marker assisted selection to new breeding technologies focusing on transgenesis and gene editing. Examples of applied breeding techniques for model plants (tomato, zucchini and brocccoli) are given to elucidate ethylene metabolism, as well as beneficial and detrimental ethylene effects.
Collapse
Affiliation(s)
- Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Natalini
- Council for Agricultural Research and Economics – Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, Italy
| |
Collapse
|
32
|
Ethylene scavenging film based on low-density polyethylene incorporating pumice and potassium permanganate and its application to preserve avocados. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Identification of Key Genes during Ethylene-Induced Adventitious Root Development in Cucumber (Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms232112981. [PMID: 36361778 PMCID: PMC9658848 DOI: 10.3390/ijms232112981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/04/2022] Open
Abstract
Ethylene (ETH), as a key plant hormone, plays critical roles in various processes of plant growth and development. ETH has been reported to induce adventitious rooting. Moreover, our previous studies have shown that exogenous ETH may induce plant adventitious root development in cucumber (Cucumis sativus L.). However, the key genes involved in this process are still unclear. To explore the key genes in ETH-induced adventitious root development, we employed a transcriptome technique and revealed 1415 differentially expressed genes (DEGs), with 687 DEGs up-regulated and 728 DEGs down-regulated. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we further identified critical pathways that were involved in ETH-induced adventitious root development, including carbon metabolism (starch and sucrose metabolism, glycolysis/gluconeogenesis, citrate cycle (TCA cycle), oxidative phosphorylation, fatty acid biosynthesis, and fatty acid degradation), secondary metabolism (phenylalanine metabolism and flavonoid biosynthesis) and plant hormone signal transduction. In carbon metabolism, ETH reduced the content of sucrose, glucose, starch, the activity of sucrose synthase (SS), sucrose–phosphate synthase (SPS) and hexokinase (HK), and the expressions of CsHK2, pyruvate kinase2 (CsPK2), and CsCYP86A1, whereas it enhanced the expressions of β-amylase 1 (CsBAM1) and β-amylase 3 (CsBAM3). In secondary metabolism, the transcript levels of phenylalanine ammonia-lyase (CsPAL) and flavonoid 3′-monooxygenase (CsF3′M) were negatively regulated, and that of primary-amine oxidase (CsPAO) was positively regulated by ETH. Additionally, the indole-3-acetic acid (IAA) content and the expressions of auxin and ETH signaling transduction-related genes (auxin transporter-like protein 5 (CsLAX5), CsGH3.17, CsSUAR50, and CsERS) were suppressed, whereas the abscisic acid (ABA) content and the expressions of ABA and BR signaling transduction-related genes (CsPYL1, CsPYL5, CsPYL8, BRI1-associated kinase 1 (CsBAK1), and CsXTH3) were promoted by ETH. Furthermore, the mRNA levels of these genes were confirmed by real-time PCR (RT-qPCR). These results indicate that genes related to carbon metabolism, secondary metabolite biosynthesis, and plant hormone signaling transduction are involved in ETH-induced adventitious root development. This work identified the key pathways and genes in ETH-induced adventitious rooting in cucumber, which may provide new insights into ETH-induced adventitious root development and will be useful for investigating the molecular roles of key genes in this process in further studies.
Collapse
|
34
|
Development of a novel ethylene scavenger made up of pumice and potassium permanganate and its effect on preservation quality of avocados. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Novel combination of ethylene oxidisers to delay losses on postharvest quality, volatile compounds and sensorial analysis of tomato fruit. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Yang Z, Xu J, Yang L, Zhang X. Optimized Dynamic Monitoring and Quality Management System for Post-Harvest Matsutake of Different Preservation Packaging in Cold Chain. Foods 2022; 11:foods11172646. [PMID: 36076832 PMCID: PMC9455915 DOI: 10.3390/foods11172646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
The quality of Tibetan matsutake drops during cold chain transportation. To extend the shelf life and improve the market value, this study analyzed the matsutake logistics process, and optimized the dynamic monitoring and quality management systems for post-harvest matsutake with different preservation packaging in the cold chain. This system monitored the micro-environmental parameters of the cold chain in real time, and it identified the best preservation method by analyzing the quality change characteristics of the matsutake with different preservation packaging. It was concluded that the matsutake were best preserved under the conditions of modified atmosphere packaging. The data analysis on the collected data verified the performance of the system. Relevant personnel were invited to participate in the system performance analysis and offer optimization suggestions to improve the applicability of the established monitoring system. The optimized model could provide a more effective theoretical reference for the dynamic monitoring and quality management of the system.
Collapse
Affiliation(s)
- Zihan Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jinchao Xu
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lin Yang
- College of Food Science, Tibet Agricultural and Animal Husbandry College, Linzhi 860000, China
| | - Xiaoshuan Zhang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-(0)-1062737663
| |
Collapse
|
37
|
Encapsulation and release kinetics of ethylene into “pre-formed” V-type starch and granular cold-water-soluble starch. Carbohydr Polym 2022; 287:119360. [DOI: 10.1016/j.carbpol.2022.119360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
|
38
|
Micci A, Zhang Q, Chang X, Kingsley K, Park L, Chiaranunt P, Strickland R, Velazquez F, Lindert S, Elmore M, Vines PL, Crane S, Irizarry I, Kowalski KP, Johnston-Monje D, White JF. Histochemical Evidence for Nitrogen-Transfer Endosymbiosis in Non-Photosynthetic Cells of Leaves and Inflorescence Bracts of Angiosperms. BIOLOGY 2022; 11:biology11060876. [PMID: 35741397 PMCID: PMC9220352 DOI: 10.3390/biology11060876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Simple Summary We used light and confocal microscopy to visualize bacteria in leaf and bract cells of more than 30 species in 18 families of seed plants. We detected chemical exchanges between intracellular bacteria and plant cells. We found that endophytic bacteria that show evidence of the transfer of nitrogen to plants are present in non-photosynthetic cells of leaves and bracts of diverse plant species. Nitrogen transfer from bacteria was observed in epidermal cells, various filamentous and glandular trichomes, and other non-photosynthetic cells. The most efficient of the nitrogen-transfer endosymbioses were seen to involve glandular trichomes, as seen in hops (Humulus lupulus) and hemp (Cannabis sativa). Trichome chemistry is hypothesized to function to scavenge oxygen around bacteria to facilitate nitrogen fixation. Abstract We used light and confocal microscopy to visualize bacteria in leaf and bract cells of more than 30 species in 18 families of seed plants. Through histochemical analysis, we detected hormones (including ethylene and nitric oxide), superoxide, and nitrogenous chemicals (including nitric oxide and nitrate) around bacteria within plant cells. Bacteria were observed in epidermal cells, various filamentous and glandular trichomes, and other non-photosynthetic cells. Most notably, bacteria showing nitrate formation based on histochemical staining were present in glandular trichomes of some dicots (e.g., Humulus lupulus and Cannabis sativa). Glandular trichome chemistry is hypothesized to function to scavenge oxygen around bacteria and reduce oxidative damage to intracellular bacterial cells. Experiments to assess the differential absorption of isotopic nitrogen into plants suggest the assimilation of nitrogen into actively growing tissues of plants, where bacteria are most active and carbohydrates are more available. The leaf and bract cell endosymbiosis types outlined in this paper have not been previously reported and may be important in facilitating plant growth, development, oxidative stress resistance, and nutrient absorption into plants. It is unknown whether leaf and bract cell endosymbioses are significant in increasing the nitrogen content of plants. From the experiments that we conducted, it is impossible to know whether plant trichomes evolved specifically as organs for nitrogen fixation or if, instead, trichomes are structures in which bacteria easily colonize and where some casual nitrogen transfer may occur between bacteria and plant cells. It is likely that the endosymbioses seen in leaves and bracts are less efficient than those of root nodules of legumes in similar plants. However, the presence of endosymbioses that yield nitrate in plants could confer a reduced need for soil nitrogen and constitute increased nitrogen-use efficiency, even if the actual amount of nitrogen transferred to plant cells is small. More research is needed to evaluate the importance of nitrogen transfer within leaf and bract cells of plants.
Collapse
Affiliation(s)
- April Micci
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
- Correspondence: (A.M.); (J.F.W.); Tel.: +848-932-6286 (J.F.W.)
| | - Qiuwei Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Xiaoqian Chang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Kathryn Kingsley
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Linsey Park
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Peerapol Chiaranunt
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Raquele Strickland
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Fernando Velazquez
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Sean Lindert
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Matthew Elmore
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Philip L. Vines
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Sharron Crane
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Ivelisse Irizarry
- School of Health and Sciences, Universidad del Sagrado Corazón, San Juan 00914, Puerto Rico;
| | - Kurt P. Kowalski
- US Geological Survey Great Lakes Science Center, Ann Arbor, MI 48105, USA;
| | - David Johnston-Monje
- Max Planck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali 760043, Colombia;
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
- Correspondence: (A.M.); (J.F.W.); Tel.: +848-932-6286 (J.F.W.)
| |
Collapse
|
39
|
Wu W, Liu L, Goksen G, Demir D, Shao P. Multidimensional (0D-3D) nanofillers: fascinating materials in the field of bio-based food active packaging. Food Res Int 2022; 157:111446. [DOI: 10.1016/j.foodres.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
40
|
Alexandre ACS, Ferreira Gomes BA, Duarte GN, Piva SF, Zauza SB, Vilas Boas EVDB. Recent advances in processing and preservation of minimally processed fruits and vegetables: A review – Part 1: Fundamentals and chemical methods. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Giulia Nayara Duarte
- Agriculture Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | - Samella Fabiane Piva
- Food Science Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | - Stefânia Barros Zauza
- Agriculture Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | | |
Collapse
|
41
|
Yang X, Leong JLK, Sun M, Jing L, Zhang Y, Wang T, Wang S, Huang D. Quantitative Determination of Ethylene Using a Smartphone-Based Optical Fiber Sensor (SOFS) Coupled with Pyrene-Tagged Grubbs Catalyst. BIOSENSORS 2022; 12:bios12050316. [PMID: 35624617 PMCID: PMC9138739 DOI: 10.3390/bios12050316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
For rapid and portable detection of ethylene in commercial fruit ripening storage rooms, we designed a smartphone-based optical fiber sensor (SOFS), which is composed of a 15 mW 365 nm laser for fluorescence signal excitation and a bifurcated fiber system for signal flow direction from probe to smartphone. Paired with a pyrene-tagged Grubbs catalyst (PYG) probe, our SOFS showed a wide linearity range up to 350 ppm with a detection limit of 0.6 ppm. The common gases in the warehouse had no significant interference with the results. The device is portable (18 cm × 8 cm × 6 cm) with an inbuilt power supply and replaceable optical fiber sensor tip. The images are processed with a dedicated smartphone application for RGB analysis and ethylene concentration. The device was applied in detection of ethylene generated from apples, avocados, and bananas. The linear correlation data showed agreement with data generated from a fluorometer. The SOFS provides a rapid, compact, cost-effective solution for determination of the fruit ethylene concentration dynamic during ripening for better fruit harvest timing and postharvest management to minimize wastage.
Collapse
Affiliation(s)
- Xin Yang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; (X.Y.); (J.L.K.L.); (L.J.); (Y.Z.)
| | - Justin Lee Kee Leong
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; (X.Y.); (J.L.K.L.); (L.J.); (Y.Z.)
| | - Mingtai Sun
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; (X.Y.); (J.L.K.L.); (L.J.); (Y.Z.)
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- Correspondence: (M.S.); (D.H.)
| | - Linzhi Jing
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; (X.Y.); (J.L.K.L.); (L.J.); (Y.Z.)
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China
| | - Yuannian Zhang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; (X.Y.); (J.L.K.L.); (L.J.); (Y.Z.)
| | - Tian Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore;
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; (X.Y.); (J.L.K.L.); (L.J.); (Y.Z.)
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China
- Correspondence: (M.S.); (D.H.)
| |
Collapse
|
42
|
Rong L, Fan X, Li Y, Cao Y, Kong L, Zhu Z, Huang J. Fabrication of bio-based hierarchically structured ethylene scavenger films via electrospraying for fruit preservation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Semagina N, Tam R, Sawada J. Kinetics of low‐temperature catalytic combustion of ethylene at wet conditions for postharvest storage applications. AIChE J 2022. [DOI: 10.1002/aic.17718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natalia Semagina
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Rosanne Tam
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - James Sawada
- Climacteric Controls Solutions, Inc. Edmonton Alberta Canada
| |
Collapse
|
44
|
Liu W, Huang N, Yang J, Peng L, Li J, Chen W. Characterization and application of porous polylactic acid films prepared by nonsolvent-induced phase separation method. Food Chem 2022; 373:131525. [PMID: 34774380 DOI: 10.1016/j.foodchem.2021.131525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023]
Abstract
Nonsolvent-induced phase separation (NIPS) method was employed to prepare polylactic acid (PLA) films using N-methyl-2-pyrrolidone (NMP) as a nonsolvent. The morphology and structure of PLA films were characterized, and the application of the films in pork preservation was investigated. When 10 wt% NMP was added, film with uniform porous structures was obtained. The crystalline and Fourier-transform infrared spectra analyses indicated that the addition of NMP during the preparation of PLA films caused their crystalline properties to change, but had no effect on their composition. However, the 10 wt% NMP/PLA film had improved thermal stability, water vapor transmission and oxygen permeability. The results on the changes in pH, total volatile basic nitrogen content and total viable counts of pork during refrigerated storage indicated that the 10 wt% NMP/PLA film could more effectively extend the shelf life of pork than polyethylene film. This work demonstrates the potential of the porous PLA film in pork packaging.
Collapse
Affiliation(s)
- Wenlong Liu
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China
| | - Nanlan Huang
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China
| | - Junjie Yang
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Jing Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Weijun Chen
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
45
|
Saud S, Nguyen DB, Bhattarai RM, Matyakubov N, Nguyen VT, Ryu S, Jeon H, Kim SB, Mok YS. Plasma-catalytic ethylene removal by a ZSM-5 washcoat honeycomb monolith impregnated with palladium. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127843. [PMID: 34844801 DOI: 10.1016/j.jhazmat.2021.127843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The effective removal of dilute ethylene in a novel honeycomb plasma reactor was investigated using a honeycomb catalyst (Pd/ZSM-5/monolith) sandwiched between two-perforated electrodes operating at ambient temperature. Herein, the dependence of catalyst performance on the binder fraction, catalyst preparation method, and catalyst loading was examined. Ethylene removal was carried out by a process comprising cycles of 30-min adsorption conjugated with 15-min plasma-catalytic oxidation. Interestingly, the performance of the cyclic process was superior to continuous plasma-catalytic oxidation and thermally activated catalyst in terms of energy conservation, i.e., ~36 compared to ~105 and ~300 J/L, respectively. Hence, the novel cyclic process can be considered advanced-oxidation technology that features room-temperature oxidation, offers low energy consumption, negligible hazardous by-products emissions such as NOx and O3. Moreover, the process operated under described conditions: low-pressure drop, ambient atmosphere, a mechanically stable system, and a simple reactor configuration, suggesting the practical applicability of this plasma process.
Collapse
Affiliation(s)
- Shirjana Saud
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Duc Ba Nguyen
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea; Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Roshan Mangal Bhattarai
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Nosir Matyakubov
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Van Toan Nguyen
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Seungmin Ryu
- Plasma Technology Research Center, Korea Institute of Fusion Energy, Jeollabuk-do 54004, Republic of Korea
| | - Hyungwon Jeon
- Plasma Technology Research Center, Korea Institute of Fusion Energy, Jeollabuk-do 54004, Republic of Korea
| | - Seong Bong Kim
- Plasma Technology Research Center, Korea Institute of Fusion Energy, Jeollabuk-do 54004, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
46
|
Alizadeh Sani M, Maleki M, Eghbaljoo-Gharehgheshlaghi H, Khezerlou A, Mohammadian E, Liu Q, Jafari SM. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv Colloid Interface Sci 2022; 300:102593. [PMID: 34971916 DOI: 10.1016/j.cis.2021.102593] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Environmental issues such as plastic packaging and high demand for fresh and safe food has increased the interest for developing smart/active food packaging films with colloidal nanoparticles (NPs). Titanium dioxide nanoparticles (TNPs) are cost effective and stable metal oxide NPs which could be used as a functional nano-filler for biodegradable food packaging due to their excellent biocompatibility, photo catalyzing, and antimicrobial properties. This article has comprehensively reviewed the functional properties and advantages of TNPs-containing smart/active films. The advantage of adding TNPs for ameliorating food packaging materials such as their physical, mechanical, moisture/light barrier, optical, thermal resistance, microstructure and chemical properties as well as, antibacterial, and photocatalytic properties are discussed. Also, the practical and migration properties of administrating TNPs in food packaging material are investigated. The ethylene decomposition activity of TNPs containing active films, could be used for increasing the shelf life of fruits/vegetables after harvesting. TNPs are safe with negligible migration rates which could be used for fabrication of multifunctional smart/active packaging films due to their antimicrobial properties and ethylene gas scavenging activities.
Collapse
|
47
|
Mariah MAA, Vonnie JM, Erna KH, Nur’Aqilah NM, Huda N, Abdul Wahab R, Rovina K. The Emergence and Impact of Ethylene Scavengers Techniques in Delaying the Ripening of Fruits and Vegetables. MEMBRANES 2022; 12:117. [PMID: 35207039 PMCID: PMC8877706 DOI: 10.3390/membranes12020117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
As the top grocery list priorities, the primary challenge when purchasing fruits and vegetables from supermarkets is obtaining fresh, minimally processed perishable goods. This source of diet is critical for obtaining vitamins, minerals, antioxidants, and fibres. However, the short shelf life caused by moisture content in rapid deterioration and decay caused by microbial growth, results in unappealing appearances. Fruits and vegetables undergo ripening and eventually the ageing process, in which the tissues of the plants degrade. Even after harvesting, numerous biological processes occur, generating a significant variation of ethylene production along with respiration rates between fruits and vegetables. Thus, the utilization of ethylene scavengers in food packaging or films has been revealed to be beneficial. The synergistic effects of these biomaterials have been demonstrated to reduce microorganisms and prolong the shelf life of greens due to antimicrobial activity, oxygen scavenging capacity, enzyme immobilization, texture enhancers, and nutraceuticals. The current review fills this void by discussing the most recent advances in research on ethylene scavengers and removal mechanisms of ethylene, including oxidation in fruit and vegetable packaging. The application and advantages of ethylene scavengers in packaging are then discussed with the addition of how the efficiency related to ethylene scavengers can be increased through atmospheric packaging tools. In this context, the article discusses characteristics, types of applications, and efficacy of ethylene control strategies for perishable commodities with the inclusion of future implications.
Collapse
Affiliation(s)
- Mohd Affandy Aqilah Mariah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.A.A.M.); (J.M.V.); (K.H.E.); (N.M.N.’A.); (N.H.)
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.A.A.M.); (J.M.V.); (K.H.E.); (N.M.N.’A.); (N.H.)
| | - Kana Husna Erna
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.A.A.M.); (J.M.V.); (K.H.E.); (N.M.N.’A.); (N.H.)
| | - Nasir Md Nur’Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.A.A.M.); (J.M.V.); (K.H.E.); (N.M.N.’A.); (N.H.)
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.A.A.M.); (J.M.V.); (K.H.E.); (N.M.N.’A.); (N.H.)
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.A.A.M.); (J.M.V.); (K.H.E.); (N.M.N.’A.); (N.H.)
| |
Collapse
|
48
|
Low CO2 Levels Are Detrimental for In Vitro Plantlets through Disturbance of Photosynthetic Functionality and Accumulation of Reactive Oxygen Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photosynthesis of plantlets in tissue culture containers is not considered important, compared to photosynthesis of ex vitro plants, due to the exogenous source of carbohydrates present in tissue culture media. However, CO2 starvation can generate a burst of reactive oxygen species (ROS). We examined this phenomenon in tissue culture, since CO2 levels may become very low during the light period. The research was carried out with lily scales, regenerating adventitious bulblets, and with Arabidopsis seedlings. CO2 starvation was achieved by placing a small vial of concentrated KOH solution in the culture container. CO2 removal reduced the growth of regenerated lily bulblets by 33% or 23%, with or without sucrose in the medium, respectively. In Arabidopsis seedlings, CO2 removal decreased growth by 50% or 78% in the presence or absence of sucrose in the medium, respectively. Therefore, the addition of sucrose as a replacement for photosynthesis resulted in only partial recovery of growth. Staining with nitroblue tetrazolium (NBT) showed little to no ROS in ex vitro growing seedlings, while abundant ROS were detected in seedlings grown under in vitro CO2 starvation. Seedlings grown under normal tissue culture conditions (no CO2 withdrawal) showed low levels of ROS. In lily tissue culture, CO2 starvation decreased the maximum quantum efficiency of photosystem II (Fv/Fm) from 0.69 to 0.60, and in Arabidopsis from 0.76 to 0.62. Fv/Fm of ex vitro lily and Arabidopsis seedlings was 0.77 and 0.79, respectively. This is indicative of a disturbance in photosynthesis functionality and the occurrence of in vitro stress under reduced CO2 concentrations. We conclude that poor growth, in the absence of CO2, was partly due to strongly reduced photosynthesis, while the detrimental effects were most likely due to a burst of ROS.
Collapse
|
49
|
Phothisarattana D, Wongphan P, Promhuad K, Promsorn J, Harnkarnsujarit N. Biodegradable Poly(Butylene Adipate-Co-Terephthalate) and Thermoplastic Starch-Blended TiO 2 Nanocomposite Blown Films as Functional Active Packaging of Fresh Fruit. Polymers (Basel) 2021; 13:polym13234192. [PMID: 34883695 PMCID: PMC8659531 DOI: 10.3390/polym13234192] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/27/2022] Open
Abstract
Biodegradable polymers can be used for eco-friendly, functional, active packaging to preserve food quality. Incorporation of titanium dioxide (TiO2) nanoparticles into polymer packaging enhances ethylene-scavenging activity and extends the shelf-life of fresh produce. In this study, TiO2 nanoparticles were incorporated into biodegradable poly(butylene adipate-co-terephthalate) (PBAT)- and thermoplastic cassava starch (TPS)-blended films to produce nanocomposite packaging via blown-film extrusion. The effects of TiO2 on morphology, packaging properties, and applications as functional packaging for fresh produce were investigated. Increased TiO2 in the film packaging increased amorphous starch content and hydrogen bonding by interacting with the TPS phase of the polymer blend, with negligible chemical interaction with the PBAT component and identical mechanical relaxation in the PBAT phase. Surface topography indicated void space due to non-homogeneous dispersion causing increased oxygen and carbon dioxide permeability. Homogeneous dispersion of fine TiO2 nanoparticles increased mechanical strength and reduced oxygen, carbon dioxide, and water vapor permeability. Films containing TiO2 also showed efficient oxygen-scavenging activity that removed residual oxygen from the package headspace dependent on the levels and morphology of nanoparticles in the film matrices. Banana fruit packaged in films containing TiO2 recorded slower darkening color change and enhanced shelf-life with increasing TiO2 content.
Collapse
Affiliation(s)
- Danaya Phothisarattana
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
| | - Juthathip Promsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand
- Correspondence: ; Tel.: +662-562-5045; Fax: +662-562-5046
| |
Collapse
|
50
|
Sun M, Yang XL, Zhu ZP, Xu QY, Wu KX, Kang YJ, Wang H, Xiong AS. Comparative transcriptome analysis provides insight into nitric oxide suppressing lignin accumulation of postharvest okra (Abelmoschus esculentus L.) during cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:49-67. [PMID: 34332254 DOI: 10.1016/j.plaphy.2021.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
In plants, NO has been proved the function of improving abiotic stress resistance. However, the role of NO in the lignin metabolism of okra under cold stress has not been clarified. Here, histochemical staining and lignin content analysis showed that cold stress promoted the lignin accumulation of cold stored okra pods, and NO inhibited the lignin accumulation and delayed lignification process. To better understand the roles of NO in okra cold stress resistance mechanism, the full-length transcriptome data of 'Hokkaido' was analyzed. The SNP-treated okra transcriptome and cPTIO-treated okra transcriptome were obtained. A total of 41957 unigenes were screened out from three groups at 10 d, among which, 33, 78 and 18 DEGs were found in ddH2O-treat, SNP-treat and cPTIO-treat group, respectively. Transcriptomic data suggested that the genes involved in lignin biosynthesis showed downregulation under SNP treatment. Transcriptomic data and enzyme activity showed that exogenous NO significantly promoted the biosynthesis of endogenous NO by enhancing NOS activity. Transcriptomic data and plant hormone data showed that NO played an important role in the process of inhibiting the ethylene and ABA synthesis mechanism of okra and thereby reducing the endogenous ethylene and ABA content under chilling stress. Relevant physiological data showed that NO helped to the protection of ROS scavenging system and removed the MDA and H2O2 induced by cold stress. These results provided a reference for studying the molecular mechanism of nitric oxide delaying the lignification of okra, and also provided a theoretical basis for postharvest storage of vegetables.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, Jiangsu, 224002, China
| | - Xiao-Lan Yang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, Jiangsu, 224002, China
| | - Zhi-Peng Zhu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Qin-Yi Xu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Ke-Xin Wu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Yi-Jun Kang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Hao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|